skfolio 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skfolio/__init__.py +29 -0
- skfolio/cluster/__init__.py +8 -0
- skfolio/cluster/_hierarchical.py +387 -0
- skfolio/datasets/__init__.py +20 -0
- skfolio/datasets/_base.py +389 -0
- skfolio/datasets/data/__init__.py +0 -0
- skfolio/datasets/data/factors_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_index.csv.gz +0 -0
- skfolio/distance/__init__.py +26 -0
- skfolio/distance/_base.py +55 -0
- skfolio/distance/_distance.py +574 -0
- skfolio/exceptions.py +30 -0
- skfolio/measures/__init__.py +76 -0
- skfolio/measures/_enums.py +355 -0
- skfolio/measures/_measures.py +607 -0
- skfolio/metrics/__init__.py +3 -0
- skfolio/metrics/_scorer.py +121 -0
- skfolio/model_selection/__init__.py +18 -0
- skfolio/model_selection/_combinatorial.py +407 -0
- skfolio/model_selection/_validation.py +194 -0
- skfolio/model_selection/_walk_forward.py +221 -0
- skfolio/moments/__init__.py +41 -0
- skfolio/moments/covariance/__init__.py +29 -0
- skfolio/moments/covariance/_base.py +101 -0
- skfolio/moments/covariance/_covariance.py +1108 -0
- skfolio/moments/expected_returns/__init__.py +21 -0
- skfolio/moments/expected_returns/_base.py +31 -0
- skfolio/moments/expected_returns/_expected_returns.py +415 -0
- skfolio/optimization/__init__.py +36 -0
- skfolio/optimization/_base.py +147 -0
- skfolio/optimization/cluster/__init__.py +13 -0
- skfolio/optimization/cluster/_nco.py +348 -0
- skfolio/optimization/cluster/hierarchical/__init__.py +13 -0
- skfolio/optimization/cluster/hierarchical/_base.py +440 -0
- skfolio/optimization/cluster/hierarchical/_herc.py +406 -0
- skfolio/optimization/cluster/hierarchical/_hrp.py +368 -0
- skfolio/optimization/convex/__init__.py +16 -0
- skfolio/optimization/convex/_base.py +1944 -0
- skfolio/optimization/convex/_distributionally_robust.py +392 -0
- skfolio/optimization/convex/_maximum_diversification.py +417 -0
- skfolio/optimization/convex/_mean_risk.py +974 -0
- skfolio/optimization/convex/_risk_budgeting.py +560 -0
- skfolio/optimization/ensemble/__init__.py +6 -0
- skfolio/optimization/ensemble/_base.py +87 -0
- skfolio/optimization/ensemble/_stacking.py +326 -0
- skfolio/optimization/naive/__init__.py +3 -0
- skfolio/optimization/naive/_naive.py +173 -0
- skfolio/population/__init__.py +3 -0
- skfolio/population/_population.py +883 -0
- skfolio/portfolio/__init__.py +13 -0
- skfolio/portfolio/_base.py +1096 -0
- skfolio/portfolio/_multi_period_portfolio.py +610 -0
- skfolio/portfolio/_portfolio.py +842 -0
- skfolio/pre_selection/__init__.py +7 -0
- skfolio/pre_selection/_pre_selection.py +342 -0
- skfolio/preprocessing/__init__.py +3 -0
- skfolio/preprocessing/_returns.py +114 -0
- skfolio/prior/__init__.py +18 -0
- skfolio/prior/_base.py +63 -0
- skfolio/prior/_black_litterman.py +238 -0
- skfolio/prior/_empirical.py +163 -0
- skfolio/prior/_factor_model.py +268 -0
- skfolio/typing.py +50 -0
- skfolio/uncertainty_set/__init__.py +23 -0
- skfolio/uncertainty_set/_base.py +108 -0
- skfolio/uncertainty_set/_bootstrap.py +281 -0
- skfolio/uncertainty_set/_empirical.py +237 -0
- skfolio/utils/__init__.py +0 -0
- skfolio/utils/bootstrap.py +115 -0
- skfolio/utils/equations.py +350 -0
- skfolio/utils/sorting.py +117 -0
- skfolio/utils/stats.py +466 -0
- skfolio/utils/tools.py +567 -0
- skfolio-0.0.1.dist-info/LICENSE +29 -0
- skfolio-0.0.1.dist-info/METADATA +568 -0
- skfolio-0.0.1.dist-info/RECORD +79 -0
- skfolio-0.0.1.dist-info/WHEEL +5 -0
- skfolio-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,392 @@
|
|
1
|
+
"""Distributionally Robust CVaR Optimization estimator."""
|
2
|
+
|
3
|
+
# Author: Hugo Delatte <delatte.hugo@gmail.com>
|
4
|
+
# License: BSD 3 clause
|
5
|
+
|
6
|
+
import cvxpy as cp
|
7
|
+
import numpy as np
|
8
|
+
import numpy.typing as npt
|
9
|
+
|
10
|
+
import skfolio.typing as skt
|
11
|
+
from skfolio.measures import RiskMeasure
|
12
|
+
from skfolio.optimization.convex._base import ConvexOptimization
|
13
|
+
from skfolio.prior import BasePrior, EmpiricalPrior
|
14
|
+
from skfolio.utils.tools import check_estimator
|
15
|
+
|
16
|
+
|
17
|
+
class DistributionallyRobustCVaR(ConvexOptimization):
|
18
|
+
r"""Distributionally Robust CVaR.
|
19
|
+
|
20
|
+
The Distributionally Robust CVaR model constructs a Wasserstein ball in the space of
|
21
|
+
multivariate and non-discrete probability distributions centered at the uniform
|
22
|
+
distribution on the training samples, and find the allocation that minimize the CVaR
|
23
|
+
of the worst-case distribution within this Wasserstein ball.
|
24
|
+
Esfahani and Kuhn [1]_ proved that for piecewise linear objective functions,
|
25
|
+
which is the case of CVaR [2]_, the distributionally robust optimization problem
|
26
|
+
over a Wasserstein ball can be reformulated as finite convex programs.
|
27
|
+
|
28
|
+
Only piecewise linear function are supported which means that transaction costs and
|
29
|
+
regularization are not permitted.
|
30
|
+
|
31
|
+
A solver like `Mosek` that can handles a high number of constraints is preferred.
|
32
|
+
|
33
|
+
Parameters
|
34
|
+
----------
|
35
|
+
cvar_beta : float, default=0.95
|
36
|
+
CVaR (Conditional Value at Risk) confidence level.
|
37
|
+
|
38
|
+
risk_aversion : float, default=1.0
|
39
|
+
Risk aversion factor of the utility function: return - risk_aversion * cvar.
|
40
|
+
|
41
|
+
wasserstein_ball_radius: float, default=0.02
|
42
|
+
Radius of the Wasserstein ball.
|
43
|
+
|
44
|
+
prior_estimator : BasePrior, optional
|
45
|
+
:ref:`Prior estimator <prior>`.
|
46
|
+
The prior estimator is used to estimate the :class:`~skfolio.prior.PriorModel`
|
47
|
+
containing the estimation of assets expected returns, covariance matrix,
|
48
|
+
returns and Cholesky decomposition of the covariance.
|
49
|
+
The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`.
|
50
|
+
|
51
|
+
min_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=0.0
|
52
|
+
Minimum assets weights (weights lower bounds).
|
53
|
+
If a float is provided, it is applied to each asset.
|
54
|
+
`None` is equivalent to `-np.Inf` (no lower bound).
|
55
|
+
If a dictionary is provided, its (key/value) pair must be the
|
56
|
+
(asset name/asset minium weight) and the input `X` of the `fit` methods must
|
57
|
+
be a DataFrame with the assets names in columns.
|
58
|
+
When using a dictionary, assets values that are not provided are assigned
|
59
|
+
a minimum weight of `0.0`.
|
60
|
+
The default value is `0.0` (no short selling).
|
61
|
+
|
62
|
+
Example:
|
63
|
+
|
64
|
+
* `min_weights = 0` --> long only portfolio (no short selling).
|
65
|
+
* `min_weights = None` --> no lower bound (same as `-np.Inf`).
|
66
|
+
* `min_weights = -2` --> each weight must be above -200%.
|
67
|
+
* `min_weights = {"SX5E": 0, "SPX": -2}`
|
68
|
+
* `min_weights = [0, -2]`
|
69
|
+
|
70
|
+
max_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=1.0
|
71
|
+
Maximum assets weights (weights upper bounds).
|
72
|
+
If a float is provided, it is applied to each asset.
|
73
|
+
`None` is equivalent to `+np.Inf` (no upper bound).
|
74
|
+
If a dictionary is provided, its (key/value) pair must be the
|
75
|
+
(asset name/asset maximum weight) and the input `X` of the `fit` methods must
|
76
|
+
be a DataFrame with the assets names in columns.
|
77
|
+
When using a dictionary, assets values that are not provided are assigned
|
78
|
+
a minimum weight of `1.0`.
|
79
|
+
The default value is `1.0` (each asset is below 100%).
|
80
|
+
|
81
|
+
Example:
|
82
|
+
|
83
|
+
* `max_weights = 0` --> no long position (short only portfolio).
|
84
|
+
* `max_weights = None` --> no upper bound.
|
85
|
+
* `max_weights = 2` --> each weight must be below 200%.
|
86
|
+
* `max_weights = {"SX5E": 1, "SPX": 2}`
|
87
|
+
* `max_weights = [1, 2]`
|
88
|
+
|
89
|
+
budget : float | None, default=1.0
|
90
|
+
Investment budget. It is the sum of long positions and short positions (sum of
|
91
|
+
all weights). `None` means no budget constraints.
|
92
|
+
The default value is `1.0` (fully invested portfolio).
|
93
|
+
|
94
|
+
Examples:
|
95
|
+
|
96
|
+
* `budget = 1` --> fully invested portfolio.
|
97
|
+
* `budget = 0` --> market neutral portfolio.
|
98
|
+
* `budget = None` --> no constraints on the sum of weights.
|
99
|
+
|
100
|
+
min_budget : float, optional
|
101
|
+
Minimum budget. It is the lower bound of the sum of long and short positions
|
102
|
+
(sum of all weights). If provided, you must set `budget=None`.
|
103
|
+
The default (`None`) means no minimum budget constraint.
|
104
|
+
|
105
|
+
max_short : float, optional
|
106
|
+
Maximum short position. The short position is defined as the sum of negative
|
107
|
+
weights (in absolute term).
|
108
|
+
The default (`None`) means no maximum short position.
|
109
|
+
|
110
|
+
max_long : float, optional
|
111
|
+
Maximum long position. The long position is defined as the sum of positive
|
112
|
+
weights.
|
113
|
+
The default (`None`) means no maximum long position.
|
114
|
+
|
115
|
+
max_budget : float, optional
|
116
|
+
Maximum budget. It is the upper bound of the sum of long and short positions
|
117
|
+
(sum of all weights). If provided, you must set `budget=None`.
|
118
|
+
The default (`None`) means no maximum budget constraint.
|
119
|
+
|
120
|
+
linear_constraints : array-like of shape (n_constraints,), optional
|
121
|
+
Linear constraints.
|
122
|
+
The linear constraints must match any of following patterns:
|
123
|
+
|
124
|
+
* "2.5 * ref1 + 0.10 * ref2 + 0.0013 <= 2.5 * ref3"
|
125
|
+
* "ref1 >= 2.9 * ref2"
|
126
|
+
* "ref1 <= ref2"
|
127
|
+
* "ref1 >= ref1"
|
128
|
+
|
129
|
+
With "ref1", "ref2" ... the assets names or the groups names provided
|
130
|
+
in the parameter `groups`. Assets names can be referenced without the need of
|
131
|
+
`groups` if the input `X` of the `fit` methods is a DataFrame with these
|
132
|
+
assets names in columns.
|
133
|
+
|
134
|
+
Examples:
|
135
|
+
|
136
|
+
* "SPX >= 0.10" --> SPX weight must be greater than 10% (note that you can also use `min_weights`)
|
137
|
+
* "SX5E + TLT >= 0.2" --> the sum of SX5E and TLT weights must be greater than 20%
|
138
|
+
* "US >= 0.7" --> the sum of all US weights must be greater than 70%
|
139
|
+
* "Equity <= 3 * Bond" --> the sum of all Equity weights must be less or equal to 3 times the sum of all Bond weights.
|
140
|
+
* "2*SPX + 3*Europe <= Bond + 0.05" --> mixing assets and group constraints
|
141
|
+
|
142
|
+
groups : dict[str, list[str]] or array-like of shape (n_groups, n_assets), optional
|
143
|
+
The assets groups referenced in `linear_constraints`.
|
144
|
+
If a dictionary is provided, its (key/value) pair must be the
|
145
|
+
(asset name/asset groups) and the input `X` of the `fit` methods must be a
|
146
|
+
DataFrame with the assets names in columns.
|
147
|
+
|
148
|
+
Examples:
|
149
|
+
|
150
|
+
* groups = {"SX5E": ["Equity", "Europe"], "SPX": ["Equity", "US"], "TLT": ["Bond", "US"]}
|
151
|
+
* groups = [["Equity", "Equity", "Bond"], ["Europe", "US", "US"]]
|
152
|
+
|
153
|
+
left_inequality : array-like of shape (n_constraints, n_assets), optional
|
154
|
+
Left inequality matrix :math:`A` of the linear
|
155
|
+
constraint :math:`A \cdot w \leq b`.
|
156
|
+
|
157
|
+
right_inequality : array-like of shape (n_constraints, ), optional
|
158
|
+
Right inequality vector :math:`b` of the linear
|
159
|
+
constraint :math:`A \cdot w \leq b`.
|
160
|
+
|
161
|
+
risk_free_rate : float, default=0.0
|
162
|
+
Risk-free interest rate.
|
163
|
+
The default value is `0.0`.
|
164
|
+
|
165
|
+
add_constraints : Callable[[cp.Variable], cp.Expression|list[cp.Expression]], optional
|
166
|
+
Add a custom constraint or a list of constraints to the existing constraints.
|
167
|
+
It is a function that must take as argument the weights `w` and returns a
|
168
|
+
CVPXY expression or a list of CVPXY expressions.
|
169
|
+
|
170
|
+
overwrite_expected_return : Callable[[cp.Variable], cp.Expression], optional
|
171
|
+
Overwrite the expected return :math:`\mu \cdot w` with a custom expression.
|
172
|
+
It is a function that must take as argument the weights `w` and returns a
|
173
|
+
CVPXY expression.
|
174
|
+
|
175
|
+
solver : str, optional
|
176
|
+
The solver to use. For example, "ECOS", "SCS", or "OSQP".
|
177
|
+
The default (`None`) is set depending on the problem.
|
178
|
+
For more details about available solvers, check the CVXPY documentation:
|
179
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver
|
180
|
+
|
181
|
+
solver_params : dict, optional
|
182
|
+
Solver parameters. For example, `solver_params=dict(verbose=True)`.
|
183
|
+
For more details about solver arguments, check the CVXPY documentation:
|
184
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
|
185
|
+
|
186
|
+
scale_objective : float, optional
|
187
|
+
Scale each objective element by this value.
|
188
|
+
It can be used to increase the optimization accuracies in specific cases.
|
189
|
+
The default (`None`) is set depending on the problem.
|
190
|
+
|
191
|
+
scale_constraints : float, optional
|
192
|
+
Scale each constraint element by this value.
|
193
|
+
It can be used to increase the optimization accuracies in specific cases.
|
194
|
+
The default (`None`) is set depending on the problem.
|
195
|
+
|
196
|
+
raise_on_failure : bool, default=True
|
197
|
+
If this is set to True, an error is raised when the optimization fail otherwise
|
198
|
+
it passes with a warning.
|
199
|
+
|
200
|
+
portfolio_params : dict, optional
|
201
|
+
Portfolio parameters passed to the portfolio evaluated by the `predict` and
|
202
|
+
`score` methods. If not provided, the `name`, `transaction_costs`,
|
203
|
+
`management_fees` and `previous_weights` are copied from the optimization
|
204
|
+
model and systematically passed to the portfolio.
|
205
|
+
|
206
|
+
Attributes
|
207
|
+
----------
|
208
|
+
weights_ : ndarray of shape (n_assets,) or (n_optimizations, n_assets)
|
209
|
+
Weights of the assets.
|
210
|
+
|
211
|
+
problem_: cvxpy.Problem
|
212
|
+
CVXPY problem used for the optimization.
|
213
|
+
|
214
|
+
problem_values_ : dict[str, float] | list[dict[str, float]] of size n_optimizations
|
215
|
+
Expression values retrieved from the CVXPY problem.
|
216
|
+
|
217
|
+
prior_estimator_ : BasePrior
|
218
|
+
Fitted `prior_estimator`.
|
219
|
+
|
220
|
+
n_features_in_ : int
|
221
|
+
Number of assets seen during `fit`.
|
222
|
+
|
223
|
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
224
|
+
Names of assets seen during `fit`. Defined only when `X`
|
225
|
+
has assets names that are all strings.
|
226
|
+
|
227
|
+
References
|
228
|
+
----------
|
229
|
+
.. [1] "Data-driven distributionally robust optimization using the Wasserstein
|
230
|
+
metric: performance guarantees and tractable reformulations".
|
231
|
+
Esfahani and Kuhn (2018).
|
232
|
+
|
233
|
+
.. [2] "Optimization of conditional value-at-risk".
|
234
|
+
Rockafellar and Uryasev (2000).
|
235
|
+
"""
|
236
|
+
|
237
|
+
def __init__(
|
238
|
+
self,
|
239
|
+
risk_aversion: float = 1.0,
|
240
|
+
cvar_beta: float = 0.95,
|
241
|
+
wasserstein_ball_radius: float = 0.02,
|
242
|
+
prior_estimator: BasePrior | None = None,
|
243
|
+
min_weights: skt.MultiInput | None = 0.0,
|
244
|
+
max_weights: skt.MultiInput | None = 1.0,
|
245
|
+
budget: float | None = 1,
|
246
|
+
min_budget: float | None = None,
|
247
|
+
max_budget: float | None = None,
|
248
|
+
max_short: float | None = None,
|
249
|
+
max_long: float | None = None,
|
250
|
+
groups: skt.Groups | None = None,
|
251
|
+
linear_constraints: skt.LinearConstraints | None = None,
|
252
|
+
left_inequality: skt.Inequality | None = None,
|
253
|
+
right_inequality: skt.Inequality | None = None,
|
254
|
+
risk_free_rate: float = 0.0,
|
255
|
+
solver: str | None = None,
|
256
|
+
solver_params: dict | None = None,
|
257
|
+
scale_objective: float | None = None,
|
258
|
+
scale_constraints: float | None = None,
|
259
|
+
raise_on_failure: bool = True,
|
260
|
+
add_objective: skt.ExpressionFunction | None = None,
|
261
|
+
add_constraints: skt.ExpressionFunction | None = None,
|
262
|
+
overwrite_expected_return: skt.ExpressionFunction | None = None,
|
263
|
+
portfolio_params: dict | None = None,
|
264
|
+
):
|
265
|
+
super().__init__(
|
266
|
+
risk_measure=RiskMeasure.CVAR,
|
267
|
+
prior_estimator=prior_estimator,
|
268
|
+
min_weights=min_weights,
|
269
|
+
max_weights=max_weights,
|
270
|
+
budget=budget,
|
271
|
+
min_budget=min_budget,
|
272
|
+
max_budget=max_budget,
|
273
|
+
max_short=max_short,
|
274
|
+
max_long=max_long,
|
275
|
+
groups=groups,
|
276
|
+
linear_constraints=linear_constraints,
|
277
|
+
left_inequality=left_inequality,
|
278
|
+
right_inequality=right_inequality,
|
279
|
+
risk_free_rate=risk_free_rate,
|
280
|
+
cvar_beta=cvar_beta,
|
281
|
+
solver=solver,
|
282
|
+
solver_params=solver_params,
|
283
|
+
scale_objective=scale_objective,
|
284
|
+
scale_constraints=scale_constraints,
|
285
|
+
raise_on_failure=raise_on_failure,
|
286
|
+
add_objective=add_objective,
|
287
|
+
add_constraints=add_constraints,
|
288
|
+
overwrite_expected_return=overwrite_expected_return,
|
289
|
+
portfolio_params=portfolio_params,
|
290
|
+
)
|
291
|
+
self.risk_aversion = risk_aversion
|
292
|
+
self.wasserstein_ball_radius = wasserstein_ball_radius
|
293
|
+
|
294
|
+
def fit(
|
295
|
+
self, X: npt.ArrayLike, y: npt.ArrayLike | None = None
|
296
|
+
) -> "DistributionallyRobustCVaR":
|
297
|
+
"""Fit the Distributionally Robust CVaR Optimization estimator.
|
298
|
+
|
299
|
+
Parameters
|
300
|
+
----------
|
301
|
+
X : array-like of shape (n_observations, n_assets)
|
302
|
+
Price returns of the assets.
|
303
|
+
|
304
|
+
y : array-like of shape (n_observations, n_factors), optional
|
305
|
+
Price returns of factors.
|
306
|
+
The default is `None`.
|
307
|
+
|
308
|
+
Returns
|
309
|
+
-------
|
310
|
+
self : DistributionallyRobustCVaR
|
311
|
+
Fitted estimator.
|
312
|
+
"""
|
313
|
+
self._check_feature_names(X, reset=True)
|
314
|
+
# Used to avoid adding multiple times similar constrains linked to identical
|
315
|
+
# risk models
|
316
|
+
self._clear_models_cache()
|
317
|
+
self.prior_estimator_ = check_estimator(
|
318
|
+
self.prior_estimator,
|
319
|
+
default=EmpiricalPrior(),
|
320
|
+
check_type=BasePrior,
|
321
|
+
)
|
322
|
+
self.prior_estimator_.fit(X, y)
|
323
|
+
prior_model = self.prior_estimator_.prior_model_
|
324
|
+
n_observations, n_assets = prior_model.returns.shape
|
325
|
+
|
326
|
+
# set solvers
|
327
|
+
self._set_solver(default="ECOS")
|
328
|
+
|
329
|
+
# set scale
|
330
|
+
self._set_scale_objective(default=1)
|
331
|
+
self._set_scale_constraints(default=1)
|
332
|
+
|
333
|
+
a1 = -1
|
334
|
+
b1 = cp.Constant(self.risk_aversion)
|
335
|
+
a2 = -1 - self.risk_aversion / (1 - self.cvar_beta)
|
336
|
+
b2 = cp.Constant(self.risk_aversion * (1 - 1 / (1 - self.cvar_beta)))
|
337
|
+
ones = np.ones(n_assets)
|
338
|
+
w = cp.Variable(n_assets)
|
339
|
+
u = cp.Variable((n_observations, n_assets))
|
340
|
+
v = cp.Variable((n_observations, n_assets))
|
341
|
+
lb = cp.Variable()
|
342
|
+
tau = cp.Variable()
|
343
|
+
s = cp.Variable(n_observations)
|
344
|
+
|
345
|
+
factor = cp.Constant(1)
|
346
|
+
|
347
|
+
# constraints
|
348
|
+
constraints = self._get_weight_constraints(
|
349
|
+
n_assets=n_assets, w=w, factor=factor
|
350
|
+
)
|
351
|
+
constraints += [
|
352
|
+
u * self._scale_constraints >= cp.Constant(0),
|
353
|
+
v * self._scale_constraints >= cp.Constant(0),
|
354
|
+
b1 * tau * self._scale_constraints
|
355
|
+
+ a1 * (prior_model.returns @ w) * self._scale_constraints
|
356
|
+
+ cp.multiply(u, (1 + prior_model.returns)) @ ones * self._scale_constraints
|
357
|
+
<= s * self._scale_constraints,
|
358
|
+
b2 * tau * self._scale_constraints
|
359
|
+
+ a2 * (prior_model.returns @ w) * self._scale_constraints
|
360
|
+
+ cp.multiply(v, (1 + prior_model.returns)) @ ones * self._scale_constraints
|
361
|
+
<= s * self._scale_constraints,
|
362
|
+
]
|
363
|
+
|
364
|
+
for i in range(n_observations):
|
365
|
+
# noinspection PyTypeChecker
|
366
|
+
constraints.append(
|
367
|
+
cp.norm(-u[i] - a1 * w, np.inf) * self._scale_constraints
|
368
|
+
<= lb * self._scale_constraints
|
369
|
+
)
|
370
|
+
# noinspection PyTypeChecker
|
371
|
+
constraints.append(
|
372
|
+
cp.norm(-v[i] - a2 * w, np.inf) * self._scale_constraints
|
373
|
+
<= lb * self._scale_constraints
|
374
|
+
)
|
375
|
+
|
376
|
+
# custom objectives and constraints
|
377
|
+
custom_objective = self._get_custom_objective(w=w)
|
378
|
+
constraints += self._get_custom_constraints(w=w)
|
379
|
+
|
380
|
+
objective = cp.Minimize(
|
381
|
+
cp.Constant(self.wasserstein_ball_radius) * lb * self._scale_objective
|
382
|
+
+ (1 / n_observations) * cp.sum(s) * self._scale_objective
|
383
|
+
+ custom_objective * self._scale_objective
|
384
|
+
)
|
385
|
+
|
386
|
+
# problem
|
387
|
+
problem = cp.Problem(objective, constraints)
|
388
|
+
|
389
|
+
# results
|
390
|
+
self._solve_problem(problem=problem, w=w, factor=factor)
|
391
|
+
|
392
|
+
return self
|