snowflake-ml-python 1.2.1__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (178) hide show
  1. snowflake/ml/_internal/env_utils.py +16 -13
  2. snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
  3. snowflake/ml/feature_store/__init__.py +9 -0
  4. snowflake/ml/feature_store/entity.py +73 -0
  5. snowflake/ml/feature_store/feature_store.py +1657 -0
  6. snowflake/ml/feature_store/feature_view.py +459 -0
  7. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
  8. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  9. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
  10. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
  11. snowflake/ml/model/model_signature.py +72 -16
  12. snowflake/ml/model/type_hints.py +9 -0
  13. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
  14. snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
  15. snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +3 -1
  16. snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
  17. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +3 -3
  18. snowflake/ml/modeling/cluster/affinity_propagation.py +3 -3
  19. snowflake/ml/modeling/cluster/agglomerative_clustering.py +3 -3
  20. snowflake/ml/modeling/cluster/birch.py +3 -3
  21. snowflake/ml/modeling/cluster/bisecting_k_means.py +3 -3
  22. snowflake/ml/modeling/cluster/dbscan.py +3 -3
  23. snowflake/ml/modeling/cluster/feature_agglomeration.py +3 -3
  24. snowflake/ml/modeling/cluster/k_means.py +3 -3
  25. snowflake/ml/modeling/cluster/mean_shift.py +3 -3
  26. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  27. snowflake/ml/modeling/cluster/optics.py +3 -3
  28. snowflake/ml/modeling/cluster/spectral_biclustering.py +3 -3
  29. snowflake/ml/modeling/cluster/spectral_clustering.py +3 -3
  30. snowflake/ml/modeling/cluster/spectral_coclustering.py +3 -3
  31. snowflake/ml/modeling/compose/column_transformer.py +3 -3
  32. snowflake/ml/modeling/compose/transformed_target_regressor.py +3 -3
  33. snowflake/ml/modeling/covariance/elliptic_envelope.py +3 -3
  34. snowflake/ml/modeling/covariance/empirical_covariance.py +3 -3
  35. snowflake/ml/modeling/covariance/graphical_lasso.py +3 -3
  36. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +3 -3
  37. snowflake/ml/modeling/covariance/ledoit_wolf.py +3 -3
  38. snowflake/ml/modeling/covariance/min_cov_det.py +3 -3
  39. snowflake/ml/modeling/covariance/oas.py +3 -3
  40. snowflake/ml/modeling/covariance/shrunk_covariance.py +3 -3
  41. snowflake/ml/modeling/decomposition/dictionary_learning.py +3 -3
  42. snowflake/ml/modeling/decomposition/factor_analysis.py +3 -3
  43. snowflake/ml/modeling/decomposition/fast_ica.py +3 -3
  44. snowflake/ml/modeling/decomposition/incremental_pca.py +3 -3
  45. snowflake/ml/modeling/decomposition/kernel_pca.py +3 -3
  46. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +3 -3
  47. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +3 -3
  48. snowflake/ml/modeling/decomposition/pca.py +3 -3
  49. snowflake/ml/modeling/decomposition/sparse_pca.py +3 -3
  50. snowflake/ml/modeling/decomposition/truncated_svd.py +3 -3
  51. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +3 -3
  52. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +3 -3
  53. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +3 -3
  54. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +3 -3
  55. snowflake/ml/modeling/ensemble/bagging_classifier.py +3 -3
  56. snowflake/ml/modeling/ensemble/bagging_regressor.py +3 -3
  57. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +3 -3
  58. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +3 -3
  59. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +3 -3
  60. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +3 -3
  61. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +3 -3
  62. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +3 -3
  63. snowflake/ml/modeling/ensemble/isolation_forest.py +3 -3
  64. snowflake/ml/modeling/ensemble/random_forest_classifier.py +3 -3
  65. snowflake/ml/modeling/ensemble/random_forest_regressor.py +3 -3
  66. snowflake/ml/modeling/ensemble/stacking_regressor.py +3 -3
  67. snowflake/ml/modeling/ensemble/voting_classifier.py +3 -3
  68. snowflake/ml/modeling/ensemble/voting_regressor.py +3 -3
  69. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +3 -3
  70. snowflake/ml/modeling/feature_selection/select_fdr.py +3 -3
  71. snowflake/ml/modeling/feature_selection/select_fpr.py +3 -3
  72. snowflake/ml/modeling/feature_selection/select_fwe.py +3 -3
  73. snowflake/ml/modeling/feature_selection/select_k_best.py +3 -3
  74. snowflake/ml/modeling/feature_selection/select_percentile.py +3 -3
  75. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +3 -3
  76. snowflake/ml/modeling/feature_selection/variance_threshold.py +3 -3
  77. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +3 -3
  78. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +3 -3
  79. snowflake/ml/modeling/impute/iterative_imputer.py +3 -3
  80. snowflake/ml/modeling/impute/knn_imputer.py +3 -3
  81. snowflake/ml/modeling/impute/missing_indicator.py +3 -3
  82. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +3 -3
  83. snowflake/ml/modeling/kernel_approximation/nystroem.py +3 -3
  84. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +3 -3
  85. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +3 -3
  86. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +3 -3
  87. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +3 -3
  88. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -3
  89. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -3
  90. snowflake/ml/modeling/linear_model/ard_regression.py +3 -3
  91. snowflake/ml/modeling/linear_model/bayesian_ridge.py +3 -3
  92. snowflake/ml/modeling/linear_model/elastic_net.py +3 -3
  93. snowflake/ml/modeling/linear_model/elastic_net_cv.py +3 -3
  94. snowflake/ml/modeling/linear_model/gamma_regressor.py +3 -3
  95. snowflake/ml/modeling/linear_model/huber_regressor.py +3 -3
  96. snowflake/ml/modeling/linear_model/lars.py +3 -3
  97. snowflake/ml/modeling/linear_model/lars_cv.py +3 -3
  98. snowflake/ml/modeling/linear_model/lasso.py +3 -3
  99. snowflake/ml/modeling/linear_model/lasso_cv.py +3 -3
  100. snowflake/ml/modeling/linear_model/lasso_lars.py +3 -3
  101. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +3 -3
  102. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +3 -3
  103. snowflake/ml/modeling/linear_model/linear_regression.py +3 -3
  104. snowflake/ml/modeling/linear_model/logistic_regression.py +3 -3
  105. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +3 -3
  106. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +3 -3
  107. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +3 -3
  108. snowflake/ml/modeling/linear_model/multi_task_lasso.py +3 -3
  109. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +3 -3
  110. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +3 -3
  111. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +3 -3
  112. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +3 -3
  113. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  114. snowflake/ml/modeling/linear_model/poisson_regressor.py +3 -3
  115. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -3
  116. snowflake/ml/modeling/linear_model/ridge.py +3 -3
  117. snowflake/ml/modeling/linear_model/ridge_classifier.py +3 -3
  118. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +3 -3
  119. snowflake/ml/modeling/linear_model/ridge_cv.py +3 -3
  120. snowflake/ml/modeling/linear_model/sgd_classifier.py +3 -3
  121. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +3 -3
  122. snowflake/ml/modeling/linear_model/sgd_regressor.py +3 -3
  123. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +3 -3
  124. snowflake/ml/modeling/linear_model/tweedie_regressor.py +3 -3
  125. snowflake/ml/modeling/manifold/isomap.py +3 -3
  126. snowflake/ml/modeling/manifold/mds.py +3 -3
  127. snowflake/ml/modeling/manifold/spectral_embedding.py +3 -3
  128. snowflake/ml/modeling/manifold/tsne.py +3 -3
  129. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +3 -3
  130. snowflake/ml/modeling/mixture/gaussian_mixture.py +3 -3
  131. snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
  132. snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
  133. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +3 -3
  134. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +3 -3
  135. snowflake/ml/modeling/multiclass/output_code_classifier.py +3 -3
  136. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  137. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  138. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  139. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +3 -3
  140. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  141. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +3 -3
  142. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +3 -3
  143. snowflake/ml/modeling/neighbors/kernel_density.py +3 -3
  144. snowflake/ml/modeling/neighbors/local_outlier_factor.py +3 -3
  145. snowflake/ml/modeling/neighbors/nearest_centroid.py +3 -3
  146. snowflake/ml/modeling/neighbors/nearest_neighbors.py +3 -3
  147. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +3 -3
  148. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +3 -3
  149. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +3 -3
  150. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +3 -3
  151. snowflake/ml/modeling/neural_network/mlp_classifier.py +3 -3
  152. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -3
  153. snowflake/ml/modeling/preprocessing/polynomial_features.py +3 -3
  154. snowflake/ml/modeling/semi_supervised/label_propagation.py +3 -3
  155. snowflake/ml/modeling/semi_supervised/label_spreading.py +3 -3
  156. snowflake/ml/modeling/svm/linear_svc.py +3 -3
  157. snowflake/ml/modeling/svm/linear_svr.py +3 -3
  158. snowflake/ml/modeling/svm/nu_svc.py +3 -3
  159. snowflake/ml/modeling/svm/nu_svr.py +3 -3
  160. snowflake/ml/modeling/svm/svc.py +3 -3
  161. snowflake/ml/modeling/svm/svr.py +3 -3
  162. snowflake/ml/modeling/tree/decision_tree_classifier.py +3 -3
  163. snowflake/ml/modeling/tree/decision_tree_regressor.py +3 -3
  164. snowflake/ml/modeling/tree/extra_tree_classifier.py +3 -3
  165. snowflake/ml/modeling/tree/extra_tree_regressor.py +3 -3
  166. snowflake/ml/modeling/xgboost/xgb_classifier.py +3 -3
  167. snowflake/ml/modeling/xgboost/xgb_regressor.py +3 -3
  168. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +3 -3
  169. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +3 -3
  170. snowflake/ml/version.py +1 -1
  171. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +16 -1
  172. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +178 -174
  173. /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
  174. /snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +0 -0
  175. /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
  176. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/LICENSE.txt +0 -0
  177. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +0 -0
  178. {snowflake_ml_python-1.2.1.dist-info → snowflake_ml_python-1.2.2.dist-info}/top_level.txt +0 -0
@@ -5,9 +5,9 @@ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4Ts
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=knjbabqRMxHk5DvN0FyRcnyp78BcWPNPQB9HwpNtkws,16
8
+ snowflake/ml/version.py,sha256=ZAUJJjdFG9vuqz_1wGqpQhUfeUN2DyVZ-O-77odDxzA,16
9
9
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
- snowflake/ml/_internal/env_utils.py,sha256=KzD7FUTdRV3bdfvZQDr8GmS6V4eqwceKLcD15Zxo0Lo,25048
10
+ snowflake/ml/_internal/env_utils.py,sha256=SKnmFSb6K4umIREv_Cz2nuNZi-GaRVWav20OWmM9Pag,25156
11
11
  snowflake/ml/_internal/file_utils.py,sha256=S-OlwrCd3G5sP5Tr9EwNHjdFV5v3VkCg80XxfdCy1Kw,13721
12
12
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
13
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
@@ -22,7 +22,7 @@ snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDel
22
22
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
23
23
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
24
24
  snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
25
- snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=cWDJHjHst8P-gPTPOY2EYapjhlB9tUm159VPBxNYefc,466
25
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
26
26
  snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
27
27
  snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
28
28
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
@@ -41,6 +41,10 @@ snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLk
41
41
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
42
42
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
43
43
  snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
44
+ snowflake/ml/feature_store/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
45
+ snowflake/ml/feature_store/entity.py,sha256=5Y9ijOW-eOxKUiBbACbG-SpZji-tJJ9vVxrdE_LUDlE,3035
46
+ snowflake/ml/feature_store/feature_store.py,sha256=9cUFcPY4geSvg2aXTIOuSJ04vbJtWywi5poYG_hrkEs,73209
47
+ snowflake/ml/feature_store/feature_view.py,sha256=5mY8gHuXgHwnYJzg6ZaLblnQ5KY0KN1g1fDx3BGDsro,17282
44
48
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
45
49
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
46
50
  snowflake/ml/fileset/sfcfs.py,sha256=w27A8GffBoM1oMo6IfxafUNuMOC6_qr-fOy4Vpc-nEA,11968
@@ -51,8 +55,8 @@ snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf1
51
55
  snowflake/ml/model/_api.py,sha256=nhLsrwpI3CoXMF2FcL4VSs4hub1vMLGIsRV7kZjdsow,21512
52
56
  snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
53
57
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
54
- snowflake/ml/model/model_signature.py,sha256=ttf3MbOx9m9G0cK8EThrFjZ73EMqUoP8GD7LvaUHj3s,26494
55
- snowflake/ml/model/type_hints.py,sha256=7s3D1F4EWi8G2VMc_w8TXGPEtnWgk9rY86C5A8-B4BE,10874
58
+ snowflake/ml/model/model_signature.py,sha256=Lb2yuYQ4pgrynOBTKkXTuioTM0Zxse1Ed9go25j67pI,28303
59
+ snowflake/ml/model/type_hints.py,sha256=coJ_1n2NHoSSGr_iSHKxLUKvCOM7NTV7JZwcmvLCABE,11526
56
60
  snowflake/ml/model/_client/model/model_impl.py,sha256=ulMsgwN6mMzOSsg5BCWuzE3kcbobIob4XzjonVastOU,11993
57
61
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=eQmN6R_lseWydBXi-7PUET1HWdCUUMTfPFmZsfaXYpk,13001
58
62
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
@@ -65,18 +69,18 @@ snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCa
65
69
  snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
66
70
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=QZt02Wd2uU31th_WUxy4JmMvbftpyE7ZfI3MTw5RJ0o,6306
67
71
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
68
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=TWvjl0YYJZnxue2tQjbwtD6qoaXsgk-DYVp5xnn6SC4,9724
72
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=rbCMeMlSZJ99bzt3HBf-vFr2tFoZvha8ofb1-TIotwU,10052
69
73
  snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
70
74
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=yzNu-yOo9wfMj5Tsky3PZLgGMRzY0da2LWwaPcC5F40,1696
71
75
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
72
76
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
73
- snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=SddWGE7_zevH53z0eXUlzgitjl1o8RdMNqw-MacvVJA,28889
74
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=cymya_M0r0Tekepi0j3w5_9vEyBWgZ9JvQA0rMBJhBQ,5175
77
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=Juu-KE1ia080mJJyJ4_0svy-W1g-O9o6FpmWmiYEa7I,29061
78
+ snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
75
79
  snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
76
80
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
77
81
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
78
82
  snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-IPZ_JA3ReRyyrDTFO_FNDPw,1841
79
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=lz7uvABEa8S9EbqRvTx4xOZLQo7Dqyz1Lrw2KOwj_zc,12869
83
+ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=R_ilt8SGwQR6qh_roaUvst0YrnjbJbAyxYIPn4efo4E,13284
80
84
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
81
85
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
82
86
  snowflake/ml/model/_model_composer/model_composer.py,sha256=hpaClgvyW-_e5TYawx-c34zNzDq58qL37yPO0ubnBWM,6313
@@ -122,146 +126,146 @@ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYT
122
126
  snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
123
127
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
124
128
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
125
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py,sha256=PPo0EIL_sWQA7rUXdD3C2Bpq9Cw-iJpgdbBelD9WT68,29344
126
- snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=JaRmP4NAPcSdYXjOIIPCUoakelf6MG_cAx_XgNeCudY,2350
129
+ snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=1singo7bMRj33dagqsrO-Ba-bvHbAdNIO4wlAvwdhUE,1238
127
130
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=s6MsyZFHSeSgpJ_WmVvVrgJXlXinnq8pQaEbhBI68Vo,5650
128
131
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=-0PWh4cy-XjbejGb00RiFTnBSWiYMTNFQntXTMADgko,4725
129
132
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=vTv_v9kiV0I4t67hHjBp-4Wwz0U7pp7L1pJB00wJJM8,374
130
- snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=b9gCCHfsOAKD1aqpGWZaXV4J5uqzEMdFAmoJllp6JbU,5019
131
- snowflake/ml/modeling/_internal/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
132
- snowflake/ml/modeling/_internal/snowpark_handlers.py,sha256=tRpAx6_vHvSioPpaAYb1p5ukGabjnGIpYGbcCsO0uCE,16330
133
- snowflake/ml/modeling/_internal/snowpark_trainer.py,sha256=lvslpaAFo2GbgNKrrOoa7vqJwViyKNw3B6a5_Gk6f1Q,13820
134
- snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py,sha256=1MnPZllht4BQZfnfsUEYuA5hkafCeSMyQ7v58JdwfcE,17174
133
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=pAkoudjEQiB1AZdd-033zA30SgW2ZEfDWG7xuq7yh2I,5131
134
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
135
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=-HToa1y0mVPv_XmbwFrkhvLQ41WdYLqfBO-9LCjqymk,29378
136
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=tRpAx6_vHvSioPpaAYb1p5ukGabjnGIpYGbcCsO0uCE,16330
137
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=lvslpaAFo2GbgNKrrOoa7vqJwViyKNw3B6a5_Gk6f1Q,13820
138
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
135
139
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
136
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=_XhENjxRZMccr0sd4zhvGRKo-a7lDjgqg_jxV69MA08,46469
140
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=qpagUelRJShla9AfcQeCUM3XOksTIZtiIBhPdXAX2uo,46496
137
141
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
138
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=suAgiYFCiW2DUMZM00Wgib1Lqu2QpSX3_YzEkjBS-J8,44297
139
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=lyc1Od05-Sbh-Lg2vBWegK69XjPBHZpbrfWeu_Yw010,46334
140
- snowflake/ml/modeling/cluster/birch.py,sha256=xhkCfHw5JfsroPvnOoUsCWKakI3RY5GxwFMDxzCClgg,44022
141
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=FDGQ5pPPPJXR1hXBGUM92q1iyjMbmC7w0I7rbMkHp7c,46721
142
- snowflake/ml/modeling/cluster/dbscan.py,sha256=tOsUiMTePcCuIG0owXbJJb_PgaAetgKTSYnY9FRbMdI,44384
143
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=Ba_xfgUQA31Fe24q0fN1BP9xM9dEv-HgiW2Iq3Qn00U,46852
144
- snowflake/ml/modeling/cluster/k_means.py,sha256=u4tKTm14cIqmzNbJZudtgYPB8AN8yV9zXMCp5MS8dOs,46277
145
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=emb1m8Hwk_Z5y5Ftm7zLSF1xvkPxMumn5sIVNwi_9UI,44594
146
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=R-nsqxW8KVBVMksxXQep5D92WxDsrD8k4jngQ_NiGNA,47639
147
- snowflake/ml/modeling/cluster/optics.py,sha256=dCbtCnMGQIox49lRvigXf6bsNJyaeAgoKsDvczrqllo,47698
148
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=BcsU5GisicKB4cBAbV2trvo_CfriMLNBDx2bROpVbcM,44594
149
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=NFDSquCiuii4iTQ9f1doe8x-1FoJ7mleiLtYnr2NNFE,47785
150
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=4iTuLye8sqRFzNBzxzaVfaeA64PEcQFM3dlM4HWS9wc,43727
142
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=WxiYuHP2w_c7-2-9O4oPEVJVu-D3_tdiwBVsHqh5wZg,44324
143
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=6QnR0PDuykhyU1pIaCK3zzxUkGJviA4csRNMqMTCO2A,46361
144
+ snowflake/ml/modeling/cluster/birch.py,sha256=3OJYEwy5PdiNyyX-iqvnqekChoWgstv8efkm-xMoeDg,44049
145
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=Kkhy2eDbvDIBADewqVJP5WBchKFLZsAi0M3MApSXvBc,46748
146
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=oBXZqPVCi7EcI2v0t4mSHc3Xh2V0lVfjB7-0b1WQXsw,44411
147
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=j35QPBL6NAVtNtpbN2KUQXBt7xeF-xWIteTbsuOh-cI,46879
148
+ snowflake/ml/modeling/cluster/k_means.py,sha256=nvYwTto4mCUTUyytBcZFgSml7nUKK2nj814GIxaI7cE,46304
149
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=Oy2W0VmAIvoqP1rbkNczpEYGRSWCoQYMBPAUtzZkLY4,44621
150
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=0-NySNe7avsyOIy1CWW3OMfdJ7YpFeTL-N8t9I-xKI0,47666
151
+ snowflake/ml/modeling/cluster/optics.py,sha256=FpRwcjxMMAXID6BRiO4NRJFYWuijJ3jSac6hrM_tqkg,47725
152
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=mwQl4k2E1EYr13CsVjjd6FUYZB9-6XKHSXNDEf2H9zA,44621
153
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=G-ZljAo4jttFxVgKkAWzvuIPZCeEaREod40T_kXYCO4,47812
154
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=rHCzbxqWmUHB72dZiKw6DgBtJueFivn7FOFvAs-bmlQ,43754
151
155
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
152
- snowflake/ml/modeling/compose/column_transformer.py,sha256=8OQqJ88rBU6jg6XUshqFp8Jwg7uqYKnInRdGpEQYRZ4,46293
153
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=9X0cXs6n_4RYaRrXoMoW6-bLIpnkbuBPzOmEda7ADKY,44281
156
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=Vb2S1H6WhCck5xAaThjCd_Rru8hJfnEczfBg7fTIAgg,46320
157
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=e0ZdvAxg6KZylvTxYAydJPg1BMx1h_J-5-w3ZJQcn7U,44308
154
158
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
155
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=5K-mnw1sCU6Fiz9mltzgIExudPyhk-Fehprx79S4y9M,44363
156
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=5FC-yiyM0cH1PHQKbSVQSftRqC8_XXeA8Kgk5lKd7_U,42427
157
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=42FgwIgwZOFhW9Q6MpJAsFHZc07loPnAvK69kxzBWcA,44291
158
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=MrPDLLB9pfSi25oS1sFegZ-RdXlRi5LHeKXwBcWI8GU,45456
159
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=rlB1Bo82kHHBKFjL3QKvgdUqdZZg1Bb-XkNn18yKfRY,42565
160
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=5gUsZmDu2_stjR4NgygYPqcaN3SldXyQ0dm9JaSfHRo,43320
161
- snowflake/ml/modeling/covariance/oas.py,sha256=_yWBPl9nyBgK5_6sTHyhqW3IGeX9Nn62F8gUlqVvR_4,42206
162
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=eFFSc1wnOf-9xkT1Oin0xo_NwJwAI9RcxErjOLZrKEE,42582
159
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=RdOzifuhQ1uFeLPDTZTzitOT16THpI_A60DKo5-ewZ8,44390
160
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=laWCsKj2NhWwvzJNLttCLYBvVd3vlTbDE3WaL4JAaPA,42454
161
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=QS0canaudgoadtXnJVWMwc54lHL4sK41Bfbzr4ND3g0,44318
162
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=khLWyrT4LOTjdzzmlzkZBjH5B8lsIoq-facrmDI229g,45483
163
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=czHCFBpUms7JTybvyd0Ktl6RaGPu4RNSFF9ypFMnMaU,42592
164
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=X2M82T46r9tBy-P_EGi5Yx9wfjtliD2yRFC3phhYhCs,43347
165
+ snowflake/ml/modeling/covariance/oas.py,sha256=OSIu5Dig8smF-xGtUYsBOzVO8P3fgvv3uu1SCAUxF8s,42233
166
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=oKnILTFSTT4paKs7rNtZxty2RH5h1jnBeqWnb3KkElg,42609
163
167
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
164
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=cTqrYUWdmfCM_4xTFskc8WPOkan7M8hDnAbRLJOMTgQ,47290
165
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=0iEeVKSF_qCrHcOGaeDg60uY6h2DM9ds6VjhxCYfFyU,44737
166
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=wYP1rlaWMP-wtsLgbIqsIb_L7Mytp1VOzFbIjjg-Kc0,44936
167
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Z3E5JkFnAbvTfKyIOcUpzT8vexFOqpCpdNV2QUHT7ok,43289
168
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=7EyyE5FjZ1n4ylu_had9C_w9RxIaOtz7NZlJ9nnMVvY,47288
169
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=fVUmz_t2sj_VGjWX1IVIKjOviToxQSUpRYiNDqQv7No,48334
170
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=_Z4HPO3jUyLf6Ji0Bl6tUNhQ7qb8UkZTfKg_NvwpLuE,45626
171
- snowflake/ml/modeling/decomposition/pca.py,sha256=RnID9USg-lVHwi1in-qOtL21MmxN2UA8BHxabCKW2Iw,46331
172
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=sg02LHDwaUoKIYAQf_7OEvLcuEYuZCd9tGowoiZOGz8,44458
173
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=3tZwcY8fJs1OO3wa_TduabXjLxQJd3YnnE1s710ml3A,44046
168
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=9f_V56WO18Nl5ubBLBGBQVTrjDco88NuX8QEwAtTh4c,47317
169
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=DEzgyThqx9ppgwLmrMu4ZRyw63QPbaRRiXmnjpqmOUw,44764
170
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=Ea3akJFCBmI_519Z86kJWBDmZ7MGLmq-NtuBGLNsps4,44963
171
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=NVgU8IPdDLZWyAw-tVdMODw-idmOXJIj9Jxn5_Cv1eo,43316
172
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=hVYdPMGx3zGszQU0eaoGZsn0Qqh8X2ihgRWNE8kA_pU,47315
173
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=KuUJHLwFWJTEf-5GOijw5--oAkgn9UQ4CXhJhX5OVeA,48361
174
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=naOLVkEWp9vbMA3plkgzYoLbMJSKAr0V-p8-zaA7Zh0,45653
175
+ snowflake/ml/modeling/decomposition/pca.py,sha256=X9xdyDCMo6kW4zvPXM8-1SRWNRc_0Vayx9FXHTt5ng4,46358
176
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=phEU4DspQ9rhAJbO16tf79l1DE1Ez2KtlY7gzxzRiiQ,44485
177
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=T2-dgnRyplOh7v7CFvhmRRvP_wObDPK8dglAQCJq8Ws,44073
174
178
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=6ar7vQ2LSMROg_sCG-dHCrsexzaSyD81jN87uyx5Py0,46761
176
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=GdjY5hWfk3JosgasO6iDV9Irx7ltMbn4mfAU529MdsA,44850
179
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=weBTEWEAIvCCxSGmMAFGiLsUEOA118E0vHB06uDZ7Rg,46788
180
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=mlBBBKJD2h8jMYbBOvLOT2rY5I8Evbz0OrYK9pSS5Us,44877
177
181
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
178
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=-dKiDfryeJpp_nqeKiDnXsHQY4TIBR-MFNrcPoS5lJQ,45668
179
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=9YKFE4eDiT8d8cLnjuiJdAARNzKOH_CElWHNHtyo5Vs,44559
180
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=SC76L_tDRhnRJS5F_1m1OubGM09XdHabJQKymIX_hNw,46579
181
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=JMc-JWWXQ-w6IcM6YkT_LXuPwsQEm2xQEC4SIPpAs6Y,45815
182
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=eMmcgLskTSW2Hj4Q01jFPWKaweYzxFL4I6xir4KK6AY,51499
183
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=_ysEXx7b7UdHqtd9ND1NDrfrxT8dyxAAVEZ_vNgH_X0,50103
184
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=YM6Vky4P2pLggEXvgGKeEfxLVyls2BsQi3O5LiIo2EU,52954
185
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=Zk30my6twITahFkqtJHrEkT3kCfm7aMWZAsbGNz2-3A,52547
186
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=oPsxzcx9HOwb6VJ1rP7Nnf4GCiOSPGdwpdzeK7SGqn0,52788
187
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=ZNITW02ZzvjajNeykYJZ3i-L0lWfft4CEbjDRUFmDsk,51273
188
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=IWDV0vJeoUbVKApJVsgbd-_8xOZoOFEGS6iej5QXKys,45503
189
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=YIqXMA0ISmZjsHPvbVUciq98EHaOMlDePVhZwnYld2g,51482
190
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=sERTA-XRHtbqRFOI6IhD0Z5XtENy1MrgpWN6f1V5q5s,50074
191
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=GLtphzVLHWBB7nZIi-poOOvZYZOm_nRVUldKteAeACU,45512
192
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=qiWdNwAZoDvNQSO3c9Xe7fkX0E5gLGubk3WfcYmUw_Y,45083
193
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=x6TFhhnhAuEUGJTxnF7h-Os_4EzMnMn9Rza-sIa0-do,43612
182
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=vNH9gI0P7iEImk_bLH-mdfe99X-o9oMxdWENTeidjhM,45695
183
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=4_cQJ_TwBOog0FgqYflcoifbNoXtyz5qGobUzGkEFDQ,44586
184
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=qhC2VsnC9I9nee0FFKeYi86MSPG8sWaxS4YHPEA4JwY,46606
185
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=AorIrX4Yty7i1UNzx1WrEqZM3LpVSPnkl6e6inv0wdI,45842
186
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=zreSnaEWNlTRPldx9iPhpqFdAXbjE6OJuYolJ3KnGjE,51526
187
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=TN8F417_CPIZh5htrWBjbpFV-u0tESpTW5sJlD4rF_U,50130
188
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=VBfEmWV0X5M-r84XwRyVxBYzCo53_4YgMHeDK2Emuyk,52981
189
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=U78_3TcKJCKoYRkgkC9zKTDhjkVeTKGaEmNf7IxDrPk,52574
190
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=ppM6r1HJ3hnT1cK4SqQ5pwT0PNsHUXp9Y2M919vLvxY,52815
191
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=xhVQIFlgPSnS_HLNR7hssvnicn8pwzga6N35aLTkRJg,51300
192
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=Gv97ze1F8OODYaV-6TwuyALiFkFP6GvL_LIGH7Xt2zY,45530
193
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=4g6XMlEsAX6BVaEb94vI5Ms2AGBrm-CXB07M7_o_qNs,51509
194
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=ZEfTa4c9GvnbHZRC1ZG86hY60s-X2aC5tV1zYedku2k,50101
195
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=fRp_PHVqM02ZFHjniZ9kDiHuo9hMYQv-n5W_b04dVuA,45539
196
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=MY9h3u_ZWoUZFJEOB4KrohrwW5im7uyqYLFZa0gyzXk,45110
197
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=8olOZ1M9GN8-zrIPLEPkvs5dZLyi0-uUD5gujZzJrxc,43639
194
198
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
195
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=w07fP7M8qyD_S7dq5kxpZ-xaHHn1esUdgFWhR2_ca94,42923
196
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=IAm_TimRqitTgCMoM-I4-ahqzJoPtvk57RV9U7PMKGY,42566
197
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=tJyLgppE3XrftGgkI43gYBIj9C390V_re5MI7GUXdOg,42560
198
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=hY_DllyRJ48yjmPleKRl6amJW1LD5A1C0JNIdQKGjXQ,42568
199
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=XvuXNOeCXwrOtxtdHpoFu6ooY6DdWNnxWvIW8e36hS4,42653
200
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=ageTBgnOq4KQ6kRDt6oaarXRNf4cjWAuMkqNwYgi-p0,42693
201
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=gJarTYrkCw14LMsLmMLo8f0aiykK0BcyONg_p-R7sd0,45286
202
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=qnPxeNBg3cpX5DDGBgMST3-BTJ2g1uysSTT17AnRIWk,42246
199
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=RsNcubnyrf5e9d1Csnx_dlj8alyicCV3fLrhef1DmT4,42950
200
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=-nsyNAGrmqC0tRPAUzdzZVe0IKv3rtqfrBHmhrSxiHA,42593
201
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=LeYtmcYmqezStGIpR6TKJVyCjV8lUKyL8dZX1TRg1QE,42587
202
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=FQZWfAe5RLWsioJcBuvRkW60DVOYlmSl__TGH1GSPQM,42595
203
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=Bxt1KPqg3TYugoCREQadZ12HBXGBl0X7wXR453NxTQc,42680
204
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=4vi9nhUhStJkYNUEosrKM_OCY4NYCtVsJII9rThMjl0,42720
205
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=ehkOQX1lMUC54dpVwe9nH7AXGRTsX7aF17n67jakedA,45313
206
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=ATzG7U1AsHTB5mWsGKZzmtGiV6FfVkTJPLtWE3sFt3s,42273
203
207
  snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
204
208
  snowflake/ml/modeling/framework/base.py,sha256=eT0baNs7Iqe4tG0Ax4fivvlk0ugmrFrUBlHkwA3BA9M,27776
205
209
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
206
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=HOS5f7gymGuduBhwZ0ibe1VRY_1OARSJdlrP13XlHo0,48220
207
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=2PXnB9eQutmH5k_GmHcINf_QKC7jUBi3qDzJ2V2A6eE,47285
210
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=fSWmhZlo4QAGPX3KI2Z8DeJGniFF_h1hTPks4RQdlHY,48247
211
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=iq3U--lhqLH7bcD8Bq0yASsmR_HURZrdcVKYCpbj-jk,47312
208
212
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
209
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=SbL5lUyUKsKIxGi3tn49n7hn9mh4ochn0G7IffIb29A,48783
210
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=Sw_yuXJ2ak1nBjbmgbTH6k9LrcPGWxj7JsCcFlsLlQk,44540
211
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=0Ud2DGN5QsVZUdAeuS9Yx2HE4_De8QZsyqWK2I230e8,43368
213
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=Hd6KiDe_Nve089ylNNXtwoJC2Tltuz9N26t0Sasip-w,48810
214
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=xNzSH9HlRyDb7pK9gFOufUIOZG43_0k-MvXVcS3tHVI,44567
215
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=aBlLMnWWWgKn3HqesTu1X2smcM0LbnTJia5DL_5atv0,43395
212
216
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
213
217
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
214
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=YS-YO2qwdAbyMS2Q0US7VDH2FnwA07v1TaV9_iOBobM,42359
215
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=zUIC2-sAhokQNA0n5hf4C_wuyG_SGYf08RFYJdbrrEM,44163
216
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=9JlgCEJaV-dQaJqy1RNTUG_OG2x7cMcxumiYYMnd6lo,43372
217
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=6uBY5QUJP0IZKKiRo0cD4gTxzodqbeGA5pt3WAdX56c,42759
218
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=zuvzquiP_D6GTQf6y4KBQ_9dF_a5UFpBw0PBDkFFiYo,42786
218
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=FshL2R7hi-0dvJYXpgHxLDxoRAick5iVxjsNf6c6M4U,42386
219
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=5xoYwHIxBi9meN_X431hSuMFSNHTDTgBS8fc22ltJ8g,44190
220
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=0glcY85B5CfpGp5Hlo3F41Y04eIF9_KD4yQzMJXoGzw,43399
221
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=01lc64-RmHURdVhQxdk03yh4EZzlTevYa0-WJZovc1c,42786
222
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=4-txijePPp_8GrUgggrKhDIyAwez-MBLSgwB6KFwFsU,42813
219
223
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=YdLE4DmuAWnRHz2vph9ztstWDRTwC4aEi0uIScVGafk,44599
224
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=ItTQB-Ur3LpEHvsNb2JpKEJ3vlSk-iulTRqaokfzW_E,44626
221
225
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
222
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=64GqqUguuIYXKa1yeRXlW0fCn0mouaTDOESow8BZzo4,44101
223
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=W_YL1657vJV-wwuJBHfL2RMntNc459m5KKuAYCMwm5M,43604
226
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=R8uXUHiOeU8asW6xntOQNMQALs0_ALmSS399DgjKT5A,44128
227
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=u4QJ3ej452WJLsXJf8bSWEXz0h3c1Q70eDQoZ3hqjAs,43631
224
228
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
225
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=_aoC9N27o-5LqUwI3B9brHdr0TTPKd3oYG9zpcUeMlI,44544
226
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=UM-1VMt_IxClG8V25YnEYgSSigWRtqucNFK1LwjCBXY,44960
227
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=r5vcwM4fpb8jCRE7z-Ym_RfaBW1w0xiUlLc7sv-4RFo,45532
228
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=2h3aWG6CWr2mZ3R342Brm6dU7sRdCO45Ce-dvUzoeKs,46800
229
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=H_COk1G7U7tbWzbjCaiRMU3_ZgEgZ7p6SQYSGCN4cFw,44612
230
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=1eKvG_h2F_H0naE2sZWSdnvylnto4TIID553RUrwfPU,43809
231
- snowflake/ml/modeling/linear_model/lars.py,sha256=YBcOfl_u6JJwwp8Hm16FxhfuMCyiLi0Y3C3cfYd9Mss,45032
232
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=wyQVIZUyKRrKj1HIOVIwGYeyxcLKcNLrupllivLp8iE,45253
233
- snowflake/ml/modeling/linear_model/lasso.py,sha256=JDvI-NQJdbQMl7Bhvwg2vXpd31kgOR7a8t-umLIG7I4,45138
234
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=fp-Jrm7JHx2LAiFwQZ9lhaBAwQr1tzByiDuIKsMLWO4,45923
235
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=WB_zG1_OzGsQ39T2NWUkG181qd6e5sFDh7crNxNEjHI,46168
236
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=4XpDU7spRW_ErYMuIkgCv6CRTWL8nXMVl5MU2vdXVo0,46129
237
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=c1ZMDb5sZTEn4Fmo0OlBfLoCpHmiaIUU7CPKB2OuMt8,45475
238
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=LOyhVtvM-YQd-e07TiN9Ig3lysQWuIyI9QUmpIX0nbw,43351
239
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=CHhSAO2yVoX71RM7BLz9PrxzBwkNVTqIW1o4MqnLPm8,49606
240
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=TdJXDMFgJUA-Jm2hLLTQ8zDgpNVepqQceDXUuLwgWq4,50646
241
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=hCt1TwrXd4yRHIjtwaWEMUufAl1k0BGJST4JITgAWNE,44823
242
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=FwhfLi-CGM_ITCZLUbWALiqasFtLMIayNs44VHjDfzE,46461
243
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=aMw2t58ohNrLg304Gj_Eo-1zXZzyktt7cyJkukwuCrc,44371
244
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=GNDil1dVl7NE2HLbz80KhO23fvb_j_eZI2GVpRLzVPM,45633
245
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=fqWJokyblnOIFE7fVsI0e6XToyanGa6QfQRI6wm01ps,43978
246
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=tEiIyc9TyXuJhXaxbrhltiDtQ3SxEpiwUU8VeGAFhv4,47334
247
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=24Wjf269GXHSM84PG4MElXzK_NFhUBJ8kawSFVCEh2I,46401
248
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=1nWk7XQc55INPZ5UnnHzokVsCrtyEmmT9LLdcglzkPU,46718
249
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=UpFkhGvwSAKZLQ4IngSDm8aIejeBd5N0nU6zXI7md2w,44657
250
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=PbNVech1WYuly5MVKxHrZLDT46R_BOtbIuqklG4-9ts,47776
251
- snowflake/ml/modeling/linear_model/ridge.py,sha256=Qez0QK6EfFq833jHC9haTdziS8wn0gMRZTuAbc5FkyQ,46682
252
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=uXLgVQniVjpBAsj_j4pjNimZufFrWvyshtsgIW-2Ovs,47070
253
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=oI1K_AodG2_5bGuBJcp3RPj6o4-DPsD9KcWVKiKVCeM,45065
254
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=78xUs4J2uU_2XUW0OkdDdlDIBbdRG-k-rKojSFP32dc,45766
255
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Y9TrBc-_X0OT28B83FfLrlPuAFVec6YRe6r93TvjPPs,52143
256
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=qHvBnzlAVn3y2JkUdCkCGGlWRqfPaqJRrfKWvwFIIbM,46692
257
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=oO6MWadZDENE0N_xLcbHwMGSKi-OTFG4YgPfi6888mE,49614
258
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=ru3f46xNu-tpt5uZx7duG0ytEX7zF-o8Qzwz5lFZUAg,45092
259
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=k61UUJ1NzLjQx6kZ8xk5PZ9a2s1U2vNo-jlNkb7Xt98,46048
229
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=5mFClkdPwvN3D7jGFtce6QkH_UHZU5vY9YZXJQAwjJM,44571
230
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=ZToumW9lKuls3Y5Pzy4-vhdDZ9wPvkpz1vwWqFSBZK0,44987
231
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=uBWHkv-c6vzsaOgENRjdyl_Lafze-31tIwTnDKr10G8,45559
232
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=H8s8gYZjmuBX0S6Ul2wZAXl4aLKB61PLoEWyJYivN24,46827
233
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=WlLE9XmvjTecmNfItP7Tk_mR3lbm5m8W0l7TuOigjYY,44639
234
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=Kjtcrw6x5d00jjLIdXwBCuBLEGoYSHYn0KeFDPAtPaM,43836
235
+ snowflake/ml/modeling/linear_model/lars.py,sha256=OALzUevDL8XQsnuAaFww_0vGgKMooz3rtKFJYnWIcDg,45059
236
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=r8mi_aUFj6HJaKsVF98WNc_3abQHE-Jv4ZDgXZjyCuo,45280
237
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=cq6ETR5IJJPewYtIsJVkEgAhSWKqwF1erdNfKbjaNX8,45165
238
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=Z12EtfxehQSH8ynfl_bHud0FRWVp1SiP09zaWy1oLmY,45950
239
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=SF0poeu71ajqGbx3F2AjrzggjfQyPzIWz4fkkxoPXps,46195
240
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=rR_Zitrqd4uzmzI6IJ-qK7gRekMo3vVeQay3bGrXGG0,46156
241
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=BU4RGkzUbSgpZ0EtFwgn5DhTsskodYpHSa1kgM8lgyM,45502
242
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=_WPW-7OYOYJ5HfJAnHqA3aTU-qECOJJ_p_zN8KGI-G0,43378
243
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=HJzdcbYtIHGIAfetKgjZcDXMS3K8WPRqvj4EOEUhijY,49633
244
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=dtEspSt99o0wKENK6F6dJe7E8a3-VVyc2QJ9OQFHqcw,50673
245
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=PPplCW4KAURSfv2BbU4ZGfGzENXsbBEE1fQQUqwgY6s,44850
246
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=QkJoWhXe2QO-v8nfuBxM585DgLEtLv-B5-Id8iMvNCY,46488
247
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=jtv9eW00irAG0piIe5vxnYduSKHDNR_knhVQrp93eDw,44398
248
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=jizZO1OjXkoNCLoNMTjBwBFQmHXA2_kQLrFLDV8WT1s,45660
249
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=4fCqvbBJYtsky9D3V6l7H62Bf7BInifFD2OdE6MiFgw,44005
250
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=LIJNgA1cpC6vR4yFUyKKCSyKR0w7-tdeQTqDQWJ2eOE,47361
251
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=uIloiDp6sW4dvW9p8gJs-Le4o-wE4IeqciIIFTjEmRo,46428
252
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=UiGmAUVrXS7brta0CFEr7AtMsT82PN6_u4DI0qeRrYA,46745
253
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=P9J7FrDwJv3Zf9t5Q7tZ0gCq-aOOrY2CmXnNMmlLfe4,44684
254
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=aXsAEzfhgtubg8DrgaZMS9G16v0A2pxl_uqYrSkUDj4,47803
255
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=BiyUD5Zg8T7fM2xP8BQDz50LYtDjx-PDY6-RvmAdgfk,46709
256
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=VyX-M_zhve6Qbrb300UKaGEEASNR8s2e-gEOD4P4k6Q,47097
257
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=VSUKsGPS-esqgcB7qjW0uEpLlzIofpCHD761gXg0d3M,45092
258
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=X2LsI9EgcouO0O2So0UhYqSxiwIhTmsD_hpABAV8Udc,45793
259
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=ydzFgj7ETrqy5L9KWIf5b5ZS3lg20h3UDlZoJXqAorw,52170
260
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=n1UBLN0YeMy1vPjac39TIKjU4HbjU0cPJiRWUNWc24w,46719
261
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=i1PPBRNmikQHRL9CCAtAqGR3xI_BuaVjRFZ-s9Imk5E,49641
262
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=rXvZdIqoenfkk3nMRLt3zSimLfJrEN3m59h_Dr1GEcY,45119
263
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=kl-7sRbb2fe7DrC_oa_9RkFhskEHyyIwTmwODA7CILk,46075
260
264
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
261
- snowflake/ml/modeling/manifold/isomap.py,sha256=d2gMufZ0V1gxCDwgyglEIfNk0qhz7uut8YuKVzH6D_I,45052
262
- snowflake/ml/modeling/manifold/mds.py,sha256=6E-hkZMHjgTEmZ4h14SI1399teLdCrhOy1b48I0H2VY,44266
263
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=src1MnIzBrTsF3x1LuK-UxrqazureBfqzLe8_6KfGlk,45090
264
- snowflake/ml/modeling/manifold/tsne.py,sha256=Dx8MPR3Yor-qH0H4aHepi8agms84BXTwsaJYLGL9opE,48049
265
+ snowflake/ml/modeling/manifold/isomap.py,sha256=2vjFtlSL0AiWKEXcfuFjGpvwi8PeCSP3VTAYvhebt_o,45079
266
+ snowflake/ml/modeling/manifold/mds.py,sha256=Hsmd65ft_k0q741fr7HHNHS-fleEbfKqZXFp5_HVmw8,44293
267
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=0DDGJ7MlsLFpT-AObOVaMh60fdfFajBO7_F3YL0AoM8,45117
268
+ snowflake/ml/modeling/manifold/tsne.py,sha256=S9aDjztmJVeacG3DH0LHNGceMissTFyNK-MFkCO8ZJk,48076
265
269
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
266
270
  snowflake/ml/modeling/metrics/classification.py,sha256=ZWizjYJTogw9iSMXHfKJlMJgbPbKOBjGG3TwG91YROE,63241
267
271
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -270,35 +274,35 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
270
274
  snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
271
275
  snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
272
276
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
273
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=hOSVxk6-Aq3zZKYauz_xJNAE8ABR_mwzt9SNzAdBnfU,49581
274
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=7wqZQshXByj_iivUC8vIE7hijJTKZ65jEkjkMR0GRUU,47506
277
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=EEUcfF0kpPJRSBc-EYRHLzOVfTzX_zf10rbtMCAMBO0,49608
278
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=j8kOol_rG06EUgb0CFjoFUN3yLw4UdgI8o7IBbZ3Upw,47533
275
279
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
276
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KNrM2z1H5Cbg4Lb6GV1yNOEHjm2xcSgDWCeymBF51ws,36020
277
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=i8AxF6XzwEiRpvYuvFtAUB0p5m0fT67jVrXfIyE0EI8,36752
280
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=yd8KLROGTHGCTZrnzNK6pOFvQ5PVyI4Of6mZAv__TX0,35774
281
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=hrTKyGl5mhrXcHDDJGPd5FYGBwpXJhllCRgmWVVeocE,36506
278
282
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
279
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=N191soVLy-4zbELld2vMsmN5JhiNZ8-H9U5GI33VEwE,43351
280
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=1GQTuY4pnGgZ7b04sifcLC5Ulf8e2WYz5Rpz5pGElls,44285
281
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=hTIoTAKjMQbQ4_0LmOY5NHtSwl81uF-JkY35jHjDhSc,43621
283
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=rRoYyNgCBcTKSyKkRwvztnt2ISuAFGA7caWulXeiBYw,43378
284
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=SWDgK-e60NsnnkxSzUmyL0o-yEkSswFAQezGPuPFo-k,44312
285
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=QSiGWMdhFhsMx6mTqrabJUgIcW4Z4vw4T15P_RafkuM,43648
282
286
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
283
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=GufAyLQ0nU1PL2W_ZlKVN44UqjTfi2texHOmP1BNbqo,43890
284
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=n98XdtpnTR1mUqDCVE7gkkfiGkRpuV2aClv8v7wGozs,44225
285
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=F61CrgcV0k1mFukpm7LDLdFjns1ZlaBlV0U_vCM-0zc,43905
286
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=cGnMpZGOKxRaG2Qz94uQkynhIjiprIqc6czlUV5woog,43034
287
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=VkXjDDeVWg2O5fFo9cZaJJFATFEFI-yeCjg8ziV25sI,43670
287
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Qy4cNDGtEXjP0UUStvblcqyG2thKi7SgdtYGxGLplhw,43917
288
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=5T_qVJjhp7sLwc3FnP17-67aB9GYxzSPkop1YTBG3_g,44252
289
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=16vNWWqj-TJ9CxtiluFMPY_AJIUclmxyA5i63AWTsh8,43932
290
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d9yvEWiAIs5GkxQkVENYmuF7L3sgLdS8zmgZoYh1ku8,43061
291
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=7GEaOBJXq6gbSYhkZ1BVV0lgxyoHY8bGo-5olm9qlj4,43697
288
292
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
289
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=4_FR3Gh-GjfFmpTn0SOv-A9aNa6YEL8DlJ9TbtH009g,46739
290
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=KZ9IqGGEM2towFPTjQJG9pMCA1dsac9vl6fq-smIYLQ,46210
291
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=F3Dg6aaYeBp-fbZsc9LYZfJtzgepRG70AA5YJujYBqc,44309
292
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=MroGfIwGlev9vCZELnY6rDuteuYSY8TjSJNWyQdz3ew,46888
293
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=jqlq4dGz8Ox-nBk4p7l_fB2SCKus0JbUrzj7005PIxs,43228
294
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=Tg-GwZpETpuGJbukPW6M8tCbrLP8iqtLI_xOfS5nDO8,45037
295
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=nxO8xW-57l4U3hkLd91iWE2SCCKjZYzgPqXPIYGadeE,46417
296
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=aLHMAJ3M3Nj9UgTDL6MLWWwKa_NVaI5qHJIRkIND2eI,47152
297
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=SYjAtzyQa3ZiLm34ycJ7Aq8-CGipNYuiGUlxaiCvYPA,46033
293
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=43XW7TTPZSxJkdhvVZXpAlgoyC7OLXICH_WAWVAG6kg,46766
294
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=dyQzcVqyLoAilyJpbrsW1uRR04QxczBob14T061r-S8,46237
295
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=lzxekKFgX2HoII6XssdL8DD1sj-6c0T389THcjiIXmE,44336
296
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=u17yiMKSlDr1pZjrwVN8ObR7xqTmaFmdVzB8fPL4VoU,46915
297
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=FAecHeC28mj2FdHkrFXihGnLasl20FubcG9HhH-DGFc,43255
298
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=dyA7PK7gFcERXFsFHxfu840PzlR1t__XGSDqpMS2mCE,45064
299
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=RAnAflrC4YNgIQqeUqQkp226AABq-rAg-YQZ_Qhhiqs,46444
300
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=Uc0SrovcqN1qfpJBwuy6IJXdmesVfEq0nG52GfYLQfo,47179
301
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=bH1MP9H2REexSHMHHOohGMX9YB1nNhUeM-eo0tqD9Hg,46060
298
302
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
299
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=sm-20EQqNj1edtaNDD9fFLlehCWMlrzuCLFiKvihH94,43284
300
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=pl8rP_i8vRFkNMDERcRPJCXELKZcEHzSkPwHP2dkNSU,51112
301
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=BGz2NrBK4rTjchHqeDgdWEg8RAUaN0tTOFo_YKlwAnY,50381
303
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Nqggpym-pQq67OdwvRkDzuLl2aBGqslIIi4wJklWhsw,43311
304
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=oul8mpsp1OKBo6E1COQ3jMlcSZXnEfD7rALIYWp4JPM,51139
305
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=41GFQj47wVjLK_6hnhEqgGCRuwk-qZm9_dt8pFGrCsM,50408
302
306
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
303
307
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
304
308
  snowflake/ml/modeling/pipeline/pipeline.py,sha256=iVewRZJVNHP0F8dvISy2u52cUq2oeSPQqEiyZDZywRM,24810
@@ -311,29 +315,29 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=SRPvTPZtNKdpWFpX9ey
311
315
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
312
316
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
313
317
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
314
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=rHiXRIjJGk38qeiP7gkNIFRAzjSpTB0R-Zhi9_3C_DE,43443
318
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=G4TXeFfl4Ttufvfcnp3NmB622FRkZ9GKorpOq0R0PwM,43470
315
319
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
316
320
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
317
321
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
318
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=jg-UassDXOtyJXVow9XmfsXoqoDdPFOhEPXqtsqTIYg,44127
319
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=F8DVIgRP8mw6IQrOEsk0vJE2CI2h6D5Tg0kEFlwr53E,44476
322
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=y1C9_2bDPNlZFqU7dGsTjuvvAnVomp9AFa0iuh1Dres,44154
323
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=J5HKVRhWEXuA1T1nWzrpVOlxeDXZ9WQOzmrKvNUpwWI,44503
320
324
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
321
- snowflake/ml/modeling/svm/linear_svc.py,sha256=9S91Bz5ygfTpOtJaoGvmYZ1S3eoSaUn2xc88l6DPdYI,46937
322
- snowflake/ml/modeling/svm/linear_svr.py,sha256=3Ki2lz1Xd_G4P2aStDnCWO1KST9r6cHOTI8XpQD2iks,45290
323
- snowflake/ml/modeling/svm/nu_svc.py,sha256=GTp9igGbdBAehki45tJ7q0jGM3U-hrr9sOMP1mtlZ4A,47249
324
- snowflake/ml/modeling/svm/nu_svr.py,sha256=u-OEg2odORCDAT_GQlZFpY2kzfmcn46FhakPVGn8RDw,44328
325
- snowflake/ml/modeling/svm/svc.py,sha256=fHxzLtK0yKlS2JG6fLC2EV2fUEgs2U2BY13JG1eYOEo,47398
326
- snowflake/ml/modeling/svm/svr.py,sha256=6zNSrWE8Gs87dkLWTFi9BLvboZ83cw3GgCvsqGWUwbw,44517
325
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=NNRKiPb8E0M8yqgwg_PBqOXMZJn18Rwk1Sfy7qlZJso,46964
326
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=kB-X9rjmGOXjHumrq2EE1JYDgRtLv6AmP9N4oIkd-0M,45317
327
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=oteI9oDgEm_UnNCV0xcQIHSXW5EXYjtiN3EIi9cpi8Q,47276
328
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=V6yyWcUcioDKnWayy_FGcdV-aZP-grqwoXu8LECzZfU,44355
329
+ snowflake/ml/modeling/svm/svc.py,sha256=Neu0RrCIa_BHYoPI1eKNZYp-z0HqkLRmGHMrylbYF_s,47425
330
+ snowflake/ml/modeling/svm/svr.py,sha256=1NSPJHvyVJs-Jt5fJEkkT-Ur8t4HFeOlJ1EdV6lx93g,44544
327
331
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
328
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D-wP0jJ8GUE9-abamdJmwMZ2nZfCl3Vb8nhnLK1CWD4,49674
329
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=0b544Zl6rzpL6TfrL9fhpopiAeVppPOnwDfIGFwfm6w,48373
330
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=9pLfJc0xjJLNNuzqgKkfdsr-PVvmBoUx6i4FtUSFH84,49016
331
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=4tGcgid5UsSZeXrYKxhQ-DOg18NuXUKOR4QH8LIDdIE,47724
332
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=YwLYrfJin3Z18Fkfun7NviTpVsD32NUAQtfzJlpl0YY,49701
333
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=q4tDGxbROJn9H2j3NDoIRiLpaEnXSKPpGBaAxpW2XpE,48400
334
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=d2l5Sdt-q-oEjszUWIrQ7bQQMdKBkXu2dTKzs5yNxMQ,49043
335
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=xUb3CjDqyccivlcEiIcbbtRWyRDNByiX1tn1HXaj9B4,47751
332
336
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
333
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=_BFxw9K9tEQQJ9g45tY9UP1QKIq0tco_0qfSpXBllMg,54672
334
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=3Opr_-nUfNMKPEMzE3SMwv6zHnQzNpBLIGp390HSbl8,54171
335
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=cVbwIRnX4xpbn78C_s-VjpiXCjp9fGncFLhRUCwwPiU,54848
336
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=hUpAYUHr0U4fYFzOEvu4FI22N9n14QQVtBW4KaBrpn8,54374
337
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=VgAJhn9yU4RncJvix9NJdIlt1zz8kKa-rkKwnHmKdds,54699
338
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=tvcQrgng-JA54eMoSBNM0n0izsyS5mWPBvGtwr8l8Jw,54198
339
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=QOkC23VYfP5RLMGT9v-zeJlvYZIbHDaOg6Gv9S6Bg_o,54875
340
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=lhKOSzt7zyog-Ra4Vjpk4LKNGKTgrJ4JM36i5X4XmRk,54401
337
341
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
338
342
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
339
343
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
@@ -348,8 +352,8 @@ snowflake/ml/registry/registry.py,sha256=Q0URdVOeo5V6CXJzBGpIlhHfPvToPnHyzuYQ61v
348
352
  snowflake/ml/registry/_manager/model_manager.py,sha256=gF41jp6vqcFf7Hl9qlz-jFFo8pFMkBEoNg-Gt5m7fAQ,5573
349
353
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
350
354
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
351
- snowflake_ml_python-1.2.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
352
- snowflake_ml_python-1.2.1.dist-info/METADATA,sha256=uonsLrbybqfVQtD-q6CwJULZj7HuCu99MZLqio73mdY,41345
353
- snowflake_ml_python-1.2.1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
354
- snowflake_ml_python-1.2.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
355
- snowflake_ml_python-1.2.1.dist-info/RECORD,,
355
+ snowflake_ml_python-1.2.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
356
+ snowflake_ml_python-1.2.2.dist-info/METADATA,sha256=DeX8aUf_uO8KORTh7oZs-fSdwXHGI9KvZxoWcVYV-44,42075
357
+ snowflake_ml_python-1.2.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
358
+ snowflake_ml_python-1.2.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
359
+ snowflake_ml_python-1.2.2.dist-info/RECORD,,