snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +16 -13
- snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
- snowflake/ml/feature_store/__init__.py +9 -0
- snowflake/ml/feature_store/entity.py +73 -0
- snowflake/ml/feature_store/feature_store.py +1657 -0
- snowflake/ml/feature_store/feature_view.py +459 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
- snowflake/ml/model/model_signature.py +72 -16
- snowflake/ml/model/type_hints.py +9 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
- snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
- snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
- snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
- snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
- snowflake/ml/modeling/cluster/birch.py +3 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
- snowflake/ml/modeling/cluster/dbscan.py +3 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
- snowflake/ml/modeling/cluster/k_means.py +3 -3
- snowflake/ml/modeling/cluster/mean_shift.py +3 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
- snowflake/ml/modeling/cluster/optics.py +3 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
- snowflake/ml/modeling/compose/column_transformer.py +3 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
- snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
- snowflake/ml/modeling/covariance/oas.py +3 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
- snowflake/ml/modeling/decomposition/pca.py +3 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
- snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
- snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
- snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
- snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
- snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
- snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
- snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
- snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
- snowflake/ml/modeling/impute/knn_imputer.py +3 -3
- snowflake/ml/modeling/impute/missing_indicator.py +3 -3
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
- snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
- snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/lars.py +3 -3
- snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
- snowflake/ml/modeling/linear_model/lasso.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
- snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
- snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/perceptron.py +3 -3
- snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/ridge.py +3 -3
- snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
- snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
- snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
- snowflake/ml/modeling/manifold/isomap.py +3 -3
- snowflake/ml/modeling/manifold/mds.py +3 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
- snowflake/ml/modeling/manifold/tsne.py +3 -3
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
- snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
- snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
- snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
- snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
- snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
- snowflake/ml/modeling/svm/linear_svc.py +3 -3
- snowflake/ml/modeling/svm/linear_svr.py +3 -3
- snowflake/ml/modeling/svm/nu_svc.py +3 -3
- snowflake/ml/modeling/svm/nu_svr.py +3 -3
- snowflake/ml/modeling/svm/svc.py +3 -3
- snowflake/ml/modeling/svm/svr.py +3 -3
- snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
- snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
- snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
- snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
- snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
- snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
- /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
- /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
- /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -219,7 +219,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
219
219
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
220
220
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
221
221
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
222
|
-
self._handlers:
|
222
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=LinearDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
223
223
|
self._autogenerated = True
|
224
224
|
|
225
225
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -181,7 +181,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
|
|
181
181
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
182
182
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
183
183
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
184
|
-
self._handlers:
|
184
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=QuadraticDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
185
185
|
self._autogenerated = True
|
186
186
|
|
187
187
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -206,7 +206,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
206
206
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
207
207
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
208
208
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
209
|
-
self._handlers:
|
209
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=AdaBoostClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
210
210
|
self._autogenerated = True
|
211
211
|
|
212
212
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -203,7 +203,7 @@ class AdaBoostRegressor(BaseTransformer):
|
|
203
203
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
204
204
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
205
205
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
206
|
-
self._handlers:
|
206
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=AdaBoostRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
207
207
|
self._autogenerated = True
|
208
208
|
|
209
209
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -238,7 +238,7 @@ class BaggingClassifier(BaseTransformer):
|
|
238
238
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
239
239
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
240
240
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
241
|
-
self._handlers:
|
241
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=BaggingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
242
242
|
self._autogenerated = True
|
243
243
|
|
244
244
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -238,7 +238,7 @@ class BaggingRegressor(BaseTransformer):
|
|
238
238
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
239
239
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
240
240
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
241
|
-
self._handlers:
|
241
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
242
242
|
self._autogenerated = True
|
243
243
|
|
244
244
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -341,7 +341,7 @@ class ExtraTreesClassifier(BaseTransformer):
|
|
341
341
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
342
342
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
343
343
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
344
|
-
self._handlers:
|
344
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
345
345
|
self._autogenerated = True
|
346
346
|
|
347
347
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -320,7 +320,7 @@ class ExtraTreesRegressor(BaseTransformer):
|
|
320
320
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
321
321
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
322
322
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
323
|
-
self._handlers:
|
323
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
324
324
|
self._autogenerated = True
|
325
325
|
|
326
326
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -353,7 +353,7 @@ class GradientBoostingClassifier(BaseTransformer):
|
|
353
353
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
354
354
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
355
355
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
356
|
-
self._handlers:
|
356
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
357
357
|
self._autogenerated = True
|
358
358
|
|
359
359
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -362,7 +362,7 @@ class GradientBoostingRegressor(BaseTransformer):
|
|
362
362
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
363
363
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
364
364
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
365
|
-
self._handlers:
|
365
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
366
366
|
self._autogenerated = True
|
367
367
|
|
368
368
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -334,7 +334,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
334
334
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
335
335
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
336
336
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
337
|
-
self._handlers:
|
337
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
338
338
|
self._autogenerated = True
|
339
339
|
|
340
340
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -325,7 +325,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
|
|
325
325
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
326
326
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
327
327
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
328
|
-
self._handlers:
|
328
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
329
329
|
self._autogenerated = True
|
330
330
|
|
331
331
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -225,7 +225,7 @@ class IsolationForest(BaseTransformer):
|
|
225
225
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
226
226
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
227
227
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
228
|
-
self._handlers:
|
228
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=IsolationForest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
229
229
|
self._autogenerated = True
|
230
230
|
|
231
231
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -337,7 +337,7 @@ class RandomForestClassifier(BaseTransformer):
|
|
337
337
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
338
338
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
339
339
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
340
|
-
self._handlers:
|
340
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=RandomForestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
341
341
|
self._autogenerated = True
|
342
342
|
|
343
343
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -316,7 +316,7 @@ class RandomForestRegressor(BaseTransformer):
|
|
316
316
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
317
317
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
318
318
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
319
|
-
self._handlers:
|
319
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
320
320
|
self._autogenerated = True
|
321
321
|
|
322
322
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -217,7 +217,7 @@ class StackingRegressor(BaseTransformer):
|
|
217
217
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
218
218
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
219
219
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
220
|
-
self._handlers:
|
220
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
221
221
|
self._autogenerated = True
|
222
222
|
|
223
223
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -199,7 +199,7 @@ class VotingClassifier(BaseTransformer):
|
|
199
199
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
200
200
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
201
201
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
202
|
-
self._handlers:
|
202
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
203
203
|
self._autogenerated = True
|
204
204
|
|
205
205
|
def _get_rand_id(self) -> str:
|
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
26
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
27
27
|
from snowflake.snowpark import DataFrame, Session
|
28
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
29
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
29
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
30
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
32
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
35
35
|
transform_snowml_obj_to_sklearn_obj,
|
36
36
|
validate_sklearn_args,
|
37
37
|
)
|
38
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
38
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
39
39
|
|
40
40
|
from snowflake.ml.model.model_signature import (
|
41
41
|
DataType,
|
@@ -181,7 +181,7 @@ class VotingRegressor(BaseTransformer):
|
|
181
181
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
182
182
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
183
183
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
184
|
-
self._handlers:
|
184
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=VotingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
185
185
|
self._autogenerated = True
|
186
186
|
|
187
187
|
def _get_rand_id(self) -> str:
|
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
27
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
28
28
|
from snowflake.snowpark import DataFrame, Session
|
29
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
32
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
33
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
36
36
|
transform_snowml_obj_to_sklearn_obj,
|
37
37
|
validate_sklearn_args,
|
38
38
|
)
|
39
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
39
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
40
40
|
|
41
41
|
from snowflake.ml.model.model_signature import (
|
42
42
|
DataType,
|
@@ -171,7 +171,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
171
171
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
172
172
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
173
173
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
174
|
-
self._handlers:
|
174
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
175
175
|
self._autogenerated = True
|
176
176
|
|
177
177
|
def _get_rand_id(self) -> str:
|
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
27
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
28
28
|
from snowflake.snowpark import DataFrame, Session
|
29
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
32
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
33
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
36
36
|
transform_snowml_obj_to_sklearn_obj,
|
37
37
|
validate_sklearn_args,
|
38
38
|
)
|
39
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
39
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
40
40
|
|
41
41
|
from snowflake.ml.model.model_signature import (
|
42
42
|
DataType,
|
@@ -167,7 +167,7 @@ class SelectFdr(BaseTransformer):
|
|
167
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
168
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
169
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
170
|
-
self._handlers:
|
170
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectFdr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
171
|
self._autogenerated = True
|
172
172
|
|
173
173
|
def _get_rand_id(self) -> str:
|
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
27
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
28
28
|
from snowflake.snowpark import DataFrame, Session
|
29
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
32
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
33
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
36
36
|
transform_snowml_obj_to_sklearn_obj,
|
37
37
|
validate_sklearn_args,
|
38
38
|
)
|
39
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
39
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
40
40
|
|
41
41
|
from snowflake.ml.model.model_signature import (
|
42
42
|
DataType,
|
@@ -167,7 +167,7 @@ class SelectFpr(BaseTransformer):
|
|
167
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
168
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
169
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
170
|
-
self._handlers:
|
170
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectFpr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
171
|
self._autogenerated = True
|
172
172
|
|
173
173
|
def _get_rand_id(self) -> str:
|
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
|
27
27
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
28
28
|
from snowflake.snowpark import DataFrame, Session
|
29
29
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
31
31
|
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
32
32
|
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
33
33
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
36
36
|
transform_snowml_obj_to_sklearn_obj,
|
37
37
|
validate_sklearn_args,
|
38
38
|
)
|
39
|
-
from snowflake.ml.modeling._internal.estimator_protocols import
|
39
|
+
from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
|
40
40
|
|
41
41
|
from snowflake.ml.model.model_signature import (
|
42
42
|
DataType,
|
@@ -167,7 +167,7 @@ class SelectFwe(BaseTransformer):
|
|
167
167
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
168
168
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
169
169
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
170
|
-
self._handlers:
|
170
|
+
self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectFwe.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
171
171
|
self._autogenerated = True
|
172
172
|
|
173
173
|
def _get_rand_id(self) -> str:
|