snappy 3.1.1__cp39-cp39-win_amd64.whl → 3.2__cp39-cp39-win_amd64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cp39-win_amd64.pyd +0 -0
- snappy/SnapPy.cp39-win_amd64.pyd +0 -0
- snappy/SnapPyHP.cp39-win_amd64.pyd +0 -0
- snappy/__init__.py +299 -402
- snappy/app.py +70 -20
- snappy/browser.py +18 -17
- snappy/canonical.py +249 -0
- snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +10 -9
- snappy/decorated_isosig.py +337 -114
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
- snappy/dev/extended_ptolemy/extended.py +3 -3
- snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -40
- snappy/doc/_sources/bugs.rst.txt +14 -14
- snappy/doc/_sources/censuses.rst.txt +51 -51
- snappy/doc/_sources/credits.rst.txt +75 -75
- snappy/doc/_sources/development.rst.txt +259 -239
- snappy/doc/_sources/index.rst.txt +182 -115
- snappy/doc/_sources/installing.rst.txt +247 -264
- snappy/doc/_sources/manifold.rst.txt +6 -6
- snappy/doc/_sources/manifoldhp.rst.txt +46 -46
- snappy/doc/_sources/news.rst.txt +355 -283
- snappy/doc/_sources/other.rst.txt +25 -25
- snappy/doc/_sources/platonic_census.rst.txt +20 -20
- snappy/doc/_sources/plink.rst.txt +102 -102
- snappy/doc/_sources/ptolemy.rst.txt +66 -66
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -42
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -297
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -363
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -301
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -61
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -105
- snappy/doc/_sources/screenshots.rst.txt +21 -21
- snappy/doc/_sources/snap.rst.txt +87 -87
- snappy/doc/_sources/snappy.rst.txt +28 -28
- snappy/doc/_sources/spherogram.rst.txt +103 -103
- snappy/doc/_sources/todo.rst.txt +47 -47
- snappy/doc/_sources/triangulation.rst.txt +11 -11
- snappy/doc/_sources/tutorial.rst.txt +49 -49
- snappy/doc/_sources/verify.rst.txt +210 -150
- snappy/doc/_sources/verify_internals.rst.txt +79 -90
- snappy/doc/_static/basic.css +924 -902
- snappy/doc/_static/css/badge_only.css +1 -1
- snappy/doc/_static/css/theme.css +1 -1
- snappy/doc/_static/doctools.js +1 -1
- snappy/doc/_static/documentation_options.js +12 -13
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -199
- snappy/doc/_static/pygments.css +74 -73
- snappy/doc/_static/searchtools.js +125 -71
- snappy/doc/_static/snappy_furo.css +33 -33
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -42
- snappy/doc/_static/sphinx_highlight.js +13 -3
- snappy/doc/additional_classes.html +1499 -1330
- snappy/doc/bugs.html +131 -134
- snappy/doc/censuses.html +426 -445
- snappy/doc/credits.html +180 -183
- snappy/doc/development.html +383 -363
- snappy/doc/genindex.html +1330 -1409
- snappy/doc/index.html +261 -206
- snappy/doc/installing.html +345 -363
- snappy/doc/manifold.html +3451 -2839
- snappy/doc/manifoldhp.html +179 -182
- snappy/doc/news.html +387 -329
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +160 -162
- snappy/doc/platonic_census.html +374 -377
- snappy/doc/plink.html +209 -212
- snappy/doc/ptolemy.html +253 -255
- snappy/doc/ptolemy_classes.html +1143 -1146
- snappy/doc/ptolemy_examples1.html +408 -410
- snappy/doc/ptolemy_examples2.html +470 -473
- snappy/doc/ptolemy_examples3.html +413 -416
- snappy/doc/ptolemy_examples4.html +194 -197
- snappy/doc/ptolemy_prelim.html +247 -250
- snappy/doc/py-modindex.html +164 -167
- snappy/doc/screenshots.html +140 -142
- snappy/doc/search.html +134 -137
- snappy/doc/searchindex.js +1 -1
- snappy/doc/snap.html +201 -204
- snappy/doc/snappy.html +180 -182
- snappy/doc/spherogram.html +1210 -1213
- snappy/doc/todo.html +165 -168
- snappy/doc/triangulation.html +1583 -1474
- snappy/doc/tutorial.html +158 -161
- snappy/doc/verify.html +329 -275
- snappy/doc/verify_internals.html +1234 -1691
- snappy/drilling/__init__.py +153 -235
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +0 -2
- snappy/drilling/crush.py +56 -130
- snappy/drilling/cusps.py +12 -6
- snappy/drilling/debug.py +2 -1
- snappy/drilling/exceptions.py +7 -40
- snappy/drilling/moves.py +302 -243
- snappy/drilling/perturb.py +63 -37
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +0 -5
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +9 -37
- snappy/exceptions.py +18 -5
- snappy/exterior_to_link/barycentric_geometry.py +2 -4
- snappy/exterior_to_link/main.py +8 -7
- snappy/exterior_to_link/mcomplex_with_link.py +2 -2
- snappy/exterior_to_link/rational_linear_algebra.py +1 -1
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
- snappy/exterior_to_link/test.py +21 -33
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
- snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +23 -13
- snappy/horoviewer.py +7 -7
- snappy/hyperboloid/__init__.py +96 -31
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/math_basics.py +39 -13
- snappy/matrix.py +52 -9
- snappy/number.py +12 -6
- snappy/numeric_output_checker.py +2 -3
- snappy/pari.py +8 -4
- snappy/phone_home.py +2 -1
- snappy/polyviewer.py +8 -8
- snappy/ptolemy/__init__.py +1 -1
- snappy/ptolemy/component.py +2 -2
- snappy/ptolemy/coordinates.py +25 -25
- snappy/ptolemy/findLoops.py +9 -9
- snappy/ptolemy/manifoldMethods.py +27 -29
- snappy/ptolemy/polynomial.py +50 -57
- snappy/ptolemy/processFileBase.py +60 -0
- snappy/ptolemy/ptolemyVariety.py +109 -41
- snappy/ptolemy/reginaWrapper.py +4 -4
- snappy/ptolemy/rur.py +1 -1
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
- snappy/ptolemy/test.py +99 -54
- snappy/ptolemy/utilities.py +1 -1
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +0 -3
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +17 -17
- snappy/raytracing/finite_viewer.py +15 -15
- snappy/raytracing/geodesic_tube_info.py +93 -63
- snappy/raytracing/geodesics.py +94 -64
- snappy/raytracing/geodesics_window.py +56 -34
- snappy/raytracing/gui_utilities.py +21 -6
- snappy/raytracing/hyperboloid_navigation.py +29 -4
- snappy/raytracing/hyperboloid_utilities.py +73 -73
- snappy/raytracing/ideal_raytracing_data.py +121 -91
- snappy/raytracing/inside_viewer.py +199 -66
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +37 -25
- snappy/raytracing/raytracing_view.py +70 -65
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +39 -3
- snappy/raytracing/shaders/fragment.glsl +451 -133
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +42 -9
- snappy/sage_helper.py +67 -134
- snappy/settings.py +90 -77
- snappy/shell.py +2 -0
- snappy/snap/character_varieties.py +2 -2
- snappy/snap/find_field.py +4 -3
- snappy/snap/fundamental_polyhedron.py +2 -2
- snappy/snap/kernel_structures.py +5 -1
- snappy/snap/nsagetools.py +9 -8
- snappy/snap/peripheral/dual_cellulation.py +4 -3
- snappy/snap/peripheral/peripheral.py +2 -2
- snappy/snap/peripheral/surface.py +5 -5
- snappy/snap/peripheral/test.py +1 -1
- snappy/snap/polished_reps.py +8 -8
- snappy/snap/slice_obs_HKL.py +16 -14
- snappy/snap/t3mlite/arrow.py +3 -3
- snappy/snap/t3mlite/edge.py +3 -3
- snappy/snap/t3mlite/homology.py +2 -2
- snappy/snap/t3mlite/mcomplex.py +3 -3
- snappy/snap/t3mlite/simplex.py +12 -0
- snappy/snap/t3mlite/spun.py +18 -17
- snappy/snap/t3mlite/test_vs_regina.py +4 -4
- snappy/snap/test.py +37 -53
- snappy/snap/utilities.py +4 -5
- snappy/test.py +121 -138
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +113 -84
- snappy/twister/main.py +1 -7
- snappy/twister/twister_core.cp39-win_amd64.pyd +0 -0
- snappy/upper_halfspace/__init__.py +78 -17
- snappy/verify/__init__.py +3 -7
- snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
- snappy/verify/complex_volume/adjust_torsion.py +1 -2
- snappy/verify/complex_volume/closed.py +13 -13
- snappy/verify/complex_volume/cusped.py +6 -6
- snappy/verify/complex_volume/extended_bloch.py +5 -8
- snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +0 -55
- snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
- snappy/verify/interval_newton_shapes_engine.py +7 -5
- snappy/verify/interval_tree.py +5 -5
- snappy/verify/krawczyk_shapes_engine.py +17 -18
- snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
- snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
- snappy/verify/shapes.py +5 -3
- snappy/verify/short_slopes.py +39 -41
- snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
- snappy/verify/test.py +57 -60
- snappy/verify/upper_halfspace/extended_matrix.py +1 -1
- snappy/verify/upper_halfspace/finite_point.py +3 -4
- snappy/verify/upper_halfspace/ideal_point.py +9 -9
- snappy/verify/volume.py +2 -2
- snappy/version.py +2 -2
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/METADATA +26 -11
- snappy-3.2.dist-info/RECORD +503 -0
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
- snappy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/__pycache__/browser.cpython-39.pyc +0 -0
- snappy/__pycache__/cache.cpython-39.pyc +0 -0
- snappy/__pycache__/database.cpython-39.pyc +0 -0
- snappy/__pycache__/db_utilities.cpython-39.pyc +0 -0
- snappy/__pycache__/decorated_isosig.cpython-39.pyc +0 -0
- snappy/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/__pycache__/export_stl.cpython-39.pyc +0 -0
- snappy/__pycache__/filedialog.cpython-39.pyc +0 -0
- snappy/__pycache__/gui.cpython-39.pyc +0 -0
- snappy/__pycache__/horoviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/math_basics.cpython-39.pyc +0 -0
- snappy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/__pycache__/number.cpython-39.pyc +0 -0
- snappy/__pycache__/numeric_output_checker.cpython-39.pyc +0 -0
- snappy/__pycache__/pari.cpython-39.pyc +0 -0
- snappy/__pycache__/polyviewer.cpython-39.pyc +0 -0
- snappy/__pycache__/sage_helper.cpython-39.pyc +0 -0
- snappy/__pycache__/version.cpython-39.pyc +0 -0
- snappy/doc/_sources/verify_canon.rst.txt +0 -90
- snappy/doc/_static/jquery-3.6.0.js +0 -10881
- snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
- snappy/doc/_static/js/html5shiv.min.js +0 -4
- snappy/doc/_static/underscore-1.13.1.js +0 -2042
- snappy/doc/_static/underscore.js +0 -6
- snappy/doc/verify_canon.html +0 -304
- snappy/drilling/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/constants.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/crush.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/cusps.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/debug.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/epsilons.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/fixed_points.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_info.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geodesic_tube.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/geometric_structure.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/line.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/moves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/peripheral_curves.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/perturb.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/quotient_space.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/spatial_dict.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/subdivide.cpython-39.pyc +0 -0
- snappy/drilling/__pycache__/tracing.cpython-39.pyc +0 -0
- snappy/drilling/geodesic_tube.py +0 -441
- snappy/drilling/geometric_structure.py +0 -366
- snappy/drilling/line.py +0 -122
- snappy/drilling/quotient_space.py +0 -94
- snappy/drilling/spatial_dict.py +0 -128
- snappy/exterior_to_link/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/hyp_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/link_projection.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/main.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/pl_utils.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/put_in_S3.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-39.pyc +0 -0
- snappy/exterior_to_link/__pycache__/stored_moves.cpython-39.pyc +0 -0
- snappy/hyperboloid/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/manifolds/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/component.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/coordinates.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/fieldExtensions.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/findLoops.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/manifoldMethods.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/matrix.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/polynomial.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processComponents.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileBase.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processFileDispatch.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processMagmaFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/processRurFile.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVariety.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/rur.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-39.pyc +0 -0
- snappy/ptolemy/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/character_varieties.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/fundamental_polyhedron.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/interval_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/kernel_structures.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/mcomplex_base.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/nsagetools.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/polished_reps.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/slice_obs_HKL.cpython-39.pyc +0 -0
- snappy/snap/__pycache__/utilities.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/link.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/peripheral.cpython-39.pyc +0 -0
- snappy/snap/peripheral/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/arrow.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/corner.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/edge.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/face.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/files.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/homology.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/linalg.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/mcomplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/perm4.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/simplex.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/spun.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/surface.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-39.pyc +0 -0
- snappy/snap/t3mlite/__pycache__/vertex.cpython-39.pyc +0 -0
- snappy/togl/__init__.py +0 -3
- snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
- snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
- snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
- snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
- snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
- snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
- snappy/twister/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/twister/__pycache__/main.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspCrossSection.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cuspTranslations.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_areas.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/cusp_shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/exceptions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/interval_tree.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/realAlgebra.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/shapes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/short_slopes.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/squareExtensions.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyCanonical.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/verifyHyperbolicity.cpython-39.pyc +0 -0
- snappy/verify/__pycache__/volume.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/closed.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/cusped.cpython-39.pyc +0 -0
- snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-39.pyc +0 -0
- snappy/verify/cuspCrossSection.py +0 -1422
- snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-39.pyc +0 -0
- snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/__init__.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-39.pyc +0 -0
- snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-39.pyc +0 -0
- snappy-3.1.1.dist-info/RECORD +0 -575
- {snappy-3.1.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
@@ -1,363 +1,363 @@
|
|
1
|
-
Step-by-step examples: Part 2
|
2
|
-
=============================
|
3
|
-
|
4
|
-
.. _ptolemy-example-smart-lists:
|
5
|
-
|
6
|
-
The Ptolemy list type
|
7
|
-
---------------------
|
8
|
-
|
9
|
-
Recall that ``ptolemy_variety`` with ``obstruction_class='all'`` returns a list of varieties, one for each obstruction class::
|
10
|
-
|
11
|
-
>>> M = Manifold("m003")
|
12
|
-
>>> M.ptolemy_variety(2, obstruction_class = 'all')
|
13
|
-
[Ptolemy Variety for m003, N = 2, obstruction_class = 0
|
14
|
-
c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2
|
15
|
-
c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2
|
16
|
-
- 1 + c_0011_0,
|
17
|
-
Ptolemy Variety for m003, N = 2, obstruction_class = 1
|
18
|
-
- c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2
|
19
|
-
- c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2
|
20
|
-
- 1 + c_0011_0]
|
21
|
-
|
22
|
-
Also recall that ``retrieve_solutions`` was a method of a ``PtolemyVariety``. Assume we want to call ``retrieve_solutions`` for each Ptolemy variety. As in the previous example, we could write a loop such as::
|
23
|
-
|
24
|
-
>>> [p.retrieve_solutions(verbose=False) for p in M.ptolemy_variety(2, 'all')]
|
25
|
-
|
26
|
-
The ptolemy module allows to do this in a much shorter way::
|
27
|
-
|
28
|
-
>>> M.ptolemy_variety(2, 'all').retrieve_solutions(verbose=False)
|
29
|
-
[[PtolemyCoordinates(
|
30
|
-
{'c_0011_0': 1,
|
31
|
-
'c_0011_1': -1,
|
32
|
-
'c_0101_0': Mod(x, x^2 - x - 1),
|
33
|
-
...,
|
34
|
-
's_3_1': 1},
|
35
|
-
is_numerical = False, ...)],
|
36
|
-
[PtolemyCoordinates(
|
37
|
-
{'c_0011_0': 1,
|
38
|
-
'c_0011_1': -1,
|
39
|
-
'c_0101_0': Mod(x, x^2 + x + 1),
|
40
|
-
...,
|
41
|
-
's_3_1': 1},
|
42
|
-
is_numerical = False, ...)]]
|
43
|
-
|
44
|
-
This behavior is specific to the ptolemy module. It works with many methods of the ptolemy module that
|
45
|
-
can potentially return more than one object. These methods return a special kind of list (usually
|
46
|
-
``MethodMappingList``, a subclass of python ``list``) that tries to call the method of the given name (here ``retrieve_solutions``) with
|
47
|
-
the given arguments (here ``verbose=False``) on each element in the list (here the two Ptolemy varieties).
|
48
|
-
|
49
|
-
Since ``retrieve_solutions`` itself actually returns a list, the result is a list of lists of solutions which are of type ``PtolemyCoordinates``. The first level groups the solutions by obstruction class. The inner lists contain the different (non-Galois conjugate) solutions for each obstruction class (here, for ``m003``, each inner lists contains only one element).
|
50
|
-
|
51
|
-
Using the Ptolemy list type recursively
|
52
|
-
---------------------------------------
|
53
|
-
|
54
|
-
The list type described in the previous example works recursively. Recall that an algebraic solution to a Ptolemy variety (of type ``PtolemyCoordinates``) has a method ``volume_numerical`` that returns a list of volumes::
|
55
|
-
|
56
|
-
>>> M=Manifold("m003")
|
57
|
-
>>> p=M.ptolemy_variety(2,1)
|
58
|
-
>>> sol=p.retrieve_solutions(verbose=False)[0]
|
59
|
-
>>> sol.volume_numerical()
|
60
|
-
[0.E-19, 1.88267370443418 E-14]
|
61
|
-
|
62
|
-
We can chain these commands together to retrieve the volumes of all boundary-unipotent PSL(2, **C**) (that are :ref:`generically decorated <ptolemy-generically-decorated>` with respect to the triangulation) in just one line::
|
63
|
-
|
64
|
-
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
65
|
-
[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]
|
66
|
-
|
67
|
-
Note that the volumes of the representations are in a list of lists of lists. At the first level the volumes are grouped by obstruction class, then by Galois conjugacy.
|
68
|
-
|
69
|
-
**Remark:** There might be an extra level for witness points.
|
70
|
-
|
71
|
-
**Remark:** Unfortunately, this is not compatible with tab-autocompletion, see :ref:`later <ptolemy-example-missing-auto-completion>`.
|
72
|
-
|
73
|
-
A comparison of ``m003`` and ``m004``
|
74
|
-
-------------------------------------
|
75
|
-
|
76
|
-
We can now compare the set of volumes of ``m003`` and ``m004``:
|
77
|
-
|
78
|
-
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
79
|
-
[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]
|
80
|
-
>>> Manifold("m004").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
81
|
-
[[], [[-2.02988321281931, 2.02988321281931]]]
|
82
|
-
|
83
|
-
We see that the two manifolds are distinguished by their volumes of boundary-unipotent representations: ``m004`` has no representation with trivial volume (this is not a proof as in theory, there could be such a representation which is not :ref:`generically decorated <ptolemy-generically-decorated>` with respect to the given triangulation) and no representation that can be lifted to a boundary-unipotent SL(2, **C**)-representation.
|
84
|
-
|
85
|
-
A non-hyperbolic example
|
86
|
-
------------------------
|
87
|
-
|
88
|
-
We can also compute the volumes for a manifold that might be non-hyperbolic, here the complement of the 5\ :sub:`1` knot::
|
89
|
-
|
90
|
-
>>> Manifold("5_1").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
91
|
-
[[], [[1.52310839130992 E-14, 0.E-37]]]
|
92
|
-
|
93
|
-
Note that one of the Ptolemy varieties is non-empty which proves that all edges of the triangulation are essential. We also see that all volumes are 0 and thus smaller than the volume 2.029883... of the figure-eight knot complement that is proven to be the smallest volume of any orientable cusped manifold. Thus, it follows from Theorem 1.3 and Remark 1.4 of [GGZ2014]_ that 5\ :sub:`1` is not hyperbolic.
|
94
|
-
|
95
|
-
**Remark:** The ptolemy module does not (yet) support interval arithmetics, otherwise, this would be a proof that 5\ :sub:`1` is not hyperbolic.
|
96
|
-
|
97
|
-
|
98
|
-
Flattening nested structures
|
99
|
-
----------------------------
|
100
|
-
|
101
|
-
If we want to loose some of the grouping, we can call ``flatten`` on the results. Here the grouping by obstruction class is lost::
|
102
|
-
|
103
|
-
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical().flatten()
|
104
|
-
[[0.E-19, 1.88267370443418 E-14], [2.02988321281931, -2.02988321281931]]
|
105
|
-
|
106
|
-
And now, the grouping by Galois conjugacy is lost as well, resulting in a flat list::
|
107
|
-
|
108
|
-
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical().flatten(2)
|
109
|
-
[0.E-19, 1.88267370443418 E-14, 2.02988321281931, -2.02988321281931]
|
110
|
-
|
111
|
-
So the result is just a flat list.
|
112
|
-
|
113
|
-
**Remark:** We cannot `overflatten`. If we give an even larger argument to flatten, the result will just stay a flat list.
|
114
|
-
|
115
|
-
.. _ptolemy-example-missing-auto-completion:
|
116
|
-
|
117
|
-
Lack of tab-autocompletion for nested structures
|
118
|
-
-------------------------------------------------
|
119
|
-
|
120
|
-
Unfortunately, the autocompletion does not list all the desired results when we have a nested structure. For example::
|
121
|
-
|
122
|
-
>>> sols = Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False)
|
123
|
-
>>> sols.
|
124
|
-
|
125
|
-
When we now hit the tab key::
|
126
|
-
|
127
|
-
>>> sols.
|
128
|
-
sols.append sols.extend sols.index sols.pop sols.reverse
|
129
|
-
sols.count sols.flatten sols.insert sols.remove sols.sort
|
130
|
-
|
131
|
-
... we only get ``list`` methods, but not the desired ``volume_numerical``. One way to discover the available methods is to pick a leaf of the nested structure and hit the tab key::
|
132
|
-
|
133
|
-
>>> sol = sols.flatten(100)[0]
|
134
|
-
>>> sol.
|
135
|
-
sol.N sol.keys
|
136
|
-
sol.check_against_manifold sol.long_edge
|
137
|
-
...
|
138
|
-
sol.itervalues sol.volume_numerical
|
139
|
-
|
140
|
-
The overview diagram might also be helpful.
|
141
|
-
|
142
|
-
Converting exact solutions into numerical solutions
|
143
|
-
---------------------------------------------------
|
144
|
-
|
145
|
-
We can turn exact solutions into numerical solutions by calling ``numerical``::
|
146
|
-
|
147
|
-
>>> sol = Manifold("m003").ptolemy_variety(2, 1).retrieve_solutions()[0]
|
148
|
-
>>> sol
|
149
|
-
PtolemyCoordinates(
|
150
|
-
{'c_0011_0': 1,
|
151
|
-
'c_0011_1': -1,
|
152
|
-
'c_0101_0': Mod(x, x^2 + x + 1),
|
153
|
-
...
|
154
|
-
's_3_1': 1},
|
155
|
-
is_numerical = False, ...)
|
156
|
-
>>> sol.numerical()
|
157
|
-
[PtolemyCoordinates(
|
158
|
-
{'c_0011_0': 1,
|
159
|
-
'c_0011_1': -1,
|
160
|
-
'c_0101_0': -0.500000000000000 - 0.866025403784439*I,
|
161
|
-
...,
|
162
|
-
's_3_1': 1},
|
163
|
-
is_numerical = True, ...),
|
164
|
-
PtolemyCoordinates(
|
165
|
-
{'c_0011_0': 1,
|
166
|
-
'c_0011_1': -1,
|
167
|
-
'c_0101_0': -0.500000000000000 + 0.866025403784439*I,
|
168
|
-
...,
|
169
|
-
's_3_1': 1},
|
170
|
-
is_numerical = True, ...)]
|
171
|
-
|
172
|
-
Note that the one exact (algebraic) solution turns into a list of numerical solutions which are Galois conjugates.
|
173
|
-
|
174
|
-
**Remark:** This uses the current pari precision. See the :ref:`above example <ptolemy-example-increase-precision>`, in particular, the comment about interval arithmetics.
|
175
|
-
|
176
|
-
**Remark:** Calling ``numerical()`` on a numerical solution does nothing.
|
177
|
-
|
178
|
-
**Remark:** ``CrossRatios`` also support ``numerical``.
|
179
|
-
|
180
|
-
.. _ptolemy-example-numerical-matrix:
|
181
|
-
|
182
|
-
Working with exact vs numerical solutions
|
183
|
-
-----------------------------------------
|
184
|
-
|
185
|
-
Most methods such as ``evaluate_word`` or ``cross_ratios`` work just the same way on an exact solution::
|
186
|
-
|
187
|
-
>>> exact_sol = Manifold("m004").ptolemy_variety(2, 1).retrieve_solutions()[0]
|
188
|
-
>>> exact_sol
|
189
|
-
PtolemyCoordinates(
|
190
|
-
{'c_0011_0': 1,
|
191
|
-
'c_0011_1': -1,
|
192
|
-
'c_0101_0': 1,
|
193
|
-
'c_0101_1': Mod(x, x^2 + x + 1),
|
194
|
-
...,
|
195
|
-
's_3_1': -1},
|
196
|
-
is_numerical = False, ...)
|
197
|
-
>>> exact_sol.evaluate_word('a')
|
198
|
-
[[Mod(-2*x, x^2 + x + 1), Mod(-x - 1, x^2 + x + 1)],
|
199
|
-
[Mod(x, x^2 + x + 1), Mod(x + 1, x^2 + x + 1)]]
|
200
|
-
|
201
|
-
... as they do on a numerical solution::
|
202
|
-
|
203
|
-
>>> numerical_sol = sol.numerical()[0]
|
204
|
-
>>> numerical_sol
|
205
|
-
PtolemyCoordinates(
|
206
|
-
{'c_0011_0': 1,
|
207
|
-
'c_0011_1': -1,
|
208
|
-
'c_0101_0': 1,
|
209
|
-
'c_0101_1': -0.500000000000000 - 0.866025403784439*I,
|
210
|
-
...,
|
211
|
-
's_3_1': -1},
|
212
|
-
is_numerical = False, ...)
|
213
|
-
>>> numerical_sol.evaluate_word('a')
|
214
|
-
[[1.00000000000000 + 1.73205080756888*I,
|
215
|
-
-0.500000000000000 + 0.866025403784439*I],
|
216
|
-
[-0.500000000000000 - 0.866025403784439*I,
|
217
|
-
0.500000000000000 - 0.866025403784439*I]]
|
218
|
-
|
219
|
-
Methods with postfix ``_numerical`` are special: when applied to an exact solution, they implicitly convert it to a list
|
220
|
-
of Galois conjugate numerical solutions first. ``volume_numerical`` is an example (because volume is a transcendental function)::
|
221
|
-
|
222
|
-
>>> exact_sol.volume_numerical()
|
223
|
-
[-2.02988321281931, 2.02988321281931]
|
224
|
-
>>> numerical_sol.volume_numerical()
|
225
|
-
-2.02988321281931
|
226
|
-
|
227
|
-
.. _ptolemy-example-retrieve-numerical-solutions:
|
228
|
-
|
229
|
-
Computing numerical solutions directly
|
230
|
-
--------------------------------------
|
231
|
-
|
232
|
-
We can also directly compute numerical solutions::
|
233
|
-
|
234
|
-
>>> M = Manifold("m004")
|
235
|
-
>>> sols = M.ptolemy_variety(2,'all').retrieve_solutions(numerical = True)
|
236
|
-
[[],
|
237
|
-
[[PtolemyCoordinates(
|
238
|
-
{'c_0011_0': 1.00000000000000 + 0.E-19*I,
|
239
|
-
'c_0011_1': -1.00000000000000 + 0.E-19*I,
|
240
|
-
'c_0101_0': 1.00000000000000 + 0.E-19*I,
|
241
|
-
'c_0101_1': -0.500000000000000 - 0.866025403784439*I,
|
242
|
-
...,
|
243
|
-
's_3_1': -1},
|
244
|
-
is_numerical = True, ...),
|
245
|
-
PtolemyCoordinates(
|
246
|
-
{'c_0011_0': 1.00000000000000 + 0.E-19*I,
|
247
|
-
'c_0011_1': -1.00000000000000 + 0.E-19*I,
|
248
|
-
'c_0101_0': 1.00000000000000 + 0.E-19*I,
|
249
|
-
'c_0101_1': -0.500000000000000 + 0.866025403784439*I,
|
250
|
-
...,
|
251
|
-
's_3_1': -1},
|
252
|
-
is_numerical = True, ...)]]]
|
253
|
-
|
254
|
-
The structure is as described earlier, a list of lists of lists: first solutions are grouped by obstruction class, then by Galois conjugacy.
|
255
|
-
|
256
|
-
The advantage over going through the exact solutions is that it might be much faster
|
257
|
-
(because it can avoid computing the number field from the lexicographic Groebner basis, see later). For example, many PSL(3, **C**) examples only work when using ``numerical = True``.
|
258
|
-
|
259
|
-
.. _ptolemy-example-cross-ratios:
|
260
|
-
|
261
|
-
Computing cross ratios from Ptolemy coordinates
|
262
|
-
-----------------------------------------------
|
263
|
-
|
264
|
-
Given exact or numerical solutions to the Ptolemy variety, we can also compute the cross ratios/shape parameters::
|
265
|
-
|
266
|
-
>>> sols = Manifold("m004").ptolemy_variety(2,'all').retrieve_solutions(verbose=False)
|
267
|
-
>>> zs=sols.cross_ratios()
|
268
|
-
>>> zs
|
269
|
-
[[],
|
270
|
-
[CrossRatios({'z_0000_0': Mod(x + 1, x^2 + x + 1),
|
271
|
-
'z_0000_1': Mod(x + 1, x^2 + x + 1),
|
272
|
-
'zp_0000_0': Mod(x + 1, x^2 + x + 1),
|
273
|
-
'zp_0000_1': Mod(x + 1, x^2 + x + 1),
|
274
|
-
'zpp_0000_0': Mod(x + 1, x^2 + x + 1),
|
275
|
-
'zpp_0000_1': Mod(x + 1, x^2 + x + 1)},
|
276
|
-
is_numerical = False, ...)]]
|
277
|
-
|
278
|
-
**Remark**: The shapes will be given as element in the Ptolemy field with defining polynomial being the second argument to ``Mod(..., ...)``, here, x\ :sup:`2`\ +x+1. The Ptolemy field is a (possibly trivial) extension of the shape field. For *N* =2, the Ptolemy field is the trace field [GGZ2014]_ and an iterated square extension of the shape field which is the invariant trace field for a cusped manifold.
|
279
|
-
|
280
|
-
And numerically, so that we can compare to SnapPy's shapes::
|
281
|
-
|
282
|
-
>>> zs.numerical()
|
283
|
-
[[],
|
284
|
-
[[CrossRatios(
|
285
|
-
{'z_0000_0': 0.500000000000000 - 0.866025403784439*I,
|
286
|
-
'z_0000_1': 0.500000000000000 - 0.866025403784439*I,
|
287
|
-
'zp_0000_0': 0.500000000000000 - 0.866025403784439*I,
|
288
|
-
'zp_0000_1': 0.500000000000000 - 0.866025403784439*I,
|
289
|
-
'zpp_0000_0': 0.500000000000000 - 0.866025403784439*I,
|
290
|
-
'zpp_0000_1': 0.500000000000000 - 0.866025403784439*I},
|
291
|
-
is_numerical = True, ...),
|
292
|
-
CrossRatios(
|
293
|
-
{'z_0000_0': 0.500000000000000 + 0.866025403784439*I,
|
294
|
-
'z_0000_1': 0.500000000000000 + 0.866025403784439*I,
|
295
|
-
'zp_0000_0': 0.500000000000000 + 0.866025403784439*I,
|
296
|
-
'zp_0000_1': 0.500000000000000 + 0.866025403784439*I,
|
297
|
-
'zpp_0000_0': 0.500000000000000 + 0.866025403784439*I,
|
298
|
-
'zpp_0000_1': 0.500000000000000 + 0.866025403784439*I},
|
299
|
-
is_numerical = True, ...)]]]
|
300
|
-
>>> Manifold("m004").tetrahedra_shapes('rect')
|
301
|
-
[0.5000000000 + 0.8660254038*I, 0.5000000000 + 0.8660254038*I]
|
302
|
-
|
303
|
-
The result is of type ``CrossRatios`` and assigns z as well as z'=1/(1-z) and z''=1-1/z a value.
|
304
|
-
|
305
|
-
.. _ptolemy-non-zero-dim-comp:
|
306
|
-
|
307
|
-
The dimension of a component
|
308
|
-
----------------------------
|
309
|
-
|
310
|
-
A Ptolemy variety might have positively dimensional components (note that this might or might not be a positively dimensional family of representations, see :ref:`here <ptolemy-generically-decorated>`). For example, the Ptolemy variety for ``m371`` and the trivial obstruction class has a 1-dimensional component. This is indicated by::
|
311
|
-
|
312
|
-
>>> M.ptolemy_variety(2).retrieve_solutions()
|
313
|
-
[NonZeroDimensionalComponent(dimension = 1)]
|
314
|
-
|
315
|
-
Or::
|
316
|
-
|
317
|
-
>>> M=Manifold("m371")
|
318
|
-
>>> M.ptolemy_variety(2).retrieve_solutions()
|
319
|
-
[[ PtolemyCoordinates(
|
320
|
-
{'c_0011_0': 1,
|
321
|
-
'c_0011_1': -1,
|
322
|
-
'c_0011_2': -1,
|
323
|
-
'c_0011_3': Mod(-x - 1, x^2 + x + 2),
|
324
|
-
...,
|
325
|
-
's_3_4': 1},
|
326
|
-
is_numerical = False, ...)
|
327
|
-
(witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = ['c_0110_2'])) ]]
|
328
|
-
|
329
|
-
The latter actually also provides a sample point (:ref:`witness <ptolemy-example-find-witness>` which we will use :ref:`later <ptolemy-example-non-zero-dim-rep>` to determine whether this corresponds to a 1-dimensional family of representations or not) on the 1-dimensional component. A ``NonZeroDimensionalComponent`` as well as ``PtolemyCoordinates`` (that correspond to 0-dimensional components of the Ptolemy variety)) has a ``dimension`` attribute, so we can do::
|
330
|
-
|
331
|
-
>>> M=Manifold("m371")
|
332
|
-
>>> sols = M.ptolemy_variety(2,'all').retrieve_solutions()
|
333
|
-
>>> sols.dimension
|
334
|
-
[[1], [], [0], []]
|
335
|
-
|
336
|
-
This means that the Ptolemy variety for the trivial obstruction class has a 1-dimensional component and that the Ptolemy variety of one of the other obstruction classes a 0-dimensional component.
|
337
|
-
|
338
|
-
A ``NonZeroDimensionalComponent`` is actually again a list whose elements will be witness points if witnesses have been computed for this Ptolemy variety.
|
339
|
-
|
340
|
-
**Warning:** This implies that if we ``flatten`` too much, the reported dimension becomes 0 which is the dimension of the witness point instead of 1::
|
341
|
-
|
342
|
-
>>> sols.flatten()
|
343
|
-
[1, 0]
|
344
|
-
|
345
|
-
Too much ``flatten``::
|
346
|
-
|
347
|
-
>>> sols.flatten()
|
348
|
-
[0, 0]
|
349
|
-
|
350
|
-
The advantage is that we can still call methods such as ``volume_numerical`` and actually see the volume of a witness point (it is known that the volume stays constant on a component of boundary-unipotent representations, so one witness point can tell us the volume of all representation in that component)::
|
351
|
-
|
352
|
-
>>> sols.volume_numerical()
|
353
|
-
[[[ [0.E-38, 0.E-38] (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = ['c_0110_2'])) ]],
|
354
|
-
[],
|
355
|
-
[[4.75170196551790,
|
356
|
-
-4.75170196551790,
|
357
|
-
4.75170196551790,
|
358
|
-
-4.75170196551790,
|
359
|
-
1.17563301006556,
|
360
|
-
-1.17563301006556,
|
361
|
-
1.17563301006556,
|
362
|
-
-1.17563301006556]],
|
363
|
-
[]]
|
1
|
+
Step-by-step examples: Part 2
|
2
|
+
=============================
|
3
|
+
|
4
|
+
.. _ptolemy-example-smart-lists:
|
5
|
+
|
6
|
+
The Ptolemy list type
|
7
|
+
---------------------
|
8
|
+
|
9
|
+
Recall that ``ptolemy_variety`` with ``obstruction_class='all'`` returns a list of varieties, one for each obstruction class::
|
10
|
+
|
11
|
+
>>> M = Manifold("m003")
|
12
|
+
>>> M.ptolemy_variety(2, obstruction_class = 'all')
|
13
|
+
[Ptolemy Variety for m003, N = 2, obstruction_class = 0
|
14
|
+
c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2
|
15
|
+
c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2
|
16
|
+
- 1 + c_0011_0,
|
17
|
+
Ptolemy Variety for m003, N = 2, obstruction_class = 1
|
18
|
+
- c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2
|
19
|
+
- c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2
|
20
|
+
- 1 + c_0011_0]
|
21
|
+
|
22
|
+
Also recall that ``retrieve_solutions`` was a method of a ``PtolemyVariety``. Assume we want to call ``retrieve_solutions`` for each Ptolemy variety. As in the previous example, we could write a loop such as::
|
23
|
+
|
24
|
+
>>> [p.retrieve_solutions(verbose=False) for p in M.ptolemy_variety(2, 'all')]
|
25
|
+
|
26
|
+
The ptolemy module allows to do this in a much shorter way::
|
27
|
+
|
28
|
+
>>> M.ptolemy_variety(2, 'all').retrieve_solutions(verbose=False)
|
29
|
+
[[PtolemyCoordinates(
|
30
|
+
{'c_0011_0': 1,
|
31
|
+
'c_0011_1': -1,
|
32
|
+
'c_0101_0': Mod(x, x^2 - x - 1),
|
33
|
+
...,
|
34
|
+
's_3_1': 1},
|
35
|
+
is_numerical = False, ...)],
|
36
|
+
[PtolemyCoordinates(
|
37
|
+
{'c_0011_0': 1,
|
38
|
+
'c_0011_1': -1,
|
39
|
+
'c_0101_0': Mod(x, x^2 + x + 1),
|
40
|
+
...,
|
41
|
+
's_3_1': 1},
|
42
|
+
is_numerical = False, ...)]]
|
43
|
+
|
44
|
+
This behavior is specific to the ptolemy module. It works with many methods of the ptolemy module that
|
45
|
+
can potentially return more than one object. These methods return a special kind of list (usually
|
46
|
+
``MethodMappingList``, a subclass of python ``list``) that tries to call the method of the given name (here ``retrieve_solutions``) with
|
47
|
+
the given arguments (here ``verbose=False``) on each element in the list (here the two Ptolemy varieties).
|
48
|
+
|
49
|
+
Since ``retrieve_solutions`` itself actually returns a list, the result is a list of lists of solutions which are of type ``PtolemyCoordinates``. The first level groups the solutions by obstruction class. The inner lists contain the different (non-Galois conjugate) solutions for each obstruction class (here, for ``m003``, each inner lists contains only one element).
|
50
|
+
|
51
|
+
Using the Ptolemy list type recursively
|
52
|
+
---------------------------------------
|
53
|
+
|
54
|
+
The list type described in the previous example works recursively. Recall that an algebraic solution to a Ptolemy variety (of type ``PtolemyCoordinates``) has a method ``volume_numerical`` that returns a list of volumes::
|
55
|
+
|
56
|
+
>>> M=Manifold("m003")
|
57
|
+
>>> p=M.ptolemy_variety(2,1)
|
58
|
+
>>> sol=p.retrieve_solutions(verbose=False)[0]
|
59
|
+
>>> sol.volume_numerical()
|
60
|
+
[0.E-19, 1.88267370443418 E-14]
|
61
|
+
|
62
|
+
We can chain these commands together to retrieve the volumes of all boundary-unipotent PSL(2, **C**) (that are :ref:`generically decorated <ptolemy-generically-decorated>` with respect to the triangulation) in just one line::
|
63
|
+
|
64
|
+
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
65
|
+
[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]
|
66
|
+
|
67
|
+
Note that the volumes of the representations are in a list of lists of lists. At the first level the volumes are grouped by obstruction class, then by Galois conjugacy.
|
68
|
+
|
69
|
+
**Remark:** There might be an extra level for witness points.
|
70
|
+
|
71
|
+
**Remark:** Unfortunately, this is not compatible with tab-autocompletion, see :ref:`later <ptolemy-example-missing-auto-completion>`.
|
72
|
+
|
73
|
+
A comparison of ``m003`` and ``m004``
|
74
|
+
-------------------------------------
|
75
|
+
|
76
|
+
We can now compare the set of volumes of ``m003`` and ``m004``:
|
77
|
+
|
78
|
+
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
79
|
+
[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]
|
80
|
+
>>> Manifold("m004").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
81
|
+
[[], [[-2.02988321281931, 2.02988321281931]]]
|
82
|
+
|
83
|
+
We see that the two manifolds are distinguished by their volumes of boundary-unipotent representations: ``m004`` has no representation with trivial volume (this is not a proof as in theory, there could be such a representation which is not :ref:`generically decorated <ptolemy-generically-decorated>` with respect to the given triangulation) and no representation that can be lifted to a boundary-unipotent SL(2, **C**)-representation.
|
84
|
+
|
85
|
+
A non-hyperbolic example
|
86
|
+
------------------------
|
87
|
+
|
88
|
+
We can also compute the volumes for a manifold that might be non-hyperbolic, here the complement of the 5\ :sub:`1` knot::
|
89
|
+
|
90
|
+
>>> Manifold("5_1").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical()
|
91
|
+
[[], [[1.52310839130992 E-14, 0.E-37]]]
|
92
|
+
|
93
|
+
Note that one of the Ptolemy varieties is non-empty which proves that all edges of the triangulation are essential. We also see that all volumes are 0 and thus smaller than the volume 2.029883... of the figure-eight knot complement that is proven to be the smallest volume of any orientable cusped manifold. Thus, it follows from Theorem 1.3 and Remark 1.4 of [GGZ2014]_ that 5\ :sub:`1` is not hyperbolic.
|
94
|
+
|
95
|
+
**Remark:** The ptolemy module does not (yet) support interval arithmetics, otherwise, this would be a proof that 5\ :sub:`1` is not hyperbolic.
|
96
|
+
|
97
|
+
|
98
|
+
Flattening nested structures
|
99
|
+
----------------------------
|
100
|
+
|
101
|
+
If we want to loose some of the grouping, we can call ``flatten`` on the results. Here the grouping by obstruction class is lost::
|
102
|
+
|
103
|
+
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical().flatten()
|
104
|
+
[[0.E-19, 1.88267370443418 E-14], [2.02988321281931, -2.02988321281931]]
|
105
|
+
|
106
|
+
And now, the grouping by Galois conjugacy is lost as well, resulting in a flat list::
|
107
|
+
|
108
|
+
>>> Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False).volume_numerical().flatten(2)
|
109
|
+
[0.E-19, 1.88267370443418 E-14, 2.02988321281931, -2.02988321281931]
|
110
|
+
|
111
|
+
So the result is just a flat list.
|
112
|
+
|
113
|
+
**Remark:** We cannot `overflatten`. If we give an even larger argument to flatten, the result will just stay a flat list.
|
114
|
+
|
115
|
+
.. _ptolemy-example-missing-auto-completion:
|
116
|
+
|
117
|
+
Lack of tab-autocompletion for nested structures
|
118
|
+
-------------------------------------------------
|
119
|
+
|
120
|
+
Unfortunately, the autocompletion does not list all the desired results when we have a nested structure. For example::
|
121
|
+
|
122
|
+
>>> sols = Manifold("m003").ptolemy_variety(2,'all').retrieve_solutions(verbose=False)
|
123
|
+
>>> sols.
|
124
|
+
|
125
|
+
When we now hit the tab key::
|
126
|
+
|
127
|
+
>>> sols.
|
128
|
+
sols.append sols.extend sols.index sols.pop sols.reverse
|
129
|
+
sols.count sols.flatten sols.insert sols.remove sols.sort
|
130
|
+
|
131
|
+
... we only get ``list`` methods, but not the desired ``volume_numerical``. One way to discover the available methods is to pick a leaf of the nested structure and hit the tab key::
|
132
|
+
|
133
|
+
>>> sol = sols.flatten(100)[0]
|
134
|
+
>>> sol.
|
135
|
+
sol.N sol.keys
|
136
|
+
sol.check_against_manifold sol.long_edge
|
137
|
+
...
|
138
|
+
sol.itervalues sol.volume_numerical
|
139
|
+
|
140
|
+
The overview diagram might also be helpful.
|
141
|
+
|
142
|
+
Converting exact solutions into numerical solutions
|
143
|
+
---------------------------------------------------
|
144
|
+
|
145
|
+
We can turn exact solutions into numerical solutions by calling ``numerical``::
|
146
|
+
|
147
|
+
>>> sol = Manifold("m003").ptolemy_variety(2, 1).retrieve_solutions()[0]
|
148
|
+
>>> sol
|
149
|
+
PtolemyCoordinates(
|
150
|
+
{'c_0011_0': 1,
|
151
|
+
'c_0011_1': -1,
|
152
|
+
'c_0101_0': Mod(x, x^2 + x + 1),
|
153
|
+
...
|
154
|
+
's_3_1': 1},
|
155
|
+
is_numerical = False, ...)
|
156
|
+
>>> sol.numerical()
|
157
|
+
[PtolemyCoordinates(
|
158
|
+
{'c_0011_0': 1,
|
159
|
+
'c_0011_1': -1,
|
160
|
+
'c_0101_0': -0.500000000000000 - 0.866025403784439*I,
|
161
|
+
...,
|
162
|
+
's_3_1': 1},
|
163
|
+
is_numerical = True, ...),
|
164
|
+
PtolemyCoordinates(
|
165
|
+
{'c_0011_0': 1,
|
166
|
+
'c_0011_1': -1,
|
167
|
+
'c_0101_0': -0.500000000000000 + 0.866025403784439*I,
|
168
|
+
...,
|
169
|
+
's_3_1': 1},
|
170
|
+
is_numerical = True, ...)]
|
171
|
+
|
172
|
+
Note that the one exact (algebraic) solution turns into a list of numerical solutions which are Galois conjugates.
|
173
|
+
|
174
|
+
**Remark:** This uses the current pari precision. See the :ref:`above example <ptolemy-example-increase-precision>`, in particular, the comment about interval arithmetics.
|
175
|
+
|
176
|
+
**Remark:** Calling ``numerical()`` on a numerical solution does nothing.
|
177
|
+
|
178
|
+
**Remark:** ``CrossRatios`` also support ``numerical``.
|
179
|
+
|
180
|
+
.. _ptolemy-example-numerical-matrix:
|
181
|
+
|
182
|
+
Working with exact vs numerical solutions
|
183
|
+
-----------------------------------------
|
184
|
+
|
185
|
+
Most methods such as ``evaluate_word`` or ``cross_ratios`` work just the same way on an exact solution::
|
186
|
+
|
187
|
+
>>> exact_sol = Manifold("m004").ptolemy_variety(2, 1).retrieve_solutions()[0]
|
188
|
+
>>> exact_sol
|
189
|
+
PtolemyCoordinates(
|
190
|
+
{'c_0011_0': 1,
|
191
|
+
'c_0011_1': -1,
|
192
|
+
'c_0101_0': 1,
|
193
|
+
'c_0101_1': Mod(x, x^2 + x + 1),
|
194
|
+
...,
|
195
|
+
's_3_1': -1},
|
196
|
+
is_numerical = False, ...)
|
197
|
+
>>> exact_sol.evaluate_word('a')
|
198
|
+
[[Mod(-2*x, x^2 + x + 1), Mod(-x - 1, x^2 + x + 1)],
|
199
|
+
[Mod(x, x^2 + x + 1), Mod(x + 1, x^2 + x + 1)]]
|
200
|
+
|
201
|
+
... as they do on a numerical solution::
|
202
|
+
|
203
|
+
>>> numerical_sol = sol.numerical()[0]
|
204
|
+
>>> numerical_sol
|
205
|
+
PtolemyCoordinates(
|
206
|
+
{'c_0011_0': 1,
|
207
|
+
'c_0011_1': -1,
|
208
|
+
'c_0101_0': 1,
|
209
|
+
'c_0101_1': -0.500000000000000 - 0.866025403784439*I,
|
210
|
+
...,
|
211
|
+
's_3_1': -1},
|
212
|
+
is_numerical = False, ...)
|
213
|
+
>>> numerical_sol.evaluate_word('a')
|
214
|
+
[[1.00000000000000 + 1.73205080756888*I,
|
215
|
+
-0.500000000000000 + 0.866025403784439*I],
|
216
|
+
[-0.500000000000000 - 0.866025403784439*I,
|
217
|
+
0.500000000000000 - 0.866025403784439*I]]
|
218
|
+
|
219
|
+
Methods with postfix ``_numerical`` are special: when applied to an exact solution, they implicitly convert it to a list
|
220
|
+
of Galois conjugate numerical solutions first. ``volume_numerical`` is an example (because volume is a transcendental function)::
|
221
|
+
|
222
|
+
>>> exact_sol.volume_numerical()
|
223
|
+
[-2.02988321281931, 2.02988321281931]
|
224
|
+
>>> numerical_sol.volume_numerical()
|
225
|
+
-2.02988321281931
|
226
|
+
|
227
|
+
.. _ptolemy-example-retrieve-numerical-solutions:
|
228
|
+
|
229
|
+
Computing numerical solutions directly
|
230
|
+
--------------------------------------
|
231
|
+
|
232
|
+
We can also directly compute numerical solutions::
|
233
|
+
|
234
|
+
>>> M = Manifold("m004")
|
235
|
+
>>> sols = M.ptolemy_variety(2,'all').retrieve_solutions(numerical = True)
|
236
|
+
[[],
|
237
|
+
[[PtolemyCoordinates(
|
238
|
+
{'c_0011_0': 1.00000000000000 + 0.E-19*I,
|
239
|
+
'c_0011_1': -1.00000000000000 + 0.E-19*I,
|
240
|
+
'c_0101_0': 1.00000000000000 + 0.E-19*I,
|
241
|
+
'c_0101_1': -0.500000000000000 - 0.866025403784439*I,
|
242
|
+
...,
|
243
|
+
's_3_1': -1},
|
244
|
+
is_numerical = True, ...),
|
245
|
+
PtolemyCoordinates(
|
246
|
+
{'c_0011_0': 1.00000000000000 + 0.E-19*I,
|
247
|
+
'c_0011_1': -1.00000000000000 + 0.E-19*I,
|
248
|
+
'c_0101_0': 1.00000000000000 + 0.E-19*I,
|
249
|
+
'c_0101_1': -0.500000000000000 + 0.866025403784439*I,
|
250
|
+
...,
|
251
|
+
's_3_1': -1},
|
252
|
+
is_numerical = True, ...)]]]
|
253
|
+
|
254
|
+
The structure is as described earlier, a list of lists of lists: first solutions are grouped by obstruction class, then by Galois conjugacy.
|
255
|
+
|
256
|
+
The advantage over going through the exact solutions is that it might be much faster
|
257
|
+
(because it can avoid computing the number field from the lexicographic Groebner basis, see later). For example, many PSL(3, **C**) examples only work when using ``numerical = True``.
|
258
|
+
|
259
|
+
.. _ptolemy-example-cross-ratios:
|
260
|
+
|
261
|
+
Computing cross ratios from Ptolemy coordinates
|
262
|
+
-----------------------------------------------
|
263
|
+
|
264
|
+
Given exact or numerical solutions to the Ptolemy variety, we can also compute the cross ratios/shape parameters::
|
265
|
+
|
266
|
+
>>> sols = Manifold("m004").ptolemy_variety(2,'all').retrieve_solutions(verbose=False)
|
267
|
+
>>> zs=sols.cross_ratios()
|
268
|
+
>>> zs
|
269
|
+
[[],
|
270
|
+
[CrossRatios({'z_0000_0': Mod(x + 1, x^2 + x + 1),
|
271
|
+
'z_0000_1': Mod(x + 1, x^2 + x + 1),
|
272
|
+
'zp_0000_0': Mod(x + 1, x^2 + x + 1),
|
273
|
+
'zp_0000_1': Mod(x + 1, x^2 + x + 1),
|
274
|
+
'zpp_0000_0': Mod(x + 1, x^2 + x + 1),
|
275
|
+
'zpp_0000_1': Mod(x + 1, x^2 + x + 1)},
|
276
|
+
is_numerical = False, ...)]]
|
277
|
+
|
278
|
+
**Remark**: The shapes will be given as element in the Ptolemy field with defining polynomial being the second argument to ``Mod(..., ...)``, here, x\ :sup:`2`\ +x+1. The Ptolemy field is a (possibly trivial) extension of the shape field. For *N* =2, the Ptolemy field is the trace field [GGZ2014]_ and an iterated square extension of the shape field which is the invariant trace field for a cusped manifold.
|
279
|
+
|
280
|
+
And numerically, so that we can compare to SnapPy's shapes::
|
281
|
+
|
282
|
+
>>> zs.numerical()
|
283
|
+
[[],
|
284
|
+
[[CrossRatios(
|
285
|
+
{'z_0000_0': 0.500000000000000 - 0.866025403784439*I,
|
286
|
+
'z_0000_1': 0.500000000000000 - 0.866025403784439*I,
|
287
|
+
'zp_0000_0': 0.500000000000000 - 0.866025403784439*I,
|
288
|
+
'zp_0000_1': 0.500000000000000 - 0.866025403784439*I,
|
289
|
+
'zpp_0000_0': 0.500000000000000 - 0.866025403784439*I,
|
290
|
+
'zpp_0000_1': 0.500000000000000 - 0.866025403784439*I},
|
291
|
+
is_numerical = True, ...),
|
292
|
+
CrossRatios(
|
293
|
+
{'z_0000_0': 0.500000000000000 + 0.866025403784439*I,
|
294
|
+
'z_0000_1': 0.500000000000000 + 0.866025403784439*I,
|
295
|
+
'zp_0000_0': 0.500000000000000 + 0.866025403784439*I,
|
296
|
+
'zp_0000_1': 0.500000000000000 + 0.866025403784439*I,
|
297
|
+
'zpp_0000_0': 0.500000000000000 + 0.866025403784439*I,
|
298
|
+
'zpp_0000_1': 0.500000000000000 + 0.866025403784439*I},
|
299
|
+
is_numerical = True, ...)]]]
|
300
|
+
>>> Manifold("m004").tetrahedra_shapes('rect')
|
301
|
+
[0.5000000000 + 0.8660254038*I, 0.5000000000 + 0.8660254038*I]
|
302
|
+
|
303
|
+
The result is of type ``CrossRatios`` and assigns z as well as z'=1/(1-z) and z''=1-1/z a value.
|
304
|
+
|
305
|
+
.. _ptolemy-non-zero-dim-comp:
|
306
|
+
|
307
|
+
The dimension of a component
|
308
|
+
----------------------------
|
309
|
+
|
310
|
+
A Ptolemy variety might have positively dimensional components (note that this might or might not be a positively dimensional family of representations, see :ref:`here <ptolemy-generically-decorated>`). For example, the Ptolemy variety for ``m371`` and the trivial obstruction class has a 1-dimensional component. This is indicated by::
|
311
|
+
|
312
|
+
>>> M.ptolemy_variety(2).retrieve_solutions()
|
313
|
+
[NonZeroDimensionalComponent(dimension = 1)]
|
314
|
+
|
315
|
+
Or::
|
316
|
+
|
317
|
+
>>> M=Manifold("m371")
|
318
|
+
>>> M.ptolemy_variety(2).retrieve_solutions()
|
319
|
+
[[ PtolemyCoordinates(
|
320
|
+
{'c_0011_0': 1,
|
321
|
+
'c_0011_1': -1,
|
322
|
+
'c_0011_2': -1,
|
323
|
+
'c_0011_3': Mod(-x - 1, x^2 + x + 2),
|
324
|
+
...,
|
325
|
+
's_3_4': 1},
|
326
|
+
is_numerical = False, ...)
|
327
|
+
(witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = ['c_0110_2'])) ]]
|
328
|
+
|
329
|
+
The latter actually also provides a sample point (:ref:`witness <ptolemy-example-find-witness>` which we will use :ref:`later <ptolemy-example-non-zero-dim-rep>` to determine whether this corresponds to a 1-dimensional family of representations or not) on the 1-dimensional component. A ``NonZeroDimensionalComponent`` as well as ``PtolemyCoordinates`` (that correspond to 0-dimensional components of the Ptolemy variety)) has a ``dimension`` attribute, so we can do::
|
330
|
+
|
331
|
+
>>> M=Manifold("m371")
|
332
|
+
>>> sols = M.ptolemy_variety(2,'all').retrieve_solutions()
|
333
|
+
>>> sols.dimension
|
334
|
+
[[1], [], [0], []]
|
335
|
+
|
336
|
+
This means that the Ptolemy variety for the trivial obstruction class has a 1-dimensional component and that the Ptolemy variety of one of the other obstruction classes a 0-dimensional component.
|
337
|
+
|
338
|
+
A ``NonZeroDimensionalComponent`` is actually again a list whose elements will be witness points if witnesses have been computed for this Ptolemy variety.
|
339
|
+
|
340
|
+
**Warning:** This implies that if we ``flatten`` too much, the reported dimension becomes 0 which is the dimension of the witness point instead of 1::
|
341
|
+
|
342
|
+
>>> sols.flatten()
|
343
|
+
[1, 0]
|
344
|
+
|
345
|
+
Too much ``flatten``::
|
346
|
+
|
347
|
+
>>> sols.flatten()
|
348
|
+
[0, 0]
|
349
|
+
|
350
|
+
The advantage is that we can still call methods such as ``volume_numerical`` and actually see the volume of a witness point (it is known that the volume stays constant on a component of boundary-unipotent representations, so one witness point can tell us the volume of all representation in that component)::
|
351
|
+
|
352
|
+
>>> sols.volume_numerical()
|
353
|
+
[[[ [0.E-38, 0.E-38] (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = ['c_0110_2'])) ]],
|
354
|
+
[],
|
355
|
+
[[4.75170196551790,
|
356
|
+
-4.75170196551790,
|
357
|
+
4.75170196551790,
|
358
|
+
-4.75170196551790,
|
359
|
+
1.17563301006556,
|
360
|
+
-1.17563301006556,
|
361
|
+
1.17563301006556,
|
362
|
+
-1.17563301006556]],
|
363
|
+
[]]
|