skfolio 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skfolio/__init__.py +29 -0
- skfolio/cluster/__init__.py +8 -0
- skfolio/cluster/_hierarchical.py +387 -0
- skfolio/datasets/__init__.py +20 -0
- skfolio/datasets/_base.py +389 -0
- skfolio/datasets/data/__init__.py +0 -0
- skfolio/datasets/data/factors_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_index.csv.gz +0 -0
- skfolio/distance/__init__.py +26 -0
- skfolio/distance/_base.py +55 -0
- skfolio/distance/_distance.py +574 -0
- skfolio/exceptions.py +30 -0
- skfolio/measures/__init__.py +76 -0
- skfolio/measures/_enums.py +355 -0
- skfolio/measures/_measures.py +607 -0
- skfolio/metrics/__init__.py +3 -0
- skfolio/metrics/_scorer.py +121 -0
- skfolio/model_selection/__init__.py +18 -0
- skfolio/model_selection/_combinatorial.py +407 -0
- skfolio/model_selection/_validation.py +194 -0
- skfolio/model_selection/_walk_forward.py +221 -0
- skfolio/moments/__init__.py +41 -0
- skfolio/moments/covariance/__init__.py +29 -0
- skfolio/moments/covariance/_base.py +101 -0
- skfolio/moments/covariance/_covariance.py +1108 -0
- skfolio/moments/expected_returns/__init__.py +21 -0
- skfolio/moments/expected_returns/_base.py +31 -0
- skfolio/moments/expected_returns/_expected_returns.py +415 -0
- skfolio/optimization/__init__.py +36 -0
- skfolio/optimization/_base.py +147 -0
- skfolio/optimization/cluster/__init__.py +13 -0
- skfolio/optimization/cluster/_nco.py +348 -0
- skfolio/optimization/cluster/hierarchical/__init__.py +13 -0
- skfolio/optimization/cluster/hierarchical/_base.py +440 -0
- skfolio/optimization/cluster/hierarchical/_herc.py +406 -0
- skfolio/optimization/cluster/hierarchical/_hrp.py +368 -0
- skfolio/optimization/convex/__init__.py +16 -0
- skfolio/optimization/convex/_base.py +1944 -0
- skfolio/optimization/convex/_distributionally_robust.py +392 -0
- skfolio/optimization/convex/_maximum_diversification.py +417 -0
- skfolio/optimization/convex/_mean_risk.py +974 -0
- skfolio/optimization/convex/_risk_budgeting.py +560 -0
- skfolio/optimization/ensemble/__init__.py +6 -0
- skfolio/optimization/ensemble/_base.py +87 -0
- skfolio/optimization/ensemble/_stacking.py +326 -0
- skfolio/optimization/naive/__init__.py +3 -0
- skfolio/optimization/naive/_naive.py +173 -0
- skfolio/population/__init__.py +3 -0
- skfolio/population/_population.py +883 -0
- skfolio/portfolio/__init__.py +13 -0
- skfolio/portfolio/_base.py +1096 -0
- skfolio/portfolio/_multi_period_portfolio.py +610 -0
- skfolio/portfolio/_portfolio.py +842 -0
- skfolio/pre_selection/__init__.py +7 -0
- skfolio/pre_selection/_pre_selection.py +342 -0
- skfolio/preprocessing/__init__.py +3 -0
- skfolio/preprocessing/_returns.py +114 -0
- skfolio/prior/__init__.py +18 -0
- skfolio/prior/_base.py +63 -0
- skfolio/prior/_black_litterman.py +238 -0
- skfolio/prior/_empirical.py +163 -0
- skfolio/prior/_factor_model.py +268 -0
- skfolio/typing.py +50 -0
- skfolio/uncertainty_set/__init__.py +23 -0
- skfolio/uncertainty_set/_base.py +108 -0
- skfolio/uncertainty_set/_bootstrap.py +281 -0
- skfolio/uncertainty_set/_empirical.py +237 -0
- skfolio/utils/__init__.py +0 -0
- skfolio/utils/bootstrap.py +115 -0
- skfolio/utils/equations.py +350 -0
- skfolio/utils/sorting.py +117 -0
- skfolio/utils/stats.py +466 -0
- skfolio/utils/tools.py +567 -0
- skfolio-0.0.1.dist-info/LICENSE +29 -0
- skfolio-0.0.1.dist-info/METADATA +568 -0
- skfolio-0.0.1.dist-info/RECORD +79 -0
- skfolio-0.0.1.dist-info/WHEEL +5 -0
- skfolio-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,560 @@
|
|
1
|
+
"""Risk Budgeting Optimization estimator."""
|
2
|
+
|
3
|
+
# Author: Hugo Delatte <delatte.hugo@gmail.com>
|
4
|
+
# License: BSD 3 clause
|
5
|
+
|
6
|
+
import cvxpy as cp
|
7
|
+
import numpy as np
|
8
|
+
import numpy.typing as npt
|
9
|
+
|
10
|
+
import skfolio.typing as skt
|
11
|
+
from skfolio.measures import RiskMeasure
|
12
|
+
from skfolio.optimization.convex._base import ConvexOptimization
|
13
|
+
from skfolio.prior import BasePrior, EmpiricalPrior
|
14
|
+
from skfolio.utils.tools import args_names, check_estimator
|
15
|
+
|
16
|
+
|
17
|
+
class RiskBudgeting(ConvexOptimization):
|
18
|
+
r"""Risk Budgeting Optimization estimator.
|
19
|
+
|
20
|
+
The Risk Budgeting estimator solves the below convex problem:
|
21
|
+
|
22
|
+
.. math:: \begin{cases}
|
23
|
+
\begin{aligned}
|
24
|
+
&\min_{w} & & risk_{i}(w) \\
|
25
|
+
&\text{s.t.} & & b^T \cdot log(w) \ge c \\
|
26
|
+
& & & w^T \cdot \mu \ge min\_return \\
|
27
|
+
& & & A \cdot w \ge b \\
|
28
|
+
& & & w \ge 0
|
29
|
+
\end{aligned}
|
30
|
+
\end{cases}
|
31
|
+
|
32
|
+
with :math:`b` the risk budget vector and :math:`c` an auxiliary variable of
|
33
|
+
the log barrier.
|
34
|
+
|
35
|
+
And :math:`risk_{i}` a risk measure among:
|
36
|
+
|
37
|
+
* Mean Absolute Deviation
|
38
|
+
* First Lower Partial Moment
|
39
|
+
* Variance
|
40
|
+
* Semi-Variance
|
41
|
+
* CVaR (Conditional Value at Risk)
|
42
|
+
* EVaR (Entropic Value at Risk)
|
43
|
+
* Worst Realization (worst return)
|
44
|
+
* CDaR (Conditional Drawdown at Risk)
|
45
|
+
* Maximum Drawdown
|
46
|
+
* Average Drawdown
|
47
|
+
* EDaR (Entropic Drawdown at Risk)
|
48
|
+
* Ulcer Index
|
49
|
+
* Gini Mean Difference
|
50
|
+
|
51
|
+
Cost and additional constraints can also be added to the optimization problem (see
|
52
|
+
the parameters description).
|
53
|
+
|
54
|
+
Limitations are imposed on some constraints including long only weights to ensure
|
55
|
+
convexity.
|
56
|
+
|
57
|
+
The assets expected returns, covariance matrix and returns are estimated from the
|
58
|
+
:ref:`prior estimator <prior>`.
|
59
|
+
|
60
|
+
Parameters
|
61
|
+
----------
|
62
|
+
risk_measure : RiskMeasure, default=RiskMeasure.VARIANCE
|
63
|
+
:class:`~skfolio.meta.RiskMeasure` of the optimization.
|
64
|
+
Can be any of:
|
65
|
+
|
66
|
+
* VARIANCE
|
67
|
+
* SEMI_VARIANCE
|
68
|
+
* STANDARD_DEVIATION
|
69
|
+
* SEMI_DEVIATION
|
70
|
+
* MEAN_ABSOLUTE_DEVIATION
|
71
|
+
* FIRST_LOWER_PARTIAL_MOMENT
|
72
|
+
* CVAR
|
73
|
+
* EVAR
|
74
|
+
* WORST_REALIZATION
|
75
|
+
* CDAR
|
76
|
+
* MAX_DRAWDOWN
|
77
|
+
* AVERAGE_DRAWDOWN
|
78
|
+
* EDAR
|
79
|
+
* ULCER_INDEX
|
80
|
+
* GINI_MEAN_DIFFERENCE_RATIO
|
81
|
+
|
82
|
+
The default is `RiskMeasure.VARIANCE`.
|
83
|
+
|
84
|
+
risk_budget : dict[str, float] | array-like of shape (n_assets,), optional
|
85
|
+
Risk budget allocated to each asset.
|
86
|
+
If a dictionary is provided, its (key/value) pair must be the
|
87
|
+
(asset name/asset risk budget) and the input `X` of the `fit` methods must be a
|
88
|
+
DataFrame with the assets names in columns.
|
89
|
+
The default (`None`) is to use the identity vector, reducing the risk
|
90
|
+
budgeting to a risk-parity (each asset contributing equally to the total risk).
|
91
|
+
|
92
|
+
prior_estimator : BasePrior, optional
|
93
|
+
:ref:`Prior estimator <prior>`.
|
94
|
+
The prior estimator is used to estimate the :class:`~skfolio.prior.PriorModel`
|
95
|
+
containing the estimation of assets expected returns, covariance matrix,
|
96
|
+
returns and Cholesky decomposition of the covariance.
|
97
|
+
The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`.
|
98
|
+
|
99
|
+
min_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=0.0
|
100
|
+
Minimum assets weights (weights lower bounds).
|
101
|
+
If a float is provided, it is applied to each asset.
|
102
|
+
`None` is equivalent to `-np.Inf` (no lower bound).
|
103
|
+
If a dictionary is provided, its (key/value) pair must be the
|
104
|
+
(asset name/asset minium weight) and the input `X` of the `fit` methods must
|
105
|
+
be a DataFrame with the assets names in columns.
|
106
|
+
When using a dictionary, assets values that are not provided are assigned
|
107
|
+
a minimum weight of `0.0`.
|
108
|
+
The default value is `0.0` (no short selling).
|
109
|
+
|
110
|
+
Example:
|
111
|
+
|
112
|
+
* `min_weights = 0` --> long only portfolio (no short selling).
|
113
|
+
* `min_weights = None` --> no lower bound (same as `-np.Inf`).
|
114
|
+
* `min_weights = -2` --> each weight must be above -200%.
|
115
|
+
* `min_weights = {"SX5E": 0, "SPX": -2}`
|
116
|
+
* `min_weights = [0, -2]`
|
117
|
+
|
118
|
+
max_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=1.0
|
119
|
+
Maximum assets weights (weights upper bounds).
|
120
|
+
If a float is provided, it is applied to each asset.
|
121
|
+
`None` is equivalent to `+np.Inf` (no upper bound).
|
122
|
+
If a dictionary is provided, its (key/value) pair must be the
|
123
|
+
(asset name/asset maximum weight) and the input `X` of the `fit` methods must
|
124
|
+
be a DataFrame with the assets names in columns.
|
125
|
+
When using a dictionary, assets values that are not provided are assigned
|
126
|
+
a minimum weight of `1.0`.
|
127
|
+
The default value is `1.0` (each asset is below 100%).
|
128
|
+
|
129
|
+
Example:
|
130
|
+
|
131
|
+
* `max_weights = 0` --> no long position (short only portfolio).
|
132
|
+
* `max_weights = None` --> no upper bound.
|
133
|
+
* `max_weights = 2` --> each weight must be below 200%.
|
134
|
+
* `max_weights = {"SX5E": 1, "SPX": 2}`
|
135
|
+
* `max_weights = [1, 2]`
|
136
|
+
|
137
|
+
transaction_costs : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
138
|
+
Transaction costs of the assets. It is used to add linear transaction costs to
|
139
|
+
the optimization problem:
|
140
|
+
|
141
|
+
.. math:: total\_cost = \sum_{i=1}^{N} c_{i} \times |w_{i} - w\_prev_{i}|
|
142
|
+
|
143
|
+
with :math:`c_{i}` the transaction cost of asset i, :math:`w_{i}` its weight
|
144
|
+
and :math:`w\_prev_{i}` its previous weight (defined in `previous_weights`).
|
145
|
+
The float :math:`total\_cost` is used in the portfolio expected return:
|
146
|
+
|
147
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_cost
|
148
|
+
|
149
|
+
with :math:`\mu` the vector af assets' expected returns and :math:`w` the
|
150
|
+
vector of assets weights.
|
151
|
+
|
152
|
+
If a float is provided, it is applied to each asset.
|
153
|
+
If a dictionary is provided, its (key/value) pair must be the
|
154
|
+
(asset name/asset cost) and the input `X` of the `fit` methods must be a
|
155
|
+
DataFrame with the assets names in columns.
|
156
|
+
The default value is `0.0`.
|
157
|
+
|
158
|
+
.. warning::
|
159
|
+
|
160
|
+
Based on the above formula, the periodicity of the transaction costs
|
161
|
+
needs to be homogenous to the periodicity of :math:`\mu`. For example, if
|
162
|
+
the input `X` is composed of **daily** returns, the `transaction_costs` need
|
163
|
+
to be expressed in **daily** costs.
|
164
|
+
(See :ref:`sphx_glr_auto_examples_1_mean_risk_plot_6_transaction_costs.py`)
|
165
|
+
|
166
|
+
management_fees : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
167
|
+
Management fees of the assets. It is used to add linear management fees to the
|
168
|
+
optimization problem:
|
169
|
+
|
170
|
+
.. math:: total\_fee = \sum_{i=1}^{N} f_{i} \times w_{i}
|
171
|
+
|
172
|
+
with :math:`f_{i}` the management fee of asset i and :math:`w_{i}` its weight.
|
173
|
+
The float :math:`total\_fee` is used in the portfolio expected return:
|
174
|
+
|
175
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_fee
|
176
|
+
|
177
|
+
with :math:`\mu` the vector af assets expected returns and :math:`w` the vector
|
178
|
+
of assets weights.
|
179
|
+
|
180
|
+
If a float is provided, it is applied to each asset.
|
181
|
+
If a dictionary is provided, its (key/value) pair must be the
|
182
|
+
(asset name/asset fee) and the input `X` of the `fit` methods must be a
|
183
|
+
DataFrame with the assets names in columns.
|
184
|
+
The default value is `0.0`.
|
185
|
+
|
186
|
+
.. warning::
|
187
|
+
|
188
|
+
Based on the above formula, the periodicity of the management fees needs to
|
189
|
+
be homogenous to the periodicity of :math:`\mu`. For example, if the input
|
190
|
+
`X` is composed of **daily** returns, the `management_fees` need to be
|
191
|
+
expressed in **daily** fees.
|
192
|
+
|
193
|
+
.. note::
|
194
|
+
|
195
|
+
Another approach is to directly impact the management fees to the input `X`
|
196
|
+
in order to express the returns net of fees. However, when estimating the
|
197
|
+
:math:`\mu` parameter using for example Shrinkage estimators, this approach
|
198
|
+
would mix a deterministic value with an uncertain one leading to unwanted
|
199
|
+
bias in the management fees.
|
200
|
+
|
201
|
+
previous_weights : float | dict[str, float] | array-like of shape (n_assets, ), optional
|
202
|
+
Previous weights of the assets. Previous weights are used to compute the
|
203
|
+
portfolio cost and the portfolio turnover.
|
204
|
+
If a float is provided, it is applied to each asset.
|
205
|
+
If a dictionary is provided, its (key/value) pair must be the
|
206
|
+
(asset name/asset previous weight) and the input `X` of the `fit` methods must
|
207
|
+
be a DataFrame with the assets names in columns.
|
208
|
+
The default (`None`) means no previous weights.
|
209
|
+
|
210
|
+
linear_constraints : array-like of shape (n_constraints,), optional
|
211
|
+
Linear constraints.
|
212
|
+
The linear constraints must match any of following patterns:
|
213
|
+
|
214
|
+
* "2.5 * ref1 + 0.10 * ref2 + 0.0013 <= 2.5 * ref3"
|
215
|
+
* "ref1 >= 2.9 * ref2"
|
216
|
+
* "ref1 <= ref2"
|
217
|
+
* "ref1 >= ref1"
|
218
|
+
|
219
|
+
With "ref1", "ref2" ... the assets names or the groups names provided
|
220
|
+
in the parameter `groups`. Assets names can be referenced without the need of
|
221
|
+
`groups` if the input `X` of the `fit` methods is a DataFrame with these
|
222
|
+
assets names in columns.
|
223
|
+
|
224
|
+
Examples:
|
225
|
+
|
226
|
+
* "SPX >= 0.10" --> SPX weight must be greater than 10% (note that you can also use `min_weights`)
|
227
|
+
* "SX5E + TLT >= 0.2" --> the sum of SX5E and TLT weights must be greater than 20%
|
228
|
+
* "US >= 0.7" --> the sum of all US weights must be greater than 70%
|
229
|
+
* "Equity <= 3 * Bond" --> the sum of all Equity weights must be less or equal to 3 times the sum of all Bond weights.
|
230
|
+
* "2*SPX + 3*Europe <= Bond + 0.05" --> mixing assets and group constraints
|
231
|
+
|
232
|
+
groups : dict[str, list[str]] or array-like of shape (n_groups, n_assets), optional
|
233
|
+
The assets groups referenced in `linear_constraints`.
|
234
|
+
If a dictionary is provided, its (key/value) pair must be the
|
235
|
+
(asset name/asset groups) and the input `X` of the `fit` methods must be a
|
236
|
+
DataFrame with the assets names in columns.
|
237
|
+
|
238
|
+
Examples:
|
239
|
+
|
240
|
+
* groups = {"SX5E": ["Equity", "Europe"], "SPX": ["Equity", "US"], "TLT": ["Bond", "US"]}
|
241
|
+
* groups = [["Equity", "Equity", "Bond"], ["Europe", "US", "US"]]
|
242
|
+
|
243
|
+
left_inequality : array-like of shape (n_constraints, n_assets), optional
|
244
|
+
Left inequality matrix :math:`A` of the linear
|
245
|
+
constraint :math:`A \cdot w \leq b`.
|
246
|
+
|
247
|
+
right_inequality : array-like of shape (n_constraints, ), optional
|
248
|
+
Right inequality vector :math:`b` of the linear
|
249
|
+
constraint :math:`A \cdot w \leq b`.
|
250
|
+
|
251
|
+
risk_free_rate : float, default=0.0
|
252
|
+
Risk-free interest rate.
|
253
|
+
The default value is `0.0`.
|
254
|
+
|
255
|
+
min_return : float | array-like of shape (n_optimization), optional
|
256
|
+
Lower bound constraint on the expected return.
|
257
|
+
|
258
|
+
min_acceptable_return : float, optional
|
259
|
+
The minimum acceptable return used to distinguish "downside" and "upside"
|
260
|
+
returns for the computation of lower partial moments:
|
261
|
+
|
262
|
+
* First Lower Partial Moment
|
263
|
+
* Semi-Variance
|
264
|
+
* Semi-Deviation
|
265
|
+
|
266
|
+
The default (`None`) is to use the mean.
|
267
|
+
|
268
|
+
cvar_beta : float, default=0.95
|
269
|
+
CVaR (Conditional Value at Risk) confidence level.
|
270
|
+
|
271
|
+
evar_beta : float, default=0
|
272
|
+
EVaR (Entropic Value at Risk) confidence level.
|
273
|
+
|
274
|
+
cvar_beta : float, default=0.95
|
275
|
+
CVaR (Conditional Value at Risk) confidence level.
|
276
|
+
The default value is `0.95`.
|
277
|
+
|
278
|
+
evar_beta : float, default=0
|
279
|
+
EVaR (Entropic Value at Risk) confidence level.
|
280
|
+
The default value is `0.95`.
|
281
|
+
|
282
|
+
cdar_beta : float, default=0.95
|
283
|
+
CDaR (Conditional Drawdown at Risk) confidence level.
|
284
|
+
The default value is `0.95`.
|
285
|
+
|
286
|
+
edar_beta : float, default=0.95
|
287
|
+
EDaR (Entropic Drawdown at Risk) confidence level.
|
288
|
+
The default value is `0.95`.
|
289
|
+
|
290
|
+
add_objective : Callable[[cp.Variable], cp.Expression], optional
|
291
|
+
Add a custom objective to the existing objective expression.
|
292
|
+
It is a function that must take as argument the weights `w` and returns a
|
293
|
+
CVXPY expression.
|
294
|
+
|
295
|
+
add_constraints : Callable[[cp.Variable], cp.Expression|list[cp.Expression]], optional
|
296
|
+
Add a custom constraint or a list of constraints to the existing constraints.
|
297
|
+
It is a function that must take as argument the weights `w` and returns a
|
298
|
+
CVPXY expression or a list of CVPXY expressions.
|
299
|
+
|
300
|
+
overwrite_expected_return : Callable[[cp.Variable], cp.Expression], optional
|
301
|
+
Overwrite the expected return :math:`\mu \cdot w` with a custom expression.
|
302
|
+
It is a function that must take as argument the weights `w` and returns a
|
303
|
+
CVPXY expression.
|
304
|
+
|
305
|
+
solver : str, optional
|
306
|
+
The solver to use. For example, "ECOS", "SCS", or "OSQP".
|
307
|
+
The default (`None`) is set depending on the problem.
|
308
|
+
For more details about available solvers, check the CVXPY documentation:
|
309
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver
|
310
|
+
|
311
|
+
solver_params : dict, optional
|
312
|
+
Solver parameters. For example, `solver_params=dict(verbose=True)`.
|
313
|
+
For more details about solver arguments, check the CVXPY documentation:
|
314
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
|
315
|
+
|
316
|
+
scale_objective : float, optional
|
317
|
+
Scale each objective element by this value.
|
318
|
+
It can be used to increase the optimization accuracies in specific cases.
|
319
|
+
The default (`None`) is set depending on the problem.
|
320
|
+
|
321
|
+
scale_constraints : float, optional
|
322
|
+
Scale each constraint element by this value.
|
323
|
+
It can be used to increase the optimization accuracies in specific cases.
|
324
|
+
The default (`None`) is set depending on the problem.
|
325
|
+
|
326
|
+
raise_on_failure : bool, default=True
|
327
|
+
If this is set to True, an error is raised when the optimization fail otherwise
|
328
|
+
it passes with a warning.
|
329
|
+
|
330
|
+
portfolio_params : dict, optional
|
331
|
+
Portfolio parameters passed to the portfolio evaluated by the `predict` and
|
332
|
+
`score` methods. If not provided, the `name`, `transaction_costs`,
|
333
|
+
`management_fees` and `previous_weights` are copied from the optimization
|
334
|
+
model and systematically passed to the portfolio.
|
335
|
+
|
336
|
+
Attributes
|
337
|
+
----------
|
338
|
+
weights_ : ndarray of shape (n_assets,) or (n_optimizations, n_assets)
|
339
|
+
Weights of the assets.
|
340
|
+
|
341
|
+
problem_: cvxpy.Problem
|
342
|
+
CVXPY problem used for the optimization.
|
343
|
+
|
344
|
+
problem_values_ : dict[str, float] | list[dict[str, float]] of size n_optimizations
|
345
|
+
Expression values retrieved from the CVXPY problem.
|
346
|
+
|
347
|
+
prior_estimator_ : BasePrior
|
348
|
+
Fitted `prior_estimator`.
|
349
|
+
|
350
|
+
n_features_in_ : int
|
351
|
+
Number of assets seen during `fit`.
|
352
|
+
|
353
|
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
354
|
+
Names of assets seen during `fit`. Defined only when `X`
|
355
|
+
has assets names that are all strings.
|
356
|
+
"""
|
357
|
+
|
358
|
+
def __init__(
|
359
|
+
self,
|
360
|
+
risk_measure: RiskMeasure = RiskMeasure.VARIANCE,
|
361
|
+
risk_budget: np.ndarray | None = None,
|
362
|
+
prior_estimator: BasePrior | None = None,
|
363
|
+
min_weights: skt.MultiInput | None = 0.0,
|
364
|
+
max_weights: skt.MultiInput | None = 1.0,
|
365
|
+
transaction_costs: skt.MultiInput = 0.0,
|
366
|
+
management_fees: skt.MultiInput = 0.0,
|
367
|
+
previous_weights: skt.MultiInput | None = None,
|
368
|
+
groups: skt.Groups | None = None,
|
369
|
+
linear_constraints: skt.LinearConstraints | None = None,
|
370
|
+
left_inequality: skt.Inequality | None = None,
|
371
|
+
right_inequality: skt.Inequality | None = None,
|
372
|
+
risk_free_rate: float = 0.0,
|
373
|
+
min_return: skt.Target | None = None,
|
374
|
+
min_acceptable_return: skt.Target | None = None,
|
375
|
+
cvar_beta: float = 0.95,
|
376
|
+
evar_beta: float = 0.95,
|
377
|
+
cdar_beta: float = 0.95,
|
378
|
+
edar_beta: float = 0.95,
|
379
|
+
solver: str | None = None,
|
380
|
+
solver_params: dict | None = None,
|
381
|
+
scale_objective: float | None = None,
|
382
|
+
scale_constraints: float | None = None,
|
383
|
+
raise_on_failure: bool = True,
|
384
|
+
add_objective: skt.ExpressionFunction | None = None,
|
385
|
+
add_constraints: skt.ExpressionFunction | None = None,
|
386
|
+
overwrite_expected_return: skt.ExpressionFunction | None = None,
|
387
|
+
portfolio_params: dict | None = None,
|
388
|
+
):
|
389
|
+
super().__init__(
|
390
|
+
risk_measure=risk_measure,
|
391
|
+
prior_estimator=prior_estimator,
|
392
|
+
min_weights=min_weights,
|
393
|
+
max_weights=max_weights,
|
394
|
+
budget=1,
|
395
|
+
transaction_costs=transaction_costs,
|
396
|
+
management_fees=management_fees,
|
397
|
+
previous_weights=previous_weights,
|
398
|
+
groups=groups,
|
399
|
+
linear_constraints=linear_constraints,
|
400
|
+
left_inequality=left_inequality,
|
401
|
+
right_inequality=right_inequality,
|
402
|
+
risk_free_rate=risk_free_rate,
|
403
|
+
min_acceptable_return=min_acceptable_return,
|
404
|
+
cvar_beta=cvar_beta,
|
405
|
+
evar_beta=evar_beta,
|
406
|
+
cdar_beta=cdar_beta,
|
407
|
+
edar_beta=edar_beta,
|
408
|
+
solver=solver,
|
409
|
+
solver_params=solver_params,
|
410
|
+
scale_objective=scale_objective,
|
411
|
+
scale_constraints=scale_constraints,
|
412
|
+
raise_on_failure=raise_on_failure,
|
413
|
+
add_objective=add_objective,
|
414
|
+
add_constraints=add_constraints,
|
415
|
+
overwrite_expected_return=overwrite_expected_return,
|
416
|
+
portfolio_params=portfolio_params,
|
417
|
+
)
|
418
|
+
self.min_return = min_return
|
419
|
+
self.risk_budget = risk_budget
|
420
|
+
|
421
|
+
def _validation(self) -> None:
|
422
|
+
if not isinstance(self.risk_measure, RiskMeasure):
|
423
|
+
raise TypeError("risk_measure must be of type `RiskMeasure`")
|
424
|
+
if self.min_weights < 0:
|
425
|
+
raise ValueError(
|
426
|
+
"Risk Budgeting must have non negative `min_weights` constraint"
|
427
|
+
" otherwise the problem becomes non-convex."
|
428
|
+
)
|
429
|
+
|
430
|
+
def fit(self, X: npt.ArrayLike, y=None) -> "RiskBudgeting":
|
431
|
+
"""Fit the Risk Budgeting Optimization estimator.
|
432
|
+
|
433
|
+
Parameters
|
434
|
+
----------
|
435
|
+
X : array-like of shape (n_observations, n_assets)
|
436
|
+
Price returns of the assets.
|
437
|
+
|
438
|
+
y : array-like of shape (n_observations, n_factors), optional
|
439
|
+
Price returns of factors.
|
440
|
+
The default is `None`.
|
441
|
+
|
442
|
+
|
443
|
+
Returns
|
444
|
+
-------
|
445
|
+
self : RiskBudgeting
|
446
|
+
Fitted estimator.
|
447
|
+
"""
|
448
|
+
self._check_feature_names(X, reset=True)
|
449
|
+
# Validate
|
450
|
+
self._validation()
|
451
|
+
# Used to avoid adding multiple times similar constrains linked to identical
|
452
|
+
# risk models
|
453
|
+
self._clear_models_cache()
|
454
|
+
self.prior_estimator_ = check_estimator(
|
455
|
+
self.prior_estimator,
|
456
|
+
default=EmpiricalPrior(),
|
457
|
+
check_type=BasePrior,
|
458
|
+
)
|
459
|
+
self.prior_estimator_.fit(X, y)
|
460
|
+
prior_model = self.prior_estimator_.prior_model_
|
461
|
+
n_observations, n_assets = prior_model.returns.shape
|
462
|
+
|
463
|
+
# set solvers
|
464
|
+
self._set_solver(default="SCS")
|
465
|
+
|
466
|
+
# set scale
|
467
|
+
self._set_scale_objective(default=1)
|
468
|
+
self._set_scale_constraints(default=1)
|
469
|
+
|
470
|
+
# Risk budget
|
471
|
+
risk_budget = self.risk_budget
|
472
|
+
if risk_budget is None:
|
473
|
+
risk_budget = np.ones(n_assets)
|
474
|
+
else:
|
475
|
+
risk_budget = self._clean_input(
|
476
|
+
self.risk_budget,
|
477
|
+
n_assets=n_assets,
|
478
|
+
fill_value=1e-10,
|
479
|
+
name="risk_budget",
|
480
|
+
)
|
481
|
+
risk_budget[risk_budget == 0] = 1e-10
|
482
|
+
|
483
|
+
# Variables
|
484
|
+
w = cp.Variable(n_assets)
|
485
|
+
factor = cp.Variable()
|
486
|
+
c = cp.Variable(nonneg=True)
|
487
|
+
|
488
|
+
# Expected returns
|
489
|
+
expected_return = (
|
490
|
+
self._cvx_expected_return(prior_model=prior_model, w=w)
|
491
|
+
- self._cvx_transaction_cost(prior_model=prior_model, w=w, factor=factor)
|
492
|
+
- self._cvx_management_fee(prior_model=prior_model, w=w)
|
493
|
+
)
|
494
|
+
|
495
|
+
# risk budgeting constraint
|
496
|
+
constraints = [
|
497
|
+
risk_budget @ cp.log(w) * self._scale_constraints
|
498
|
+
>= c * self._scale_constraints
|
499
|
+
]
|
500
|
+
|
501
|
+
# weight constraints
|
502
|
+
constraints += self._get_weight_constraints(
|
503
|
+
n_assets=n_assets, w=w, factor=factor
|
504
|
+
)
|
505
|
+
|
506
|
+
parameters_values = []
|
507
|
+
|
508
|
+
# min_return constraint
|
509
|
+
if self.min_return is not None:
|
510
|
+
parameter = cp.Parameter(nonneg=False)
|
511
|
+
constraints += [
|
512
|
+
expected_return * self._scale_constraints
|
513
|
+
>= parameter * factor * self._scale_constraints
|
514
|
+
]
|
515
|
+
parameters_values.append((parameter, self.min_return))
|
516
|
+
|
517
|
+
# risk and risk constraints
|
518
|
+
risk_func = getattr(self, f"_{self.risk_measure.value}_risk")
|
519
|
+
args = {}
|
520
|
+
for arg_name in args_names(risk_func):
|
521
|
+
if arg_name == "prior_model":
|
522
|
+
args[arg_name] = prior_model
|
523
|
+
elif arg_name == "w":
|
524
|
+
args[arg_name] = w
|
525
|
+
elif arg_name == "factor":
|
526
|
+
if self.risk_measure in [RiskMeasure.FIRST_LOWER_PARTIAL_MOMENT]:
|
527
|
+
args[arg_name] = factor
|
528
|
+
else:
|
529
|
+
args[arg_name] = cp.Constant(1)
|
530
|
+
else:
|
531
|
+
args[arg_name] = getattr(self, arg_name)
|
532
|
+
risk, constraints_i = risk_func(**args)
|
533
|
+
constraints += constraints_i
|
534
|
+
|
535
|
+
# custom objectives and constraints
|
536
|
+
custom_objective = self._get_custom_objective(w=w)
|
537
|
+
constraints += self._get_custom_constraints(w=w)
|
538
|
+
|
539
|
+
objective = cp.Minimize(
|
540
|
+
risk * self._scale_objective + custom_objective * self._scale_objective
|
541
|
+
)
|
542
|
+
|
543
|
+
# problem
|
544
|
+
# noinspection PyTypeChecker
|
545
|
+
problem = cp.Problem(objective, constraints)
|
546
|
+
|
547
|
+
# results
|
548
|
+
self._solve_problem(
|
549
|
+
problem=problem,
|
550
|
+
w=w,
|
551
|
+
factor=factor,
|
552
|
+
parameters_values=parameters_values,
|
553
|
+
expressions={
|
554
|
+
"expected_return": expected_return,
|
555
|
+
"risk": risk,
|
556
|
+
"factor": factor,
|
557
|
+
},
|
558
|
+
)
|
559
|
+
|
560
|
+
return self
|
@@ -0,0 +1,87 @@
|
|
1
|
+
"""Base Composition estimator.
|
2
|
+
Follow same implementation as Base composition from sklearn
|
3
|
+
"""
|
4
|
+
|
5
|
+
# Author: Hugo Delatte <delatte.hugo@gmail.com>
|
6
|
+
# License: BSD 3 clause
|
7
|
+
|
8
|
+
from abc import ABC, abstractmethod
|
9
|
+
from contextlib import suppress
|
10
|
+
|
11
|
+
import sklearn.base as skb
|
12
|
+
|
13
|
+
|
14
|
+
class BaseComposition(skb.BaseEstimator, ABC):
|
15
|
+
"""Handles parameter management for ensemble estimators."""
|
16
|
+
|
17
|
+
@abstractmethod
|
18
|
+
def __init__(self):
|
19
|
+
pass
|
20
|
+
|
21
|
+
def _get_params(self, attr, deep=True):
|
22
|
+
out = super().get_params(deep=deep)
|
23
|
+
if not deep:
|
24
|
+
return out
|
25
|
+
|
26
|
+
estimators = getattr(self, attr)
|
27
|
+
try:
|
28
|
+
out.update(estimators)
|
29
|
+
except (TypeError, ValueError):
|
30
|
+
# Ignore TypeError for cases where estimators is not a list of
|
31
|
+
# (name, estimator) and ignore ValueError when the list is not
|
32
|
+
# formatted correctly. This is to prevent errors when calling
|
33
|
+
# `set_params`. `BaseEstimator.set_params` calls `get_params` which
|
34
|
+
# can error for invalid values for `estimators`.
|
35
|
+
return out
|
36
|
+
|
37
|
+
for name, estimator in estimators:
|
38
|
+
if hasattr(estimator, "get_params"):
|
39
|
+
for key, value in estimator.get_params(deep=True).items():
|
40
|
+
out[f"{name}__{key}"] = value
|
41
|
+
return out
|
42
|
+
|
43
|
+
def _set_params(self, attr, **params):
|
44
|
+
# Ensure strict ordering of parameter setting:
|
45
|
+
# 1. All steps
|
46
|
+
if attr in params:
|
47
|
+
setattr(self, attr, params.pop(attr))
|
48
|
+
# 2. Replace items with estimators in params
|
49
|
+
items = getattr(self, attr)
|
50
|
+
if isinstance(items, list) and items:
|
51
|
+
# Get item names used to identify valid names in params
|
52
|
+
# `zip` raises a TypeError when `items` does not contains
|
53
|
+
# elements of length 2
|
54
|
+
with suppress(TypeError):
|
55
|
+
item_names, _ = zip(*items, strict=True)
|
56
|
+
for name in params:
|
57
|
+
if "__" not in name and name in item_names:
|
58
|
+
self._replace_estimator(attr, name, params.pop(name))
|
59
|
+
|
60
|
+
# 3. Step parameters and other initialisation arguments
|
61
|
+
super().set_params(**params)
|
62
|
+
return self
|
63
|
+
|
64
|
+
def _replace_estimator(self, attr, name, new_val):
|
65
|
+
# assumes `name` is a valid estimator name
|
66
|
+
new_estimators = list(getattr(self, attr))
|
67
|
+
for i, (estimator_name, _) in enumerate(new_estimators):
|
68
|
+
if estimator_name == name:
|
69
|
+
new_estimators[i] = (name, new_val)
|
70
|
+
break
|
71
|
+
setattr(self, attr, new_estimators)
|
72
|
+
|
73
|
+
def _validate_names(self, names):
|
74
|
+
if len(set(names)) != len(names):
|
75
|
+
raise ValueError(f"Names provided are not unique: {list(names)!r}")
|
76
|
+
invalid_names = set(names).intersection(self.get_params(deep=False))
|
77
|
+
if invalid_names:
|
78
|
+
raise ValueError(
|
79
|
+
"Estimator names conflict with constructor arguments: {!r}".format(
|
80
|
+
sorted(invalid_names)
|
81
|
+
)
|
82
|
+
)
|
83
|
+
invalid_names = [name for name in names if "__" in name]
|
84
|
+
if invalid_names:
|
85
|
+
raise ValueError(
|
86
|
+
f"Estimator names must not contain __: got {invalid_names!r}"
|
87
|
+
)
|