skfolio 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skfolio/__init__.py +29 -0
- skfolio/cluster/__init__.py +8 -0
- skfolio/cluster/_hierarchical.py +387 -0
- skfolio/datasets/__init__.py +20 -0
- skfolio/datasets/_base.py +389 -0
- skfolio/datasets/data/__init__.py +0 -0
- skfolio/datasets/data/factors_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_index.csv.gz +0 -0
- skfolio/distance/__init__.py +26 -0
- skfolio/distance/_base.py +55 -0
- skfolio/distance/_distance.py +574 -0
- skfolio/exceptions.py +30 -0
- skfolio/measures/__init__.py +76 -0
- skfolio/measures/_enums.py +355 -0
- skfolio/measures/_measures.py +607 -0
- skfolio/metrics/__init__.py +3 -0
- skfolio/metrics/_scorer.py +121 -0
- skfolio/model_selection/__init__.py +18 -0
- skfolio/model_selection/_combinatorial.py +407 -0
- skfolio/model_selection/_validation.py +194 -0
- skfolio/model_selection/_walk_forward.py +221 -0
- skfolio/moments/__init__.py +41 -0
- skfolio/moments/covariance/__init__.py +29 -0
- skfolio/moments/covariance/_base.py +101 -0
- skfolio/moments/covariance/_covariance.py +1108 -0
- skfolio/moments/expected_returns/__init__.py +21 -0
- skfolio/moments/expected_returns/_base.py +31 -0
- skfolio/moments/expected_returns/_expected_returns.py +415 -0
- skfolio/optimization/__init__.py +36 -0
- skfolio/optimization/_base.py +147 -0
- skfolio/optimization/cluster/__init__.py +13 -0
- skfolio/optimization/cluster/_nco.py +348 -0
- skfolio/optimization/cluster/hierarchical/__init__.py +13 -0
- skfolio/optimization/cluster/hierarchical/_base.py +440 -0
- skfolio/optimization/cluster/hierarchical/_herc.py +406 -0
- skfolio/optimization/cluster/hierarchical/_hrp.py +368 -0
- skfolio/optimization/convex/__init__.py +16 -0
- skfolio/optimization/convex/_base.py +1944 -0
- skfolio/optimization/convex/_distributionally_robust.py +392 -0
- skfolio/optimization/convex/_maximum_diversification.py +417 -0
- skfolio/optimization/convex/_mean_risk.py +974 -0
- skfolio/optimization/convex/_risk_budgeting.py +560 -0
- skfolio/optimization/ensemble/__init__.py +6 -0
- skfolio/optimization/ensemble/_base.py +87 -0
- skfolio/optimization/ensemble/_stacking.py +326 -0
- skfolio/optimization/naive/__init__.py +3 -0
- skfolio/optimization/naive/_naive.py +173 -0
- skfolio/population/__init__.py +3 -0
- skfolio/population/_population.py +883 -0
- skfolio/portfolio/__init__.py +13 -0
- skfolio/portfolio/_base.py +1096 -0
- skfolio/portfolio/_multi_period_portfolio.py +610 -0
- skfolio/portfolio/_portfolio.py +842 -0
- skfolio/pre_selection/__init__.py +7 -0
- skfolio/pre_selection/_pre_selection.py +342 -0
- skfolio/preprocessing/__init__.py +3 -0
- skfolio/preprocessing/_returns.py +114 -0
- skfolio/prior/__init__.py +18 -0
- skfolio/prior/_base.py +63 -0
- skfolio/prior/_black_litterman.py +238 -0
- skfolio/prior/_empirical.py +163 -0
- skfolio/prior/_factor_model.py +268 -0
- skfolio/typing.py +50 -0
- skfolio/uncertainty_set/__init__.py +23 -0
- skfolio/uncertainty_set/_base.py +108 -0
- skfolio/uncertainty_set/_bootstrap.py +281 -0
- skfolio/uncertainty_set/_empirical.py +237 -0
- skfolio/utils/__init__.py +0 -0
- skfolio/utils/bootstrap.py +115 -0
- skfolio/utils/equations.py +350 -0
- skfolio/utils/sorting.py +117 -0
- skfolio/utils/stats.py +466 -0
- skfolio/utils/tools.py +567 -0
- skfolio-0.0.1.dist-info/LICENSE +29 -0
- skfolio-0.0.1.dist-info/METADATA +568 -0
- skfolio-0.0.1.dist-info/RECORD +79 -0
- skfolio-0.0.1.dist-info/WHEEL +5 -0
- skfolio-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,417 @@
|
|
1
|
+
"""Maximum Diversification Optimization estimator."""
|
2
|
+
|
3
|
+
# Author: Hugo Delatte <delatte.hugo@gmail.com>
|
4
|
+
# License: BSD 3 clause
|
5
|
+
|
6
|
+
import numpy as np
|
7
|
+
import numpy.typing as npt
|
8
|
+
|
9
|
+
import skfolio.typing as skt
|
10
|
+
from skfolio.measures import RiskMeasure
|
11
|
+
from skfolio.optimization.convex._base import ObjectiveFunction
|
12
|
+
from skfolio.optimization.convex._mean_risk import MeanRisk
|
13
|
+
from skfolio.prior import BasePrior
|
14
|
+
|
15
|
+
|
16
|
+
class MaximumDiversification(MeanRisk):
|
17
|
+
r"""Maximum Diversification Optimization estimator.
|
18
|
+
|
19
|
+
Maximizes the diversification ratio which is the ratio of the weighted volatilities
|
20
|
+
over the total volatility.
|
21
|
+
|
22
|
+
It is a special case of the :class:`~skfolio.optimization.MeanRisk` estimator where
|
23
|
+
the expected return from the objective function is replaced by the weighted
|
24
|
+
volatilies.
|
25
|
+
|
26
|
+
Parameters
|
27
|
+
----------
|
28
|
+
prior_estimator : BasePrior, optional
|
29
|
+
:ref:`Prior estimator <prior>`.
|
30
|
+
The prior estimator is used to estimate the :class:`~skfolio.prior.PriorModel`
|
31
|
+
containing the estimation of assets expected returns, covariance matrix,
|
32
|
+
returns and Cholesky decomposition of the covariance.
|
33
|
+
The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`.
|
34
|
+
|
35
|
+
min_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=0.0
|
36
|
+
Minimum assets weights (weights lower bounds).
|
37
|
+
If a float is provided, it is applied to each asset.
|
38
|
+
`None` is equivalent to `-np.Inf` (no lower bound).
|
39
|
+
If a dictionary is provided, its (key/value) pair must be the
|
40
|
+
(asset name/asset minium weight) and the input `X` of the `fit` methods must
|
41
|
+
be a DataFrame with the assets names in columns.
|
42
|
+
When using a dictionary, assets values that are not provided are assigned
|
43
|
+
a minimum weight of `0.0`.
|
44
|
+
The default value is `0.0` (no short selling).
|
45
|
+
|
46
|
+
Example:
|
47
|
+
|
48
|
+
* `min_weights = 0` --> long only portfolio (no short selling).
|
49
|
+
* `min_weights = None` --> no lower bound (same as `-np.Inf`).
|
50
|
+
* `min_weights = -2` --> each weight must be above -200%.
|
51
|
+
* `min_weights = {"SX5E": 0, "SPX": -2}`
|
52
|
+
* `min_weights = [0, -2]`
|
53
|
+
|
54
|
+
max_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=1.0
|
55
|
+
Maximum assets weights (weights upper bounds).
|
56
|
+
If a float is provided, it is applied to each asset.
|
57
|
+
`None` is equivalent to `+np.Inf` (no upper bound).
|
58
|
+
If a dictionary is provided, its (key/value) pair must be the
|
59
|
+
(asset name/asset maximum weight) and the input `X` of the `fit` methods must
|
60
|
+
be a DataFrame with the assets names in columns.
|
61
|
+
When using a dictionary, assets values that are not provided are assigned
|
62
|
+
a minimum weight of `1.0`.
|
63
|
+
The default value is `1.0` (each asset is below 100%).
|
64
|
+
|
65
|
+
Example:
|
66
|
+
|
67
|
+
* `max_weights = 0` --> no long position (short only portfolio).
|
68
|
+
* `max_weights = None` --> no upper bound.
|
69
|
+
* `max_weights = 2` --> each weight must be below 200%.
|
70
|
+
* `max_weights = {"SX5E": 1, "SPX": 2}`
|
71
|
+
* `max_weights = [1, 2]`
|
72
|
+
|
73
|
+
budget : float | None, default=1.0
|
74
|
+
Investment budget. It is the sum of long positions and short positions (sum of
|
75
|
+
all weights). `None` means no budget constraints.
|
76
|
+
The default value is `1.0` (fully invested portfolio).
|
77
|
+
|
78
|
+
Examples:
|
79
|
+
|
80
|
+
* `budget = 1` --> fully invested portfolio.
|
81
|
+
* `budget = 0` --> market neutral portfolio.
|
82
|
+
* `budget = None` --> no constraints on the sum of weights.
|
83
|
+
|
84
|
+
min_budget : float, optional
|
85
|
+
Minimum budget. It is the lower bound of the sum of long and short positions
|
86
|
+
(sum of all weights). If provided, you must set `budget=None`.
|
87
|
+
The default (`None`) means no minimum budget constraint.
|
88
|
+
|
89
|
+
max_budget : float, optional
|
90
|
+
Maximum budget. It is the upper bound of the sum of long and short positions
|
91
|
+
(sum of all weights). If provided, you must set `budget=None`.
|
92
|
+
The default (`None`) means no maximum budget constraint.
|
93
|
+
|
94
|
+
max_short : float, optional
|
95
|
+
Maximum short position. The short position is defined as the sum of negative
|
96
|
+
weights (in absolute term).
|
97
|
+
The default (`None`) means no maximum short position.
|
98
|
+
|
99
|
+
max_long : float, optional
|
100
|
+
Maximum long position. The long position is defined as the sum of positive
|
101
|
+
weights.
|
102
|
+
The default (`None`) means no maximum long position.
|
103
|
+
|
104
|
+
transaction_costs : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
105
|
+
Transaction costs of the assets. It is used to add linear transaction costs to
|
106
|
+
the optimization problem:
|
107
|
+
|
108
|
+
.. math:: total\_cost = \sum_{i=1}^{N} c_{i} \times |w_{i} - w\_prev_{i}|
|
109
|
+
|
110
|
+
with :math:`c_{i}` the transaction cost of asset i, :math:`w_{i}` its weight
|
111
|
+
and :math:`w\_prev_{i}` its previous weight (defined in `previous_weights`).
|
112
|
+
The float :math:`total\_cost` is used in the portfolio expected return:
|
113
|
+
|
114
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_cost
|
115
|
+
|
116
|
+
with :math:`\mu` the vector af assets' expected returns and :math:`w` the
|
117
|
+
vector of assets weights.
|
118
|
+
|
119
|
+
If a float is provided, it is applied to each asset.
|
120
|
+
If a dictionary is provided, its (key/value) pair must be the
|
121
|
+
(asset name/asset cost) and the input `X` of the `fit` methods must be a
|
122
|
+
DataFrame with the assets names in columns.
|
123
|
+
The default value is `0.0`.
|
124
|
+
|
125
|
+
.. warning::
|
126
|
+
|
127
|
+
Based on the above formula, the periodicity of the transaction costs
|
128
|
+
needs to be homogenous to the periodicity of :math:`\mu`. For example, if
|
129
|
+
the input `X` is composed of **daily** returns, the `transaction_costs` need
|
130
|
+
to be expressed in **daily** costs.
|
131
|
+
(See :ref:`sphx_glr_auto_examples_1_mean_risk_plot_6_transaction_costs.py`)
|
132
|
+
|
133
|
+
management_fees : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
134
|
+
Management fees of the assets. It is used to add linear management fees to the
|
135
|
+
optimization problem:
|
136
|
+
|
137
|
+
.. math:: total\_fee = \sum_{i=1}^{N} f_{i} \times w_{i}
|
138
|
+
|
139
|
+
with :math:`f_{i}` the management fee of asset i and :math:`w_{i}` its weight.
|
140
|
+
The float :math:`total\_fee` is used in the portfolio expected return:
|
141
|
+
|
142
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_fee
|
143
|
+
|
144
|
+
with :math:`\mu` the vector af assets expected returns and :math:`w` the vector
|
145
|
+
of assets weights.
|
146
|
+
|
147
|
+
If a float is provided, it is applied to each asset.
|
148
|
+
If a dictionary is provided, its (key/value) pair must be the
|
149
|
+
(asset name/asset fee) and the input `X` of the `fit` methods must be a
|
150
|
+
DataFrame with the assets names in columns.
|
151
|
+
The default value is `0.0`.
|
152
|
+
|
153
|
+
.. warning::
|
154
|
+
|
155
|
+
Based on the above formula, the periodicity of the management fees needs to
|
156
|
+
be homogenous to the periodicity of :math:`\mu`. For example, if the input
|
157
|
+
`X` is composed of **daily** returns, the `management_fees` need to be
|
158
|
+
expressed in **daily** fees.
|
159
|
+
|
160
|
+
.. note::
|
161
|
+
|
162
|
+
Another approach is to directly impact the management fees to the input `X`
|
163
|
+
in order to express the returns net of fees. However, when estimating the
|
164
|
+
:math:`\mu` parameter using for example Shrinkage estimators, this approach
|
165
|
+
would mix a deterministic value with an uncertain one leading to unwanted
|
166
|
+
bias in the management fees.
|
167
|
+
|
168
|
+
previous_weights : float | dict[str, float] | array-like of shape (n_assets, ), optional
|
169
|
+
Previous weights of the assets. Previous weights are used to compute the
|
170
|
+
portfolio cost and the portfolio turnover.
|
171
|
+
If a float is provided, it is applied to each asset.
|
172
|
+
If a dictionary is provided, its (key/value) pair must be the
|
173
|
+
(asset name/asset previous weight) and the input `X` of the `fit` methods must
|
174
|
+
be a DataFrame with the assets names in columns.
|
175
|
+
The default (`None`) means no previous weights.
|
176
|
+
|
177
|
+
l1_coef : float, default=0.0
|
178
|
+
L1 regularization coefficient.
|
179
|
+
It is used to penalize the objective function by the L1 norm:
|
180
|
+
|
181
|
+
.. math:: l1\_coef \times \Vert w \Vert_{1} = l1\_coef \times \sum_{i=1}^{N} |w_{i}|
|
182
|
+
|
183
|
+
Increasing this coefficient will reduce the number of non-zero weights
|
184
|
+
(cardinality). It tends to increase robustness (out-of-sample stability) but
|
185
|
+
reduces diversification.
|
186
|
+
The default value is `0.0`.
|
187
|
+
|
188
|
+
l2_coef : float, default=0.0
|
189
|
+
L2 regularization coefficient.
|
190
|
+
It is used to penalize the objective function by the L2 norm:
|
191
|
+
|
192
|
+
.. math:: l2\_coef \times \Vert w \Vert_{2}^{2} = l2\_coef \times \sum_{i=1}^{N} w_{i}^2
|
193
|
+
|
194
|
+
It tends to increase robustness (out-of-sample stability).
|
195
|
+
The default value is `0.0`.
|
196
|
+
|
197
|
+
linear_constraints : array-like of shape (n_constraints,), optional
|
198
|
+
Linear constraints.
|
199
|
+
The linear constraints must match any of following patterns:
|
200
|
+
|
201
|
+
* "2.5 * ref1 + 0.10 * ref2 + 0.0013 <= 2.5 * ref3"
|
202
|
+
* "ref1 >= 2.9 * ref2"
|
203
|
+
* "ref1 <= ref2"
|
204
|
+
* "ref1 >= ref1"
|
205
|
+
|
206
|
+
With "ref1", "ref2" ... the assets names or the groups names provided
|
207
|
+
in the parameter `groups`. Assets names can be referenced without the need of
|
208
|
+
`groups` if the input `X` of the `fit` methods is a DataFrame with these
|
209
|
+
assets names in columns.
|
210
|
+
|
211
|
+
Examples:
|
212
|
+
|
213
|
+
* "SPX >= 0.10" --> SPX weight must be greater than 10% (note that you can also use `min_weights`)
|
214
|
+
* "SX5E + TLT >= 0.2" --> the sum of SX5E and TLT weights must be greater than 20%
|
215
|
+
* "US >= 0.7" --> the sum of all US weights must be greater than 70%
|
216
|
+
* "Equity <= 3 * Bond" --> the sum of all Equity weights must be less or equal to 3 times the sum of all Bond weights.
|
217
|
+
* "2*SPX + 3*Europe <= Bond + 0.05" --> mixing assets and group constraints
|
218
|
+
|
219
|
+
groups : dict[str, list[str]] or array-like of shape (n_groups, n_assets), optional
|
220
|
+
The assets groups referenced in `linear_constraints`.
|
221
|
+
If a dictionary is provided, its (key/value) pair must be the
|
222
|
+
(asset name/asset groups) and the input `X` of the `fit` methods must be a
|
223
|
+
DataFrame with the assets names in columns.
|
224
|
+
|
225
|
+
Examples:
|
226
|
+
|
227
|
+
* groups = {"SX5E": ["Equity", "Europe"], "SPX": ["Equity", "US"], "TLT": ["Bond", "US"]}
|
228
|
+
* groups = [["Equity", "Equity", "Bond"], ["Europe", "US", "US"]]
|
229
|
+
|
230
|
+
left_inequality : array-like of shape (n_constraints, n_assets), optional
|
231
|
+
Left inequality matrix :math:`A` of the linear
|
232
|
+
constraint :math:`A \cdot w \leq b`.
|
233
|
+
|
234
|
+
right_inequality : array-like of shape (n_constraints, ), optional
|
235
|
+
Right inequality vector :math:`b` of the linear
|
236
|
+
constraint :math:`A \cdot w \leq b`.
|
237
|
+
|
238
|
+
risk_free_rate : float, default=0.0
|
239
|
+
Risk-free interest rate.
|
240
|
+
The default value is `0.0`.
|
241
|
+
|
242
|
+
max_tracking_error : float, optional
|
243
|
+
Upper bound constraint on the tracking error.
|
244
|
+
The tracking error is defined as the RMSE (root-mean-square error) of the
|
245
|
+
portfolio returns compared to a target returns. If `max_tracking_error` is
|
246
|
+
provided, the target returns `y` must be provided in the `fit` method.
|
247
|
+
|
248
|
+
max_turnover : float, optional
|
249
|
+
Upper bound constraint of the turnover.
|
250
|
+
The turnover is defined as the absolute difference between the portfolio weights
|
251
|
+
and the `previous_weights`. Note that another way to control for turnover is by
|
252
|
+
using the `transaction_costs` parameter.
|
253
|
+
|
254
|
+
min_return : float | array-like of shape (n_optimization), optional
|
255
|
+
Lower bound constraint on the expected return.
|
256
|
+
|
257
|
+
min_return : float | array-like of shape (n_optimization), optional
|
258
|
+
Lower bound constraint on the expected return.
|
259
|
+
|
260
|
+
add_objective : Callable[[cp.Variable], cp.Expression], optional
|
261
|
+
Add a custom objective to the existing objective expression.
|
262
|
+
It is a function that must take as argument the weights `w` and returns a
|
263
|
+
CVXPY expression.
|
264
|
+
|
265
|
+
add_constraints : Callable[[cp.Variable], cp.Expression|list[cp.Expression]], optional
|
266
|
+
Add a custom constraint or a list of constraints to the existing constraints.
|
267
|
+
It is a function that must take as argument the weights `w` and returns a
|
268
|
+
CVPXY expression or a list of CVPXY expressions.
|
269
|
+
|
270
|
+
solver : str, optional
|
271
|
+
The solver to use. For example, "ECOS", "SCS", or "OSQP".
|
272
|
+
The default (`None`) is set depending on the problem.
|
273
|
+
For more details about available solvers, check the CVXPY documentation:
|
274
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver
|
275
|
+
|
276
|
+
solver_params : dict, optional
|
277
|
+
Solver parameters. For example, `solver_params=dict(verbose=True)`.
|
278
|
+
For more details about solver arguments, check the CVXPY documentation:
|
279
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
|
280
|
+
|
281
|
+
scale_objective : float, optional
|
282
|
+
Scale each objective element by this value.
|
283
|
+
It can be used to increase the optimization accuracies in specific cases.
|
284
|
+
The default (`None`) is set depending on the problem.
|
285
|
+
|
286
|
+
scale_constraints : float, optional
|
287
|
+
Scale each constraint element by this value.
|
288
|
+
It can be used to increase the optimization accuracies in specific cases.
|
289
|
+
The default (`None`) is set depending on the problem.
|
290
|
+
|
291
|
+
raise_on_failure : bool, default=True
|
292
|
+
If this is set to True, an error is raised when the optimization fail otherwise
|
293
|
+
it passes with a warning.
|
294
|
+
|
295
|
+
portfolio_params : dict, optional
|
296
|
+
Portfolio parameters passed to the portfolio evaluated by the `predict` and
|
297
|
+
`score` methods. If not provided, the `name`, `transaction_costs`,
|
298
|
+
`management_fees` and `previous_weights` are copied from the optimization
|
299
|
+
model and systematically passed to the portfolio.
|
300
|
+
|
301
|
+
Attributes
|
302
|
+
----------
|
303
|
+
weights_ : ndarray of shape (n_assets,) or (n_optimizations, n_assets)
|
304
|
+
Weights of the assets.
|
305
|
+
|
306
|
+
problem_: cvxpy.Problem
|
307
|
+
CVXPY problem used for the optimization.
|
308
|
+
|
309
|
+
problem_values_ : dict[str, float] | list[dict[str, float]] of size n_optimizations
|
310
|
+
Expression values retrieved from the CVXPY problem.
|
311
|
+
|
312
|
+
prior_estimator_ : BasePrior
|
313
|
+
Fitted `prior_estimator`.
|
314
|
+
|
315
|
+
n_features_in_ : int
|
316
|
+
Number of assets seen during `fit`.
|
317
|
+
|
318
|
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
319
|
+
Names of assets seen during `fit`. Defined only when `X`
|
320
|
+
has assets names that are all strings.
|
321
|
+
"""
|
322
|
+
|
323
|
+
def __init__(
|
324
|
+
self,
|
325
|
+
prior_estimator: BasePrior | None = None,
|
326
|
+
min_weights: skt.MultiInput | None = 0.0,
|
327
|
+
max_weights: skt.MultiInput | None = 1.0,
|
328
|
+
budget: float | None = 1.0,
|
329
|
+
min_budget: float | None = None,
|
330
|
+
max_budget: float | None = None,
|
331
|
+
max_short: float | None = None,
|
332
|
+
max_long: float | None = None,
|
333
|
+
transaction_costs: skt.MultiInput = 0.0,
|
334
|
+
management_fees: skt.MultiInput = 0.0,
|
335
|
+
previous_weights: skt.MultiInput | None = None,
|
336
|
+
groups: skt.Groups | None = None,
|
337
|
+
linear_constraints: skt.LinearConstraints | None = None,
|
338
|
+
left_inequality: skt.Inequality | None = None,
|
339
|
+
right_inequality: skt.Inequality | None = None,
|
340
|
+
l1_coef: float = 0.0,
|
341
|
+
l2_coef: float = 0.0,
|
342
|
+
risk_free_rate: float = 0.0,
|
343
|
+
min_return: skt.Target | None = None,
|
344
|
+
max_tracking_error: skt.Target | None = None,
|
345
|
+
max_turnover: skt.Target | None = None,
|
346
|
+
solver: str | None = None,
|
347
|
+
solver_params: dict | None = None,
|
348
|
+
scale_objective: float | None = None,
|
349
|
+
scale_constraints: float | None = None,
|
350
|
+
raise_on_failure: bool = True,
|
351
|
+
add_objective: skt.ExpressionFunction | None = None,
|
352
|
+
add_constraints: skt.ExpressionFunction | None = None,
|
353
|
+
portfolio_params: dict | None = None,
|
354
|
+
):
|
355
|
+
super().__init__(
|
356
|
+
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
|
357
|
+
risk_measure=RiskMeasure.VARIANCE,
|
358
|
+
prior_estimator=prior_estimator,
|
359
|
+
min_weights=min_weights,
|
360
|
+
max_weights=max_weights,
|
361
|
+
budget=budget,
|
362
|
+
min_budget=min_budget,
|
363
|
+
max_budget=max_budget,
|
364
|
+
max_short=max_short,
|
365
|
+
max_long=max_long,
|
366
|
+
transaction_costs=transaction_costs,
|
367
|
+
management_fees=management_fees,
|
368
|
+
previous_weights=previous_weights,
|
369
|
+
groups=groups,
|
370
|
+
linear_constraints=linear_constraints,
|
371
|
+
left_inequality=left_inequality,
|
372
|
+
right_inequality=right_inequality,
|
373
|
+
l1_coef=l1_coef,
|
374
|
+
l2_coef=l2_coef,
|
375
|
+
risk_free_rate=risk_free_rate,
|
376
|
+
min_return=min_return,
|
377
|
+
max_tracking_error=max_tracking_error,
|
378
|
+
max_turnover=max_turnover,
|
379
|
+
solver=solver,
|
380
|
+
solver_params=solver_params,
|
381
|
+
scale_objective=scale_objective,
|
382
|
+
scale_constraints=scale_constraints,
|
383
|
+
raise_on_failure=raise_on_failure,
|
384
|
+
add_objective=add_objective,
|
385
|
+
add_constraints=add_constraints,
|
386
|
+
portfolio_params=portfolio_params,
|
387
|
+
)
|
388
|
+
|
389
|
+
def fit(
|
390
|
+
self, X: npt.ArrayLike, y: npt.ArrayLike | None = None
|
391
|
+
) -> "MaximumDiversification":
|
392
|
+
"""Fit the Maximum Diversification Optimization estimator.
|
393
|
+
|
394
|
+
Parameters
|
395
|
+
----------
|
396
|
+
X : array-like of shape (n_observations, n_assets)
|
397
|
+
Price returns of the assets.
|
398
|
+
|
399
|
+
y : array-like of shape (n_observations, n_targets), optional
|
400
|
+
Price returns of factors or a target benchmark.
|
401
|
+
The default is `None`.
|
402
|
+
|
403
|
+
Returns
|
404
|
+
-------
|
405
|
+
self : MaximumDiversification
|
406
|
+
Fitted estimator.
|
407
|
+
"""
|
408
|
+
self._check_feature_names(X, reset=True)
|
409
|
+
|
410
|
+
def func(w, obj):
|
411
|
+
"""weighted volatilities"""
|
412
|
+
covariance = obj.prior_estimator_.prior_model_.covariance
|
413
|
+
return np.sqrt(np.diag(covariance)) @ w
|
414
|
+
|
415
|
+
self.overwrite_expected_return = func
|
416
|
+
super().fit(X, y)
|
417
|
+
return self
|