snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (178) hide show
  1. snowflake/ml/_internal/env_utils.py +16 -13
  2. snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
  3. snowflake/ml/feature_store/__init__.py +9 -0
  4. snowflake/ml/feature_store/entity.py +73 -0
  5. snowflake/ml/feature_store/feature_store.py +1657 -0
  6. snowflake/ml/feature_store/feature_view.py +459 -0
  7. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
  8. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  9. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
  10. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
  11. snowflake/ml/model/model_signature.py +72 -16
  12. snowflake/ml/model/type_hints.py +9 -0
  13. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
  14. snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
  15. snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
  16. snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
  17. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
  18. snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
  19. snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
  20. snowflake/ml/modeling/cluster/birch.py +3 -3
  21. snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
  22. snowflake/ml/modeling/cluster/dbscan.py +3 -3
  23. snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
  24. snowflake/ml/modeling/cluster/k_means.py +3 -3
  25. snowflake/ml/modeling/cluster/mean_shift.py +3 -3
  26. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  27. snowflake/ml/modeling/cluster/optics.py +3 -3
  28. snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
  29. snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
  30. snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
  31. snowflake/ml/modeling/compose/column_transformer.py +3 -3
  32. snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
  33. snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
  34. snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
  35. snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
  36. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
  37. snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
  38. snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
  39. snowflake/ml/modeling/covariance/oas.py +3 -3
  40. snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
  41. snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
  42. snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
  43. snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
  44. snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
  45. snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
  46. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
  47. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
  48. snowflake/ml/modeling/decomposition/pca.py +3 -3
  49. snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
  50. snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
  51. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
  52. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
  53. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
  54. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
  55. snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
  56. snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
  57. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
  58. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
  59. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
  60. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
  61. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
  62. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
  63. snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
  64. snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
  65. snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
  66. snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
  67. snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
  68. snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
  69. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
  70. snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
  71. snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
  72. snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
  73. snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
  74. snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
  75. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
  76. snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
  77. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
  78. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
  79. snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
  80. snowflake/ml/modeling/impute/knn_imputer.py +3 -3
  81. snowflake/ml/modeling/impute/missing_indicator.py +3 -3
  82. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
  83. snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
  84. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
  85. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
  86. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
  87. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
  88. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
  89. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
  90. snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
  91. snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
  92. snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
  93. snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
  94. snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
  95. snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
  96. snowflake/ml/modeling/linear_model/lars.py +3 -3
  97. snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
  98. snowflake/ml/modeling/linear_model/lasso.py +3 -3
  99. snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
  100. snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
  101. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
  102. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
  103. snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
  104. snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
  105. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
  106. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
  107. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
  108. snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
  109. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
  110. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
  111. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
  112. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
  113. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  114. snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
  115. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
  116. snowflake/ml/modeling/linear_model/ridge.py +3 -3
  117. snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
  118. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
  119. snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
  120. snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
  121. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
  122. snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
  123. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
  124. snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
  125. snowflake/ml/modeling/manifold/isomap.py +3 -3
  126. snowflake/ml/modeling/manifold/mds.py +3 -3
  127. snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
  128. snowflake/ml/modeling/manifold/tsne.py +3 -3
  129. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
  130. snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
  131. snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
  132. snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
  133. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
  134. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
  135. snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
  136. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  137. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  138. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  139. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
  140. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  141. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
  142. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
  143. snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
  144. snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
  145. snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
  146. snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
  147. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
  148. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
  149. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
  150. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
  151. snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
  152. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
  153. snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
  154. snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
  155. snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
  156. snowflake/ml/modeling/svm/linear_svc.py +3 -3
  157. snowflake/ml/modeling/svm/linear_svr.py +3 -3
  158. snowflake/ml/modeling/svm/nu_svc.py +3 -3
  159. snowflake/ml/modeling/svm/nu_svr.py +3 -3
  160. snowflake/ml/modeling/svm/svc.py +3 -3
  161. snowflake/ml/modeling/svm/svr.py +3 -3
  162. snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
  163. snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
  164. snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
  165. snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
  166. snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
  167. snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
  168. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
  169. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
  170. snowflake/ml/version.py +1 -1
  171. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
  172. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
  173. /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
  174. /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
  175. /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
  176. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
  177. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
  178. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -219,7 +219,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
219
219
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
220
220
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
221
221
  self._snowpark_cols: Optional[List[str]] = self.input_cols
222
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=LinearDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
222
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=LinearDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
223
223
  self._autogenerated = True
224
224
 
225
225
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -181,7 +181,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
181
181
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
182
182
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
183
183
  self._snowpark_cols: Optional[List[str]] = self.input_cols
184
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=QuadraticDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
184
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=QuadraticDiscriminantAnalysis.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
185
185
  self._autogenerated = True
186
186
 
187
187
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -206,7 +206,7 @@ class AdaBoostClassifier(BaseTransformer):
206
206
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
207
207
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
208
208
  self._snowpark_cols: Optional[List[str]] = self.input_cols
209
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
209
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=AdaBoostClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
210
210
  self._autogenerated = True
211
211
 
212
212
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -203,7 +203,7 @@ class AdaBoostRegressor(BaseTransformer):
203
203
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
204
204
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
205
205
  self._snowpark_cols: Optional[List[str]] = self.input_cols
206
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=AdaBoostRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
206
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=AdaBoostRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
207
207
  self._autogenerated = True
208
208
 
209
209
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -238,7 +238,7 @@ class BaggingClassifier(BaseTransformer):
238
238
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
239
239
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
240
240
  self._snowpark_cols: Optional[List[str]] = self.input_cols
241
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
241
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=BaggingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
242
242
  self._autogenerated = True
243
243
 
244
244
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -238,7 +238,7 @@ class BaggingRegressor(BaseTransformer):
238
238
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
239
239
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
240
240
  self._snowpark_cols: Optional[List[str]] = self.input_cols
241
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
241
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=BaggingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
242
242
  self._autogenerated = True
243
243
 
244
244
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -341,7 +341,7 @@ class ExtraTreesClassifier(BaseTransformer):
341
341
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
342
342
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
343
343
  self._snowpark_cols: Optional[List[str]] = self.input_cols
344
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
344
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ExtraTreesClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
345
345
  self._autogenerated = True
346
346
 
347
347
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -320,7 +320,7 @@ class ExtraTreesRegressor(BaseTransformer):
320
320
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
321
321
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
322
322
  self._snowpark_cols: Optional[List[str]] = self.input_cols
323
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
323
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ExtraTreesRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
324
324
  self._autogenerated = True
325
325
 
326
326
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -353,7 +353,7 @@ class GradientBoostingClassifier(BaseTransformer):
353
353
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
354
354
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
355
355
  self._snowpark_cols: Optional[List[str]] = self.input_cols
356
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
356
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
357
357
  self._autogenerated = True
358
358
 
359
359
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -362,7 +362,7 @@ class GradientBoostingRegressor(BaseTransformer):
362
362
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
363
363
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
364
364
  self._snowpark_cols: Optional[List[str]] = self.input_cols
365
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
365
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
366
366
  self._autogenerated = True
367
367
 
368
368
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -334,7 +334,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
334
334
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
335
335
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
336
336
  self._snowpark_cols: Optional[List[str]] = self.input_cols
337
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
337
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=HistGradientBoostingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
338
338
  self._autogenerated = True
339
339
 
340
340
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -325,7 +325,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
325
325
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
326
326
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
327
327
  self._snowpark_cols: Optional[List[str]] = self.input_cols
328
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
328
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=HistGradientBoostingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
329
329
  self._autogenerated = True
330
330
 
331
331
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -225,7 +225,7 @@ class IsolationForest(BaseTransformer):
225
225
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
226
226
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
227
227
  self._snowpark_cols: Optional[List[str]] = self.input_cols
228
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=IsolationForest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=IsolationForest.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
229
229
  self._autogenerated = True
230
230
 
231
231
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -337,7 +337,7 @@ class RandomForestClassifier(BaseTransformer):
337
337
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
338
338
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
339
339
  self._snowpark_cols: Optional[List[str]] = self.input_cols
340
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
340
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RandomForestClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
341
341
  self._autogenerated = True
342
342
 
343
343
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -316,7 +316,7 @@ class RandomForestRegressor(BaseTransformer):
316
316
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
317
317
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
318
318
  self._snowpark_cols: Optional[List[str]] = self.input_cols
319
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
319
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=RandomForestRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
320
320
  self._autogenerated = True
321
321
 
322
322
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -217,7 +217,7 @@ class StackingRegressor(BaseTransformer):
217
217
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
218
218
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
219
219
  self._snowpark_cols: Optional[List[str]] = self.input_cols
220
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
220
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=StackingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
221
221
  self._autogenerated = True
222
222
 
223
223
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -199,7 +199,7 @@ class VotingClassifier(BaseTransformer):
199
199
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
200
200
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
201
201
  self._snowpark_cols: Optional[List[str]] = self.input_cols
202
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
202
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=VotingClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
203
203
  self._autogenerated = True
204
204
 
205
205
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -181,7 +181,7 @@ class VotingRegressor(BaseTransformer):
181
181
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
182
182
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
183
183
  self._snowpark_cols: Optional[List[str]] = self.input_cols
184
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=VotingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
184
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=VotingRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
185
185
  self._autogenerated = True
186
186
 
187
187
  def _get_rand_id(self) -> str:
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
27
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
28
28
  from snowflake.snowpark import DataFrame, Session
29
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
32
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
33
33
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
36
36
  transform_snowml_obj_to_sklearn_obj,
37
37
  validate_sklearn_args,
38
38
  )
39
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
39
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
40
40
 
41
41
  from snowflake.ml.model.model_signature import (
42
42
  DataType,
@@ -171,7 +171,7 @@ class GenericUnivariateSelect(BaseTransformer):
171
171
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
172
172
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
173
173
  self._snowpark_cols: Optional[List[str]] = self.input_cols
174
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
174
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=GenericUnivariateSelect.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
175
175
  self._autogenerated = True
176
176
 
177
177
  def _get_rand_id(self) -> str:
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
27
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
28
28
  from snowflake.snowpark import DataFrame, Session
29
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
32
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
33
33
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
36
36
  transform_snowml_obj_to_sklearn_obj,
37
37
  validate_sklearn_args,
38
38
  )
39
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
39
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
40
40
 
41
41
  from snowflake.ml.model.model_signature import (
42
42
  DataType,
@@ -167,7 +167,7 @@ class SelectFdr(BaseTransformer):
167
167
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
168
168
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
169
169
  self._snowpark_cols: Optional[List[str]] = self.input_cols
170
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectFdr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
170
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectFdr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
171
171
  self._autogenerated = True
172
172
 
173
173
  def _get_rand_id(self) -> str:
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
27
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
28
28
  from snowflake.snowpark import DataFrame, Session
29
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
32
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
33
33
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
36
36
  transform_snowml_obj_to_sklearn_obj,
37
37
  validate_sklearn_args,
38
38
  )
39
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
39
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
40
40
 
41
41
  from snowflake.ml.model.model_signature import (
42
42
  DataType,
@@ -167,7 +167,7 @@ class SelectFpr(BaseTransformer):
167
167
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
168
168
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
169
169
  self._snowpark_cols: Optional[List[str]] = self.input_cols
170
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectFpr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
170
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectFpr.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
171
171
  self._autogenerated = True
172
172
 
173
173
  def _get_rand_id(self) -> str:
@@ -27,7 +27,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
27
27
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
28
28
  from snowflake.snowpark import DataFrame, Session
29
29
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
31
31
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
32
32
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
33
33
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -36,7 +36,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
36
36
  transform_snowml_obj_to_sklearn_obj,
37
37
  validate_sklearn_args,
38
38
  )
39
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
39
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
40
40
 
41
41
  from snowflake.ml.model.model_signature import (
42
42
  DataType,
@@ -167,7 +167,7 @@ class SelectFwe(BaseTransformer):
167
167
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
168
168
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
169
169
  self._snowpark_cols: Optional[List[str]] = self.input_cols
170
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SelectFwe.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
170
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SelectFwe.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
171
171
  self._autogenerated = True
172
172
 
173
173
  def _get_rand_id(self) -> str: