skfolio 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skfolio/__init__.py +29 -0
- skfolio/cluster/__init__.py +8 -0
- skfolio/cluster/_hierarchical.py +387 -0
- skfolio/datasets/__init__.py +20 -0
- skfolio/datasets/_base.py +389 -0
- skfolio/datasets/data/__init__.py +0 -0
- skfolio/datasets/data/factors_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_index.csv.gz +0 -0
- skfolio/distance/__init__.py +26 -0
- skfolio/distance/_base.py +55 -0
- skfolio/distance/_distance.py +574 -0
- skfolio/exceptions.py +30 -0
- skfolio/measures/__init__.py +76 -0
- skfolio/measures/_enums.py +355 -0
- skfolio/measures/_measures.py +607 -0
- skfolio/metrics/__init__.py +3 -0
- skfolio/metrics/_scorer.py +121 -0
- skfolio/model_selection/__init__.py +18 -0
- skfolio/model_selection/_combinatorial.py +407 -0
- skfolio/model_selection/_validation.py +194 -0
- skfolio/model_selection/_walk_forward.py +221 -0
- skfolio/moments/__init__.py +41 -0
- skfolio/moments/covariance/__init__.py +29 -0
- skfolio/moments/covariance/_base.py +101 -0
- skfolio/moments/covariance/_covariance.py +1108 -0
- skfolio/moments/expected_returns/__init__.py +21 -0
- skfolio/moments/expected_returns/_base.py +31 -0
- skfolio/moments/expected_returns/_expected_returns.py +415 -0
- skfolio/optimization/__init__.py +36 -0
- skfolio/optimization/_base.py +147 -0
- skfolio/optimization/cluster/__init__.py +13 -0
- skfolio/optimization/cluster/_nco.py +348 -0
- skfolio/optimization/cluster/hierarchical/__init__.py +13 -0
- skfolio/optimization/cluster/hierarchical/_base.py +440 -0
- skfolio/optimization/cluster/hierarchical/_herc.py +406 -0
- skfolio/optimization/cluster/hierarchical/_hrp.py +368 -0
- skfolio/optimization/convex/__init__.py +16 -0
- skfolio/optimization/convex/_base.py +1944 -0
- skfolio/optimization/convex/_distributionally_robust.py +392 -0
- skfolio/optimization/convex/_maximum_diversification.py +417 -0
- skfolio/optimization/convex/_mean_risk.py +974 -0
- skfolio/optimization/convex/_risk_budgeting.py +560 -0
- skfolio/optimization/ensemble/__init__.py +6 -0
- skfolio/optimization/ensemble/_base.py +87 -0
- skfolio/optimization/ensemble/_stacking.py +326 -0
- skfolio/optimization/naive/__init__.py +3 -0
- skfolio/optimization/naive/_naive.py +173 -0
- skfolio/population/__init__.py +3 -0
- skfolio/population/_population.py +883 -0
- skfolio/portfolio/__init__.py +13 -0
- skfolio/portfolio/_base.py +1096 -0
- skfolio/portfolio/_multi_period_portfolio.py +610 -0
- skfolio/portfolio/_portfolio.py +842 -0
- skfolio/pre_selection/__init__.py +7 -0
- skfolio/pre_selection/_pre_selection.py +342 -0
- skfolio/preprocessing/__init__.py +3 -0
- skfolio/preprocessing/_returns.py +114 -0
- skfolio/prior/__init__.py +18 -0
- skfolio/prior/_base.py +63 -0
- skfolio/prior/_black_litterman.py +238 -0
- skfolio/prior/_empirical.py +163 -0
- skfolio/prior/_factor_model.py +268 -0
- skfolio/typing.py +50 -0
- skfolio/uncertainty_set/__init__.py +23 -0
- skfolio/uncertainty_set/_base.py +108 -0
- skfolio/uncertainty_set/_bootstrap.py +281 -0
- skfolio/uncertainty_set/_empirical.py +237 -0
- skfolio/utils/__init__.py +0 -0
- skfolio/utils/bootstrap.py +115 -0
- skfolio/utils/equations.py +350 -0
- skfolio/utils/sorting.py +117 -0
- skfolio/utils/stats.py +466 -0
- skfolio/utils/tools.py +567 -0
- skfolio-0.0.1.dist-info/LICENSE +29 -0
- skfolio-0.0.1.dist-info/METADATA +568 -0
- skfolio-0.0.1.dist-info/RECORD +79 -0
- skfolio-0.0.1.dist-info/WHEEL +5 -0
- skfolio-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,440 @@
|
|
1
|
+
"""Base Hierarchical Clustering Optimization estimator."""
|
2
|
+
|
3
|
+
# Author: Hugo Delatte <delatte.hugo@gmail.com>
|
4
|
+
# License: BSD 3 clause
|
5
|
+
|
6
|
+
from abc import ABC, abstractmethod
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
import numpy.typing as npt
|
10
|
+
import pandas as pd
|
11
|
+
|
12
|
+
import skfolio.typing as skt
|
13
|
+
from skfolio.cluster import HierarchicalClustering
|
14
|
+
from skfolio.distance import BaseDistance
|
15
|
+
from skfolio.measures import ExtraRiskMeasure, RiskMeasure
|
16
|
+
from skfolio.optimization._base import BaseOptimization
|
17
|
+
from skfolio.population import Population
|
18
|
+
from skfolio.portfolio import Portfolio
|
19
|
+
from skfolio.prior import BasePrior, PriorModel
|
20
|
+
from skfolio.utils.tools import input_to_array
|
21
|
+
|
22
|
+
|
23
|
+
class BaseHierarchicalOptimization(BaseOptimization, ABC):
|
24
|
+
r"""Base Hierarchical Clustering Optimization estimator.
|
25
|
+
|
26
|
+
Parameters
|
27
|
+
----------
|
28
|
+
risk_measure : RiskMeasure or ExtraRiskMeasure, default=RiskMeasure.VARIANCE
|
29
|
+
:class:`~skfolio.meta.RiskMeasure` or :class:`~skfolio.meta.ExtraRiskMeasure`
|
30
|
+
of the optimization.
|
31
|
+
Can be any of:
|
32
|
+
|
33
|
+
* MEAN_ABSOLUTE_DEVIATION
|
34
|
+
* FIRST_LOWER_PARTIAL_MOMENT
|
35
|
+
* VARIANCE
|
36
|
+
* SEMI_VARIANCE
|
37
|
+
* CVAR
|
38
|
+
* EVAR
|
39
|
+
* WORST_REALIZATION
|
40
|
+
* CDAR
|
41
|
+
* MAX_DRAWDOWN
|
42
|
+
* AVERAGE_DRAWDOWN
|
43
|
+
* EDAR
|
44
|
+
* ULCER_INDEX
|
45
|
+
* GINI_MEAN_DIFFERENCE_RATIO
|
46
|
+
* VALUE_AT_RISK
|
47
|
+
* DRAWDOWN_AT_RISK
|
48
|
+
* ENTROPIC_RISK_MEASURE
|
49
|
+
* FOURTH_CENTRAL_MOMENT
|
50
|
+
* FOURTH_LOWER_PARTIAL_MOMENT
|
51
|
+
* SKEW
|
52
|
+
* KURTOSIS
|
53
|
+
|
54
|
+
The default is `RiskMeasure.VARIANCE`.
|
55
|
+
|
56
|
+
prior_estimator : BasePrior, optional
|
57
|
+
:ref:`Prior estimator <prior>`.
|
58
|
+
The prior estimator is used to estimate the :class:`~skfolio.prior.PriorModel`
|
59
|
+
containing the estimation of assets expected returns, covariance matrix and
|
60
|
+
returns. The moments and returns estimations are used for the risk computation
|
61
|
+
and the returns estimation are used by the distance matrix estimator.
|
62
|
+
The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`.
|
63
|
+
|
64
|
+
distance_estimator : BaseDistance, optional
|
65
|
+
:ref:`Distance estimator <distance>`.
|
66
|
+
The distance estimator is used to estimate the codependence and the distance
|
67
|
+
matrix needed for the computation of the linkage matrix.
|
68
|
+
The default (`None`) is to use :class:`~skfolio.distance.PearsonDistance`.
|
69
|
+
|
70
|
+
hierarchical_clustering_estimator : HierarchicalClustering, optional
|
71
|
+
:ref:`Hierarchical Clustering estimator <hierarchical_clustering>`.
|
72
|
+
The hierarchical clustering estimator is used to compute the linkage matrix
|
73
|
+
and the hierarchical clustering of the assets based on the distance matrix.
|
74
|
+
The default (`None`) is to use
|
75
|
+
:class:`~skfolio.cluster.HierarchicalClustering`.
|
76
|
+
|
77
|
+
min_weights : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
78
|
+
Minimum assets weights (weights lower bounds). Negative weights are not allowed.
|
79
|
+
If a float is provided, it is applied to each asset. `None` is equivalent to
|
80
|
+
`-np.Inf` (no lower bound). If a dictionary is provided, its (key/value) pair
|
81
|
+
must be the (asset name/asset minium weight) and the input `X` of the `fit`
|
82
|
+
methods must be a DataFrame with the assets names in columns. When using a
|
83
|
+
dictionary, assets values that are not provided are assigned a minimum weight
|
84
|
+
of `0.0`. The default is 0.0 (no short selling).
|
85
|
+
|
86
|
+
Example:
|
87
|
+
|
88
|
+
* min_weights = 0 --> long only portfolio (no short selling).
|
89
|
+
* min_weights = None --> no lower bound (same as `-np.Inf`).
|
90
|
+
* min_weights = {"SX5E": 0, "SPX": 0.1}
|
91
|
+
* min_weights = [0, 0.1]
|
92
|
+
|
93
|
+
max_weights : float | dict[str, float] | array-like of shape (n_assets, ), default=1.0
|
94
|
+
Maximum assets weights (weights upper bounds). Weights above 1.0 are not
|
95
|
+
allowed. If a float is provided, it is applied to each asset. `None` is
|
96
|
+
equivalent to `+np.Inf` (no upper bound). If a dictionary is provided, its
|
97
|
+
(key/value) pair must be the (asset name/asset maximum weight) and the input `X`
|
98
|
+
of the `fit` methods must be a DataFrame with the assets names in columns. When
|
99
|
+
using a dictionary, assets values that are not provided are assigned a minimum
|
100
|
+
weight of `1.0`. The default is 1.0 (each asset is below 100%).
|
101
|
+
|
102
|
+
Example:
|
103
|
+
|
104
|
+
* max_weights = 0 --> no long position (short only portfolio).
|
105
|
+
* max_weights = 0.5 --> each weight must be below 50%.
|
106
|
+
* max_weights = {"SX5E": 1, "SPX": 0.25}
|
107
|
+
* max_weights = [1, 0.25]
|
108
|
+
|
109
|
+
transaction_costs : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
110
|
+
Transaction costs of the assets. It is used to add linear transaction costs to
|
111
|
+
the optimization problem:
|
112
|
+
|
113
|
+
.. math:: total\_cost = \sum_{i=1}^{N} c_{i} \times |w_{i} - w\_prev_{i}|
|
114
|
+
|
115
|
+
with :math:`c_{i}` the transaction cost of asset i, :math:`w_{i}` its weight
|
116
|
+
and :math:`w\_prev_{i}` its previous weight (defined in `previous_weights`).
|
117
|
+
The float :math:`total\_cost` is used in the portfolio expected return:
|
118
|
+
|
119
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_cost
|
120
|
+
|
121
|
+
with :math:`\mu` the vector af assets' expected returns and :math:`w` the
|
122
|
+
vector of assets weights.
|
123
|
+
|
124
|
+
If a float is provided, it is applied to each asset.
|
125
|
+
If a dictionary is provided, its (key/value) pair must be the
|
126
|
+
(asset name/asset cost) and the input `X` of the `fit` methods must be a
|
127
|
+
DataFrame with the assets names in columns.
|
128
|
+
The default value is `0.0`.
|
129
|
+
|
130
|
+
.. warning::
|
131
|
+
|
132
|
+
Based on the above formula, the periodicity of the transaction costs
|
133
|
+
needs to be homogenous to the periodicity of :math:`\mu`. For example, if
|
134
|
+
the input `X` is composed of **daily** returns, the `transaction_costs` need
|
135
|
+
to be expressed in **daily** costs.
|
136
|
+
(See :ref:`sphx_glr_auto_examples_1_mean_risk_plot_6_transaction_costs.py`)
|
137
|
+
|
138
|
+
management_fees : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
139
|
+
Management fees of the assets. It is used to add linear management fees to the
|
140
|
+
optimization problem:
|
141
|
+
|
142
|
+
.. math:: total\_fee = \sum_{i=1}^{N} f_{i} \times w_{i}
|
143
|
+
|
144
|
+
with :math:`f_{i}` the management fee of asset i and :math:`w_{i}` its weight.
|
145
|
+
The float :math:`total\_fee` is used in the portfolio expected return:
|
146
|
+
|
147
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_fee
|
148
|
+
|
149
|
+
with :math:`\mu` the vector af assets expected returns and :math:`w` the vector
|
150
|
+
of assets weights.
|
151
|
+
|
152
|
+
If a float is provided, it is applied to each asset.
|
153
|
+
If a dictionary is provided, its (key/value) pair must be the
|
154
|
+
(asset name/asset fee) and the input `X` of the `fit` methods must be a
|
155
|
+
DataFrame with the assets names in columns.
|
156
|
+
The default value is `0.0`.
|
157
|
+
|
158
|
+
.. warning::
|
159
|
+
|
160
|
+
Based on the above formula, the periodicity of the management fees needs to
|
161
|
+
be homogenous to the periodicity of :math:`\mu`. For example, if the input
|
162
|
+
`X` is composed of **daily** returns, the `management_fees` need to be
|
163
|
+
expressed in **daily** fees.
|
164
|
+
|
165
|
+
.. note::
|
166
|
+
|
167
|
+
Another approach is to directly impact the management fees to the input `X`
|
168
|
+
in order to express the returns net of fees. However, when estimating the
|
169
|
+
:math:`\mu` parameter using for example Shrinkage estimators, this approach
|
170
|
+
would mix a deterministic value with an uncertain one leading to unwanted
|
171
|
+
bias in the management fees.
|
172
|
+
|
173
|
+
previous_weights : float | dict[str, float] | array-like of shape (n_assets, ), optional
|
174
|
+
Previous weights of the assets. Previous weights are used to compute the
|
175
|
+
portfolio total cost. If a float is provided, it is applied to each asset.
|
176
|
+
If a dictionary is provided, its (key/value) pair must be the
|
177
|
+
(asset name/asset previous weight) and the input `X` of the `fit` methods must
|
178
|
+
be a DataFrame with the assets names in columns.
|
179
|
+
The default (`None`) means no previous weights.
|
180
|
+
|
181
|
+
portfolio_params : dict, optional
|
182
|
+
Portfolio parameters passed to the portfolio evaluated by the `predict` and
|
183
|
+
`score` methods. If not provided, the `name`, `transaction_costs`,
|
184
|
+
`management_fees` and `previous_weights` are copied from the optimization
|
185
|
+
model and systematically passed to the portfolio.
|
186
|
+
|
187
|
+
Attributes
|
188
|
+
----------
|
189
|
+
weights_ : ndarray of shape (n_assets,)
|
190
|
+
Weights of the assets.
|
191
|
+
|
192
|
+
prior_estimator_ : BasePrior
|
193
|
+
Fitted `prior_estimator`.
|
194
|
+
|
195
|
+
distance_estimator_ : BaseDistance
|
196
|
+
Fitted `distance_estimator`.
|
197
|
+
|
198
|
+
hierarchical_clustering_estimator_ : HierarchicalClustering
|
199
|
+
Fitted `hierarchical_clustering_estimator`.
|
200
|
+
"""
|
201
|
+
|
202
|
+
prior_estimator_: BasePrior
|
203
|
+
distance_estimator_: BaseDistance
|
204
|
+
hierarchical_clustering_estimator_: HierarchicalClustering
|
205
|
+
|
206
|
+
@abstractmethod
|
207
|
+
def __init__(
|
208
|
+
self,
|
209
|
+
risk_measure: RiskMeasure | ExtraRiskMeasure = RiskMeasure.VARIANCE,
|
210
|
+
prior_estimator: BasePrior | None = None,
|
211
|
+
distance_estimator: BaseDistance | None = None,
|
212
|
+
hierarchical_clustering_estimator: HierarchicalClustering | None = None,
|
213
|
+
min_weights: skt.MultiInput | None = 0.0,
|
214
|
+
max_weights: skt.MultiInput | None = 1.0,
|
215
|
+
transaction_costs: skt.MultiInput = 0.0,
|
216
|
+
management_fees: skt.MultiInput = 0.0,
|
217
|
+
previous_weights: skt.MultiInput | None = None,
|
218
|
+
portfolio_params: dict | None = None,
|
219
|
+
):
|
220
|
+
super().__init__(portfolio_params=portfolio_params)
|
221
|
+
self.risk_measure = risk_measure
|
222
|
+
self.prior_estimator = prior_estimator
|
223
|
+
self.distance_estimator = distance_estimator
|
224
|
+
self.hierarchical_clustering_estimator = hierarchical_clustering_estimator
|
225
|
+
self.min_weights = min_weights
|
226
|
+
self.max_weights = max_weights
|
227
|
+
self.transaction_costs = transaction_costs
|
228
|
+
self.management_fees = management_fees
|
229
|
+
self.previous_weights = previous_weights
|
230
|
+
self._seriated = False
|
231
|
+
|
232
|
+
def _clean_input(
|
233
|
+
self,
|
234
|
+
value: float | dict | np.ndarray | list,
|
235
|
+
n_assets: int,
|
236
|
+
fill_value: any,
|
237
|
+
name: str,
|
238
|
+
) -> np.ndarray:
|
239
|
+
"""Convert input to cleaned 1D array
|
240
|
+
value : float, dict, array-like or None.
|
241
|
+
Input value to clean and convert.
|
242
|
+
|
243
|
+
Parameters
|
244
|
+
----------
|
245
|
+
value : float, dict or array-like.
|
246
|
+
Input value to clean.
|
247
|
+
|
248
|
+
n_assets : int
|
249
|
+
Number of assets. Used to verify the shape of the converted array.
|
250
|
+
|
251
|
+
fill_value : any
|
252
|
+
When `items` is a dictionary, elements that are not in `asset_names` are
|
253
|
+
filled with `fill_value` in the converted array.
|
254
|
+
|
255
|
+
name : str
|
256
|
+
Name used for error messages.
|
257
|
+
|
258
|
+
Returns
|
259
|
+
-------
|
260
|
+
value : ndarray of shape (n_assets,)
|
261
|
+
The cleaned float or 1D array.
|
262
|
+
"""
|
263
|
+
if value is None:
|
264
|
+
raise ValueError("Cannot convert None to array")
|
265
|
+
if np.isscalar(value):
|
266
|
+
return value * np.ones(n_assets)
|
267
|
+
return input_to_array(
|
268
|
+
items=value,
|
269
|
+
n_assets=n_assets,
|
270
|
+
fill_value=fill_value,
|
271
|
+
dim=1,
|
272
|
+
assets_names=(
|
273
|
+
self.feature_names_in_ if hasattr(self, "feature_names_in_") else None
|
274
|
+
),
|
275
|
+
name=name,
|
276
|
+
)
|
277
|
+
|
278
|
+
def _risk(
|
279
|
+
self,
|
280
|
+
weights: np.ndarray,
|
281
|
+
prior_model: PriorModel,
|
282
|
+
) -> float:
|
283
|
+
"""Compute the risk measure of a theoretical portfolio defined by the weights
|
284
|
+
vector.
|
285
|
+
|
286
|
+
Parameters
|
287
|
+
----------
|
288
|
+
weights : ndarray of shape (n_assets,)
|
289
|
+
The vector of weights.
|
290
|
+
|
291
|
+
prior_model : PriorModel
|
292
|
+
The prior model of the assets distribution.
|
293
|
+
|
294
|
+
Returns
|
295
|
+
-------
|
296
|
+
risk: float
|
297
|
+
The risk measure of a theoretical portfolio defined by the weights
|
298
|
+
vector.
|
299
|
+
"""
|
300
|
+
ptf = Portfolio(
|
301
|
+
X=prior_model.returns,
|
302
|
+
weights=weights,
|
303
|
+
transaction_costs=self.transaction_costs,
|
304
|
+
management_fees=self.management_fees,
|
305
|
+
previous_weights=self.previous_weights,
|
306
|
+
)
|
307
|
+
if self.risk_measure in [RiskMeasure.VARIANCE, RiskMeasure.STANDARD_DEVIATION]:
|
308
|
+
risk = ptf.variance_from_assets(assets_covariance=prior_model.covariance)
|
309
|
+
if self.risk_measure == RiskMeasure.STANDARD_DEVIATION:
|
310
|
+
risk = np.sqrt(risk)
|
311
|
+
else:
|
312
|
+
risk = getattr(ptf, str(self.risk_measure.value))
|
313
|
+
return risk
|
314
|
+
|
315
|
+
def _unitary_risks(self, prior_model: PriorModel) -> np.ndarray:
|
316
|
+
"""Compute the vector of risk measure for each single assets.
|
317
|
+
|
318
|
+
Parameters
|
319
|
+
----------
|
320
|
+
prior_model : PriorModel
|
321
|
+
The prior model of the assets distribution.
|
322
|
+
|
323
|
+
Returns
|
324
|
+
-------
|
325
|
+
values: ndarray of shape (n_assets,)
|
326
|
+
The risk measure of each asset.
|
327
|
+
"""
|
328
|
+
n_assets = prior_model.returns.shape[1]
|
329
|
+
risks = [
|
330
|
+
self._risk(weights=weights, prior_model=prior_model)
|
331
|
+
for weights in np.identity(n_assets)
|
332
|
+
]
|
333
|
+
return np.array(risks)
|
334
|
+
|
335
|
+
def _convert_weights_bounds(self, n_assets: int) -> tuple[np.ndarray, np.ndarray]:
|
336
|
+
"""Convert the input weights lower and upper bounds to two 1D arrays.
|
337
|
+
|
338
|
+
Parameters
|
339
|
+
----------
|
340
|
+
n_assets : int
|
341
|
+
Number of assets.
|
342
|
+
|
343
|
+
Returns
|
344
|
+
-------
|
345
|
+
min_weights : ndarray of shape (n_assets,)
|
346
|
+
The weight lower bound 1D array.
|
347
|
+
max_weights : ndarray of shape (n_assets,)
|
348
|
+
The weight upper bound 1D array.
|
349
|
+
"""
|
350
|
+
|
351
|
+
if self.min_weights is None:
|
352
|
+
min_weights = np.zeros(n_assets)
|
353
|
+
else:
|
354
|
+
min_weights = self._clean_input(
|
355
|
+
self.min_weights,
|
356
|
+
n_assets=n_assets,
|
357
|
+
fill_value=0,
|
358
|
+
name="min_weights",
|
359
|
+
)
|
360
|
+
if np.any(min_weights < 0):
|
361
|
+
raise ValueError("`min_weights` must be strictly positive")
|
362
|
+
|
363
|
+
if self.max_weights is None:
|
364
|
+
max_weights = np.ones(n_assets)
|
365
|
+
else:
|
366
|
+
max_weights = self._clean_input(
|
367
|
+
self.max_weights,
|
368
|
+
n_assets=n_assets,
|
369
|
+
fill_value=1,
|
370
|
+
name="max_weights",
|
371
|
+
)
|
372
|
+
if np.any(max_weights > 1):
|
373
|
+
raise ValueError("`max_weights` must be less than or equal to 1.0")
|
374
|
+
if np.sum(max_weights) < 1:
|
375
|
+
raise ValueError(
|
376
|
+
"The sum of `max_weights` must be greater than or equal to 1.0"
|
377
|
+
)
|
378
|
+
|
379
|
+
if np.any(min_weights > max_weights):
|
380
|
+
raise NameError(
|
381
|
+
"Items of `min_weights` must be less than or equal to items of"
|
382
|
+
" `max_weights`"
|
383
|
+
)
|
384
|
+
|
385
|
+
return min_weights, max_weights
|
386
|
+
|
387
|
+
@staticmethod
|
388
|
+
def _apply_weight_constraints_to_alpha(
|
389
|
+
alpha: float,
|
390
|
+
max_weights: np.ndarray,
|
391
|
+
min_weights: np.ndarray,
|
392
|
+
weights: np.ndarray,
|
393
|
+
left_cluster: np.ndarray,
|
394
|
+
right_cluster: np.ndarray,
|
395
|
+
) -> float:
|
396
|
+
"""Apply weight constraints to the alpha multiplication factor of the
|
397
|
+
Hierarchical Tree Clustering algorithm.
|
398
|
+
|
399
|
+
Parameters
|
400
|
+
----------
|
401
|
+
alpha : float
|
402
|
+
The alpha multiplication factor of the Hierarchical Tree Clustering
|
403
|
+
algorithm.
|
404
|
+
|
405
|
+
min_weights : ndarray of shape (n_assets,)
|
406
|
+
The weight lower bound 1D array.
|
407
|
+
|
408
|
+
max_weights : ndarray of shape (n_assets,)
|
409
|
+
The weight upper bound 1D array.
|
410
|
+
|
411
|
+
weights : np.ndarray of shape (n_assets,)
|
412
|
+
The assets weights.
|
413
|
+
|
414
|
+
left_cluster : ndarray of shape (n_left_cluster,)
|
415
|
+
Indices of the left cluster weights.
|
416
|
+
|
417
|
+
right_cluster : ndarray of shape (n_right_cluster,)
|
418
|
+
Indices of the right cluster weights.
|
419
|
+
|
420
|
+
Returns
|
421
|
+
-------
|
422
|
+
value : float
|
423
|
+
The transformed alpha incorporating the weight constraints.
|
424
|
+
"""
|
425
|
+
alpha = min(
|
426
|
+
np.sum(max_weights[left_cluster]) / weights[left_cluster[0]],
|
427
|
+
max(np.sum(min_weights[left_cluster]) / weights[left_cluster[0]], alpha),
|
428
|
+
)
|
429
|
+
alpha = 1 - min(
|
430
|
+
np.sum(max_weights[right_cluster]) / weights[right_cluster[0]],
|
431
|
+
max(
|
432
|
+
np.sum(min_weights[right_cluster]) / weights[right_cluster[0]],
|
433
|
+
1 - alpha,
|
434
|
+
),
|
435
|
+
)
|
436
|
+
return alpha
|
437
|
+
|
438
|
+
@abstractmethod
|
439
|
+
def fit(self, X: npt.ArrayLike, y: None = None):
|
440
|
+
pass
|