snappy 3.1.1__cp39-cp39-win_amd64.whl → 3.2__cp39-cp39-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cp39-win_amd64.pyd +0 -0
- snappy/SnapPy.cp39-win_amd64.pyd +0 -0
- snappy/SnapPyHP.cp39-win_amd64.pyd +0 -0
- snappy/__init__.py +299 -402
- snappy/app.py +70 -20
- snappy/browser.py +18 -17
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +10 -9
- snappy/decorated_isosig.py +337 -114
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
- snappy/dev/extended_ptolemy/extended.py +3 -3
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -40
- snappy/doc/_sources/bugs.rst.txt +14 -14
- snappy/doc/_sources/censuses.rst.txt +51 -51
- snappy/doc/_sources/credits.rst.txt +75 -75
- snappy/doc/_sources/development.rst.txt +259 -239
- snappy/doc/_sources/index.rst.txt +182 -115
- snappy/doc/_sources/installing.rst.txt +247 -264
- snappy/doc/_sources/manifold.rst.txt +6 -6
- snappy/doc/_sources/manifoldhp.rst.txt +46 -46
- snappy/doc/_sources/news.rst.txt +355 -283
- snappy/doc/_sources/other.rst.txt +25 -25
- snappy/doc/_sources/platonic_census.rst.txt +20 -20
- snappy/doc/_sources/plink.rst.txt +102 -102
- snappy/doc/_sources/ptolemy.rst.txt +66 -66
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -42
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -297
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -363
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -301
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -61
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -105
- snappy/doc/_sources/screenshots.rst.txt +21 -21
- snappy/doc/_sources/snap.rst.txt +87 -87
- snappy/doc/_sources/snappy.rst.txt +28 -28
- snappy/doc/_sources/spherogram.rst.txt +103 -103
- snappy/doc/_sources/todo.rst.txt +47 -47
- snappy/doc/_sources/triangulation.rst.txt +11 -11
- snappy/doc/_sources/tutorial.rst.txt +49 -49
- snappy/doc/_sources/verify.rst.txt +210 -150
- snappy/doc/_sources/verify_internals.rst.txt +79 -90
- snappy/doc/_static/basic.css +924 -902
- snappy/doc/_static/css/badge_only.css +1 -1
- snappy/doc/_static/css/theme.css +1 -1
- snappy/doc/_static/doctools.js +1 -1
- snappy/doc/_static/documentation_options.js +12 -13
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -199
- snappy/doc/_static/pygments.css +74 -73
- snappy/doc/_static/searchtools.js +125 -71
- snappy/doc/_static/snappy_furo.css +33 -33
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -42
- snappy/doc/_static/sphinx_highlight.js +13 -3
- snappy/doc/additional_classes.html +1499 -1330
- snappy/doc/bugs.html +131 -134
- snappy/doc/censuses.html +426 -445
- snappy/doc/credits.html +180 -183
- snappy/doc/development.html +383 -363
- snappy/doc/genindex.html +1330 -1409
- snappy/doc/index.html +261 -206
- snappy/doc/installing.html +345 -363
- snappy/doc/manifold.html +3451 -2839
- snappy/doc/manifoldhp.html +179 -182
- snappy/doc/news.html +387 -329
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +160 -162
- snappy/doc/platonic_census.html +374 -377
- snappy/doc/plink.html +209 -212
- snappy/doc/ptolemy.html +253 -255
- snappy/doc/ptolemy_classes.html +1143 -1146
- snappy/doc/ptolemy_examples1.html +408 -410
- snappy/doc/ptolemy_examples2.html +470 -473
- snappy/doc/ptolemy_examples3.html +413 -416
- snappy/doc/ptolemy_examples4.html +194 -197
- snappy/doc/ptolemy_prelim.html +247 -250
- snappy/doc/py-modindex.html +164 -167
- snappy/doc/screenshots.html +140 -142
- snappy/doc/search.html +134 -137
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +201 -204
- snappy/doc/snappy.html +180 -182
- snappy/doc/spherogram.html +1210 -1213
- snappy/doc/todo.html +165 -168
- snappy/doc/triangulation.html +1583 -1474
- snappy/doc/tutorial.html +158 -161
- snappy/doc/verify.html +329 -275
- snappy/doc/verify_internals.html +1234 -1691
- snappy/drilling/__init__.py +153 -235
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +0 -2
- snappy/drilling/crush.py +56 -130
- snappy/drilling/cusps.py +12 -6
- snappy/drilling/debug.py +2 -1
- snappy/drilling/exceptions.py +7 -40
- snappy/drilling/moves.py +302 -243
- snappy/drilling/perturb.py +63 -37
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +0 -5
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +9 -37
- snappy/exceptions.py +18 -5
- snappy/exterior_to_link/barycentric_geometry.py +2 -4
- snappy/exterior_to_link/main.py +8 -7
- snappy/exterior_to_link/mcomplex_with_link.py +2 -2
- snappy/exterior_to_link/rational_linear_algebra.py +1 -1
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
- snappy/exterior_to_link/test.py +21 -33
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
- snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +23 -13
- snappy/horoviewer.py +7 -7
- snappy/hyperboloid/__init__.py +96 -31
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/math_basics.py +39 -13
- snappy/matrix.py +52 -9
- snappy/number.py +12 -6
- snappy/numeric_output_checker.py +2 -3
- snappy/pari.py +8 -4
- snappy/phone_home.py +2 -1
- snappy/polyviewer.py +8 -8
- snappy/ptolemy/__init__.py +1 -1
- snappy/ptolemy/component.py +2 -2
- snappy/ptolemy/coordinates.py +25 -25
- snappy/ptolemy/findLoops.py +9 -9
- snappy/ptolemy/manifoldMethods.py +27 -29
- snappy/ptolemy/polynomial.py +50 -57
- snappy/ptolemy/processFileBase.py +60 -0
- snappy/ptolemy/ptolemyVariety.py +109 -41
- snappy/ptolemy/reginaWrapper.py +4 -4
- snappy/ptolemy/rur.py +1 -1
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
- snappy/ptolemy/test.py +99 -54
- snappy/ptolemy/utilities.py +1 -1
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +0 -3
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +17 -17
- snappy/raytracing/finite_viewer.py +15 -15
- snappy/raytracing/geodesic_tube_info.py +93 -63
- snappy/raytracing/geodesics.py +94 -64
- snappy/raytracing/geodesics_window.py +56 -34
- snappy/raytracing/gui_utilities.py +21 -6
- snappy/raytracing/hyperboloid_navigation.py +29 -4
- snappy/raytracing/hyperboloid_utilities.py +73 -73
- snappy/raytracing/ideal_raytracing_data.py +121 -91
- snappy/raytracing/inside_viewer.py +199 -66
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +37 -25
- snappy/raytracing/raytracing_view.py +70 -65
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +39 -3
- snappy/raytracing/shaders/fragment.glsl +451 -133
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +42 -9
- snappy/sage_helper.py +67 -134
- snappy/settings.py +90 -77
- snappy/shell.py +2 -0
- snappy/snap/character_varieties.py +2 -2
- snappy/snap/find_field.py +4 -3
- snappy/snap/fundamental_polyhedron.py +2 -2
- snappy/snap/kernel_structures.py +5 -1
- snappy/snap/nsagetools.py +9 -8
- snappy/snap/peripheral/dual_cellulation.py +4 -3
- snappy/snap/peripheral/peripheral.py +2 -2
- snappy/snap/peripheral/surface.py +5 -5
- snappy/snap/peripheral/test.py +1 -1
- snappy/snap/polished_reps.py +8 -8
- snappy/snap/slice_obs_HKL.py +16 -14
- snappy/snap/t3mlite/arrow.py +3 -3
- snappy/snap/t3mlite/edge.py +3 -3
- snappy/snap/t3mlite/homology.py +2 -2
- snappy/snap/t3mlite/mcomplex.py +3 -3
- snappy/snap/t3mlite/simplex.py +12 -0
- snappy/snap/t3mlite/spun.py +18 -17
- snappy/snap/t3mlite/test_vs_regina.py +4 -4
- snappy/snap/test.py +37 -53
- snappy/snap/utilities.py +4 -5
- snappy/test.py +121 -138
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +113 -84
- snappy/twister/main.py +1 -7
- snappy/twister/twister_core.cp39-win_amd64.pyd +0 -0
- snappy/upper_halfspace/__init__.py +78 -17
- snappy/verify/__init__.py +3 -7
- snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
- snappy/verify/complex_volume/adjust_torsion.py +1 -2
- snappy/verify/complex_volume/closed.py +13 -13
- snappy/verify/complex_volume/cusped.py +6 -6
- snappy/verify/complex_volume/extended_bloch.py +5 -8
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +0 -55
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
- snappy/verify/interval_newton_shapes_engine.py +7 -5
- snappy/verify/interval_tree.py +5 -5
- snappy/verify/krawczyk_shapes_engine.py +17 -18
- snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
- snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
- snappy/verify/shapes.py +5 -3
- snappy/verify/short_slopes.py +39 -41
- snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
- snappy/verify/test.py +57 -60
- snappy/verify/upper_halfspace/extended_matrix.py +1 -1
- snappy/verify/upper_halfspace/finite_point.py +3 -4
- snappy/verify/upper_halfspace/ideal_point.py +9 -9
- snappy/verify/volume.py +2 -2
- snappy/version.py +2 -2
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/METADATA +26 -11
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
- snappy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/__pycache__/browser.cpython-39.pyc +0 -0
- snappy/__pycache__/cache.cpython-39.pyc +0 -0
- snappy/__pycache__/database.cpython-39.pyc +0 -0
- snappy/__pycache__/db_utilities.cpython-39.pyc +0 -0
- snappy/__pycache__/decorated_isosig.cpython-39.pyc +0 -0
- snappy/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/__pycache__/export_stl.cpython-39.pyc +0 -0
- snappy/__pycache__/filedialog.cpython-39.pyc +0 -0
- snappy/__pycache__/gui.cpython-39.pyc +0 -0
- snappy/__pycache__/horoviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/math_basics.cpython-39.pyc +0 -0
- snappy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/__pycache__/number.cpython-39.pyc +0 -0
- snappy/__pycache__/numeric_output_checker.cpython-39.pyc +0 -0
- snappy/__pycache__/pari.cpython-39.pyc +0 -0
- snappy/__pycache__/polyviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/sage_helper.cpython-39.pyc +0 -0
- snappy/__pycache__/version.cpython-39.pyc +0 -0
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/jquery-3.6.0.js +0 -10881
- snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
- snappy/doc/_static/js/html5shiv.min.js +0 -4
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -304
- snappy/drilling/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/constants.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/crush.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/cusps.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/debug.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/epsilons.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/fixed_points.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_info.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_tube.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geometric_structure.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/line.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/moves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/peripheral_curves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/perturb.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/quotient_space.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/spatial_dict.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/subdivide.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/tracing.cpython-39.pyc +0 -0
- snappy/drilling/geodesic_tube.py +0 -441
- snappy/drilling/geometric_structure.py +0 -366
- snappy/drilling/line.py +0 -122
- snappy/drilling/quotient_space.py +0 -94
- snappy/drilling/spatial_dict.py +0 -128
- snappy/exterior_to_link/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/hyp_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/link_projection.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/main.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/pl_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/put_in_S3.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/stored_moves.cpython-39.pyc +0 -0
- snappy/hyperboloid/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/manifolds/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/component.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/coordinates.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/fieldExtensions.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/findLoops.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/manifoldMethods.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/polynomial.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processComponents.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileBase.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileDispatch.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processMagmaFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processRurFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVariety.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/rur.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/character_varieties.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/fundamental_polyhedron.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/interval_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/kernel_structures.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/mcomplex_base.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/nsagetools.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/polished_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/slice_obs_HKL.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/link.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/peripheral.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/arrow.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/corner.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/edge.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/face.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/files.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/linalg.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/mcomplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/perm4.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/simplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/spun.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/vertex.cpython-39.pyc +0 -0
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/twister/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/twister/__pycache__/main.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspCrossSection.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspTranslations.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_areas.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_tree.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/realAlgebra.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/short_slopes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/squareExtensions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyCanonical.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyHyperbolicity.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/volume.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/closed.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/cusped.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-39.pyc +0 -0
- snappy/verify/cuspCrossSection.py +0 -1422
- snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy-3.1.1.dist-info/RECORD +0 -575
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
snappy/doc/ptolemy_classes.html
CHANGED
@@ -1,1147 +1,1144 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
<meta name="viewport" content="width=device-width, initial-scale=1
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
<link rel="stylesheet"
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
<script src="_static/js/theme.js"></script>
|
23
|
-
<link rel="index" title="Index" href="genindex.html" />
|
24
|
-
<link rel="search" title="Search" href="search.html" />
|
25
|
-
<link rel="next" title="News" href="news.html" />
|
26
|
-
<link rel="prev" title="Step-by-step examples: Part 4" href="ptolemy_examples4.html" />
|
27
|
-
</head>
|
28
|
-
|
29
|
-
<body class="wy-body-for-nav">
|
30
|
-
<div class="wy-grid-for-nav">
|
31
|
-
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
32
|
-
<div class="wy-side-scroll">
|
33
|
-
<div class="wy-side-nav-search" >
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
<a href="index.html" class="icon icon-home">
|
38
|
-
SnapPy
|
39
|
-
<img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
|
40
|
-
</a>
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
<
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
</
|
51
|
-
|
52
|
-
|
53
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
54
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
55
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
56
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
57
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
58
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
59
|
-
<li class="toctree-
|
60
|
-
<li class="toctree-
|
61
|
-
<li class="toctree-
|
62
|
-
<li class="toctree-
|
63
|
-
<li class="toctree-
|
64
|
-
<li class="toctree-
|
65
|
-
<li class="toctree-
|
66
|
-
<li class="toctree-l5"><a class="reference internal" href="
|
67
|
-
<li class="toctree-l5"><a class="reference internal" href="
|
68
|
-
<li class="toctree-l5"><a class="reference internal" href="
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
</
|
73
|
-
</
|
74
|
-
</
|
75
|
-
</li>
|
76
|
-
</ul>
|
77
|
-
</li>
|
78
|
-
<li class="toctree-
|
79
|
-
</
|
80
|
-
</li>
|
81
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
82
|
-
<li class="toctree-l1"><a class="reference internal" href="
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
</
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
<
|
100
|
-
|
101
|
-
<li
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
<
|
115
|
-
<
|
116
|
-
<
|
117
|
-
<
|
118
|
-
<
|
119
|
-
<
|
120
|
-
<
|
121
|
-
<p
|
122
|
-
|
123
|
-
|
124
|
-
<
|
125
|
-
|
126
|
-
</
|
127
|
-
<
|
128
|
-
<
|
129
|
-
<span class="
|
130
|
-
<span class="go">c_0011_0
|
131
|
-
|
132
|
-
|
133
|
-
<
|
134
|
-
|
135
|
-
</
|
136
|
-
<
|
137
|
-
|
138
|
-
|
139
|
-
<
|
140
|
-
|
141
|
-
</
|
142
|
-
<
|
143
|
-
<
|
144
|
-
<span class="
|
145
|
-
<span class="go">
|
146
|
-
|
147
|
-
|
148
|
-
<span class="
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
<
|
159
|
-
|
160
|
-
</
|
161
|
-
<
|
162
|
-
|
163
|
-
<
|
164
|
-
<
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
<
|
175
|
-
|
176
|
-
<
|
177
|
-
<
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
<
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
<
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
<span class="
|
202
|
-
</
|
203
|
-
</
|
204
|
-
<
|
205
|
-
|
206
|
-
|
207
|
-
<span class="
|
208
|
-
</
|
209
|
-
</
|
210
|
-
<
|
211
|
-
<span class="
|
212
|
-
<span class="
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
<
|
221
|
-
<
|
222
|
-
<span class="
|
223
|
-
<
|
224
|
-
<
|
225
|
-
<span class="
|
226
|
-
|
227
|
-
|
228
|
-
<span class="
|
229
|
-
</
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
<
|
239
|
-
|
240
|
-
|
241
|
-
<
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
<
|
247
|
-
|
248
|
-
</
|
249
|
-
<
|
250
|
-
<
|
251
|
-
<span class="
|
252
|
-
|
253
|
-
|
254
|
-
<
|
255
|
-
|
256
|
-
</div>
|
257
|
-
|
258
|
-
<
|
259
|
-
|
260
|
-
</
|
261
|
-
|
262
|
-
|
263
|
-
<
|
264
|
-
|
265
|
-
</
|
266
|
-
|
267
|
-
|
268
|
-
<
|
269
|
-
|
270
|
-
</
|
271
|
-
<
|
272
|
-
<
|
273
|
-
<span class="
|
274
|
-
<span class="gp"
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
<
|
283
|
-
<
|
284
|
-
|
285
|
-
<
|
286
|
-
<p>
|
287
|
-
|
288
|
-
|
289
|
-
<
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
&
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
<
|
303
|
-
<
|
304
|
-
<span class="
|
305
|
-
<
|
306
|
-
<span class="gp">>>> </span><span class="
|
307
|
-
<span class="gp">>>> </span><span class="n">
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
</
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
<
|
319
|
-
<
|
320
|
-
<
|
321
|
-
<
|
322
|
-
<
|
323
|
-
<
|
324
|
-
<
|
325
|
-
<
|
326
|
-
<
|
327
|
-
|
328
|
-
|
329
|
-
<
|
330
|
-
|
331
|
-
</
|
332
|
-
|
333
|
-
|
334
|
-
<span class="
|
335
|
-
</
|
336
|
-
</div>
|
337
|
-
|
338
|
-
<
|
339
|
-
|
340
|
-
</
|
341
|
-
|
342
|
-
|
343
|
-
<
|
344
|
-
|
345
|
-
</div>
|
346
|
-
|
347
|
-
<
|
348
|
-
|
349
|
-
|
350
|
-
<
|
351
|
-
|
352
|
-
|
353
|
-
<
|
354
|
-
<span class="gp">>>> </span><span class="
|
355
|
-
<span class="gp"
|
356
|
-
|
357
|
-
|
358
|
-
<
|
359
|
-
|
360
|
-
</
|
361
|
-
|
362
|
-
|
363
|
-
<
|
364
|
-
|
365
|
-
</
|
366
|
-
<
|
367
|
-
|
368
|
-
|
369
|
-
<
|
370
|
-
|
371
|
-
</
|
372
|
-
<
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
<
|
377
|
-
|
378
|
-
</div>
|
379
|
-
|
380
|
-
<
|
381
|
-
|
382
|
-
</
|
383
|
-
<
|
384
|
-
<
|
385
|
-
|
386
|
-
|
387
|
-
<
|
388
|
-
|
389
|
-
</div>
|
390
|
-
|
391
|
-
<
|
392
|
-
|
393
|
-
</
|
394
|
-
<p>
|
395
|
-
<
|
396
|
-
<span class="gp">>>> </span><span class="n">
|
397
|
-
<span class="
|
398
|
-
|
399
|
-
|
400
|
-
<span class="
|
401
|
-
</
|
402
|
-
</div>
|
403
|
-
|
404
|
-
<
|
405
|
-
|
406
|
-
</
|
407
|
-
|
408
|
-
|
409
|
-
<
|
410
|
-
|
411
|
-
</
|
412
|
-
<
|
413
|
-
|
414
|
-
|
415
|
-
<
|
416
|
-
|
417
|
-
|
418
|
-
<
|
419
|
-
|
420
|
-
|
421
|
-
<
|
422
|
-
|
423
|
-
|
424
|
-
<p
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
<
|
433
|
-
|
434
|
-
<
|
435
|
-
<
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
<
|
443
|
-
|
444
|
-
<
|
445
|
-
|
446
|
-
|
447
|
-
<
|
448
|
-
|
449
|
-
</
|
450
|
-
<p>
|
451
|
-
|
452
|
-
|
453
|
-
<
|
454
|
-
|
455
|
-
|
456
|
-
<
|
457
|
-
|
458
|
-
|
459
|
-
<
|
460
|
-
<
|
461
|
-
|
462
|
-
|
463
|
-
<
|
464
|
-
|
465
|
-
</div>
|
466
|
-
|
467
|
-
<
|
468
|
-
|
469
|
-
</
|
470
|
-
|
471
|
-
|
472
|
-
<
|
473
|
-
|
474
|
-
</
|
475
|
-
|
476
|
-
|
477
|
-
<span class="
|
478
|
-
</
|
479
|
-
</div>
|
480
|
-
|
481
|
-
<span class="
|
482
|
-
</
|
483
|
-
</div>
|
484
|
-
|
485
|
-
<
|
486
|
-
</
|
487
|
-
|
488
|
-
<
|
489
|
-
|
490
|
-
|
491
|
-
<
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
<
|
499
|
-
|
500
|
-
|
501
|
-
<
|
502
|
-
|
503
|
-
|
504
|
-
<
|
505
|
-
|
506
|
-
|
507
|
-
<
|
508
|
-
|
509
|
-
|
510
|
-
<
|
511
|
-
|
512
|
-
|
513
|
-
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
<
|
522
|
-
|
523
|
-
|
524
|
-
<
|
525
|
-
|
526
|
-
|
527
|
-
<
|
528
|
-
|
529
|
-
|
530
|
-
<p>
|
531
|
-
|
532
|
-
|
533
|
-
<
|
534
|
-
|
535
|
-
</div>
|
536
|
-
|
537
|
-
<
|
538
|
-
</
|
539
|
-
|
540
|
-
<
|
541
|
-
|
542
|
-
|
543
|
-
<
|
544
|
-
|
545
|
-
|
546
|
-
|
547
|
-
|
548
|
-
|
549
|
-
|
550
|
-
<
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
|
556
|
-
|
557
|
-
<
|
558
|
-
|
559
|
-
<
|
560
|
-
|
561
|
-
imaginary part
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
|
568
|
-
<
|
569
|
-
|
570
|
-
|
571
|
-
<
|
572
|
-
|
573
|
-
|
574
|
-
|
575
|
-
|
576
|
-
|
577
|
-
|
578
|
-
<a
|
579
|
-
|
580
|
-
|
581
|
-
<
|
582
|
-
|
583
|
-
|
584
|
-
<
|
585
|
-
|
586
|
-
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
<
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
<
|
597
|
-
|
598
|
-
|
599
|
-
<
|
600
|
-
|
601
|
-
|
602
|
-
<
|
603
|
-
|
604
|
-
|
605
|
-
|
606
|
-
|
607
|
-
|
608
|
-
|
609
|
-
|
610
|
-
<
|
611
|
-
|
612
|
-
|
613
|
-
<
|
614
|
-
|
615
|
-
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
<
|
622
|
-
|
623
|
-
|
624
|
-
<
|
625
|
-
|
626
|
-
|
627
|
-
<
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
|
634
|
-
<
|
635
|
-
<
|
636
|
-
<
|
637
|
-
<
|
638
|
-
<
|
639
|
-
|
640
|
-
|
641
|
-
<
|
642
|
-
|
643
|
-
</
|
644
|
-
<
|
645
|
-
<
|
646
|
-
|
647
|
-
|
648
|
-
<
|
649
|
-
|
650
|
-
</
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
<
|
659
|
-
|
660
|
-
|
661
|
-
<
|
662
|
-
|
663
|
-
|
664
|
-
<
|
665
|
-
|
666
|
-
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
<
|
673
|
-
|
674
|
-
|
675
|
-
|
676
|
-
|
677
|
-
|
678
|
-
|
679
|
-
<
|
680
|
-
|
681
|
-
|
682
|
-
<
|
683
|
-
|
684
|
-
|
685
|
-
<
|
686
|
-
|
687
|
-
|
688
|
-
<
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
<
|
693
|
-
|
694
|
-
|
695
|
-
<
|
696
|
-
|
697
|
-
|
698
|
-
<
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
705
|
-
|
706
|
-
|
707
|
-
|
708
|
-
<
|
709
|
-
<
|
710
|
-
<
|
711
|
-
|
712
|
-
|
713
|
-
<
|
714
|
-
|
715
|
-
|
716
|
-
<
|
717
|
-
|
718
|
-
</
|
719
|
-
<p>
|
720
|
-
|
721
|
-
|
722
|
-
<
|
723
|
-
|
724
|
-
|
725
|
-
<
|
726
|
-
|
727
|
-
|
728
|
-
<
|
729
|
-
<
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
736
|
-
<
|
737
|
-
|
738
|
-
|
739
|
-
<
|
740
|
-
|
741
|
-
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
<
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
|
757
|
-
|
758
|
-
|
759
|
-
<
|
760
|
-
|
761
|
-
|
762
|
-
<
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
768
|
-
|
769
|
-
|
770
|
-
<
|
771
|
-
|
772
|
-
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
<
|
778
|
-
|
779
|
-
|
780
|
-
|
781
|
-
|
782
|
-
The
|
783
|
-
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
<
|
796
|
-
|
797
|
-
<
|
798
|
-
|
799
|
-
imaginary part
|
800
|
-
|
801
|
-
|
802
|
-
|
803
|
-
|
804
|
-
|
805
|
-
|
806
|
-
<
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
<
|
817
|
-
|
818
|
-
|
819
|
-
<
|
820
|
-
|
821
|
-
|
822
|
-
<p>
|
823
|
-
|
824
|
-
|
825
|
-
<p>
|
826
|
-
|
827
|
-
<
|
828
|
-
|
829
|
-
|
830
|
-
<p
|
831
|
-
|
832
|
-
|
833
|
-
<p>The user
|
834
|
-
|
835
|
-
|
836
|
-
|
837
|
-
|
838
|
-
|
839
|
-
|
840
|
-
|
841
|
-
|
842
|
-
|
843
|
-
<
|
844
|
-
|
845
|
-
|
846
|
-
|
847
|
-
|
848
|
-
|
849
|
-
|
850
|
-
|
851
|
-
<
|
852
|
-
|
853
|
-
|
854
|
-
<
|
855
|
-
|
856
|
-
|
857
|
-
<
|
858
|
-
|
859
|
-
|
860
|
-
|
861
|
-
|
862
|
-
<
|
863
|
-
|
864
|
-
|
865
|
-
<
|
866
|
-
|
867
|
-
|
868
|
-
<
|
869
|
-
|
870
|
-
|
871
|
-
<
|
872
|
-
|
873
|
-
|
874
|
-
|
875
|
-
|
876
|
-
<
|
877
|
-
|
878
|
-
|
879
|
-
<
|
880
|
-
|
881
|
-
|
882
|
-
<
|
883
|
-
|
884
|
-
|
885
|
-
|
886
|
-
|
887
|
-
|
888
|
-
|
889
|
-
|
890
|
-
<
|
891
|
-
|
892
|
-
|
893
|
-
<
|
894
|
-
|
895
|
-
|
896
|
-
|
897
|
-
|
898
|
-
|
899
|
-
|
900
|
-
|
901
|
-
<
|
902
|
-
|
903
|
-
|
904
|
-
<
|
905
|
-
|
906
|
-
|
907
|
-
<
|
908
|
-
|
909
|
-
|
910
|
-
|
911
|
-
|
912
|
-
|
913
|
-
|
914
|
-
|
915
|
-
<
|
916
|
-
|
917
|
-
|
918
|
-
<
|
919
|
-
|
920
|
-
|
921
|
-
<
|
922
|
-
|
923
|
-
|
924
|
-
|
925
|
-
|
926
|
-
<
|
927
|
-
|
928
|
-
|
929
|
-
<
|
930
|
-
|
931
|
-
|
932
|
-
<
|
933
|
-
|
934
|
-
|
935
|
-
|
936
|
-
<
|
937
|
-
|
938
|
-
|
939
|
-
<
|
940
|
-
|
941
|
-
|
942
|
-
<
|
943
|
-
|
944
|
-
|
945
|
-
|
946
|
-
|
947
|
-
|
948
|
-
|
949
|
-
<
|
950
|
-
|
951
|
-
<
|
952
|
-
|
953
|
-
|
954
|
-
<
|
955
|
-
|
956
|
-
|
957
|
-
|
958
|
-
|
959
|
-
|
960
|
-
|
961
|
-
|
962
|
-
|
963
|
-
<
|
964
|
-
<
|
965
|
-
<
|
966
|
-
<
|
967
|
-
|
968
|
-
<
|
969
|
-
|
970
|
-
|
971
|
-
<
|
972
|
-
|
973
|
-
|
974
|
-
<
|
975
|
-
|
976
|
-
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
981
|
-
|
982
|
-
<
|
983
|
-
|
984
|
-
|
985
|
-
|
986
|
-
|
987
|
-
|
988
|
-
|
989
|
-
|
990
|
-
<p>
|
991
|
-
<p>
|
992
|
-
|
993
|
-
|
994
|
-
<
|
995
|
-
|
996
|
-
</
|
997
|
-
<
|
998
|
-
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1002
|
-
|
1003
|
-
|
1004
|
-
<
|
1005
|
-
|
1006
|
-
|
1007
|
-
|
1008
|
-
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1014
|
-
|
1015
|
-
|
1016
|
-
<
|
1017
|
-
|
1018
|
-
|
1019
|
-
<
|
1020
|
-
|
1021
|
-
|
1022
|
-
|
1023
|
-
|
1024
|
-
|
1025
|
-
|
1026
|
-
<
|
1027
|
-
|
1028
|
-
<
|
1029
|
-
<
|
1030
|
-
|
1031
|
-
<
|
1032
|
-
<span class="gp">>>> </span><span class="n">
|
1033
|
-
|
1034
|
-
|
1035
|
-
|
1036
|
-
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1040
|
-
<
|
1041
|
-
|
1042
|
-
|
1043
|
-
<
|
1044
|
-
|
1045
|
-
|
1046
|
-
<
|
1047
|
-
|
1048
|
-
|
1049
|
-
|
1050
|
-
|
1051
|
-
|
1052
|
-
|
1053
|
-
|
1054
|
-
<
|
1055
|
-
|
1056
|
-
|
1057
|
-
|
1058
|
-
|
1059
|
-
|
1060
|
-
|
1061
|
-
<
|
1062
|
-
|
1063
|
-
|
1064
|
-
<
|
1065
|
-
|
1066
|
-
|
1067
|
-
|
1068
|
-
|
1069
|
-
|
1070
|
-
|
1071
|
-
|
1072
|
-
|
1073
|
-
<
|
1074
|
-
<
|
1075
|
-
<
|
1076
|
-
|
1077
|
-
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1081
|
-
|
1082
|
-
|
1083
|
-
|
1084
|
-
<
|
1085
|
-
<
|
1086
|
-
<
|
1087
|
-
<
|
1088
|
-
|
1089
|
-
|
1090
|
-
|
1091
|
-
|
1092
|
-
|
1093
|
-
|
1094
|
-
|
1095
|
-
|
1096
|
-
<
|
1097
|
-
<
|
1098
|
-
|
1099
|
-
|
1100
|
-
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
1105
|
-
|
1106
|
-
<
|
1107
|
-
<
|
1108
|
-
|
1109
|
-
|
1110
|
-
|
1111
|
-
</
|
1112
|
-
|
1113
|
-
|
1114
|
-
</
|
1115
|
-
|
1116
|
-
|
1117
|
-
|
1118
|
-
|
1119
|
-
|
1120
|
-
|
1121
|
-
|
1122
|
-
|
1123
|
-
|
1124
|
-
|
1125
|
-
|
1126
|
-
|
1127
|
-
|
1128
|
-
|
1129
|
-
|
1130
|
-
|
1131
|
-
|
1132
|
-
|
1133
|
-
|
1134
|
-
|
1135
|
-
</
|
1136
|
-
|
1137
|
-
|
1138
|
-
|
1139
|
-
|
1140
|
-
|
1141
|
-
|
1142
|
-
|
1143
|
-
|
1144
|
-
</script>
|
1145
|
-
|
1146
|
-
</body>
|
1
|
+
|
2
|
+
|
3
|
+
<!DOCTYPE html>
|
4
|
+
<html class="writer-html5" lang="en" data-content_root="./">
|
5
|
+
<head>
|
6
|
+
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
7
|
+
|
8
|
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9
|
+
<title>Classes — SnapPy 3.2 documentation</title>
|
10
|
+
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
|
11
|
+
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
|
12
|
+
<link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
|
13
|
+
|
14
|
+
|
15
|
+
<link rel="shortcut icon" href="_static/SnapPy.ico"/>
|
16
|
+
<script src="_static/jquery.js?v=5d32c60e"></script>
|
17
|
+
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
18
|
+
<script src="_static/documentation_options.js?v=828ea960"></script>
|
19
|
+
<script src="_static/doctools.js?v=9a2dae69"></script>
|
20
|
+
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
|
21
|
+
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
22
|
+
<script src="_static/js/theme.js"></script>
|
23
|
+
<link rel="index" title="Index" href="genindex.html" />
|
24
|
+
<link rel="search" title="Search" href="search.html" />
|
25
|
+
<link rel="next" title="News" href="news.html" />
|
26
|
+
<link rel="prev" title="Step-by-step examples: Part 4" href="ptolemy_examples4.html" />
|
27
|
+
</head>
|
28
|
+
|
29
|
+
<body class="wy-body-for-nav">
|
30
|
+
<div class="wy-grid-for-nav">
|
31
|
+
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
32
|
+
<div class="wy-side-scroll">
|
33
|
+
<div class="wy-side-nav-search" >
|
34
|
+
|
35
|
+
|
36
|
+
|
37
|
+
<a href="index.html" class="icon icon-home">
|
38
|
+
SnapPy
|
39
|
+
<img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
|
40
|
+
</a>
|
41
|
+
<div role="search">
|
42
|
+
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
43
|
+
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
44
|
+
<input type="hidden" name="check_keywords" value="yes" />
|
45
|
+
<input type="hidden" name="area" value="default" />
|
46
|
+
</form>
|
47
|
+
</div>
|
48
|
+
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
49
|
+
<ul class="current">
|
50
|
+
<li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
|
51
|
+
<li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
|
52
|
+
<li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
|
53
|
+
<li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
|
54
|
+
<li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
|
55
|
+
<li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
|
56
|
+
<li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
|
57
|
+
<li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
|
58
|
+
<li class="toctree-l1 current"><a class="reference internal" href="other.html">Other components</a><ul class="current">
|
59
|
+
<li class="toctree-l2 current"><a class="reference internal" href="other.html#ptolemy-module">Ptolemy module</a><ul class="current">
|
60
|
+
<li class="toctree-l3 current"><a class="reference internal" href="ptolemy.html">The ptolemy module</a><ul class="current">
|
61
|
+
<li class="toctree-l4"><a class="reference internal" href="ptolemy.html#what-is-the-ptolemy-module">What is the ptolemy module?</a></li>
|
62
|
+
<li class="toctree-l4 current"><a class="reference internal" href="ptolemy.html#documentation">Documentation</a><ul class="current">
|
63
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_prelim.html">Mathematical preliminaries</a></li>
|
64
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_examples1.html">Step-by-step examples: Part 1</a></li>
|
65
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_examples2.html">Step-by-step examples: Part 2</a></li>
|
66
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_examples3.html">Step-by-step examples: Part 3</a></li>
|
67
|
+
<li class="toctree-l5"><a class="reference internal" href="ptolemy_examples4.html">Step-by-step examples: Part 4</a></li>
|
68
|
+
<li class="toctree-l5 current"><a class="current reference internal" href="#">Classes</a></li>
|
69
|
+
</ul>
|
70
|
+
</li>
|
71
|
+
</ul>
|
72
|
+
</li>
|
73
|
+
</ul>
|
74
|
+
</li>
|
75
|
+
<li class="toctree-l2"><a class="reference internal" href="other.html#twister">Twister</a></li>
|
76
|
+
</ul>
|
77
|
+
</li>
|
78
|
+
<li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
|
79
|
+
<li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
|
80
|
+
<li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
|
81
|
+
<li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
|
82
|
+
<li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
|
83
|
+
</ul>
|
84
|
+
|
85
|
+
</div>
|
86
|
+
</div>
|
87
|
+
</nav>
|
88
|
+
|
89
|
+
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
90
|
+
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
91
|
+
<a href="index.html">SnapPy</a>
|
92
|
+
</nav>
|
93
|
+
|
94
|
+
<div class="wy-nav-content">
|
95
|
+
<div class="rst-content">
|
96
|
+
<div role="navigation" aria-label="Page navigation">
|
97
|
+
<ul class="wy-breadcrumbs">
|
98
|
+
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
|
99
|
+
<li class="breadcrumb-item"><a href="other.html">Other components</a></li>
|
100
|
+
<li class="breadcrumb-item"><a href="ptolemy.html">The ptolemy module</a></li>
|
101
|
+
<li class="breadcrumb-item active">Classes</li>
|
102
|
+
<li class="wy-breadcrumbs-aside">
|
103
|
+
</li>
|
104
|
+
</ul>
|
105
|
+
<hr/>
|
106
|
+
</div>
|
107
|
+
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
108
|
+
<div itemprop="articleBody">
|
109
|
+
|
110
|
+
<section id="classes">
|
111
|
+
<h1>Classes<a class="headerlink" href="#classes" title="Link to this heading"></a></h1>
|
112
|
+
<section id="ptolemyvariety">
|
113
|
+
<h2>PtolemyVariety<a class="headerlink" href="#ptolemyvariety" title="Link to this heading"></a></h2>
|
114
|
+
<dl class="py class">
|
115
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety">
|
116
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.ptolemy.ptolemyVariety.</span></span><span class="sig-name descname"><span class="pre">PtolemyVariety</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">manifold</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">N</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">obstruction_class</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">simplify</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">eliminate_fixed_ptolemys</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety" title="Link to this definition"></a></dt>
|
117
|
+
<dd><p>Holds a reduced Ptolemy variety.</p>
|
118
|
+
<p>=== Examples ===</p>
|
119
|
+
<p>To generate such a variety, call:</p>
|
120
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
121
|
+
<span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
|
122
|
+
</pre></div>
|
123
|
+
</div>
|
124
|
+
<p>Show the equations and variables:</p>
|
125
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="k">for</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">p</span><span class="o">.</span><span class="n">equations</span><span class="p">:</span> <span class="nb">print</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
|
126
|
+
<span class="go">- c_0011_0 * c_0101_0 + c_0011_0^2 + c_0101_0^2</span>
|
127
|
+
<span class="go">c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
|
128
|
+
<span class="go">- 1 + c_0011_0</span>
|
129
|
+
<span class="gp">>>> </span><span class="n">p</span><span class="o">.</span><span class="n">variables</span>
|
130
|
+
<span class="go">['c_0011_0', 'c_0101_0']</span>
|
131
|
+
</pre></div>
|
132
|
+
</div>
|
133
|
+
<p>Show as an ideal (sage object):</p>
|
134
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span><span class="o">.</span><span class="n">ideal</span>
|
135
|
+
<span class="go">Ideal (-c_0011_0^2 + c_0011_0*c_0101_0 + c_0101_0^2, -c_0011_0^2 - c_0011_0*c_0101_0 + c_0101_0^2, c_0011_0 - 1) of Multivariate Polynomial Ring in c_0011_0, c_0101_0 over Rational Field</span>
|
136
|
+
<span class="go">(skip doctest because example only works in sage and not plain python)</span>
|
137
|
+
</pre></div>
|
138
|
+
</div>
|
139
|
+
<p>Produce magma input:</p>
|
140
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">s</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">to_magma</span><span class="p">()</span>
|
141
|
+
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'ring and ideal'</span><span class="p">)[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">strip</span><span class="p">())</span>
|
142
|
+
<span class="go">R<c_0011_0, c_0101_0> := PolynomialRing(RationalField(), 2, "grevlex");</span>
|
143
|
+
<span class="go">MyIdeal := ideal<R |</span>
|
144
|
+
<span class="go"> - c_0011_0 * c_0101_0 + c_0011_0^2 + c_0101_0^2,</span>
|
145
|
+
<span class="go"> ...</span>
|
146
|
+
</pre></div>
|
147
|
+
</div>
|
148
|
+
<p>Call <code class="docutils literal notranslate"><span class="pre">p.compute_solutions()</span></code> to automatically compute solutions!</p>
|
149
|
+
<p>Show canonical representatives:</p>
|
150
|
+
<p>(The Ptolemy coordinates c_0110_0 and c_0101_0 are identified, this
|
151
|
+
information is needed to recover all Ptolemy coordinates from the solutions
|
152
|
+
of a simplified Ptolemy variety. The information is also packaged into a
|
153
|
+
python section by py_eval_variable_dict().)</p>
|
154
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span><span class="o">.</span><span class="n">canonical_representative</span><span class="p">[</span><span class="s2">"c_0110_0"</span><span class="p">]</span>
|
155
|
+
<span class="go">(1, 0, 'c_0101_0')</span>
|
156
|
+
</pre></div>
|
157
|
+
</div>
|
158
|
+
<dl class="py method">
|
159
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_decomposition">
|
160
|
+
<span class="sig-name descname"><span class="pre">compute_decomposition</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">engine</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">memory_limit</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">750000000</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">directory</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">template_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'magma/default.magma_template'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_decomposition" title="Link to this definition"></a></dt>
|
161
|
+
<dd><p>Starts an engine such as magma to compute the
|
162
|
+
radical decomposition of the Ptolemy variety.</p>
|
163
|
+
<p>If started in sage, uses sage, otherwise, uses magma.</p>
|
164
|
+
<p>=== Arguments ===</p>
|
165
|
+
<p>engine — engine to use, currently, only support magma and sage
|
166
|
+
memory_limit — maximal allowed memory in bytes
|
167
|
+
directory — location for input and output files, temporary directory used if not specified
|
168
|
+
verbose — print extra information</p>
|
169
|
+
</dd></dl>
|
170
|
+
|
171
|
+
<dl class="py method">
|
172
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_solutions">
|
173
|
+
<span class="sig-name descname"><span class="pre">compute_solutions</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">engine</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">numerical</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">template_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'magma/default.magma_template'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">memory_limit</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">750000000</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">directory</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety.compute_solutions" title="Link to this definition"></a></dt>
|
174
|
+
<dd><p>Starts an engine such as magma to compute the
|
175
|
+
radical decomposition of the ideal and computes exact solutions.</p>
|
176
|
+
<p>If started in sage, uses sage, otherwise, uses magma.</p>
|
177
|
+
<p>=== Arguments ===</p>
|
178
|
+
<p>engine — engine to use, currently, only support magma and sage
|
179
|
+
numerical — get numerical solutions from magma instead of exact ones
|
180
|
+
memory_limit — maximal allowed memory in bytes
|
181
|
+
directory — location for input and output files, temporary directory used if not specified
|
182
|
+
verbose — print extra information</p>
|
183
|
+
</dd></dl>
|
184
|
+
|
185
|
+
<dl class="py method">
|
186
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety.degree_to_shapes">
|
187
|
+
<span class="sig-name descname"><span class="pre">degree_to_shapes</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety.degree_to_shapes" title="Link to this definition"></a></dt>
|
188
|
+
<dd><p>In general, there can be d different solutions to the (reduced) Ptolemy
|
189
|
+
variety for each solution to the gluing equations (with peripheral
|
190
|
+
equations). This method computes d which is also the number of elements
|
191
|
+
in H^1(Mhat; Z/N) where Mhat is the non-manifold cell comples obtained
|
192
|
+
by gluing together the tetrahedra as non-ideal tetrahedra.</p>
|
193
|
+
<p>For example, the Ptolemy variety for m009 has 4 points but there are
|
194
|
+
only 2 distinct boundary-unipotent PSL(2,C) representations.
|
195
|
+
Thus the following call returns 2 = 4 / 2</p>
|
196
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
197
|
+
<span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m009"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">degree_to_shapes</span><span class="p">()</span>
|
198
|
+
<span class="go">2</span>
|
199
|
+
</pre></div>
|
200
|
+
</div>
|
201
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m010"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">degree_to_shapes</span><span class="p">()</span>
|
202
|
+
<span class="go">2</span>
|
203
|
+
<span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m011"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">degree_to_shapes</span><span class="p">()</span>
|
204
|
+
<span class="go">1</span>
|
205
|
+
</pre></div>
|
206
|
+
</div>
|
207
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m009"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">degree_to_shapes</span><span class="p">()</span>
|
208
|
+
<span class="go">1</span>
|
209
|
+
<span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m010"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">degree_to_shapes</span><span class="p">()</span>
|
210
|
+
<span class="go">3</span>
|
211
|
+
<span class="gp">>>> </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m011"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">degree_to_shapes</span><span class="p">()</span>
|
212
|
+
<span class="go">1</span>
|
213
|
+
</pre></div>
|
214
|
+
</div>
|
215
|
+
</dd></dl>
|
216
|
+
|
217
|
+
<dl class="py method">
|
218
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety.filename_base">
|
219
|
+
<span class="sig-name descname"><span class="pre">filename_base</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety.filename_base" title="Link to this definition"></a></dt>
|
220
|
+
<dd><p>Preferred filename base for writing out this Ptolemy variety</p>
|
221
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="o">*</span>
|
222
|
+
<span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'4_1'</span><span class="p">)</span>
|
223
|
+
<span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
|
224
|
+
<span class="gp">>>> </span><span class="n">p</span><span class="o">.</span><span class="n">filename_base</span><span class="p">()</span>
|
225
|
+
<span class="go">'4_1__sl2_c1'</span>
|
226
|
+
</pre></div>
|
227
|
+
</div>
|
228
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
|
229
|
+
<span class="gp">>>> </span><span class="n">p</span><span class="o">.</span><span class="n">filename_base</span><span class="p">()</span>
|
230
|
+
<span class="go">'4_1__sl2_c0'</span>
|
231
|
+
</pre></div>
|
232
|
+
</div>
|
233
|
+
</dd></dl>
|
234
|
+
|
235
|
+
<dl class="py method">
|
236
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety.py_eval_section">
|
237
|
+
<span class="sig-name descname"><span class="pre">py_eval_section</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety.py_eval_section" title="Link to this definition"></a></dt>
|
238
|
+
<dd><p>Returns a string that can be evaluated in python and contains extra
|
239
|
+
information needed to recover solutions from a simplified Ptolemy
|
240
|
+
variety.</p>
|
241
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span><span class="p">,</span> <span class="n">pari</span>
|
242
|
+
<span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s1">'4_1'</span><span class="p">)</span>
|
243
|
+
<span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
|
244
|
+
</pre></div>
|
245
|
+
</div>
|
246
|
+
<p>Get extra information</p>
|
247
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">eval_section</span> <span class="o">=</span> <span class="n">p</span><span class="o">.</span><span class="n">py_eval_section</span><span class="p">()</span>
|
248
|
+
<span class="gp">>>> </span><span class="nb">print</span><span class="p">(</span><span class="n">eval_section</span><span class="p">)</span>
|
249
|
+
<span class="go">{'variable_dict' :</span>
|
250
|
+
<span class="go"> (lambda d: {</span>
|
251
|
+
<span class="go"> ...</span>
|
252
|
+
</pre></div>
|
253
|
+
</div>
|
254
|
+
<p>Turn it into a python object by evaluation.</p>
|
255
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">obj</span> <span class="o">=</span> <span class="nb">eval</span><span class="p">(</span><span class="n">eval_section</span><span class="p">)</span>
|
256
|
+
</pre></div>
|
257
|
+
</div>
|
258
|
+
<p>Access the function that expands a solution to the simplified
|
259
|
+
Ptolemy variety to a full solution.</p>
|
260
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">variable_dict</span> <span class="o">=</span> <span class="n">obj</span><span class="p">[</span><span class="s1">'variable_dict'</span><span class="p">]</span>
|
261
|
+
</pre></div>
|
262
|
+
</div>
|
263
|
+
<p>Setup a solution and expand it to a full solution, ‘1’ must map to 1</p>
|
264
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">simplified_solution</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'c_0101_0'</span> <span class="p">:</span> <span class="n">pari</span><span class="p">(</span><span class="s1">'0.5 - 0.866025403784439*I'</span><span class="p">),</span> <span class="s1">'1'</span> <span class="p">:</span> <span class="n">pari</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="s1">'c_0011_0'</span> <span class="p">:</span> <span class="n">pari</span><span class="p">(</span><span class="mi">1</span><span class="p">)}</span>
|
265
|
+
<span class="gp">>>> </span><span class="n">full_solution</span> <span class="o">=</span> <span class="n">variable_dict</span><span class="p">(</span><span class="n">simplified_solution</span><span class="p">)</span>
|
266
|
+
</pre></div>
|
267
|
+
</div>
|
268
|
+
<p>Full solution is a dictionary with a key for every Ptolemy coordinate</p>
|
269
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">full_solution</span><span class="p">[</span><span class="s1">'c_1010_1'</span><span class="p">]</span>
|
270
|
+
<span class="go">1</span>
|
271
|
+
<span class="gp">>>> </span><span class="k">for</span> <span class="n">tet</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">):</span>
|
272
|
+
<span class="gp">... </span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">utilities</span><span class="o">.</span><span class="n">quadruples_with_fixed_sum_iterator</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">skipVertices</span> <span class="o">=</span> <span class="kc">True</span><span class="p">):</span>
|
273
|
+
<span class="gp">... </span> <span class="n">c</span> <span class="o">=</span> <span class="s2">"c_</span><span class="si">%d%d%d%d</span><span class="s2">"</span> <span class="o">%</span> <span class="n">i</span> <span class="o">+</span> <span class="s2">"_</span><span class="si">%d</span><span class="s2">"</span> <span class="o">%</span> <span class="n">tet</span>
|
274
|
+
<span class="gp">... </span> <span class="k">assert</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">full_solution</span>
|
275
|
+
</pre></div>
|
276
|
+
</div>
|
277
|
+
</dd></dl>
|
278
|
+
|
279
|
+
<dl class="py method">
|
280
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma">
|
281
|
+
<span class="sig-name descname"><span class="pre">to_magma</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">template_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'magma/default.magma_template'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma" title="Link to this definition"></a></dt>
|
282
|
+
<dd><p>Returns a string with the ideal that can be used as input for magma.</p>
|
283
|
+
<p>The advanced user can provide a template string to write own magma
|
284
|
+
code to process the equations.</p>
|
285
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="o">*</span>
|
286
|
+
<span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
|
287
|
+
</pre></div>
|
288
|
+
</div>
|
289
|
+
<p>Magma input to compute radical Decomposition
|
290
|
+
>>> s = p.to_magma()
|
291
|
+
>>> print(s.split(‘ring and ideal’)[1].strip()) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
292
|
+
R<c_0011_0, c_0101_0> := PolynomialRing(RationalField(), 2, “grevlex”);
|
293
|
+
MyIdeal := ideal<R | - c_0011_0 * c_0101_0 + c_0011_0^2 + c_0101_0^2,
|
294
|
+
…
|
295
|
+
>>> “RadicalDecomposition” in p.to_magma()
|
296
|
+
True</p>
|
297
|
+
</dd></dl>
|
298
|
+
|
299
|
+
<dl class="py method">
|
300
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma_file">
|
301
|
+
<span class="sig-name descname"><span class="pre">to_magma_file</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">filename</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">template_path</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'magma/default.magma_template'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.ptolemyVariety.PtolemyVariety.to_magma_file" title="Link to this definition"></a></dt>
|
302
|
+
<dd><div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">os</span><span class="o">,</span> <span class="nn">tempfile</span>
|
303
|
+
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
304
|
+
<span class="gp">>>> </span><span class="n">handle</span><span class="p">,</span> <span class="n">name</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkstemp</span><span class="p">()</span>
|
305
|
+
<span class="gp">>>> </span><span class="n">p</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
|
306
|
+
<span class="gp">>>> </span><span class="n">p</span><span class="o">.</span><span class="n">to_magma_file</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
|
307
|
+
<span class="gp">>>> </span><span class="n">os</span><span class="o">.</span><span class="n">close</span><span class="p">(</span><span class="n">handle</span><span class="p">);</span> <span class="n">os</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
|
308
|
+
</pre></div>
|
309
|
+
</div>
|
310
|
+
</dd></dl>
|
311
|
+
|
312
|
+
</dd></dl>
|
313
|
+
|
314
|
+
</section>
|
315
|
+
<section id="ptolemycoordinates">
|
316
|
+
<h2>PtolemyCoordinates<a class="headerlink" href="#ptolemycoordinates" title="Link to this heading"></a></h2>
|
317
|
+
<dl class="py class">
|
318
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates">
|
319
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.ptolemy.coordinates.</span></span><span class="sig-name descname"><span class="pre">PtolemyCoordinates</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">d</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">is_numerical=True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">py_eval_section=None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">manifold_thunk=<function</span> <span class="pre">PtolemyCoordinates.<lambda>></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">non_trivial_generalized_obstruction_class=False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates" title="Link to this definition"></a></dt>
|
320
|
+
<dd><p>Represents a solution of a Ptolemy variety as python dictionary.</p>
|
321
|
+
<p>=== Examples ===</p>
|
322
|
+
<p>Construct solution from magma output:</p>
|
323
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy.ptolemy.processMagmaFile</span> <span class="kn">import</span> <span class="n">_magma_output_for_4_1__sl3</span><span class="p">,</span> <span class="n">solutions_from_magma</span>
|
324
|
+
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
325
|
+
<span class="gp">>>> </span><span class="n">solutions</span> <span class="o">=</span> <span class="n">solutions_from_magma</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
|
326
|
+
<span class="gp">>>> </span><span class="n">solution</span> <span class="o">=</span> <span class="n">solutions</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
327
|
+
</pre></div>
|
328
|
+
</div>
|
329
|
+
<p>Access a Ptolemy coordinate:</p>
|
330
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">solution</span><span class="p">[</span><span class="s1">'c_2100_0'</span><span class="p">]</span>
|
331
|
+
<span class="go">1</span>
|
332
|
+
</pre></div>
|
333
|
+
</div>
|
334
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">solution</span><span class="o">.</span><span class="n">number_field</span><span class="p">()</span>
|
335
|
+
<span class="go">x^2 + x + 1</span>
|
336
|
+
</pre></div>
|
337
|
+
</div>
|
338
|
+
<p>Solution is always 0 dimensional:</p>
|
339
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">solution</span><span class="o">.</span><span class="n">dimension</span>
|
340
|
+
<span class="go">0</span>
|
341
|
+
</pre></div>
|
342
|
+
</div>
|
343
|
+
<p>Check that it is really a solution, exactly:</p>
|
344
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">solution</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">()</span>
|
345
|
+
</pre></div>
|
346
|
+
</div>
|
347
|
+
<p>If the solution was not created through the ptolemy module
|
348
|
+
and thus not associated to a manifold, we need to explicitly
|
349
|
+
specify one:</p>
|
350
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">myDict</span> <span class="o">=</span> <span class="p">{}</span>
|
351
|
+
<span class="gp">>>> </span><span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">solution</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
|
352
|
+
<span class="gp">... </span> <span class="n">myDict</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">value</span>
|
353
|
+
<span class="gp">>>> </span><span class="n">mysolution</span> <span class="o">=</span> <span class="n">PtolemyCoordinates</span><span class="p">(</span><span class="n">myDict</span><span class="p">)</span>
|
354
|
+
<span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"4_1"</span><span class="p">)</span>
|
355
|
+
<span class="gp">>>> </span><span class="n">solution</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
356
|
+
</pre></div>
|
357
|
+
</div>
|
358
|
+
<p>Turn into (Galois conjugate) numerical solutions:</p>
|
359
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">old_precision</span> <span class="o">=</span> <span class="n">pari</span><span class="o">.</span><span class="n">set_real_precision</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span> <span class="c1"># with high precision</span>
|
360
|
+
<span class="gp">>>> </span><span class="n">numerical_solutions</span> <span class="o">=</span> <span class="n">solution</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
|
361
|
+
</pre></div>
|
362
|
+
</div>
|
363
|
+
<p>Check that it is a solution, numerically:</p>
|
364
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">numerical_solutions</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="mf">1e-80</span><span class="p">)</span>
|
365
|
+
<span class="gp">>>> </span><span class="n">pari</span><span class="o">.</span><span class="n">set_real_precision</span><span class="p">(</span><span class="n">old_precision</span><span class="p">)</span> <span class="c1"># reset pari engine</span>
|
366
|
+
<span class="go">100</span>
|
367
|
+
</pre></div>
|
368
|
+
</div>
|
369
|
+
<p>Compute cross ratios from the Ptolemy coordinates (cross ratios
|
370
|
+
according to SnapPy convention, see help(solution.cross_ratios):</p>
|
371
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cross</span> <span class="o">=</span> <span class="n">solution</span><span class="o">.</span><span class="n">cross_ratios</span><span class="p">()</span>
|
372
|
+
<span class="gp">>>> </span><span class="n">cross</span><span class="p">[</span><span class="s1">'z_0001_0'</span><span class="p">]</span>
|
373
|
+
<span class="go">Mod(-x, x^2 + x + 1)</span>
|
374
|
+
</pre></div>
|
375
|
+
</div>
|
376
|
+
<p>Compute volumes:</p>
|
377
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">volumes</span> <span class="o">=</span> <span class="n">cross</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
|
378
|
+
</pre></div>
|
379
|
+
</div>
|
380
|
+
<p>Check that volume is 4 times the geometric one:</p>
|
381
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">volume</span> <span class="o">=</span> <span class="n">volumes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span>
|
382
|
+
<span class="gp">>>> </span><span class="n">diff</span> <span class="o">=</span> <span class="nb">abs</span><span class="p">(</span><span class="mi">4</span> <span class="o">*</span> <span class="n">M</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span> <span class="o">-</span> <span class="n">volume</span><span class="p">)</span>
|
383
|
+
<span class="gp">>>> </span><span class="n">diff</span> <span class="o"><</span> <span class="mf">1e-9</span>
|
384
|
+
<span class="go">True</span>
|
385
|
+
</pre></div>
|
386
|
+
</div>
|
387
|
+
<p>Compute flattenings:</p>
|
388
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">flattenings</span> <span class="o">=</span> <span class="n">solution</span><span class="o">.</span><span class="n">flattenings_numerical</span><span class="p">()</span>
|
389
|
+
</pre></div>
|
390
|
+
</div>
|
391
|
+
<p>Compute complex volumes:</p>
|
392
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cvols</span> <span class="o">=</span> <span class="p">[</span><span class="n">flattening</span><span class="o">.</span><span class="n">complex_volume</span><span class="p">()</span> <span class="k">for</span> <span class="n">flattening</span> <span class="ow">in</span> <span class="n">flattenings</span><span class="p">]</span>
|
393
|
+
<span class="gp">>>> </span><span class="n">volume</span> <span class="o">=</span> <span class="n">cvols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">real</span><span class="p">()</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span>
|
394
|
+
<span class="gp">>>> </span><span class="n">chernSimons</span> <span class="o">=</span> <span class="n">cvols</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">imag</span><span class="p">()</span>
|
395
|
+
<span class="gp">>>> </span><span class="n">diff</span> <span class="o">=</span> <span class="nb">abs</span><span class="p">(</span><span class="mi">4</span> <span class="o">*</span> <span class="n">M</span><span class="o">.</span><span class="n">volume</span><span class="p">()</span> <span class="o">-</span> <span class="n">volume</span><span class="p">)</span>
|
396
|
+
<span class="gp">>>> </span><span class="n">diff</span> <span class="o"><</span> <span class="mf">1e-9</span>
|
397
|
+
<span class="go">True</span>
|
398
|
+
</pre></div>
|
399
|
+
</div>
|
400
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">pari</span>
|
401
|
+
<span class="gp">>>> </span><span class="n">normalized</span> <span class="o">=</span> <span class="n">chernSimons</span> <span class="o">*</span> <span class="mi">6</span> <span class="o">/</span> <span class="p">(</span><span class="n">pari</span><span class="p">(</span><span class="s1">'Pi'</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
|
402
|
+
</pre></div>
|
403
|
+
</div>
|
404
|
+
<p>Check that Chern Simons is zero up to 6 torsion:</p>
|
405
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">normalized</span> <span class="o">-</span> <span class="n">normalized</span><span class="o">.</span><span class="n">round</span><span class="p">()</span> <span class="o"><</span> <span class="mf">1e-9</span>
|
406
|
+
<span class="go">True</span>
|
407
|
+
</pre></div>
|
408
|
+
</div>
|
409
|
+
<dl class="py method">
|
410
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.N">
|
411
|
+
<span class="sig-name descname"><span class="pre">N</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.N" title="Link to this definition"></a></dt>
|
412
|
+
<dd><p>Get the <em>N</em> where these coordinates are for SL/PSL(<em>N</em>, <strong>C</strong>)-representations.</p>
|
413
|
+
</dd></dl>
|
414
|
+
|
415
|
+
<dl class="py method">
|
416
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.check_against_manifold">
|
417
|
+
<span class="sig-name descname"><span class="pre">check_against_manifold</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.check_against_manifold" title="Link to this definition"></a></dt>
|
418
|
+
<dd><p>Checks that the given solution really is a solution to the Ptolemy
|
419
|
+
variety of a manifold. See help(ptolemy.PtolemyCoordinates) for
|
420
|
+
more example.</p>
|
421
|
+
<p>=== Arguments ===</p>
|
422
|
+
<ul class="simple">
|
423
|
+
<li><p>M — manifold to check this for</p></li>
|
424
|
+
<li><p>epsilon — maximal allowed error when checking the relations, use
|
425
|
+
None for exact comparison.</p></li>
|
426
|
+
</ul>
|
427
|
+
</dd></dl>
|
428
|
+
|
429
|
+
<dl class="py method">
|
430
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.complex_volume_numerical">
|
431
|
+
<span class="sig-name descname"><span class="pre">complex_volume_numerical</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">drop_negative_vols</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">with_modulo</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.complex_volume_numerical" title="Link to this definition"></a></dt>
|
432
|
+
<dd><p>Turn into (Galois conjugate) numerical solutions and compute complex
|
433
|
+
volumes. If already numerical, return the volume.</p>
|
434
|
+
<p>Complex volume is defined up to i*pi**2/6.</p>
|
435
|
+
<p>See numerical(). If drop_negative_vols = True is given as optional
|
436
|
+
argument, only return complex volumes with non-negative real part.</p>
|
437
|
+
</dd></dl>
|
438
|
+
|
439
|
+
<dl class="py method">
|
440
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios">
|
441
|
+
<span class="sig-name descname"><span class="pre">cross_ratios</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios" title="Link to this definition"></a></dt>
|
442
|
+
<dd><p>Compute cross ratios from Ptolemy coordinates. The cross ratios are
|
443
|
+
according to the SnapPy convention, so we have:</p>
|
444
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="n">zp</span><span class="p">,</span> <span class="n">zp</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="n">zpp</span><span class="p">,</span> <span class="n">zpp</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="n">z</span>
|
445
|
+
</pre></div>
|
446
|
+
</div>
|
447
|
+
<p>where:</p>
|
448
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="ow">is</span> <span class="n">at</span> <span class="n">the</span> <span class="n">edge</span> <span class="mi">01</span> <span class="ow">and</span> <span class="n">equal</span> <span class="n">to</span> <span class="n">s0</span> <span class="o">*</span> <span class="n">s1</span> <span class="o">*</span> <span class="p">(</span><span class="n">c_1010</span> <span class="o">*</span> <span class="n">c_0101</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">c_1001</span> <span class="o">*</span> <span class="n">c_0110</span><span class="p">)</span>
|
449
|
+
<span class="n">zp</span> <span class="ow">is</span> <span class="n">at</span> <span class="n">the</span> <span class="n">edge</span> <span class="mi">02</span> <span class="ow">and</span> <span class="n">equal</span> <span class="n">to</span> <span class="o">-</span> <span class="n">s0</span> <span class="o">*</span> <span class="n">s2</span> <span class="o">*</span> <span class="p">(</span><span class="n">c_1001</span> <span class="o">*</span> <span class="n">c_0110</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">c_1100</span> <span class="o">*</span> <span class="n">c_0011</span><span class="p">)</span>
|
450
|
+
<span class="n">zpp</span> <span class="ow">is</span> <span class="n">at</span> <span class="n">the</span> <span class="n">edge</span> <span class="mi">03</span> <span class="ow">and</span> <span class="n">equal</span> <span class="n">to</span> <span class="n">s0</span> <span class="o">*</span> <span class="n">s3</span> <span class="o">*</span> <span class="p">(</span><span class="n">c_1100</span> <span class="o">*</span> <span class="n">c_0011</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">c_0101</span> <span class="o">*</span> <span class="n">c_1010</span><span class="p">)</span><span class="o">.</span>
|
451
|
+
</pre></div>
|
452
|
+
</div>
|
453
|
+
<p>Note that this is different from the convention used in
|
454
|
+
Garoufalidis, Goerner, Zickert:
|
455
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
456
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
457
|
+
<p>Take an exact solution:</p>
|
458
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy.ptolemy.processMagmaFile</span> <span class="kn">import</span> <span class="n">_magma_output_for_4_1__sl3</span><span class="p">,</span> <span class="n">solutions_from_magma</span>
|
459
|
+
<span class="gp">>>> </span><span class="n">solutions</span> <span class="o">=</span> <span class="n">solutions_from_magma</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
|
460
|
+
<span class="gp">>>> </span><span class="n">solution</span> <span class="o">=</span> <span class="n">solutions</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
461
|
+
</pre></div>
|
462
|
+
</div>
|
463
|
+
<p>Turn into cross Ratios:</p>
|
464
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">crossRatios</span> <span class="o">=</span> <span class="n">solution</span><span class="o">.</span><span class="n">cross_ratios</span><span class="p">()</span>
|
465
|
+
</pre></div>
|
466
|
+
</div>
|
467
|
+
<p>Get a cross ratio:</p>
|
468
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">crossRatios</span><span class="p">[</span><span class="s1">'zp_0010_0'</span><span class="p">]</span>
|
469
|
+
<span class="go">Mod(-x, x^2 + x + 1)</span>
|
470
|
+
</pre></div>
|
471
|
+
</div>
|
472
|
+
<p>Check the relationship between cross ratios:</p>
|
473
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">crossRatios</span><span class="p">[</span><span class="s1">'z_0010_0'</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span> <span class="o">/</span> <span class="n">crossRatios</span><span class="p">[</span><span class="s1">'zp_0010_0'</span><span class="p">]</span>
|
474
|
+
<span class="go">True</span>
|
475
|
+
</pre></div>
|
476
|
+
</div>
|
477
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">crossRatios</span><span class="p">[</span><span class="s1">'zp_0010_0'</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span> <span class="o">/</span> <span class="n">crossRatios</span><span class="p">[</span><span class="s1">'zpp_0010_0'</span><span class="p">]</span>
|
478
|
+
<span class="go">True</span>
|
479
|
+
</pre></div>
|
480
|
+
</div>
|
481
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">crossRatios</span><span class="p">[</span><span class="s1">'zpp_0010_0'</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span> <span class="o">/</span> <span class="n">crossRatios</span><span class="p">[</span><span class="s1">'z_0010_0'</span><span class="p">]</span>
|
482
|
+
<span class="go">True</span>
|
483
|
+
</pre></div>
|
484
|
+
</div>
|
485
|
+
<p>Get information about what one can do with cross ratios</p>
|
486
|
+
</dd></dl>
|
487
|
+
|
488
|
+
<dl class="py method">
|
489
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios_numerical">
|
490
|
+
<span class="sig-name descname"><span class="pre">cross_ratios_numerical</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.cross_ratios_numerical" title="Link to this definition"></a></dt>
|
491
|
+
<dd><p>Turn exact solutions into numerical and then compute cross ratios.
|
492
|
+
See numerical() and cross_ratios().</p>
|
493
|
+
</dd></dl>
|
494
|
+
|
495
|
+
<dl class="py method">
|
496
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.diamond_coordinate">
|
497
|
+
<span class="sig-name descname"><span class="pre">diamond_coordinate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pt</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.diamond_coordinate" title="Link to this definition"></a></dt>
|
498
|
+
<dd><p>Returns the diamond coordinate for tetrahedron with index tet
|
499
|
+
for the face with vertices v0, v1, v2 (integers between 0 and 3) and
|
500
|
+
integral point pt (quadruple adding up to N-2).</p>
|
501
|
+
<p>See Definition 10.1:
|
502
|
+
Garoufalidis, Goerner, Zickert:
|
503
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
504
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
505
|
+
</dd></dl>
|
506
|
+
|
507
|
+
<dl class="py method">
|
508
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.evaluate_word">
|
509
|
+
<span class="sig-name descname"><span class="pre">evaluate_word</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">word</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">G</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.evaluate_word" title="Link to this definition"></a></dt>
|
510
|
+
<dd><p>Given a word in the generators of the fundamental group,
|
511
|
+
compute the corresponding matrix. By default, these are the
|
512
|
+
generators of the unsimplified presentation of the fundamental
|
513
|
+
group. An optional SnapPy fundamental group can be given if the
|
514
|
+
words are in generators of a different presentation, e.g.,
|
515
|
+
c.evaluate_word(word, M.fundamental_group(True)) to
|
516
|
+
evaluate a word in the simplified presentation returned by
|
517
|
+
M.fundamental_group(True).</p>
|
518
|
+
<p>For now, the matrix is returned as list of lists.</p>
|
519
|
+
</dd></dl>
|
520
|
+
|
521
|
+
<dl class="py method">
|
522
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.flattenings_numerical">
|
523
|
+
<span class="sig-name descname"><span class="pre">flattenings_numerical</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.flattenings_numerical" title="Link to this definition"></a></dt>
|
524
|
+
<dd><p>Turn into numerical solutions and compute flattenings, see
|
525
|
+
help(snappy.ptolemy.coordinates.Flattenings)
|
526
|
+
Also see numerical()</p>
|
527
|
+
<p>Get Ptolemy coordinates.</p>
|
528
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy.ptolemy.processMagmaFile</span> <span class="kn">import</span> <span class="n">_magma_output_for_4_1__sl3</span><span class="p">,</span> <span class="n">solutions_from_magma</span>
|
529
|
+
<span class="gp">>>> </span><span class="n">solutions</span> <span class="o">=</span> <span class="n">solutions_from_magma</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
|
530
|
+
<span class="gp">>>> </span><span class="n">solution</span> <span class="o">=</span> <span class="n">solutions</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
531
|
+
</pre></div>
|
532
|
+
</div>
|
533
|
+
<p>Compute a numerical solution</p>
|
534
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">flattenings</span> <span class="o">=</span> <span class="n">solution</span><span class="o">.</span><span class="n">flattenings_numerical</span><span class="p">()</span>
|
535
|
+
</pre></div>
|
536
|
+
</div>
|
537
|
+
<p>Get more information with help(flattenings[0])</p>
|
538
|
+
</dd></dl>
|
539
|
+
|
540
|
+
<dl class="py method">
|
541
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.get_manifold">
|
542
|
+
<span class="sig-name descname"><span class="pre">get_manifold</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.get_manifold" title="Link to this definition"></a></dt>
|
543
|
+
<dd><p>Get the manifold for which this structure represents a solution
|
544
|
+
to the Ptolemy variety.</p>
|
545
|
+
</dd></dl>
|
546
|
+
|
547
|
+
<dl class="py method">
|
548
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.has_obstruction">
|
549
|
+
<span class="sig-name descname"><span class="pre">has_obstruction</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.has_obstruction" title="Link to this definition"></a></dt>
|
550
|
+
<dd><p>Whether the Ptolemy variety has legacy obstruction class that
|
551
|
+
modifies the Ptolemy relation to</p>
|
552
|
+
</dd></dl>
|
553
|
+
|
554
|
+
<dl class="py method">
|
555
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.is_geometric">
|
556
|
+
<span class="sig-name descname"><span class="pre">is_geometric</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1e-06</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.is_geometric" title="Link to this definition"></a></dt>
|
557
|
+
<dd><p>Returns true if all shapes corresponding to this solution have positive
|
558
|
+
imaginary part.</p>
|
559
|
+
<p>If the solutions are exact, it returns true if one of the corresponding
|
560
|
+
numerical solutions is geometric.</p>
|
561
|
+
<p>An optional epsilon can be given. An imaginary part of a shape is
|
562
|
+
considered positive if it is larger than this epsilon.</p>
|
563
|
+
</dd></dl>
|
564
|
+
|
565
|
+
<dl class="py method">
|
566
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.long_edge">
|
567
|
+
<span class="sig-name descname"><span class="pre">long_edge</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v2</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.long_edge" title="Link to this definition"></a></dt>
|
568
|
+
<dd><p>The matrix that labels a long edge from v0 to v1 (integers between 0
|
569
|
+
and 3) of a (doubly) truncated simplex corresponding to an ideal
|
570
|
+
tetrahedron with index tet.</p>
|
571
|
+
<p>This matrix was labeled alpha^{v0v1v2} (v2 does not matter for non
|
572
|
+
double-truncated simplex) in Figure 18 of
|
573
|
+
Garoufalidis, Goerner, Zickert:
|
574
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
575
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
576
|
+
<p>It is computed using equation 10.4. Note that the ratio coordinate
|
577
|
+
is different from the definition in the paper (see ratio_coordinate).</p>
|
578
|
+
<p>The resulting matrix is given as a python list of lists.</p>
|
579
|
+
</dd></dl>
|
580
|
+
|
581
|
+
<dl class="py method">
|
582
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.middle_edge">
|
583
|
+
<span class="sig-name descname"><span class="pre">middle_edge</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v2</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.middle_edge" title="Link to this definition"></a></dt>
|
584
|
+
<dd><p>The matrix that labels a middle edge on the face v0, v1, v2 (integers
|
585
|
+
between 0 and 3) of a doubly truncated simplex (or a short edge of the
|
586
|
+
truncated simplex) corresponding to an ideal tetrahedron with index
|
587
|
+
tet.</p>
|
588
|
+
<p>This matrix was labeled beta^{v0v1v2} in Figure 18 of
|
589
|
+
Garoufalidis, Goerner, Zickert:
|
590
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
591
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
592
|
+
<p>It is computed using equation 10.4.</p>
|
593
|
+
<p>The resulting matrix is given as a python list of lists.</p>
|
594
|
+
</dd></dl>
|
595
|
+
|
596
|
+
<dl class="py method">
|
597
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_and_simplify_terms_in_RUR">
|
598
|
+
<span class="sig-name descname"><span class="pre">multiply_and_simplify_terms_in_RUR</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_and_simplify_terms_in_RUR" title="Link to this definition"></a></dt>
|
599
|
+
<dd><p>If a Ptolemy coordinate is given as Rational Univariate Representation
|
600
|
+
with numerator and denominator being a product, multiply the terms,
|
601
|
+
reduce the fraction and return the result.</p>
|
602
|
+
<p>See multiply_and_simplify_terms of RUR.</p>
|
603
|
+
<p>This loses information about how the numerator and denominator are
|
604
|
+
factorised.</p>
|
605
|
+
</dd></dl>
|
606
|
+
|
607
|
+
<dl class="py method">
|
608
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_terms_in_RUR">
|
609
|
+
<span class="sig-name descname"><span class="pre">multiply_terms_in_RUR</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.multiply_terms_in_RUR" title="Link to this definition"></a></dt>
|
610
|
+
<dd><p>If a Ptolemy coordinate is given as Rational Univariate Representation
|
611
|
+
with numerator and denominator being a product, multiply the terms and
|
612
|
+
return the result.</p>
|
613
|
+
<p>See multiply_terms of RUR.</p>
|
614
|
+
<p>This loses information about how the numerator and denominator are
|
615
|
+
factorised.</p>
|
616
|
+
</dd></dl>
|
617
|
+
|
618
|
+
<dl class="py method">
|
619
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.num_tetrahedra">
|
620
|
+
<span class="sig-name descname"><span class="pre">num_tetrahedra</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.num_tetrahedra" title="Link to this definition"></a></dt>
|
621
|
+
<dd><p>The number of tetrahedra for which we have Ptolemy coordinates.</p>
|
622
|
+
</dd></dl>
|
623
|
+
|
624
|
+
<dl class="py method">
|
625
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.number_field">
|
626
|
+
<span class="sig-name descname"><span class="pre">number_field</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.number_field" title="Link to this definition"></a></dt>
|
627
|
+
<dd><p>For an exact solution, return the number_field spanned by the
|
628
|
+
Ptolemy coordinates. If number_field is Q, return None.</p>
|
629
|
+
</dd></dl>
|
630
|
+
|
631
|
+
<dl class="py method">
|
632
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.numerical">
|
633
|
+
<span class="sig-name descname"><span class="pre">numerical</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.numerical" title="Link to this definition"></a></dt>
|
634
|
+
<dd><p>Turn exact solutions into numerical solutions using pari.</p>
|
635
|
+
<p>Take an exact solution:</p>
|
636
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy.ptolemy.processMagmaFile</span> <span class="kn">import</span> <span class="n">_magma_output_for_4_1__sl3</span><span class="p">,</span> <span class="n">solutions_from_magma</span>
|
637
|
+
<span class="gp">>>> </span><span class="n">solutions</span> <span class="o">=</span> <span class="n">solutions_from_magma</span><span class="p">(</span><span class="n">_magma_output_for_4_1__sl3</span><span class="p">)</span>
|
638
|
+
<span class="gp">>>> </span><span class="n">solution</span> <span class="o">=</span> <span class="n">solutions</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
639
|
+
</pre></div>
|
640
|
+
</div>
|
641
|
+
<p>Turn into a numerical solution:</p>
|
642
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">old_precision</span> <span class="o">=</span> <span class="n">pari</span><span class="o">.</span><span class="n">set_real_precision</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span> <span class="c1"># with high precision</span>
|
643
|
+
<span class="gp">>>> </span><span class="n">numerical_solutions</span> <span class="o">=</span> <span class="n">solution</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
|
644
|
+
<span class="gp">>>> </span><span class="n">pari</span><span class="o">.</span><span class="n">set_real_precision</span><span class="p">(</span><span class="n">old_precision</span><span class="p">)</span> <span class="c1"># reset pari engine</span>
|
645
|
+
<span class="go">100</span>
|
646
|
+
</pre></div>
|
647
|
+
</div>
|
648
|
+
<p>Pick one of the Galois conjugates:</p>
|
649
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">numerical_solution</span> <span class="o">=</span> <span class="n">numerical_solutions</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
|
650
|
+
<span class="gp">>>> </span><span class="n">value</span> <span class="o">=</span> <span class="n">numerical_solution</span><span class="p">[</span><span class="s1">'c_1110_0'</span><span class="p">]</span>
|
651
|
+
</pre></div>
|
652
|
+
</div>
|
653
|
+
</dd></dl>
|
654
|
+
|
655
|
+
<dl class="py method">
|
656
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.ratio_coordinate">
|
657
|
+
<span class="sig-name descname"><span class="pre">ratio_coordinate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pt</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.ratio_coordinate" title="Link to this definition"></a></dt>
|
658
|
+
<dd><p>Returns the ratio coordinate for tetrahedron with index tet
|
659
|
+
for the edge from v0 to v1 (integers between 0 and 3) and integral
|
660
|
+
point pt (quadruple adding up N-1) on the edge.</p>
|
661
|
+
<p>See Definition 10.2:
|
662
|
+
Garoufalidis, Goerner, Zickert:
|
663
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
664
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
665
|
+
<p>Note that this definition turned out to have the wrong sign. Multiply
|
666
|
+
the result by -1 if v1 < v0 and N is even.</p>
|
667
|
+
</dd></dl>
|
668
|
+
|
669
|
+
<dl class="py method">
|
670
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.short_edge">
|
671
|
+
<span class="sig-name descname"><span class="pre">short_edge</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v2</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.short_edge" title="Link to this definition"></a></dt>
|
672
|
+
<dd><p>Returns the identity. This is because we can think of the matrices
|
673
|
+
given by Ptolemy coordinates of living on truncated simplices which
|
674
|
+
can be though of as doubly truncated simplices where all short edges
|
675
|
+
are collapsed, hence labeled by the identity.</p>
|
676
|
+
<p>See equation 10.4 in
|
677
|
+
Garoufalidis, Goerner, Zickert:
|
678
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
679
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
680
|
+
</dd></dl>
|
681
|
+
|
682
|
+
<dl class="py method">
|
683
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.to_PUR">
|
684
|
+
<span class="sig-name descname"><span class="pre">to_PUR</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.to_PUR" title="Link to this definition"></a></dt>
|
685
|
+
<dd><p>If any Ptolemy coordinates are given as Rational Univariate
|
686
|
+
Representation, convert them to Polynomial Univariate Representation and
|
687
|
+
return the result.</p>
|
688
|
+
<p>See to_PUR of RUR.</p>
|
689
|
+
<p>This conversion might lead to very large coefficients.</p>
|
690
|
+
</dd></dl>
|
691
|
+
|
692
|
+
<dl class="py method">
|
693
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.PtolemyCoordinates.volume_numerical">
|
694
|
+
<span class="sig-name descname"><span class="pre">volume_numerical</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">drop_negative_vols</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.PtolemyCoordinates.volume_numerical" title="Link to this definition"></a></dt>
|
695
|
+
<dd><p>Turn into (Galois conjugate) numerical solutions and compute volumes.
|
696
|
+
If already numerical, only return the one volume.
|
697
|
+
See numerical().</p>
|
698
|
+
<p>If drop_negative_vols = True is given as optional argument,
|
699
|
+
only return non-negative volumes.</p>
|
700
|
+
</dd></dl>
|
701
|
+
|
702
|
+
</dd></dl>
|
703
|
+
|
704
|
+
</section>
|
705
|
+
<section id="crossratios">
|
706
|
+
<h2>CrossRatios<a class="headerlink" href="#crossratios" title="Link to this heading"></a></h2>
|
707
|
+
<dl class="py class">
|
708
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios">
|
709
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.ptolemy.coordinates.</span></span><span class="sig-name descname"><span class="pre">CrossRatios</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">d</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">is_numerical</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">manifold_thunk</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios" title="Link to this definition"></a></dt>
|
710
|
+
<dd><p>Represents assigned shape parameters/cross ratios as
|
711
|
+
dictionary. The cross ratios are according to SnapPy convention, so we
|
712
|
+
have:</p>
|
713
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="n">zp</span><span class="p">,</span> <span class="n">zp</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="n">zpp</span><span class="p">,</span> <span class="n">zpp</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="n">z</span>
|
714
|
+
</pre></div>
|
715
|
+
</div>
|
716
|
+
<p>where:</p>
|
717
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="ow">is</span> <span class="n">at</span> <span class="n">the</span> <span class="n">edge</span> <span class="mi">01</span> <span class="ow">and</span> <span class="n">equal</span> <span class="n">to</span> <span class="n">s0</span> <span class="o">*</span> <span class="n">s1</span> <span class="o">*</span> <span class="p">(</span><span class="n">c_1010</span> <span class="o">*</span> <span class="n">c_0101</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">c_1001</span> <span class="o">*</span> <span class="n">c_0110</span><span class="p">)</span>
|
718
|
+
<span class="n">zp</span> <span class="ow">is</span> <span class="n">at</span> <span class="n">the</span> <span class="n">edge</span> <span class="mi">02</span> <span class="ow">and</span> <span class="n">equal</span> <span class="n">to</span> <span class="n">s0</span> <span class="o">*</span> <span class="n">s2</span> <span class="o">*</span> <span class="p">(</span><span class="n">c_1001</span> <span class="o">*</span> <span class="n">c_0110</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">c_1100</span> <span class="o">*</span> <span class="n">c_0011</span><span class="p">)</span>
|
719
|
+
<span class="n">zpp</span> <span class="ow">is</span> <span class="n">at</span> <span class="n">the</span> <span class="n">edge</span> <span class="mi">03</span> <span class="ow">and</span> <span class="n">equal</span> <span class="n">to</span> <span class="n">s0</span> <span class="o">*</span> <span class="n">s3</span> <span class="o">*</span> <span class="p">(</span><span class="n">c_1100</span> <span class="o">*</span> <span class="n">c_0011</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">c_0101</span> <span class="o">*</span> <span class="n">c_1010</span><span class="p">)</span><span class="o">.</span>
|
720
|
+
</pre></div>
|
721
|
+
</div>
|
722
|
+
<p>Note that this is different from the convention used in
|
723
|
+
Garoufalidis, Goerner, Zickert:
|
724
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
725
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
726
|
+
<dl class="py method">
|
727
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.N">
|
728
|
+
<span class="sig-name descname"><span class="pre">N</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.N" title="Link to this definition"></a></dt>
|
729
|
+
<dd><p>Get the N such that these cross ratios are for
|
730
|
+
SL/PSL(N,C)-representations.</p>
|
731
|
+
</dd></dl>
|
732
|
+
|
733
|
+
<dl class="py method">
|
734
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.check_against_manifold">
|
735
|
+
<span class="sig-name descname"><span class="pre">check_against_manifold</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.check_against_manifold" title="Link to this definition"></a></dt>
|
736
|
+
<dd><p>Checks that the given solution really is a solution to the PGL(N,C) gluing
|
737
|
+
equations of a manifold. Usage similar to check_against_manifold of
|
738
|
+
PtolemyCoordinates. See help(ptolemy.PtolemtyCoordinates) for example.</p>
|
739
|
+
<p>=== Arguments ===</p>
|
740
|
+
<p>M — manifold to check this for
|
741
|
+
epsilon — maximal allowed error when checking the relations, use
|
742
|
+
None for exact comparison.</p>
|
743
|
+
</dd></dl>
|
744
|
+
|
745
|
+
<dl class="py method">
|
746
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.evaluate_word">
|
747
|
+
<span class="sig-name descname"><span class="pre">evaluate_word</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">word</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">G</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.evaluate_word" title="Link to this definition"></a></dt>
|
748
|
+
<dd><p>Given a word in the generators of the fundamental group,
|
749
|
+
compute the corresponding matrix. By default, these are the
|
750
|
+
generators of the unsimplified presentation of the fundamental
|
751
|
+
group. An optional SnapPy fundamental group can be given if the
|
752
|
+
words are in generators of a different presentation, e.g.,
|
753
|
+
c.evaluate_word(word, M.fundamental_group(True)) to
|
754
|
+
evaluate a word in the simplified presentation returned by
|
755
|
+
M.fundamental_group(True).</p>
|
756
|
+
<p>For now, the matrix is returned as list of lists.</p>
|
757
|
+
</dd></dl>
|
758
|
+
|
759
|
+
<dl class="py method">
|
760
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.from_snappy_manifold">
|
761
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_snappy_manifold</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dec_prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bits_prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">intervals</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.from_snappy_manifold" title="Link to this definition"></a></dt>
|
762
|
+
<dd><p>Constructs an assignment of shape parameters/cross ratios using
|
763
|
+
the tetrahehdra_shapes method of a given SnapPy manifold. The optional
|
764
|
+
parameters are the same as that of tetrahedra_shapes.</p>
|
765
|
+
</dd></dl>
|
766
|
+
|
767
|
+
<dl class="py method">
|
768
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.get_manifold">
|
769
|
+
<span class="sig-name descname"><span class="pre">get_manifold</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.get_manifold" title="Link to this definition"></a></dt>
|
770
|
+
<dd><p>Get the manifold for which this structure represents a solution
|
771
|
+
to the gluing equations.</p>
|
772
|
+
</dd></dl>
|
773
|
+
|
774
|
+
<dl class="py method">
|
775
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.induced_representation">
|
776
|
+
<span class="sig-name descname"><span class="pre">induced_representation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">N</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.induced_representation" title="Link to this definition"></a></dt>
|
777
|
+
<dd><p>Given a PSL(2,C) representation constructs the induced representation
|
778
|
+
for the given N.
|
779
|
+
The induced representation is in SL(N,C) if N is odd and
|
780
|
+
SL(N,C) / {+1,-1} if N is even and is described in the Introduction of
|
781
|
+
Garoufalidis, Thurston, Zickert
|
782
|
+
The Complex Volume of SL(n,C)-Representations of 3-Manifolds
|
783
|
+
<a class="reference external" href="https://arxiv.org/abs/1111.2828">https://arxiv.org/abs/1111.2828</a></p>
|
784
|
+
<p>There is a canonical group homomorphism SL(2,C)->SL(N,C) coming from
|
785
|
+
the the natural SL(2,C)-action on the vector space Sym^{N-1}(C^2).
|
786
|
+
This homomorphisms decends to a homomorphism from PSL(2,C) if one
|
787
|
+
divides the right side by {+1,-1} when N is even.
|
788
|
+
Composing a representation with this homomorphism gives the induced
|
789
|
+
representation.</p>
|
790
|
+
</dd></dl>
|
791
|
+
|
792
|
+
<dl class="py method">
|
793
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.is_geometric">
|
794
|
+
<span class="sig-name descname"><span class="pre">is_geometric</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1e-06</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.is_geometric" title="Link to this definition"></a></dt>
|
795
|
+
<dd><p>Returns true if all shapes corresponding to this solution have positive
|
796
|
+
imaginary part.</p>
|
797
|
+
<p>If the solutions are exact, it returns true if one of the corresponding
|
798
|
+
numerical solutions is geometric.</p>
|
799
|
+
<p>An optional epsilon can be given. An imaginary part of a shape is
|
800
|
+
considered positive if it is larger than this epsilon.</p>
|
801
|
+
</dd></dl>
|
802
|
+
|
803
|
+
<dl class="py method">
|
804
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.is_induced_from_psl2">
|
805
|
+
<span class="sig-name descname"><span class="pre">is_induced_from_psl2</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.is_induced_from_psl2" title="Link to this definition"></a></dt>
|
806
|
+
<dd><p>For each simplex and each edges, checks that all cross ratios of that
|
807
|
+
simplex that are parallel to that each are the same (maximal absolute
|
808
|
+
difference is the epsilon given as argument).
|
809
|
+
This means that the corresponding representation is induced by a
|
810
|
+
PSL(2,C) representation.</p>
|
811
|
+
</dd></dl>
|
812
|
+
|
813
|
+
<dl class="py method">
|
814
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.is_pu_2_1_representation">
|
815
|
+
<span class="sig-name descname"><span class="pre">is_pu_2_1_representation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">epsilon</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon2</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.is_pu_2_1_representation" title="Link to this definition"></a></dt>
|
816
|
+
<dd><p>Returns True if the representation is also a
|
817
|
+
PU(2,1)-representation. This uses Proposition 3.5 and the
|
818
|
+
remark following that proposition in <a class="reference internal" href="#fkr2013" id="id1"><span>[FKR2013]</span></a>.</p>
|
819
|
+
<p>If a condition given in that Proposition is violated, the method returns
|
820
|
+
an object whose Boolean value is still False and that indicates which condition
|
821
|
+
was violated. Thus, this method can still be used in <code class="docutils literal notranslate"><span class="pre">if</span></code> statements.</p>
|
822
|
+
<p>The method tests the following complex equalities and inequalities:</p>
|
823
|
+
<ul class="simple">
|
824
|
+
<li><p>the three complex equations given in (3.5.1) of <a class="reference internal" href="#fkr2013" id="id2"><span>[FKR2013]</span></a>.</p></li>
|
825
|
+
<li><p>the inequality z<sub>ijl</sub> <span class="math notranslate nohighlight">\(\\not=\)</span> -1.</p></li>
|
826
|
+
</ul>
|
827
|
+
<p><strong>Remark:</strong> It does not check whether all z<sub>ij</sub> * z<sub>ji</sub> are real or
|
828
|
+
not as these are still valid CR configurations, see the remark following
|
829
|
+
Proposition 3.5.</p>
|
830
|
+
<p>The user has to supply an epsilon: an equality/inequality is considered
|
831
|
+
to be true if and only if the absolute value | LHS - RHS | of difference between the
|
832
|
+
left and right hand side is less/greater than epsilon.</p>
|
833
|
+
<p>The user can supply another parameter, epsilon2. If any | LHS - RHS | is in
|
834
|
+
the interval [epsilon, epsilon2], this method fails with an exception
|
835
|
+
as the value of | LHS - RHS | is an ambiguous interval where
|
836
|
+
it is unclear whether inequality fails to hold because it truly does
|
837
|
+
hold or just because of numerical noise.</p>
|
838
|
+
</dd></dl>
|
839
|
+
|
840
|
+
<dl class="py method">
|
841
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.is_real">
|
842
|
+
<span class="sig-name descname"><span class="pre">is_real</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">epsilon</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.is_real" title="Link to this definition"></a></dt>
|
843
|
+
<dd><p>Returns True if all cross ratios are real (have absolute imaginary
|
844
|
+
part < epsilon where epsilon is given as argument).
|
845
|
+
This means that the corresponding representation is in PSL(N,R).</p>
|
846
|
+
</dd></dl>
|
847
|
+
|
848
|
+
<dl class="py method">
|
849
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.long_edge">
|
850
|
+
<span class="sig-name descname"><span class="pre">long_edge</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v2</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.long_edge" title="Link to this definition"></a></dt>
|
851
|
+
<dd><p>The matrix that labels a long edge starting at vertex (v0, v1, v2)
|
852
|
+
of a doubly truncated simplex corresponding to the ideal tetrahedron
|
853
|
+
with index tet.</p>
|
854
|
+
<p>This matrix was labeled alpha^{v0v1v2} in Figure 18 of
|
855
|
+
Garoufalidis, Goerner, Zickert:
|
856
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
857
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
858
|
+
<p>It is computed using equation 10.22.</p>
|
859
|
+
<p>The resulting matrix is given as a python list of lists.</p>
|
860
|
+
</dd></dl>
|
861
|
+
|
862
|
+
<dl class="py method">
|
863
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.middle_edge">
|
864
|
+
<span class="sig-name descname"><span class="pre">middle_edge</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v2</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.middle_edge" title="Link to this definition"></a></dt>
|
865
|
+
<dd><p>The matrix that labels a middle edge starting at vertex (v0, v1, v2)
|
866
|
+
of a doubly truncated simplex corresponding to the ideal tetrahedron
|
867
|
+
with index tet.</p>
|
868
|
+
<p>This matrix was labeled beta^{v0v1v2} in Figure 18 of
|
869
|
+
Garoufalidis, Goerner, Zickert:
|
870
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
871
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
872
|
+
<p>It is computed using equation 10.22.</p>
|
873
|
+
<p>The resulting matrix is given as a python list of lists.</p>
|
874
|
+
</dd></dl>
|
875
|
+
|
876
|
+
<dl class="py method">
|
877
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.multiply_and_simplify_terms_in_RUR">
|
878
|
+
<span class="sig-name descname"><span class="pre">multiply_and_simplify_terms_in_RUR</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.multiply_and_simplify_terms_in_RUR" title="Link to this definition"></a></dt>
|
879
|
+
<dd><p>If a cross ratio is given as Rational Univariate Representation
|
880
|
+
with numerator and denominator being a product, multiply the terms,
|
881
|
+
reduce the fraction and return the result.</p>
|
882
|
+
<p>See multiply_and_simplify_terms of RUR.</p>
|
883
|
+
<p>This loses information about how the numerator and denominator are
|
884
|
+
factorised.</p>
|
885
|
+
</dd></dl>
|
886
|
+
|
887
|
+
<dl class="py method">
|
888
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.multiply_terms_in_RUR">
|
889
|
+
<span class="sig-name descname"><span class="pre">multiply_terms_in_RUR</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.multiply_terms_in_RUR" title="Link to this definition"></a></dt>
|
890
|
+
<dd><p>If a cross ratio is given as Rational Univariate Representation
|
891
|
+
with numerator and denominator being a product, multiply the terms and
|
892
|
+
return the result.</p>
|
893
|
+
<p>See multiply_terms of RUR.</p>
|
894
|
+
<p>This loses information about how the numerator and denominator are
|
895
|
+
factorised.</p>
|
896
|
+
</dd></dl>
|
897
|
+
|
898
|
+
<dl class="py method">
|
899
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.num_tetrahedra">
|
900
|
+
<span class="sig-name descname"><span class="pre">num_tetrahedra</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.num_tetrahedra" title="Link to this definition"></a></dt>
|
901
|
+
<dd><p>The number of tetrahedra for which we have cross ratios.</p>
|
902
|
+
</dd></dl>
|
903
|
+
|
904
|
+
<dl class="py method">
|
905
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.numerical">
|
906
|
+
<span class="sig-name descname"><span class="pre">numerical</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.numerical" title="Link to this definition"></a></dt>
|
907
|
+
<dd><p>Turn exact solutions into numerical solutions using pari. Similar to
|
908
|
+
numerical() of PtolemyCoordinates. See help(ptolemy.PtolemyCoordinates)
|
909
|
+
for example.</p>
|
910
|
+
</dd></dl>
|
911
|
+
|
912
|
+
<dl class="py method">
|
913
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.short_edge">
|
914
|
+
<span class="sig-name descname"><span class="pre">short_edge</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">v2</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.short_edge" title="Link to this definition"></a></dt>
|
915
|
+
<dd><p>The matrix that labels a long edge starting at vertex (v0, v1, v2)
|
916
|
+
of a doubly truncated simplex corresponding to the ideal tetrahedron
|
917
|
+
with index tet.</p>
|
918
|
+
<p>This matrix was labeled gamma^{v0v1v2} in Figure 18 of
|
919
|
+
Garoufalidis, Goerner, Zickert:
|
920
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
921
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
922
|
+
<p>It is computed using equation 10.22.</p>
|
923
|
+
<p>The resulting matrix is given as a python list of lists.</p>
|
924
|
+
</dd></dl>
|
925
|
+
|
926
|
+
<dl class="py method">
|
927
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.to_PUR">
|
928
|
+
<span class="sig-name descname"><span class="pre">to_PUR</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.to_PUR" title="Link to this definition"></a></dt>
|
929
|
+
<dd><p>If any Ptolemy coordinates are given as Rational Univariate
|
930
|
+
Representation, convert them to Polynomial Univariate Representation and
|
931
|
+
return the result.</p>
|
932
|
+
<p>See to_PUR of RUR.</p>
|
933
|
+
<p>This conversion might lead to very large coefficients.</p>
|
934
|
+
</dd></dl>
|
935
|
+
|
936
|
+
<dl class="py method">
|
937
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.volume_numerical">
|
938
|
+
<span class="sig-name descname"><span class="pre">volume_numerical</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">drop_negative_vols</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.volume_numerical" title="Link to this definition"></a></dt>
|
939
|
+
<dd><p>Turn into (Galois conjugate) numerical solutions and compute volumes.
|
940
|
+
If already numerical, only compute the one volume.
|
941
|
+
See numerical().</p>
|
942
|
+
<p>If drop_negative_vols = True is given as optional argument,
|
943
|
+
only return non-negative volumes.</p>
|
944
|
+
</dd></dl>
|
945
|
+
|
946
|
+
<dl class="py method">
|
947
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.CrossRatios.x_coordinate">
|
948
|
+
<span class="sig-name descname"><span class="pre">x_coordinate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tet</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pt</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.CrossRatios.x_coordinate" title="Link to this definition"></a></dt>
|
949
|
+
<dd><p>Returns the X-coordinate for the tetrahedron with index tet
|
950
|
+
at the point pt (quadruple of integers adding up to N).</p>
|
951
|
+
<p>See Definition 10.9:
|
952
|
+
Garoufalidis, Goerner, Zickert:
|
953
|
+
Gluing Equations for PGL(n,C)-Representations of 3-Manifolds
|
954
|
+
<a class="reference external" href="https://arxiv.org/abs/1207.6711">https://arxiv.org/abs/1207.6711</a></p>
|
955
|
+
</dd></dl>
|
956
|
+
|
957
|
+
</dd></dl>
|
958
|
+
|
959
|
+
</section>
|
960
|
+
<section id="flattenings">
|
961
|
+
<h2>Flattenings<a class="headerlink" href="#flattenings" title="Link to this heading"></a></h2>
|
962
|
+
<dl class="py class">
|
963
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings">
|
964
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.ptolemy.coordinates.</span></span><span class="sig-name descname"><span class="pre">Flattenings</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">d</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">manifold_thunk=<function</span> <span class="pre">Flattenings.<lambda>></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">evenN=2</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings" title="Link to this definition"></a></dt>
|
965
|
+
<dd><p>Represents a flattening assigned to each edge of a simplex as dictionary.</p>
|
966
|
+
<p>We assign to each pair of parallel edges of each simplex a triple (w, z, p)
|
967
|
+
such that:</p>
|
968
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">w</span> <span class="o">=</span> <span class="n">log</span><span class="p">(</span><span class="n">z</span><span class="p">)</span> <span class="o">+</span> <span class="n">p</span> <span class="o">*</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">pi</span> <span class="o">*</span> <span class="n">i</span> <span class="o">/</span> <span class="n">N</span><span class="p">)</span> <span class="n">where</span> <span class="n">N</span> <span class="ow">is</span> <span class="n">fixed</span> <span class="ow">and</span> <span class="n">even</span><span class="o">.</span>
|
969
|
+
</pre></div>
|
970
|
+
</div>
|
971
|
+
<p>For N = 2, the three triples belonging to a simplex form a combinatorial
|
972
|
+
flattening (w0, w1, w2) as defined in Definition 3.1 in
|
973
|
+
Walter D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class
|
974
|
+
<a class="reference external" href="https://arxiv.org/abs/math.GT/0307092">https://arxiv.org/abs/math.GT/0307092</a></p>
|
975
|
+
<p>For N > 2, the three triples form a generalized combinatorial flattening
|
976
|
+
(w0, w1, w2) that gives an element in the generalized Extended Bloch group
|
977
|
+
which is the Extended Bloch group corresponding to the Riemann surface
|
978
|
+
given by:</p>
|
979
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">u1</span> <span class="o">*</span> <span class="n">e</span><span class="o">^</span><span class="n">w0</span> <span class="o">+</span> <span class="n">u2</span> <span class="o">*</span> <span class="n">e</span><span class="o">^</span><span class="n">w1</span> <span class="o">=</span> <span class="mi">1</span>
|
980
|
+
</pre></div>
|
981
|
+
</div>
|
982
|
+
<p>where u1^N = u2^N = 1.</p>
|
983
|
+
<p>A representation in SL(n,C) and SL(n,C)/{+1,-1} with n even gives an element
|
984
|
+
in the generalized Extended Bloch group for N = 2.
|
985
|
+
A representation in PSL(n,C) with n even in the group for N = n.
|
986
|
+
A representation in PSL(n,C) with n odd in the group for N = 2 * n.</p>
|
987
|
+
<p>This work has not been published yet.</p>
|
988
|
+
<p>If f is a flattening, then in the notation of Neumann, the value of:</p>
|
989
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">f</span><span class="p">[</span><span class="s1">'z_xxxx_y'</span><span class="p">]</span> <span class="ow">is</span> <span class="p">(</span><span class="n">w0</span><span class="p">,</span> <span class="n">z</span><span class="p">,</span> <span class="n">p</span><span class="p">)</span>
|
990
|
+
<span class="n">f</span><span class="p">[</span><span class="s1">'zp_xxxx_y'</span><span class="p">]</span> <span class="ow">is</span> <span class="p">(</span><span class="n">w1</span><span class="p">,</span> <span class="n">z</span><span class="s1">', q)</span>
|
991
|
+
<span class="n">f</span><span class="p">[</span><span class="s1">'zpp_xxxx_y'</span><span class="p">]</span> <span class="ow">is</span> <span class="p">(</span><span class="n">w2</span><span class="p">,</span> <span class="n">z</span><span class="s1">''</span><span class="p">,</span> <span class="n">r</span><span class="p">)</span><span class="o">.</span>
|
992
|
+
</pre></div>
|
993
|
+
</div>
|
994
|
+
<dl class="py method">
|
995
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.N">
|
996
|
+
<span class="sig-name descname"><span class="pre">N</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.N" title="Link to this definition"></a></dt>
|
997
|
+
<dd><p>Get the N such that these cross ratios are for
|
998
|
+
SL/PSL(N,C)-representations.</p>
|
999
|
+
</dd></dl>
|
1000
|
+
|
1001
|
+
<dl class="py method">
|
1002
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.check_against_manifold">
|
1003
|
+
<span class="sig-name descname"><span class="pre">check_against_manifold</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1e-10</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.check_against_manifold" title="Link to this definition"></a></dt>
|
1004
|
+
<dd><p>Checks that the flattening really is a solution to the logarithmic
|
1005
|
+
PGL(N,C) gluing equations of a manifold. Usage similar to
|
1006
|
+
check_against_manifold of Ptolemy Coordinates, see
|
1007
|
+
help(ptolemy.Coordinates) for similar examples.</p>
|
1008
|
+
<p>=== Arguments ===</p>
|
1009
|
+
<p>M — manifold to check this for
|
1010
|
+
epsilon — maximal allowed error when checking the equations</p>
|
1011
|
+
</dd></dl>
|
1012
|
+
|
1013
|
+
<dl class="py method">
|
1014
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.complex_volume">
|
1015
|
+
<span class="sig-name descname"><span class="pre">complex_volume</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">with_modulo</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.complex_volume" title="Link to this definition"></a></dt>
|
1016
|
+
<dd><p>Compute complex volume. The complex volume is defined only up to
|
1017
|
+
some multiple of m where m = i * pi**2/6 for PSL(2,C) and SL(N,C)
|
1018
|
+
and m = i * pi**2/18 for PSL(3,C).</p>
|
1019
|
+
<p>When called with with_modulo = True, gives a pair
|
1020
|
+
(volume, m)</p>
|
1021
|
+
</dd></dl>
|
1022
|
+
|
1023
|
+
<dl class="py method">
|
1024
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.from_tetrahedra_shapes_of_manifold">
|
1025
|
+
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">from_tetrahedra_shapes_of_manifold</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.from_tetrahedra_shapes_of_manifold" title="Link to this definition"></a></dt>
|
1026
|
+
<dd><p>Takes as argument a manifold and produces (weak) flattenings using
|
1027
|
+
the tetrahedra_shapes of the manifold M.</p>
|
1028
|
+
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
1029
|
+
<span class="gp">>>> </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"5_2"</span><span class="p">)</span>
|
1030
|
+
<span class="gp">>>> </span><span class="n">flattenings</span> <span class="o">=</span> <span class="n">Flattenings</span><span class="o">.</span><span class="n">from_tetrahedra_shapes_of_manifold</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
1031
|
+
<span class="gp">>>> </span><span class="n">flattenings</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
1032
|
+
<span class="gp">>>> </span><span class="n">flattenings</span><span class="o">.</span><span class="n">check_against_manifold</span><span class="p">()</span>
|
1033
|
+
</pre></div>
|
1034
|
+
</div>
|
1035
|
+
</dd></dl>
|
1036
|
+
|
1037
|
+
<dl class="py method">
|
1038
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.get_manifold">
|
1039
|
+
<span class="sig-name descname"><span class="pre">get_manifold</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.get_manifold" title="Link to this definition"></a></dt>
|
1040
|
+
<dd><p>Get the manifold for which this structure represents a flattening.</p>
|
1041
|
+
</dd></dl>
|
1042
|
+
|
1043
|
+
<dl class="py method">
|
1044
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.get_order">
|
1045
|
+
<span class="sig-name descname"><span class="pre">get_order</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.get_order" title="Link to this definition"></a></dt>
|
1046
|
+
<dd><p>Returns the number N. This flattening represents an element in the
|
1047
|
+
generalized Extended Bloch group for the Riemann surface given by
|
1048
|
+
u1 * e^w0 + u2 * e^w1 = 1 where u1^N = u2^N = 1.</p>
|
1049
|
+
</dd></dl>
|
1050
|
+
|
1051
|
+
<dl class="py method">
|
1052
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.get_zpq_triple">
|
1053
|
+
<span class="sig-name descname"><span class="pre">get_zpq_triple</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">key_z</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.get_zpq_triple" title="Link to this definition"></a></dt>
|
1054
|
+
<dd><p>Gives a flattening as triple [z;p,q] representing an element
|
1055
|
+
in the generalized Extended Bloch group similar to the way the
|
1056
|
+
triple [z;p,q] is used in Lemma 3.2 in
|
1057
|
+
Walter D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class
|
1058
|
+
<a class="reference external" href="https://arxiv.org/abs/math.GT/0307092">https://arxiv.org/abs/math.GT/0307092</a></p>
|
1059
|
+
</dd></dl>
|
1060
|
+
|
1061
|
+
<dl class="py method">
|
1062
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.coordinates.Flattenings.num_tetrahedra">
|
1063
|
+
<span class="sig-name descname"><span class="pre">num_tetrahedra</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.coordinates.Flattenings.num_tetrahedra" title="Link to this definition"></a></dt>
|
1064
|
+
<dd><p>The number of tetrahedra for which we have cross ratios.</p>
|
1065
|
+
</dd></dl>
|
1066
|
+
|
1067
|
+
</dd></dl>
|
1068
|
+
|
1069
|
+
</section>
|
1070
|
+
<section id="nonzerodimensionalcomponent">
|
1071
|
+
<h2>NonZeroDimensionalComponent<a class="headerlink" href="#nonzerodimensionalcomponent" title="Link to this heading"></a></h2>
|
1072
|
+
<dl class="py class">
|
1073
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.component.NonZeroDimensionalComponent">
|
1074
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.ptolemy.component.</span></span><span class="sig-name descname"><span class="pre">NonZeroDimensionalComponent</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">witnesses</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dimension</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'unknown'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">free_variables</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">genus</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.component.NonZeroDimensionalComponent" title="Link to this definition"></a></dt>
|
1075
|
+
<dd><p>Represents a non-zero dimensional component in the
|
1076
|
+
Ptolemy variety. It is a list that can hold points sampled from that
|
1077
|
+
component (witnesses).</p>
|
1078
|
+
</dd></dl>
|
1079
|
+
|
1080
|
+
</section>
|
1081
|
+
<section id="other-functions">
|
1082
|
+
<h2>Other functions<a class="headerlink" href="#other-functions" title="Link to this heading"></a></h2>
|
1083
|
+
<dl class="py function">
|
1084
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.solutions_from_magma">
|
1085
|
+
<span class="sig-prename descclassname"><span class="pre">snappy.ptolemy.</span></span><span class="sig-name descname"><span class="pre">solutions_from_magma</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">numerical</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.solutions_from_magma" title="Link to this definition"></a></dt>
|
1086
|
+
<dd><p>Obsolete, use processFileDispatch.parse_solutions instead.</p>
|
1087
|
+
<p>Assumes the given string is the output of a magma computation, parses
|
1088
|
+
it and returns a list of solutions.
|
1089
|
+
A non-zero dimensional component of the variety is reported as
|
1090
|
+
NonZeroDimensionalComponent.</p>
|
1091
|
+
</dd></dl>
|
1092
|
+
|
1093
|
+
<dl class="py function">
|
1094
|
+
<dt class="sig sig-object py" id="snappy.ptolemy.solutions_from_magma_file">
|
1095
|
+
<span class="sig-prename descclassname"><span class="pre">snappy.ptolemy.</span></span><span class="sig-name descname"><span class="pre">solutions_from_magma_file</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">filename</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">numerical</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.ptolemy.solutions_from_magma_file" title="Link to this definition"></a></dt>
|
1096
|
+
<dd><p>Obsolete, use processFileDispatch.parse_solutions_from_file instead.</p>
|
1097
|
+
<p>Reads the output from a magma computation from the file with the given
|
1098
|
+
filename and returns a list of solutions. Also see solutions_from_magma.
|
1099
|
+
A non-zero dimensional component of the variety is reported as
|
1100
|
+
NonZeroDimensionalComponent.</p>
|
1101
|
+
</dd></dl>
|
1102
|
+
|
1103
|
+
<div role="list" class="citation-list">
|
1104
|
+
<div class="citation" id="fkr2013" role="doc-biblioentry">
|
1105
|
+
<span class="label"><span class="fn-bracket">[</span>FKR2013<span class="fn-bracket">]</span></span>
|
1106
|
+
<span class="backrefs">(<a role="doc-backlink" href="#id1">1</a>,<a role="doc-backlink" href="#id2">2</a>)</span>
|
1107
|
+
<p>Falbel, Koseleff, Rouillier: Representations of Fundamental Groups of 3-Manifolds into PGL(3,C): Exact Computations in Low Complexity, <a class="reference external" href="http://arxiv.org/abs/1307.6697">http://arxiv.org/abs/1307.6697</a></p>
|
1108
|
+
</div>
|
1109
|
+
</div>
|
1110
|
+
</section>
|
1111
|
+
</section>
|
1112
|
+
|
1113
|
+
|
1114
|
+
</div>
|
1115
|
+
</div>
|
1116
|
+
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
|
1117
|
+
<a href="ptolemy_examples4.html" class="btn btn-neutral float-left" title="Step-by-step examples: Part 4" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
|
1118
|
+
<a href="news.html" class="btn btn-neutral float-right" title="News" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
|
1119
|
+
</div>
|
1120
|
+
|
1121
|
+
<hr/>
|
1122
|
+
|
1123
|
+
<div role="contentinfo">
|
1124
|
+
<p>© Copyright 2009-2025, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
|
1125
|
+
</div>
|
1126
|
+
|
1127
|
+
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
|
1128
|
+
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
|
1129
|
+
provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
1130
|
+
|
1131
|
+
|
1132
|
+
</footer>
|
1133
|
+
</div>
|
1134
|
+
</div>
|
1135
|
+
</section>
|
1136
|
+
</div>
|
1137
|
+
<script>
|
1138
|
+
jQuery(function () {
|
1139
|
+
SphinxRtdTheme.Navigation.enable(true);
|
1140
|
+
});
|
1141
|
+
</script>
|
1142
|
+
|
1143
|
+
</body>
|
1147
1144
|
</html>
|