snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (178) hide show
  1. snowflake/ml/_internal/env_utils.py +16 -13
  2. snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
  3. snowflake/ml/feature_store/__init__.py +9 -0
  4. snowflake/ml/feature_store/entity.py +73 -0
  5. snowflake/ml/feature_store/feature_store.py +1657 -0
  6. snowflake/ml/feature_store/feature_view.py +459 -0
  7. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
  8. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  9. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
  10. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
  11. snowflake/ml/model/model_signature.py +72 -16
  12. snowflake/ml/model/type_hints.py +9 -0
  13. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
  14. snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
  15. snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
  16. snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
  17. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
  18. snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
  19. snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
  20. snowflake/ml/modeling/cluster/birch.py +3 -3
  21. snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
  22. snowflake/ml/modeling/cluster/dbscan.py +3 -3
  23. snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
  24. snowflake/ml/modeling/cluster/k_means.py +3 -3
  25. snowflake/ml/modeling/cluster/mean_shift.py +3 -3
  26. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  27. snowflake/ml/modeling/cluster/optics.py +3 -3
  28. snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
  29. snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
  30. snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
  31. snowflake/ml/modeling/compose/column_transformer.py +3 -3
  32. snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
  33. snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
  34. snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
  35. snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
  36. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
  37. snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
  38. snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
  39. snowflake/ml/modeling/covariance/oas.py +3 -3
  40. snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
  41. snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
  42. snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
  43. snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
  44. snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
  45. snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
  46. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
  47. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
  48. snowflake/ml/modeling/decomposition/pca.py +3 -3
  49. snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
  50. snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
  51. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
  52. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
  53. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
  54. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
  55. snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
  56. snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
  57. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
  58. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
  59. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
  60. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
  61. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
  62. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
  63. snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
  64. snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
  65. snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
  66. snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
  67. snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
  68. snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
  69. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
  70. snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
  71. snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
  72. snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
  73. snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
  74. snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
  75. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
  76. snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
  77. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
  78. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
  79. snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
  80. snowflake/ml/modeling/impute/knn_imputer.py +3 -3
  81. snowflake/ml/modeling/impute/missing_indicator.py +3 -3
  82. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
  83. snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
  84. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
  85. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
  86. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
  87. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
  88. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
  89. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
  90. snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
  91. snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
  92. snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
  93. snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
  94. snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
  95. snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
  96. snowflake/ml/modeling/linear_model/lars.py +3 -3
  97. snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
  98. snowflake/ml/modeling/linear_model/lasso.py +3 -3
  99. snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
  100. snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
  101. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
  102. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
  103. snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
  104. snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
  105. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
  106. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
  107. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
  108. snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
  109. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
  110. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
  111. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
  112. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
  113. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  114. snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
  115. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
  116. snowflake/ml/modeling/linear_model/ridge.py +3 -3
  117. snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
  118. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
  119. snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
  120. snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
  121. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
  122. snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
  123. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
  124. snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
  125. snowflake/ml/modeling/manifold/isomap.py +3 -3
  126. snowflake/ml/modeling/manifold/mds.py +3 -3
  127. snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
  128. snowflake/ml/modeling/manifold/tsne.py +3 -3
  129. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
  130. snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
  131. snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
  132. snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
  133. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
  134. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
  135. snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
  136. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  137. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  138. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  139. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
  140. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  141. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
  142. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
  143. snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
  144. snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
  145. snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
  146. snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
  147. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
  148. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
  149. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
  150. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
  151. snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
  152. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
  153. snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
  154. snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
  155. snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
  156. snowflake/ml/modeling/svm/linear_svc.py +3 -3
  157. snowflake/ml/modeling/svm/linear_svr.py +3 -3
  158. snowflake/ml/modeling/svm/nu_svc.py +3 -3
  159. snowflake/ml/modeling/svm/nu_svr.py +3 -3
  160. snowflake/ml/modeling/svm/svc.py +3 -3
  161. snowflake/ml/modeling/svm/svr.py +3 -3
  162. snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
  163. snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
  164. snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
  165. snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
  166. snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
  167. snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
  168. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
  169. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
  170. snowflake/ml/version.py +1 -1
  171. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
  172. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
  173. /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
  174. /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
  175. /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
  176. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
  177. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
  178. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -264,7 +264,7 @@ class SVC(BaseTransformer):
264
264
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
265
265
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
266
266
  self._snowpark_cols: Optional[List[str]] = self.input_cols
267
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
267
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SVC.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
268
268
  self._autogenerated = True
269
269
 
270
270
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -225,7 +225,7 @@ class SVR(BaseTransformer):
225
225
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
226
226
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
227
227
  self._snowpark_cols: Optional[List[str]] = self.input_cols
228
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
228
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=SVR.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
229
229
  self._autogenerated = True
230
230
 
231
231
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -292,7 +292,7 @@ class DecisionTreeClassifier(BaseTransformer):
292
292
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
293
293
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
294
294
  self._snowpark_cols: Optional[List[str]] = self.input_cols
295
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
295
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=DecisionTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
296
296
  self._autogenerated = True
297
297
 
298
298
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -274,7 +274,7 @@ class DecisionTreeRegressor(BaseTransformer):
274
274
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
275
275
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
276
276
  self._snowpark_cols: Optional[List[str]] = self.input_cols
277
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=DecisionTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
277
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=DecisionTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
278
278
  self._autogenerated = True
279
279
 
280
280
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -284,7 +284,7 @@ class ExtraTreeClassifier(BaseTransformer):
284
284
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
285
285
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
286
286
  self._snowpark_cols: Optional[List[str]] = self.input_cols
287
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
287
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ExtraTreeClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
288
288
  self._autogenerated = True
289
289
 
290
290
  def _get_rand_id(self) -> str:
@@ -26,7 +26,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
26
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
27
27
  from snowflake.snowpark import DataFrame, Session
28
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
29
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
30
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
31
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
32
32
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -35,7 +35,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
35
35
  transform_snowml_obj_to_sklearn_obj,
36
36
  validate_sklearn_args,
37
37
  )
38
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
38
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
39
39
 
40
40
  from snowflake.ml.model.model_signature import (
41
41
  DataType,
@@ -266,7 +266,7 @@ class ExtraTreeRegressor(BaseTransformer):
266
266
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
267
267
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
268
268
  self._snowpark_cols: Optional[List[str]] = self.input_cols
269
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ExtraTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
269
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=ExtraTreeRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
270
270
  self._autogenerated = True
271
271
 
272
272
  def _get_rand_id(self) -> str:
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
26
  from snowflake.snowpark import DataFrame, Session
27
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
28
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
29
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
31
31
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
34
34
  transform_snowml_obj_to_sklearn_obj,
35
35
  validate_sklearn_args,
36
36
  )
37
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
38
38
 
39
39
  from snowflake.ml.model.model_signature import (
40
40
  DataType,
@@ -384,7 +384,7 @@ class XGBClassifier(BaseTransformer):
384
384
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
385
385
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
386
386
  self._snowpark_cols: Optional[List[str]] = self.input_cols
387
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
387
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=XGBClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
388
388
  self._autogenerated = True
389
389
 
390
390
  def _get_rand_id(self) -> str:
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
26
  from snowflake.snowpark import DataFrame, Session
27
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
28
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
29
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
31
31
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
34
34
  transform_snowml_obj_to_sklearn_obj,
35
35
  validate_sklearn_args,
36
36
  )
37
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
38
38
 
39
39
  from snowflake.ml.model.model_signature import (
40
40
  DataType,
@@ -383,7 +383,7 @@ class XGBRegressor(BaseTransformer):
383
383
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
384
384
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
385
385
  self._snowpark_cols: Optional[List[str]] = self.input_cols
386
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
386
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=XGBRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
387
387
  self._autogenerated = True
388
388
 
389
389
  def _get_rand_id(self) -> str:
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
26
  from snowflake.snowpark import DataFrame, Session
27
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
28
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
29
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
31
31
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
34
34
  transform_snowml_obj_to_sklearn_obj,
35
35
  validate_sklearn_args,
36
36
  )
37
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
38
38
 
39
39
  from snowflake.ml.model.model_signature import (
40
40
  DataType,
@@ -388,7 +388,7 @@ class XGBRFClassifier(BaseTransformer):
388
388
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
389
389
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
390
390
  self._snowpark_cols: Optional[List[str]] = self.input_cols
391
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
391
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=XGBRFClassifier.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
392
392
  self._autogenerated = True
393
393
 
394
394
  def _get_rand_id(self) -> str:
@@ -25,7 +25,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
25
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
26
  from snowflake.snowpark import DataFrame, Session
27
27
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
- from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
28
+ from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl
29
29
  from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
30
30
  from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
31
31
  from snowflake.ml.modeling._internal.estimator_utils import (
@@ -34,7 +34,7 @@ from snowflake.ml.modeling._internal.estimator_utils import (
34
34
  transform_snowml_obj_to_sklearn_obj,
35
35
  validate_sklearn_args,
36
36
  )
37
- from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
+ from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers
38
38
 
39
39
  from snowflake.ml.model.model_signature import (
40
40
  DataType,
@@ -388,7 +388,7 @@ class XGBRFRegressor(BaseTransformer):
388
388
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
389
389
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
390
390
  self._snowpark_cols: Optional[List[str]] = self.input_cols
391
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
391
+ self._handlers: TransformerHandlers = HandlersImpl(class_name=XGBRFRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
392
392
  self._autogenerated = True
393
393
 
394
394
  def _get_rand_id(self) -> str:
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.2.1"
1
+ VERSION="1.2.2"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: snowflake-ml-python
3
- Version: 1.2.1
3
+ Version: 1.2.2
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -367,6 +367,21 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
367
367
 
368
368
  # Release History
369
369
 
370
+ ## 1.2.2
371
+
372
+ ### Bug Fixes
373
+
374
+ ### Behavior Changes
375
+
376
+ ### New Features
377
+
378
+ - Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be
379
+ required to make sure the deploying process work as long as SPCS will by default deny all network connections. The
380
+ following endpoints must be allowed to make deployment work: docker.com:80, docker.com:443, anaconda.com:80,
381
+ anaconda.com:443, anaconda.org:80, anaconda.org:443, pypi.org:80, pypi.org:443. If you are using
382
+ `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object, the following endpoints are required
383
+ to be allowed: huggingface.com:80, huggingface.com:443, huggingface.co:80, huggingface.co:443.
384
+
370
385
  ## 1.2.1
371
386
 
372
387
  ### New Features