skfolio 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skfolio/__init__.py +29 -0
- skfolio/cluster/__init__.py +8 -0
- skfolio/cluster/_hierarchical.py +387 -0
- skfolio/datasets/__init__.py +20 -0
- skfolio/datasets/_base.py +389 -0
- skfolio/datasets/data/__init__.py +0 -0
- skfolio/datasets/data/factors_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_index.csv.gz +0 -0
- skfolio/distance/__init__.py +26 -0
- skfolio/distance/_base.py +55 -0
- skfolio/distance/_distance.py +574 -0
- skfolio/exceptions.py +30 -0
- skfolio/measures/__init__.py +76 -0
- skfolio/measures/_enums.py +355 -0
- skfolio/measures/_measures.py +607 -0
- skfolio/metrics/__init__.py +3 -0
- skfolio/metrics/_scorer.py +121 -0
- skfolio/model_selection/__init__.py +18 -0
- skfolio/model_selection/_combinatorial.py +407 -0
- skfolio/model_selection/_validation.py +194 -0
- skfolio/model_selection/_walk_forward.py +221 -0
- skfolio/moments/__init__.py +41 -0
- skfolio/moments/covariance/__init__.py +29 -0
- skfolio/moments/covariance/_base.py +101 -0
- skfolio/moments/covariance/_covariance.py +1108 -0
- skfolio/moments/expected_returns/__init__.py +21 -0
- skfolio/moments/expected_returns/_base.py +31 -0
- skfolio/moments/expected_returns/_expected_returns.py +415 -0
- skfolio/optimization/__init__.py +36 -0
- skfolio/optimization/_base.py +147 -0
- skfolio/optimization/cluster/__init__.py +13 -0
- skfolio/optimization/cluster/_nco.py +348 -0
- skfolio/optimization/cluster/hierarchical/__init__.py +13 -0
- skfolio/optimization/cluster/hierarchical/_base.py +440 -0
- skfolio/optimization/cluster/hierarchical/_herc.py +406 -0
- skfolio/optimization/cluster/hierarchical/_hrp.py +368 -0
- skfolio/optimization/convex/__init__.py +16 -0
- skfolio/optimization/convex/_base.py +1944 -0
- skfolio/optimization/convex/_distributionally_robust.py +392 -0
- skfolio/optimization/convex/_maximum_diversification.py +417 -0
- skfolio/optimization/convex/_mean_risk.py +974 -0
- skfolio/optimization/convex/_risk_budgeting.py +560 -0
- skfolio/optimization/ensemble/__init__.py +6 -0
- skfolio/optimization/ensemble/_base.py +87 -0
- skfolio/optimization/ensemble/_stacking.py +326 -0
- skfolio/optimization/naive/__init__.py +3 -0
- skfolio/optimization/naive/_naive.py +173 -0
- skfolio/population/__init__.py +3 -0
- skfolio/population/_population.py +883 -0
- skfolio/portfolio/__init__.py +13 -0
- skfolio/portfolio/_base.py +1096 -0
- skfolio/portfolio/_multi_period_portfolio.py +610 -0
- skfolio/portfolio/_portfolio.py +842 -0
- skfolio/pre_selection/__init__.py +7 -0
- skfolio/pre_selection/_pre_selection.py +342 -0
- skfolio/preprocessing/__init__.py +3 -0
- skfolio/preprocessing/_returns.py +114 -0
- skfolio/prior/__init__.py +18 -0
- skfolio/prior/_base.py +63 -0
- skfolio/prior/_black_litterman.py +238 -0
- skfolio/prior/_empirical.py +163 -0
- skfolio/prior/_factor_model.py +268 -0
- skfolio/typing.py +50 -0
- skfolio/uncertainty_set/__init__.py +23 -0
- skfolio/uncertainty_set/_base.py +108 -0
- skfolio/uncertainty_set/_bootstrap.py +281 -0
- skfolio/uncertainty_set/_empirical.py +237 -0
- skfolio/utils/__init__.py +0 -0
- skfolio/utils/bootstrap.py +115 -0
- skfolio/utils/equations.py +350 -0
- skfolio/utils/sorting.py +117 -0
- skfolio/utils/stats.py +466 -0
- skfolio/utils/tools.py +567 -0
- skfolio-0.0.1.dist-info/LICENSE +29 -0
- skfolio-0.0.1.dist-info/METADATA +568 -0
- skfolio-0.0.1.dist-info/RECORD +79 -0
- skfolio-0.0.1.dist-info/WHEEL +5 -0
- skfolio-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,974 @@
|
|
1
|
+
"""Mean Risk Optimization estimator."""
|
2
|
+
|
3
|
+
# Author: Hugo Delatte <delatte.hugo@gmail.com>
|
4
|
+
# License: BSD 3 clause
|
5
|
+
|
6
|
+
import cvxpy as cp
|
7
|
+
import numpy as np
|
8
|
+
import numpy.typing as npt
|
9
|
+
import pandas as pd
|
10
|
+
import sklearn as sk
|
11
|
+
|
12
|
+
import skfolio.typing as skt
|
13
|
+
from skfolio.measures import RiskMeasure
|
14
|
+
from skfolio.optimization.convex._base import ConvexOptimization, ObjectiveFunction
|
15
|
+
from skfolio.prior import BasePrior, EmpiricalPrior
|
16
|
+
from skfolio.uncertainty_set import BaseCovarianceUncertaintySet, BaseMuUncertaintySet
|
17
|
+
from skfolio.utils.tools import args_names, check_estimator
|
18
|
+
|
19
|
+
# noinspection PyUnresolvedReferences
|
20
|
+
_NON_ANNUALIZED_RISK_MEASURES = [rm for rm in RiskMeasure if not rm.is_annualized]
|
21
|
+
|
22
|
+
|
23
|
+
class MeanRisk(ConvexOptimization):
|
24
|
+
r"""Mean-Risk Optimization estimator.
|
25
|
+
|
26
|
+
The below 4 objective functions can be optimized:
|
27
|
+
|
28
|
+
* Minimize Risk:
|
29
|
+
|
30
|
+
.. math:: \begin{cases}
|
31
|
+
\begin{aligned}
|
32
|
+
&\min_{w} & & risk_{i}(w) \\
|
33
|
+
&\text{s.t.} & & w^T \cdot \mu \ge min\_return \\
|
34
|
+
& & & A \cdot w \ge b \\
|
35
|
+
& & & risk_{j}(w) \le max\_risk_{j} \quad \forall \; j \ne i
|
36
|
+
\end{aligned}
|
37
|
+
\end{cases}
|
38
|
+
|
39
|
+
* Maximize Expected Return:
|
40
|
+
|
41
|
+
.. math:: \begin{cases}
|
42
|
+
\begin{aligned}
|
43
|
+
&\max_{w} & & w^T \cdot \mu \\
|
44
|
+
&\text{s.t.} & & risk_{i}(w) \le max\_risk_{i} \\
|
45
|
+
& & & A \cdot w \ge b \\
|
46
|
+
& & & risk_{j}(w) \le max\_risk_{j} \quad \forall \; j \ne i
|
47
|
+
\end{aligned}
|
48
|
+
\end{cases}
|
49
|
+
|
50
|
+
* Maximize Utility:
|
51
|
+
|
52
|
+
.. math:: \begin{cases}
|
53
|
+
\begin{aligned}
|
54
|
+
&\max_{w} & & w^T \cdot \mu - \lambda \times risk_{i}(w)\\
|
55
|
+
&\text{s.t.} & & risk_{i}(w) \le max\_risk_{i} \\
|
56
|
+
& & & w^T \cdot \mu \ge min\_return \\
|
57
|
+
& & & A \cdot w \ge b \\
|
58
|
+
& & & risk_{j}(w) \le max\_risk_{j} \quad \forall \; j \ne i
|
59
|
+
\end{aligned}
|
60
|
+
\end{cases}
|
61
|
+
|
62
|
+
* Maximize Ratio:
|
63
|
+
|
64
|
+
.. math:: \begin{cases}
|
65
|
+
\begin{aligned}
|
66
|
+
&\max_{w} & & \frac{w^T \cdot \mu - r_{f}}{risk_{i}(w)}\\
|
67
|
+
&\text{s.t.} & & risk_{i}(w) \le max\_risk_{i} \\
|
68
|
+
& & & w^T \cdot \mu \ge min\_return \\
|
69
|
+
& & & A \cdot w \ge b \\
|
70
|
+
& & & risk_{j}(w) \le max\_risk_{j} \quad \forall \; j \ne i
|
71
|
+
\end{aligned}
|
72
|
+
\end{cases}
|
73
|
+
|
74
|
+
With :math:`risk_{i}` a risk measure among:
|
75
|
+
|
76
|
+
* Mean Absolute Deviation
|
77
|
+
* First Lower Partial Moment
|
78
|
+
* Variance
|
79
|
+
* Semi-Variance
|
80
|
+
* CVaR (Conditional Value at Risk)
|
81
|
+
* EVaR (Entropic Value at Risk)
|
82
|
+
* Worst Realization (worst return)
|
83
|
+
* CDaR (Conditional Drawdown at Risk)
|
84
|
+
* Maximum Drawdown
|
85
|
+
* Average Drawdown
|
86
|
+
* EDaR (Entropic Drawdown at Risk)
|
87
|
+
* Ulcer Index
|
88
|
+
* Gini Mean Difference
|
89
|
+
|
90
|
+
Cost, regularization, uncertainty set, and additional constraints can also be added
|
91
|
+
to the optimization problem (see the parameters description).
|
92
|
+
|
93
|
+
The assets expected returns, covariance matrix and returns are estimated from the
|
94
|
+
:ref:`prior estimator <prior>`.
|
95
|
+
|
96
|
+
Parameters
|
97
|
+
----------
|
98
|
+
objective_function : ObjectiveFunction, default=ObjectiveFunction.MINIMIZE_RISK
|
99
|
+
:class:`~skfolio.optimization.ObjectiveFunction` of the optimization.
|
100
|
+
Can be any of:
|
101
|
+
|
102
|
+
* MINIMIZE_RISK
|
103
|
+
* MAXIMIZE_RETURN
|
104
|
+
* MAXIMIZE_UTILITY
|
105
|
+
* MAXIMIZE_RATIO
|
106
|
+
|
107
|
+
The default is `ObjectiveFunction.MINIMIZE_RISK`.
|
108
|
+
|
109
|
+
risk_measure : RiskMeasure, default=RiskMeasure.VARIANCE
|
110
|
+
:class:`~skfolio.meta.RiskMeasure` of the optimization.
|
111
|
+
Can be any of:
|
112
|
+
|
113
|
+
* VARIANCE
|
114
|
+
* SEMI_VARIANCE
|
115
|
+
* STANDARD_DEVIATION
|
116
|
+
* SEMI_DEVIATION
|
117
|
+
* MEAN_ABSOLUTE_DEVIATION
|
118
|
+
* FIRST_LOWER_PARTIAL_MOMENT
|
119
|
+
* CVAR
|
120
|
+
* EVAR
|
121
|
+
* WORST_REALIZATION
|
122
|
+
* CDAR
|
123
|
+
* MAX_DRAWDOWN
|
124
|
+
* AVERAGE_DRAWDOWN
|
125
|
+
* EDAR
|
126
|
+
* ULCER_INDEX
|
127
|
+
* GINI_MEAN_DIFFERENCE_RATIO
|
128
|
+
|
129
|
+
The default is `RiskMeasure.VARIANCE`.
|
130
|
+
|
131
|
+
risk_aversion : float, default=1.0
|
132
|
+
Risk aversion factor :math:`\lambda` of the utility function. Only used for
|
133
|
+
`objective_function=ObjectiveFunction.MAXIMIZE_UTILITY`.
|
134
|
+
The default value is `1.0`.
|
135
|
+
|
136
|
+
prior_estimator : BasePrior, optional
|
137
|
+
:ref:`Prior estimator <prior>`.
|
138
|
+
The prior estimator is used to estimate the :class:`~skfolio.prior.PriorModel`
|
139
|
+
containing the estimation of assets expected returns, covariance matrix,
|
140
|
+
returns and Cholesky decomposition of the covariance.
|
141
|
+
The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`.
|
142
|
+
|
143
|
+
min_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=0.0
|
144
|
+
Minimum assets weights (weights lower bounds).
|
145
|
+
If a float is provided, it is applied to each asset.
|
146
|
+
`None` is equivalent to `-np.Inf` (no lower bound).
|
147
|
+
If a dictionary is provided, its (key/value) pair must be the
|
148
|
+
(asset name/asset minium weight) and the input `X` of the `fit` methods must
|
149
|
+
be a DataFrame with the assets names in columns.
|
150
|
+
When using a dictionary, assets values that are not provided are assigned
|
151
|
+
a minimum weight of `0.0`.
|
152
|
+
The default value is `0.0` (no short selling).
|
153
|
+
|
154
|
+
Example:
|
155
|
+
|
156
|
+
* `min_weights = 0` --> long only portfolio (no short selling).
|
157
|
+
* `min_weights = None` --> no lower bound (same as `-np.Inf`).
|
158
|
+
* `min_weights = -2` --> each weight must be above -200%.
|
159
|
+
* `min_weights = {"SX5E": 0, "SPX": -2}`
|
160
|
+
* `min_weights = [0, -2]`
|
161
|
+
|
162
|
+
max_weights : float | dict[str, float] | array-like of shape (n_assets, ) | None, default=1.0
|
163
|
+
Maximum assets weights (weights upper bounds).
|
164
|
+
If a float is provided, it is applied to each asset.
|
165
|
+
`None` is equivalent to `+np.Inf` (no upper bound).
|
166
|
+
If a dictionary is provided, its (key/value) pair must be the
|
167
|
+
(asset name/asset maximum weight) and the input `X` of the `fit` methods must
|
168
|
+
be a DataFrame with the assets names in columns.
|
169
|
+
When using a dictionary, assets values that are not provided are assigned
|
170
|
+
a minimum weight of `1.0`.
|
171
|
+
The default value is `1.0` (each asset is below 100%).
|
172
|
+
|
173
|
+
Example:
|
174
|
+
|
175
|
+
* `max_weights = 0` --> no long position (short only portfolio).
|
176
|
+
* `max_weights = None` --> no upper bound.
|
177
|
+
* `max_weights = 2` --> each weight must be below 200%.
|
178
|
+
* `max_weights = {"SX5E": 1, "SPX": 2}`
|
179
|
+
* `max_weights = [1, 2]`
|
180
|
+
|
181
|
+
budget : float | None, default=1.0
|
182
|
+
Investment budget. It is the sum of long positions and short positions (sum of
|
183
|
+
all weights). `None` means no budget constraints.
|
184
|
+
The default value is `1.0` (fully invested portfolio).
|
185
|
+
|
186
|
+
Examples:
|
187
|
+
|
188
|
+
* `budget = 1` --> fully invested portfolio.
|
189
|
+
* `budget = 0` --> market neutral portfolio.
|
190
|
+
* `budget = None` --> no constraints on the sum of weights.
|
191
|
+
|
192
|
+
min_budget : float, optional
|
193
|
+
Minimum budget. It is the lower bound of the sum of long and short positions
|
194
|
+
(sum of all weights). If provided, you must set `budget=None`.
|
195
|
+
The default (`None`) means no minimum budget constraint.
|
196
|
+
|
197
|
+
max_budget : float, optional
|
198
|
+
Maximum budget. It is the upper bound of the sum of long and short positions
|
199
|
+
(sum of all weights). If provided, you must set `budget=None`.
|
200
|
+
The default (`None`) means no maximum budget constraint.
|
201
|
+
|
202
|
+
max_short : float, optional
|
203
|
+
Maximum short position. The short position is defined as the sum of negative
|
204
|
+
weights (in absolute term).
|
205
|
+
The default (`None`) means no maximum short position.
|
206
|
+
|
207
|
+
max_long : float, optional
|
208
|
+
Maximum long position. The long position is defined as the sum of positive
|
209
|
+
weights.
|
210
|
+
The default (`None`) means no maximum long position.
|
211
|
+
|
212
|
+
transaction_costs : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
213
|
+
Transaction costs of the assets. It is used to add linear transaction costs to
|
214
|
+
the optimization problem:
|
215
|
+
|
216
|
+
.. math:: total\_cost = \sum_{i=1}^{N} c_{i} \times |w_{i} - w\_prev_{i}|
|
217
|
+
|
218
|
+
with :math:`c_{i}` the transaction cost of asset i, :math:`w_{i}` its weight
|
219
|
+
and :math:`w\_prev_{i}` its previous weight (defined in `previous_weights`).
|
220
|
+
The float :math:`total\_cost` is used in the portfolio expected return:
|
221
|
+
|
222
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_cost
|
223
|
+
|
224
|
+
with :math:`\mu` the vector af assets' expected returns and :math:`w` the
|
225
|
+
vector of assets weights.
|
226
|
+
|
227
|
+
If a float is provided, it is applied to each asset.
|
228
|
+
If a dictionary is provided, its (key/value) pair must be the
|
229
|
+
(asset name/asset cost) and the input `X` of the `fit` methods must be a
|
230
|
+
DataFrame with the assets names in columns.
|
231
|
+
The default value is `0.0`.
|
232
|
+
|
233
|
+
.. warning::
|
234
|
+
|
235
|
+
Based on the above formula, the periodicity of the transaction costs
|
236
|
+
needs to be homogenous to the periodicity of :math:`\mu`. For example, if
|
237
|
+
the input `X` is composed of **daily** returns, the `transaction_costs` need
|
238
|
+
to be expressed in **daily** costs.
|
239
|
+
(See :ref:`sphx_glr_auto_examples_1_mean_risk_plot_6_transaction_costs.py`)
|
240
|
+
|
241
|
+
management_fees : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
242
|
+
Management fees of the assets. It is used to add linear management fees to the
|
243
|
+
optimization problem:
|
244
|
+
|
245
|
+
.. math:: total\_fee = \sum_{i=1}^{N} f_{i} \times w_{i}
|
246
|
+
|
247
|
+
with :math:`f_{i}` the management fee of asset i and :math:`w_{i}` its weight.
|
248
|
+
The float :math:`total\_fee` is used in the portfolio expected return:
|
249
|
+
|
250
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_fee
|
251
|
+
|
252
|
+
with :math:`\mu` the vector af assets expected returns and :math:`w` the vector
|
253
|
+
of assets weights.
|
254
|
+
|
255
|
+
If a float is provided, it is applied to each asset.
|
256
|
+
If a dictionary is provided, its (key/value) pair must be the
|
257
|
+
(asset name/asset fee) and the input `X` of the `fit` methods must be a
|
258
|
+
DataFrame with the assets names in columns.
|
259
|
+
The default value is `0.0`.
|
260
|
+
|
261
|
+
.. warning::
|
262
|
+
|
263
|
+
Based on the above formula, the periodicity of the management fees needs to
|
264
|
+
be homogenous to the periodicity of :math:`\mu`. For example, if the input
|
265
|
+
`X` is composed of **daily** returns, the `management_fees` need to be
|
266
|
+
expressed in **daily** fees.
|
267
|
+
|
268
|
+
.. note::
|
269
|
+
|
270
|
+
Another approach is to directly impact the management fees to the input `X`
|
271
|
+
in order to express the returns net of fees. However, when estimating the
|
272
|
+
:math:`\mu` parameter using for example Shrinkage estimators, this approach
|
273
|
+
would mix a deterministic value with an uncertain one leading to unwanted
|
274
|
+
bias in the management fees.
|
275
|
+
|
276
|
+
previous_weights : float | dict[str, float] | array-like of shape (n_assets, ), optional
|
277
|
+
Previous weights of the assets. Previous weights are used to compute the
|
278
|
+
portfolio cost and the portfolio turnover.
|
279
|
+
If a float is provided, it is applied to each asset.
|
280
|
+
If a dictionary is provided, its (key/value) pair must be the
|
281
|
+
(asset name/asset previous weight) and the input `X` of the `fit` methods must
|
282
|
+
be a DataFrame with the assets names in columns.
|
283
|
+
The default (`None`) means no previous weights.
|
284
|
+
|
285
|
+
l1_coef : float, default=0.0
|
286
|
+
L1 regularization coefficient.
|
287
|
+
It is used to penalize the objective function by the L1 norm:
|
288
|
+
|
289
|
+
.. math:: l1\_coef \times \Vert w \Vert_{1} = l1\_coef \times \sum_{i=1}^{N} |w_{i}|
|
290
|
+
|
291
|
+
Increasing this coefficient will reduce the number of non-zero weights
|
292
|
+
(cardinality). It tends to increase robustness (out-of-sample stability) but
|
293
|
+
reduces diversification.
|
294
|
+
The default value is `0.0`.
|
295
|
+
|
296
|
+
l2_coef : float, default=0.0
|
297
|
+
L2 regularization coefficient.
|
298
|
+
It is used to penalize the objective function by the L2 norm:
|
299
|
+
|
300
|
+
.. math:: l2\_coef \times \Vert w \Vert_{2}^{2} = l2\_coef \times \sum_{i=1}^{N} w_{i}^2
|
301
|
+
|
302
|
+
It tends to increase robustness (out-of-sample stability).
|
303
|
+
The default value is `0.0`.
|
304
|
+
|
305
|
+
mu_uncertainty_set_estimator : BaseMuUncertaintySet, optional
|
306
|
+
:ref:`Mu Uncertainty set estimator <uncertainty_set_estimator>`.
|
307
|
+
If provided, the assets expected returns are modelled with an ellipsoidal
|
308
|
+
uncertainty set. It is called worst-case optimization and is a class of robust
|
309
|
+
optimization. It reduces the instability that arises from the estimation errors
|
310
|
+
of the expected returns.
|
311
|
+
The worst case portfolio expect return is:
|
312
|
+
|
313
|
+
.. math:: w^T \cdot \hat{\mu} - \kappa_{\mu} \lVert S_{\mu}^\frac{1}{2} \cdot w \rVert_{2}
|
314
|
+
|
315
|
+
with :math:`\kappa` the size of the ellipsoid (confidence region) and
|
316
|
+
:math:`S` its shape.
|
317
|
+
The default (`None`) means that no uncertainty set is used.
|
318
|
+
|
319
|
+
covariance_uncertainty_set_estimator : BaseCovarianceUncertaintySet, optional
|
320
|
+
:ref:`Covariance Uncertainty set estimator <uncertainty_set_estimator>`.
|
321
|
+
If provided, the assets covariance matrix is modelled with an ellipsoidal
|
322
|
+
uncertainty set. It is called worst-case optimization and is a class of robust
|
323
|
+
optimization. It reduces the instability that arises from the estimation errors
|
324
|
+
of the covariance matrix.
|
325
|
+
The default (`None`) means that no uncertainty set is used.
|
326
|
+
|
327
|
+
linear_constraints : array-like of shape (n_constraints,), optional
|
328
|
+
Linear constraints.
|
329
|
+
The linear constraints must match any of following patterns:
|
330
|
+
|
331
|
+
* "2.5 * ref1 + 0.10 * ref2 + 0.0013 <= 2.5 * ref3"
|
332
|
+
* "ref1 >= 2.9 * ref2"
|
333
|
+
* "ref1 <= ref2"
|
334
|
+
* "ref1 >= ref1"
|
335
|
+
|
336
|
+
With "ref1", "ref2" ... the assets names or the groups names provided
|
337
|
+
in the parameter `groups`. Assets names can be referenced without the need of
|
338
|
+
`groups` if the input `X` of the `fit` methods is a DataFrame with these
|
339
|
+
assets names in columns.
|
340
|
+
|
341
|
+
Examples:
|
342
|
+
|
343
|
+
* "SPX >= 0.10" --> SPX weight must be greater than 10% (note that you can also use `min_weights`)
|
344
|
+
* "SX5E + TLT >= 0.2" --> the sum of SX5E and TLT weights must be greater than 20%
|
345
|
+
* "US >= 0.7" --> the sum of all US weights must be greater than 70%
|
346
|
+
* "Equity <= 3 * Bond" --> the sum of all Equity weights must be less or equal to 3 times the sum of all Bond weights.
|
347
|
+
* "2*SPX + 3*Europe <= Bond + 0.05" --> mixing assets and group constraints
|
348
|
+
|
349
|
+
groups : dict[str, list[str]] or array-like of shape (n_groups, n_assets), optional
|
350
|
+
The assets groups referenced in `linear_constraints`.
|
351
|
+
If a dictionary is provided, its (key/value) pair must be the
|
352
|
+
(asset name/asset groups) and the input `X` of the `fit` methods must be a
|
353
|
+
DataFrame with the assets names in columns.
|
354
|
+
|
355
|
+
Examples:
|
356
|
+
|
357
|
+
* groups = {"SX5E": ["Equity", "Europe"], "SPX": ["Equity", "US"], "TLT": ["Bond", "US"]}
|
358
|
+
* groups = [["Equity", "Equity", "Bond"], ["Europe", "US", "US"]]
|
359
|
+
|
360
|
+
left_inequality : array-like of shape (n_constraints, n_assets), optional
|
361
|
+
Left inequality matrix :math:`A` of the linear
|
362
|
+
constraint :math:`A \cdot w \leq b`.
|
363
|
+
|
364
|
+
right_inequality : array-like of shape (n_constraints, ), optional
|
365
|
+
Right inequality vector :math:`b` of the linear
|
366
|
+
constraint :math:`A \cdot w \leq b`.
|
367
|
+
|
368
|
+
risk_free_rate : float, default=0.0
|
369
|
+
Risk-free interest rate.
|
370
|
+
The default value is `0.0`.
|
371
|
+
|
372
|
+
max_tracking_error : float, optional
|
373
|
+
Upper bound constraint on the tracking error.
|
374
|
+
The tracking error is defined as the RMSE (root-mean-square error) of the
|
375
|
+
portfolio returns compared to a target returns. If `max_tracking_error` is
|
376
|
+
provided, the target returns `y` must be provided in the `fit` method.
|
377
|
+
|
378
|
+
max_turnover : float, optional
|
379
|
+
Upper bound constraint of the turnover.
|
380
|
+
The turnover is defined as the absolute difference between the portfolio weights
|
381
|
+
and the `previous_weights`. Note that another way to control for turnover is by
|
382
|
+
using the `transaction_costs` parameter.
|
383
|
+
|
384
|
+
max_mean_absolute_deviation : float | array-like of shape (n_optimization), optional
|
385
|
+
Upper bound constraint on the Mean Absolute Deviation.
|
386
|
+
|
387
|
+
max_first_lower_partial_moment : float | array-like of shape (n_optimization), optional
|
388
|
+
Upper bound constraint on the First Lower Partial Moment.
|
389
|
+
|
390
|
+
max_variance : float | array-like of shape (n_optimization), optional
|
391
|
+
Upper bound constraint on the Variance.
|
392
|
+
|
393
|
+
max_standard_deviation : float | array-like of shape (n_optimization), optional
|
394
|
+
Upper bound constraint on the Standard deviation.
|
395
|
+
|
396
|
+
max_semi_variance : float | array-like of shape (n_optimization), optional
|
397
|
+
Upper bound constraint on the Semi-Variance (Second Lower Partial Moment or
|
398
|
+
Downside Variance).
|
399
|
+
|
400
|
+
max_semi_deviation : float | array-like of shape (n_optimization), optional
|
401
|
+
Upper bound constraint on the Semi-Standard deviation.
|
402
|
+
|
403
|
+
max_worst_realization : float | array-like of shape (n_optimization), optional
|
404
|
+
Upper bound constraint on the Worst Realization (Worst Return).
|
405
|
+
|
406
|
+
max_cvar : float | array-like of shape (n_optimization), optional
|
407
|
+
Upper bound constraint on the CVaR (Conditional Value-at-Risk or Expected
|
408
|
+
Shortfall).
|
409
|
+
|
410
|
+
max_evar : float | array-like of shape (n_optimization), optional
|
411
|
+
Upper bound constraint on the EVaR (Entropic Value at Risk).
|
412
|
+
|
413
|
+
max_max_drawdown : float | array-like of shape (n_optimization), optional
|
414
|
+
Upper bound constraint on the Maximum Drawdown.
|
415
|
+
|
416
|
+
max_average_drawdown : float | array-like of shape (n_optimization), optional
|
417
|
+
Upper bound constraint on the Average Drawdown.
|
418
|
+
|
419
|
+
max_cdar : float | array-like of shape (n_optimization), optional
|
420
|
+
Upper bound constraint on the CDaR (Conditional Drawdown at Risk).
|
421
|
+
|
422
|
+
max_edar : float | array-like of shape (n_optimization), optional
|
423
|
+
Upper bound constraint on the EDaR (Entropic Drawdown at Risk).
|
424
|
+
|
425
|
+
max_ulcer_index : float | array-like of shape (n_optimization), optional
|
426
|
+
Upper bound constraint on the Ulcer Index.
|
427
|
+
|
428
|
+
max_gini_mean_difference : float | array-like of shape (n_optimization), optional
|
429
|
+
Upper bound constraint on the Gini Mean Difference.
|
430
|
+
|
431
|
+
min_return : float | array-like of shape (n_optimization), optional
|
432
|
+
Lower bound constraint on the expected return.
|
433
|
+
|
434
|
+
min_acceptable_return : float, optional
|
435
|
+
The minimum acceptable return used to distinguish "downside" and "upside"
|
436
|
+
returns for the computation of lower partial moments:
|
437
|
+
|
438
|
+
* First Lower Partial Moment
|
439
|
+
* Semi-Variance
|
440
|
+
* Semi-Deviation
|
441
|
+
|
442
|
+
The default (`None`) is to use the mean.
|
443
|
+
|
444
|
+
cvar_beta : float, default=0.95
|
445
|
+
CVaR (Conditional Value at Risk) confidence level.
|
446
|
+
The default value is `0.95`.
|
447
|
+
|
448
|
+
evar_beta : float, default=0
|
449
|
+
EVaR (Entropic Value at Risk) confidence level.
|
450
|
+
The default value is `0.95`.
|
451
|
+
|
452
|
+
cdar_beta : float, default=0.95
|
453
|
+
CDaR (Conditional Drawdown at Risk) confidence level.
|
454
|
+
The default value is `0.95`.
|
455
|
+
|
456
|
+
edar_beta : float, default=0.95
|
457
|
+
EDaR (Entropic Drawdown at Risk) confidence level.
|
458
|
+
The default value is `0.95`.
|
459
|
+
|
460
|
+
add_objective : Callable[[cp.Variable], cp.Expression], optional
|
461
|
+
Add a custom objective to the existing objective expression.
|
462
|
+
It is a function that must take as argument the weights `w` and returns a
|
463
|
+
CVXPY expression.
|
464
|
+
|
465
|
+
add_constraints : Callable[[cp.Variable], cp.Expression|list[cp.Expression]], optional
|
466
|
+
Add a custom constraint or a list of constraints to the existing constraints.
|
467
|
+
It is a function that must take as argument the weights `w` and returns a
|
468
|
+
CVPXY expression or a list of CVPXY expressions.
|
469
|
+
|
470
|
+
overwrite_expected_return : Callable[[cp.Variable], cp.Expression], optional
|
471
|
+
Overwrite the expected return :math:`\mu \cdot w` with a custom expression.
|
472
|
+
It is a function that must take as argument the weights `w` and returns a
|
473
|
+
CVPXY expression.
|
474
|
+
|
475
|
+
solver : str, optional
|
476
|
+
The solver to use. For example, "ECOS", "SCS", or "OSQP".
|
477
|
+
The default (`None`) is set depending on the problem.
|
478
|
+
For more details about available solvers, check the CVXPY documentation:
|
479
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver
|
480
|
+
|
481
|
+
solver_params : dict, optional
|
482
|
+
Solver parameters. For example, `solver_params=dict(verbose=True)`.
|
483
|
+
For more details about solver arguments, check the CVXPY documentation:
|
484
|
+
https://www.cvxpy.org/tutorial/advanced/index.html#setting-solver-options
|
485
|
+
|
486
|
+
scale_objective : float, optional
|
487
|
+
Scale each objective element by this value.
|
488
|
+
It can be used to increase the optimization accuracies in specific cases.
|
489
|
+
The default (`None`) is set depending on the problem.
|
490
|
+
|
491
|
+
scale_constraints : float, optional
|
492
|
+
Scale each constraint element by this value.
|
493
|
+
It can be used to increase the optimization accuracies in specific cases.
|
494
|
+
The default (`None`) is set depending on the problem.
|
495
|
+
|
496
|
+
raise_on_failure : bool, default=True
|
497
|
+
If this is set to True, an error is raised when the optimization fail otherwise
|
498
|
+
it passes with a warning.
|
499
|
+
|
500
|
+
portfolio_params : dict, optional
|
501
|
+
Portfolio parameters passed to the portfolio evaluated by the `predict` and
|
502
|
+
`score` methods. If not provided, the `name`, `transaction_costs`,
|
503
|
+
`management_fees` and `previous_weights` are copied from the optimization
|
504
|
+
model and systematically passed to the portfolio.
|
505
|
+
|
506
|
+
Attributes
|
507
|
+
----------
|
508
|
+
weights_ : ndarray of shape (n_assets,) or (n_optimizations, n_assets)
|
509
|
+
Weights of the assets.
|
510
|
+
|
511
|
+
problem_: cvxpy.Problem
|
512
|
+
CVXPY problem used for the optimization.
|
513
|
+
|
514
|
+
problem_values_ : dict[str, float] | list[dict[str, float]] of size n_optimizations
|
515
|
+
Expression values retrieved from the CVXPY problem.
|
516
|
+
|
517
|
+
prior_estimator_ : BasePrior
|
518
|
+
Fitted `prior_estimator`.
|
519
|
+
|
520
|
+
mu_uncertainty_set_estimator_ : BaseMuUncertaintySet
|
521
|
+
Fitted `mu_uncertainty_set_estimator` if provided.
|
522
|
+
|
523
|
+
covariance_uncertainty_set_estimator_ : BaseCovarianceUncertaintySet
|
524
|
+
Fitted `covariance_uncertainty_set_estimator` if provided.
|
525
|
+
|
526
|
+
n_features_in_ : int
|
527
|
+
Number of assets seen during `fit`.
|
528
|
+
|
529
|
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
530
|
+
Names of assets seen during `fit`. Defined only when `X`
|
531
|
+
has assets names that are all strings.
|
532
|
+
"""
|
533
|
+
|
534
|
+
def __init__(
|
535
|
+
self,
|
536
|
+
objective_function: ObjectiveFunction = ObjectiveFunction.MINIMIZE_RISK,
|
537
|
+
risk_measure: RiskMeasure = RiskMeasure.VARIANCE,
|
538
|
+
risk_aversion: float = 1.0,
|
539
|
+
efficient_frontier_size: int | None = None,
|
540
|
+
prior_estimator: BasePrior | None = None,
|
541
|
+
min_weights: skt.MultiInput | None = 0.0,
|
542
|
+
max_weights: skt.MultiInput | None = 1.0,
|
543
|
+
budget: float | None = 1.0,
|
544
|
+
min_budget: float | None = None,
|
545
|
+
max_budget: float | None = None,
|
546
|
+
max_short: float | None = None,
|
547
|
+
max_long: float | None = None,
|
548
|
+
transaction_costs: skt.MultiInput = 0.0,
|
549
|
+
management_fees: skt.MultiInput = 0.0,
|
550
|
+
previous_weights: skt.MultiInput | None = None,
|
551
|
+
groups: skt.Groups | None = None,
|
552
|
+
linear_constraints: skt.LinearConstraints | None = None,
|
553
|
+
left_inequality: skt.Inequality | None = None,
|
554
|
+
right_inequality: skt.Inequality | None = None,
|
555
|
+
l1_coef: float = 0.0,
|
556
|
+
l2_coef: float = 0.0,
|
557
|
+
mu_uncertainty_set_estimator: BaseMuUncertaintySet | None = None,
|
558
|
+
covariance_uncertainty_set_estimator: BaseCovarianceUncertaintySet
|
559
|
+
| None = None,
|
560
|
+
risk_free_rate: float = 0.0,
|
561
|
+
min_return: skt.Target | None = None,
|
562
|
+
max_tracking_error: skt.Target | None = None,
|
563
|
+
max_turnover: skt.Target | None = None,
|
564
|
+
max_mean_absolute_deviation: skt.Target | None = None,
|
565
|
+
max_first_lower_partial_moment: skt.Target | None = None,
|
566
|
+
max_variance: skt.Target | None = None,
|
567
|
+
max_standard_deviation: skt.Target | None = None,
|
568
|
+
max_semi_variance: skt.Target | None = None,
|
569
|
+
max_semi_deviation: skt.Target | None = None,
|
570
|
+
max_worst_realization: skt.Target | None = None,
|
571
|
+
max_cvar: skt.Target | None = None,
|
572
|
+
max_evar: skt.Target | None = None,
|
573
|
+
max_max_drawdown: skt.Target | None = None,
|
574
|
+
max_average_drawdown: skt.Target | None = None,
|
575
|
+
max_cdar: skt.Target | None = None,
|
576
|
+
max_edar: skt.Target | None = None,
|
577
|
+
max_ulcer_index: skt.Target | None = None,
|
578
|
+
max_gini_mean_difference: skt.Target | None = None,
|
579
|
+
min_acceptable_return: skt.Target | None = None,
|
580
|
+
cvar_beta: float = 0.95,
|
581
|
+
evar_beta: float = 0.95,
|
582
|
+
cdar_beta: float = 0.95,
|
583
|
+
edar_beta: float = 0.95,
|
584
|
+
solver: str | None = None,
|
585
|
+
solver_params: dict | None = None,
|
586
|
+
scale_objective: float | None = None,
|
587
|
+
scale_constraints: float | None = None,
|
588
|
+
raise_on_failure: bool = True,
|
589
|
+
add_objective: skt.ExpressionFunction | None = None,
|
590
|
+
add_constraints: skt.ExpressionFunction | None = None,
|
591
|
+
overwrite_expected_return: skt.ExpressionFunction | None = None,
|
592
|
+
portfolio_params: dict | None = None,
|
593
|
+
):
|
594
|
+
super().__init__(
|
595
|
+
risk_measure=risk_measure,
|
596
|
+
prior_estimator=prior_estimator,
|
597
|
+
mu_uncertainty_set_estimator=mu_uncertainty_set_estimator,
|
598
|
+
covariance_uncertainty_set_estimator=covariance_uncertainty_set_estimator,
|
599
|
+
min_weights=min_weights,
|
600
|
+
max_weights=max_weights,
|
601
|
+
budget=budget,
|
602
|
+
min_budget=min_budget,
|
603
|
+
max_budget=max_budget,
|
604
|
+
max_short=max_short,
|
605
|
+
max_long=max_long,
|
606
|
+
transaction_costs=transaction_costs,
|
607
|
+
management_fees=management_fees,
|
608
|
+
previous_weights=previous_weights,
|
609
|
+
groups=groups,
|
610
|
+
linear_constraints=linear_constraints,
|
611
|
+
left_inequality=left_inequality,
|
612
|
+
right_inequality=right_inequality,
|
613
|
+
l1_coef=l1_coef,
|
614
|
+
l2_coef=l2_coef,
|
615
|
+
risk_free_rate=risk_free_rate,
|
616
|
+
min_acceptable_return=min_acceptable_return,
|
617
|
+
cvar_beta=cvar_beta,
|
618
|
+
evar_beta=evar_beta,
|
619
|
+
cdar_beta=cdar_beta,
|
620
|
+
edar_beta=edar_beta,
|
621
|
+
solver=solver,
|
622
|
+
solver_params=solver_params,
|
623
|
+
scale_objective=scale_objective,
|
624
|
+
scale_constraints=scale_constraints,
|
625
|
+
raise_on_failure=raise_on_failure,
|
626
|
+
add_objective=add_objective,
|
627
|
+
add_constraints=add_constraints,
|
628
|
+
overwrite_expected_return=overwrite_expected_return,
|
629
|
+
portfolio_params=portfolio_params,
|
630
|
+
)
|
631
|
+
self.objective_function = objective_function
|
632
|
+
self.risk_aversion = risk_aversion
|
633
|
+
self.efficient_frontier_size = efficient_frontier_size
|
634
|
+
self.min_return = min_return
|
635
|
+
self.max_tracking_error = max_tracking_error
|
636
|
+
self.max_turnover = max_turnover
|
637
|
+
self.max_mean_absolute_deviation = max_mean_absolute_deviation
|
638
|
+
self.max_first_lower_partial_moment = max_first_lower_partial_moment
|
639
|
+
self.max_variance = max_variance
|
640
|
+
self.max_standard_deviation = max_standard_deviation
|
641
|
+
self.max_semi_variance = max_semi_variance
|
642
|
+
self.max_semi_deviation = max_semi_deviation
|
643
|
+
self.max_worst_realization = max_worst_realization
|
644
|
+
self.max_cvar = max_cvar
|
645
|
+
self.max_evar = max_evar
|
646
|
+
self.max_max_drawdown = max_max_drawdown
|
647
|
+
self.max_average_drawdown = max_average_drawdown
|
648
|
+
self.max_cdar = max_cdar
|
649
|
+
self.max_edar = max_edar
|
650
|
+
self.max_ulcer_index = max_ulcer_index
|
651
|
+
self.max_gini_mean_difference = max_gini_mean_difference
|
652
|
+
|
653
|
+
def _validation(self) -> None:
|
654
|
+
"""Validate the input parameters"""
|
655
|
+
if not isinstance(self.risk_measure, RiskMeasure):
|
656
|
+
raise TypeError("risk_measure must be of type `RiskMeasure`")
|
657
|
+
if not isinstance(self.objective_function, ObjectiveFunction):
|
658
|
+
raise TypeError("objective_function must be of type `ObjectiveFunction`")
|
659
|
+
if self.efficient_frontier_size is not None:
|
660
|
+
if self.efficient_frontier_size <= 1:
|
661
|
+
raise ValueError(
|
662
|
+
"`efficient_frontier_size` must be strictly greater than one"
|
663
|
+
)
|
664
|
+
if self.objective_function != ObjectiveFunction.MINIMIZE_RISK:
|
665
|
+
raise ValueError(
|
666
|
+
"`efficient_frontier_size` must be used only with "
|
667
|
+
"`objective_function = ObjectiveFunction.MINIMIZE_RISK`"
|
668
|
+
)
|
669
|
+
|
670
|
+
def fit(self, X: npt.ArrayLike, y: npt.ArrayLike | None = None) -> "MeanRisk":
|
671
|
+
"""Fit the Mean-Risk Optimization estimator.
|
672
|
+
|
673
|
+
Parameters
|
674
|
+
----------
|
675
|
+
X : array-like of shape (n_observations, n_assets)
|
676
|
+
Price returns of the assets.
|
677
|
+
|
678
|
+
y : array-like of shape (n_observations, n_targets), optional
|
679
|
+
Price returns of factors or a target benchmark.
|
680
|
+
The default is `None`.
|
681
|
+
|
682
|
+
Returns
|
683
|
+
-------
|
684
|
+
self : MeanRisk
|
685
|
+
Fitted estimator.
|
686
|
+
"""
|
687
|
+
self._check_feature_names(X, reset=True)
|
688
|
+
# Validate
|
689
|
+
self._validation()
|
690
|
+
# Used to avoid adding multiple times similar constrains linked to identical
|
691
|
+
# risk models
|
692
|
+
self._clear_models_cache()
|
693
|
+
self.prior_estimator_ = check_estimator(
|
694
|
+
self.prior_estimator,
|
695
|
+
default=EmpiricalPrior(),
|
696
|
+
check_type=BasePrior,
|
697
|
+
)
|
698
|
+
self.prior_estimator_.fit(X, y)
|
699
|
+
prior_model = self.prior_estimator_.prior_model_
|
700
|
+
n_observations, n_assets = prior_model.returns.shape
|
701
|
+
|
702
|
+
# set solvers
|
703
|
+
self._set_solver(default="ECOS")
|
704
|
+
|
705
|
+
# set scales
|
706
|
+
if self.objective_function == ObjectiveFunction.MAXIMIZE_RATIO:
|
707
|
+
self._set_scale_objective(default=1)
|
708
|
+
self._set_scale_constraints(default=1)
|
709
|
+
else:
|
710
|
+
match self.risk_measure:
|
711
|
+
case (
|
712
|
+
RiskMeasure.MEAN_ABSOLUTE_DEVIATION
|
713
|
+
| RiskMeasure.FIRST_LOWER_PARTIAL_MOMENT
|
714
|
+
| RiskMeasure.CVAR
|
715
|
+
| RiskMeasure.WORST_REALIZATION
|
716
|
+
| RiskMeasure.AVERAGE_DRAWDOWN
|
717
|
+
| RiskMeasure.MAX_DRAWDOWN
|
718
|
+
| RiskMeasure.CDAR
|
719
|
+
| RiskMeasure.ULCER_INDEX
|
720
|
+
):
|
721
|
+
self._set_scale_objective(default=1e-1)
|
722
|
+
self._set_scale_constraints(default=1e2)
|
723
|
+
|
724
|
+
case RiskMeasure.EVAR:
|
725
|
+
self._set_scale_objective(default=1)
|
726
|
+
self._set_scale_constraints(default=1e-2)
|
727
|
+
|
728
|
+
case RiskMeasure.EDAR:
|
729
|
+
self._set_scale_objective(default=1)
|
730
|
+
self._set_scale_constraints(default=1e2)
|
731
|
+
|
732
|
+
case _:
|
733
|
+
self._set_scale_objective(default=1)
|
734
|
+
self._set_scale_constraints(default=1)
|
735
|
+
|
736
|
+
# Init weight variable and constraints
|
737
|
+
w = cp.Variable(n_assets)
|
738
|
+
constraints = []
|
739
|
+
|
740
|
+
if self.objective_function == ObjectiveFunction.MAXIMIZE_RATIO:
|
741
|
+
factor = cp.Variable()
|
742
|
+
else:
|
743
|
+
factor = cp.Constant(1)
|
744
|
+
|
745
|
+
# Mu uncertainty set
|
746
|
+
if self.mu_uncertainty_set_estimator is None:
|
747
|
+
mu_uncertainty_set = cp.Constant(0)
|
748
|
+
else:
|
749
|
+
# noinspection PyTypeChecker
|
750
|
+
self.mu_uncertainty_set_estimator_ = sk.clone(
|
751
|
+
self.mu_uncertainty_set_estimator
|
752
|
+
)
|
753
|
+
self.mu_uncertainty_set_estimator_.fit(X, y)
|
754
|
+
mu_uncertainty_set = self._cvx_mu_uncertainty_set(
|
755
|
+
mu_uncertainty_set=self.mu_uncertainty_set_estimator_.uncertainty_set_,
|
756
|
+
w=w,
|
757
|
+
)
|
758
|
+
|
759
|
+
# Expected returns
|
760
|
+
expected_return = (
|
761
|
+
self._cvx_expected_return(prior_model=prior_model, w=w)
|
762
|
+
- self._cvx_transaction_cost(prior_model=prior_model, w=w, factor=factor)
|
763
|
+
- self._cvx_management_fee(prior_model=prior_model, w=w)
|
764
|
+
- mu_uncertainty_set
|
765
|
+
)
|
766
|
+
|
767
|
+
# Regularization
|
768
|
+
regularization = self._cvx_regularization(w=w)
|
769
|
+
|
770
|
+
# Tracking error
|
771
|
+
if self.max_tracking_error is not None:
|
772
|
+
if y is None:
|
773
|
+
raise ValueError(
|
774
|
+
"If `max_tracking_error` is provided, `y` must also be provided"
|
775
|
+
)
|
776
|
+
if isinstance(y, pd.DataFrame):
|
777
|
+
if y.shape[1] > 1:
|
778
|
+
raise ValueError(
|
779
|
+
"If `max_tracking_error` is provided, `y` must be a"
|
780
|
+
" 1d-array, a single-column DataFrame or a Series"
|
781
|
+
)
|
782
|
+
y = y[y.columns[0]]
|
783
|
+
_, y = self._validate_data(X, y)
|
784
|
+
tracking_error = self._tracking_error(
|
785
|
+
prior_model=prior_model, w=w, y=y, factor=factor
|
786
|
+
)
|
787
|
+
constraints += [
|
788
|
+
tracking_error * self._scale_constraints
|
789
|
+
<= self.max_tracking_error * self._scale_constraints
|
790
|
+
]
|
791
|
+
|
792
|
+
# Turnover
|
793
|
+
if self.max_turnover is not None:
|
794
|
+
turnover = self._turnover(n_assets=n_assets, w=w, factor=factor)
|
795
|
+
constraints += [
|
796
|
+
turnover * self._scale_constraints
|
797
|
+
<= self.max_turnover * factor * self._scale_constraints
|
798
|
+
]
|
799
|
+
|
800
|
+
# weight constraints
|
801
|
+
constraints += self._get_weight_constraints(
|
802
|
+
n_assets=n_assets, w=w, factor=factor
|
803
|
+
)
|
804
|
+
|
805
|
+
parameters_values = []
|
806
|
+
|
807
|
+
# Efficient frontier
|
808
|
+
if self.efficient_frontier_size is not None:
|
809
|
+
# We find the lower and upper bounds of the expected returns.
|
810
|
+
# noinspection PyTypeChecker
|
811
|
+
model: MeanRisk = sk.clone(self)
|
812
|
+
# noinspection PyTypeChecker
|
813
|
+
model.set_params(
|
814
|
+
objective_function=ObjectiveFunction.MINIMIZE_RISK,
|
815
|
+
efficient_frontier_size=None,
|
816
|
+
portfolio_params=dict(annualized_factor=1),
|
817
|
+
)
|
818
|
+
model.fit(X)
|
819
|
+
min_return = model.problem_values_["expected_return"]
|
820
|
+
# noinspection PyTypeChecker
|
821
|
+
model.set_params(objective_function=ObjectiveFunction.MAXIMIZE_RETURN)
|
822
|
+
model.fit(X)
|
823
|
+
max_return = model.problem_values_["expected_return"]
|
824
|
+
if max_return <= 0:
|
825
|
+
raise ValueError(
|
826
|
+
"Unable to compute the Efficient Frontier with only negative"
|
827
|
+
" expected returns"
|
828
|
+
)
|
829
|
+
targets = np.linspace(
|
830
|
+
max(min_return, 1e-10) * 1.01,
|
831
|
+
max_return,
|
832
|
+
num=self.efficient_frontier_size,
|
833
|
+
)
|
834
|
+
parameter = cp.Parameter(nonneg=False)
|
835
|
+
constraints += [expected_return >= parameter * factor]
|
836
|
+
parameters_values.append((parameter, targets))
|
837
|
+
|
838
|
+
# min_return constraint
|
839
|
+
if self.min_return is not None:
|
840
|
+
parameter = cp.Parameter(nonneg=False)
|
841
|
+
constraints += [
|
842
|
+
expected_return * self._scale_constraints
|
843
|
+
>= parameter * factor * self._scale_constraints
|
844
|
+
]
|
845
|
+
parameters_values.append((parameter, self.min_return))
|
846
|
+
|
847
|
+
# risk and risk constraints
|
848
|
+
risk = None
|
849
|
+
for r_m in _NON_ANNUALIZED_RISK_MEASURES:
|
850
|
+
risk_limit = getattr(self, f"max_{r_m.value}")
|
851
|
+
|
852
|
+
if self.risk_measure == r_m or risk_limit is not None:
|
853
|
+
# Add covariance uncertainty set if provided
|
854
|
+
if (
|
855
|
+
r_m == RiskMeasure.VARIANCE
|
856
|
+
and self.covariance_uncertainty_set_estimator is not None
|
857
|
+
):
|
858
|
+
risk_func = self._worst_case_variance_risk
|
859
|
+
else:
|
860
|
+
risk_func = getattr(self, f"_{r_m.value}_risk")
|
861
|
+
|
862
|
+
args = {}
|
863
|
+
for arg_name in args_names(risk_func):
|
864
|
+
if arg_name == "prior_model":
|
865
|
+
args[arg_name] = prior_model
|
866
|
+
elif arg_name == "w":
|
867
|
+
args[arg_name] = w
|
868
|
+
elif arg_name == "factor":
|
869
|
+
args[arg_name] = factor
|
870
|
+
elif arg_name == "covariance_uncertainty_set":
|
871
|
+
self._set_solver(default="CVXOPT")
|
872
|
+
# noinspection PyTypeChecker
|
873
|
+
self.covariance_uncertainty_set_estimator_ = sk.clone(
|
874
|
+
self.covariance_uncertainty_set_estimator
|
875
|
+
)
|
876
|
+
self.covariance_uncertainty_set_estimator_.fit(X, y)
|
877
|
+
args[arg_name] = (
|
878
|
+
self.covariance_uncertainty_set_estimator_.uncertainty_set_
|
879
|
+
)
|
880
|
+
else:
|
881
|
+
args[arg_name] = getattr(self, arg_name)
|
882
|
+
|
883
|
+
risk_i, constraints_i = risk_func(**args)
|
884
|
+
constraints += constraints_i
|
885
|
+
if risk_limit is not None:
|
886
|
+
parameter = cp.Parameter(nonneg=True)
|
887
|
+
constraints += [
|
888
|
+
risk_i * self._scale_constraints
|
889
|
+
<= parameter * factor * self._scale_constraints
|
890
|
+
]
|
891
|
+
parameters_values.append((parameter, risk_limit))
|
892
|
+
if self.risk_measure == r_m:
|
893
|
+
risk = risk_i
|
894
|
+
|
895
|
+
# custom objectives and constraints
|
896
|
+
custom_objective = self._get_custom_objective(w=w)
|
897
|
+
constraints += self._get_custom_constraints(w=w)
|
898
|
+
|
899
|
+
match self.objective_function:
|
900
|
+
case ObjectiveFunction.MAXIMIZE_RETURN:
|
901
|
+
objective = cp.Maximize(
|
902
|
+
expected_return * self._scale_objective
|
903
|
+
- regularization * self._scale_objective
|
904
|
+
+ custom_objective * self._scale_objective
|
905
|
+
)
|
906
|
+
case ObjectiveFunction.MINIMIZE_RISK:
|
907
|
+
objective = cp.Minimize(
|
908
|
+
risk * self._scale_objective
|
909
|
+
+ regularization * self._scale_objective
|
910
|
+
+ custom_objective * self._scale_objective
|
911
|
+
)
|
912
|
+
case ObjectiveFunction.MAXIMIZE_UTILITY:
|
913
|
+
objective = cp.Maximize(
|
914
|
+
expected_return * self._scale_objective
|
915
|
+
- self.risk_aversion * risk * self._scale_objective
|
916
|
+
- regularization * self._scale_objective
|
917
|
+
+ custom_objective * self._scale_objective
|
918
|
+
)
|
919
|
+
case ObjectiveFunction.MAXIMIZE_RATIO:
|
920
|
+
if expected_return.is_affine():
|
921
|
+
# Charnes-Cooper's variable transformation for Fractional
|
922
|
+
# Programing problem :Max(f1/f2) with f2 linear
|
923
|
+
constraints += [
|
924
|
+
expected_return * self._scale_constraints
|
925
|
+
- cp.Constant(self.risk_free_rate)
|
926
|
+
* factor
|
927
|
+
* self._scale_constraints
|
928
|
+
== cp.Constant(1) * self._scale_constraints
|
929
|
+
]
|
930
|
+
else:
|
931
|
+
# Schaible's generalization of Charnes-Cooper's variable
|
932
|
+
# transformation for Fractional Programing problem :Max(f1/f2)
|
933
|
+
# with f1 concave instead of linear: Schaible,"Parameter-free
|
934
|
+
# Convex Equivalent and Dual Programs of Fractional Programming
|
935
|
+
# Problems".
|
936
|
+
# The condition to work is f1 >= 0, so we need to raise an user
|
937
|
+
# warning when it's not the case.
|
938
|
+
# TODO: raise user warning when f1<0
|
939
|
+
constraints += [
|
940
|
+
expected_return * self._scale_constraints
|
941
|
+
- cp.Constant(self.risk_free_rate)
|
942
|
+
* factor
|
943
|
+
* self._scale_constraints
|
944
|
+
>= cp.Constant(1) * self._scale_constraints
|
945
|
+
]
|
946
|
+
objective = cp.Minimize(
|
947
|
+
risk * self._scale_objective
|
948
|
+
+ regularization * self._scale_objective
|
949
|
+
+ custom_objective * self._scale_objective
|
950
|
+
)
|
951
|
+
case _:
|
952
|
+
raise ValueError(
|
953
|
+
f"objective_function {self.objective_function} is not valid"
|
954
|
+
)
|
955
|
+
|
956
|
+
# problem
|
957
|
+
problem = cp.Problem(objective, constraints)
|
958
|
+
|
959
|
+
# results
|
960
|
+
self._solve_problem(
|
961
|
+
problem=problem,
|
962
|
+
w=w,
|
963
|
+
factor=factor,
|
964
|
+
parameters_values=parameters_values,
|
965
|
+
expressions={
|
966
|
+
"expected_return": expected_return,
|
967
|
+
"risk": risk,
|
968
|
+
"mu_uncertainty_set": mu_uncertainty_set,
|
969
|
+
"regularization": regularization,
|
970
|
+
"factor": factor,
|
971
|
+
},
|
972
|
+
)
|
973
|
+
|
974
|
+
return self
|