skfolio 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skfolio/__init__.py +29 -0
- skfolio/cluster/__init__.py +8 -0
- skfolio/cluster/_hierarchical.py +387 -0
- skfolio/datasets/__init__.py +20 -0
- skfolio/datasets/_base.py +389 -0
- skfolio/datasets/data/__init__.py +0 -0
- skfolio/datasets/data/factors_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_dataset.csv.gz +0 -0
- skfolio/datasets/data/sp500_index.csv.gz +0 -0
- skfolio/distance/__init__.py +26 -0
- skfolio/distance/_base.py +55 -0
- skfolio/distance/_distance.py +574 -0
- skfolio/exceptions.py +30 -0
- skfolio/measures/__init__.py +76 -0
- skfolio/measures/_enums.py +355 -0
- skfolio/measures/_measures.py +607 -0
- skfolio/metrics/__init__.py +3 -0
- skfolio/metrics/_scorer.py +121 -0
- skfolio/model_selection/__init__.py +18 -0
- skfolio/model_selection/_combinatorial.py +407 -0
- skfolio/model_selection/_validation.py +194 -0
- skfolio/model_selection/_walk_forward.py +221 -0
- skfolio/moments/__init__.py +41 -0
- skfolio/moments/covariance/__init__.py +29 -0
- skfolio/moments/covariance/_base.py +101 -0
- skfolio/moments/covariance/_covariance.py +1108 -0
- skfolio/moments/expected_returns/__init__.py +21 -0
- skfolio/moments/expected_returns/_base.py +31 -0
- skfolio/moments/expected_returns/_expected_returns.py +415 -0
- skfolio/optimization/__init__.py +36 -0
- skfolio/optimization/_base.py +147 -0
- skfolio/optimization/cluster/__init__.py +13 -0
- skfolio/optimization/cluster/_nco.py +348 -0
- skfolio/optimization/cluster/hierarchical/__init__.py +13 -0
- skfolio/optimization/cluster/hierarchical/_base.py +440 -0
- skfolio/optimization/cluster/hierarchical/_herc.py +406 -0
- skfolio/optimization/cluster/hierarchical/_hrp.py +368 -0
- skfolio/optimization/convex/__init__.py +16 -0
- skfolio/optimization/convex/_base.py +1944 -0
- skfolio/optimization/convex/_distributionally_robust.py +392 -0
- skfolio/optimization/convex/_maximum_diversification.py +417 -0
- skfolio/optimization/convex/_mean_risk.py +974 -0
- skfolio/optimization/convex/_risk_budgeting.py +560 -0
- skfolio/optimization/ensemble/__init__.py +6 -0
- skfolio/optimization/ensemble/_base.py +87 -0
- skfolio/optimization/ensemble/_stacking.py +326 -0
- skfolio/optimization/naive/__init__.py +3 -0
- skfolio/optimization/naive/_naive.py +173 -0
- skfolio/population/__init__.py +3 -0
- skfolio/population/_population.py +883 -0
- skfolio/portfolio/__init__.py +13 -0
- skfolio/portfolio/_base.py +1096 -0
- skfolio/portfolio/_multi_period_portfolio.py +610 -0
- skfolio/portfolio/_portfolio.py +842 -0
- skfolio/pre_selection/__init__.py +7 -0
- skfolio/pre_selection/_pre_selection.py +342 -0
- skfolio/preprocessing/__init__.py +3 -0
- skfolio/preprocessing/_returns.py +114 -0
- skfolio/prior/__init__.py +18 -0
- skfolio/prior/_base.py +63 -0
- skfolio/prior/_black_litterman.py +238 -0
- skfolio/prior/_empirical.py +163 -0
- skfolio/prior/_factor_model.py +268 -0
- skfolio/typing.py +50 -0
- skfolio/uncertainty_set/__init__.py +23 -0
- skfolio/uncertainty_set/_base.py +108 -0
- skfolio/uncertainty_set/_bootstrap.py +281 -0
- skfolio/uncertainty_set/_empirical.py +237 -0
- skfolio/utils/__init__.py +0 -0
- skfolio/utils/bootstrap.py +115 -0
- skfolio/utils/equations.py +350 -0
- skfolio/utils/sorting.py +117 -0
- skfolio/utils/stats.py +466 -0
- skfolio/utils/tools.py +567 -0
- skfolio-0.0.1.dist-info/LICENSE +29 -0
- skfolio-0.0.1.dist-info/METADATA +568 -0
- skfolio-0.0.1.dist-info/RECORD +79 -0
- skfolio-0.0.1.dist-info/WHEEL +5 -0
- skfolio-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,406 @@
|
|
1
|
+
"""Hierarchical Equal Risk Contribution estimator."""
|
2
|
+
|
3
|
+
# Author: Hugo Delatte <delatte.hugo@gmail.com>
|
4
|
+
# License: BSD 3 clause
|
5
|
+
|
6
|
+
|
7
|
+
import numpy as np
|
8
|
+
import numpy.typing as npt
|
9
|
+
import pandas as pd
|
10
|
+
import scipy.cluster.hierarchy as sch
|
11
|
+
|
12
|
+
import skfolio.typing as skt
|
13
|
+
from skfolio.cluster import HierarchicalClustering
|
14
|
+
from skfolio.distance import BaseDistance, PearsonDistance
|
15
|
+
from skfolio.measures import ExtraRiskMeasure, RiskMeasure
|
16
|
+
from skfolio.optimization.cluster.hierarchical._base import (
|
17
|
+
BaseHierarchicalOptimization,
|
18
|
+
)
|
19
|
+
from skfolio.prior import BasePrior, EmpiricalPrior
|
20
|
+
from skfolio.utils.tools import check_estimator
|
21
|
+
|
22
|
+
|
23
|
+
class HierarchicalEqualRiskContribution(BaseHierarchicalOptimization):
|
24
|
+
r"""Hierarchical Equal Risk Contribution estimator.
|
25
|
+
|
26
|
+
The Hierarchical Equal Risk Contribution is a portfolio optimization method
|
27
|
+
developed by Thomas Raffinot [2]_.
|
28
|
+
|
29
|
+
This algorithm uses a distance matrix to compute hierarchical clusters using the
|
30
|
+
Hierarchical Tree Clustering algorithm then computes, for each cluster, the total
|
31
|
+
cluster risk of an inverse-risk allocation.
|
32
|
+
The final step is the top-down recursive division of the dendrogram where the assets
|
33
|
+
weights are updated using a naive risk parity within clusters.
|
34
|
+
|
35
|
+
It differs from the Hierarchical Risk Parity by exploiting the dendrogram shape
|
36
|
+
during the top-down recursive division instead of bisecting it.
|
37
|
+
|
38
|
+
.. note ::
|
39
|
+
|
40
|
+
The default linkage method is set to the Ward
|
41
|
+
variance minimization algorithm which is more stable and have better properties
|
42
|
+
than the single-linkage method [4]_.
|
43
|
+
|
44
|
+
Parameters
|
45
|
+
----------
|
46
|
+
risk_measure : RiskMeasure or ExtraRiskMeasure, default=RiskMeasure.VARIANCE
|
47
|
+
:class:`~skfolio.meta.RiskMeasure` or :class:`~skfolio.meta.ExtraRiskMeasure`
|
48
|
+
of the optimization.
|
49
|
+
Can be any of:
|
50
|
+
|
51
|
+
* MEAN_ABSOLUTE_DEVIATION
|
52
|
+
* FIRST_LOWER_PARTIAL_MOMENT
|
53
|
+
* VARIANCE
|
54
|
+
* SEMI_VARIANCE
|
55
|
+
* CVAR
|
56
|
+
* EVAR
|
57
|
+
* WORST_REALIZATION
|
58
|
+
* CDAR
|
59
|
+
* MAX_DRAWDOWN
|
60
|
+
* AVERAGE_DRAWDOWN
|
61
|
+
* EDAR
|
62
|
+
* ULCER_INDEX
|
63
|
+
* GINI_MEAN_DIFFERENCE_RATIO
|
64
|
+
* VALUE_AT_RISK
|
65
|
+
* DRAWDOWN_AT_RISK
|
66
|
+
* ENTROPIC_RISK_MEASURE
|
67
|
+
* FOURTH_CENTRAL_MOMENT
|
68
|
+
* FOURTH_LOWER_PARTIAL_MOMENT
|
69
|
+
* SKEW
|
70
|
+
* KURTOSIS
|
71
|
+
|
72
|
+
The default is `RiskMeasure.VARIANCE`.
|
73
|
+
|
74
|
+
prior_estimator : BasePrior, optional
|
75
|
+
:ref:`Prior estimator <prior>`.
|
76
|
+
The prior estimator is used to estimate the :class:`~skfolio.prior.PriorModel`
|
77
|
+
containing the estimation of assets expected returns, covariance matrix and
|
78
|
+
returns. The moments and returns estimations are used for the risk computation
|
79
|
+
and the returns estimation are used by the distance matrix estimator.
|
80
|
+
The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`.
|
81
|
+
|
82
|
+
distance_estimator : BaseDistance, optional
|
83
|
+
:ref:`Distance estimator <distance>`.
|
84
|
+
The distance estimator is used to estimate the codependence and the distance
|
85
|
+
matrix needed for the computation of the linkage matrix.
|
86
|
+
The default (`None`) is to use :class:`~skfolio.distance.PearsonDistance`.
|
87
|
+
|
88
|
+
hierarchical_clustering_estimator : HierarchicalClustering, optional
|
89
|
+
:ref:`Hierarchical Clustering estimator <hierarchical_clustering>`.
|
90
|
+
The hierarchical clustering estimator is used to compute the linkage matrix
|
91
|
+
and the hierarchical clustering of the assets based on the distance matrix.
|
92
|
+
The default (`None`) is to use
|
93
|
+
:class:`~skfolio.cluster.HierarchicalClustering`.
|
94
|
+
|
95
|
+
min_weights : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
96
|
+
Minimum assets weights (weights lower bounds). Negative weights are not allowed.
|
97
|
+
If a float is provided, it is applied to each asset. `None` is equivalent to
|
98
|
+
`-np.Inf` (no lower bound). If a dictionary is provided, its (key/value) pair
|
99
|
+
must be the (asset name/asset minium weight) and the input `X` of the `fit`
|
100
|
+
methods must be a DataFrame with the assets names in columns. When using a
|
101
|
+
dictionary, assets values that are not provided are assigned a minimum weight
|
102
|
+
of `0.0`. The default is 0.0 (no short selling).
|
103
|
+
|
104
|
+
Example:
|
105
|
+
|
106
|
+
* min_weights = 0 --> long only portfolio (no short selling).
|
107
|
+
* min_weights = None --> no lower bound (same as `-np.Inf`).
|
108
|
+
* min_weights = {"SX5E": 0, "SPX": 0.1}
|
109
|
+
* min_weights = [0, 0.1]
|
110
|
+
|
111
|
+
max_weights : float | dict[str, float] | array-like of shape (n_assets, ), default=1.0
|
112
|
+
Maximum assets weights (weights upper bounds). Weights above 1.0 are not
|
113
|
+
allowed. If a float is provided, it is applied to each asset. `None` is
|
114
|
+
equivalent to `+np.Inf` (no upper bound). If a dictionary is provided, its
|
115
|
+
(key/value) pair must be the (asset name/asset maximum weight) and the input `X`
|
116
|
+
of the `fit` methods must be a DataFrame with the assets names in columns. When
|
117
|
+
using a dictionary, assets values that are not provided are assigned a minimum
|
118
|
+
weight of `1.0`. The default is 1.0 (each asset is below 100%).
|
119
|
+
|
120
|
+
Example:
|
121
|
+
|
122
|
+
* max_weights = 0 --> no long position (short only portfolio).
|
123
|
+
* max_weights = 0.5 --> each weight must be below 50%.
|
124
|
+
* max_weights = {"SX5E": 1, "SPX": 0.25}
|
125
|
+
* max_weights = [1, 0.25]
|
126
|
+
|
127
|
+
transaction_costs : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
128
|
+
Transaction costs of the assets. It is used to add linear transaction costs to
|
129
|
+
the optimization problem:
|
130
|
+
|
131
|
+
.. math:: total\_cost = \sum_{i=1}^{N} c_{i} \times |w_{i} - w\_prev_{i}|
|
132
|
+
|
133
|
+
with :math:`c_{i}` the transaction cost of asset i, :math:`w_{i}` its weight
|
134
|
+
and :math:`w\_prev_{i}` its previous weight (defined in `previous_weights`).
|
135
|
+
The float :math:`total\_cost` is used in the portfolio expected return:
|
136
|
+
|
137
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_cost
|
138
|
+
|
139
|
+
with :math:`\mu` the vector af assets' expected returns and :math:`w` the
|
140
|
+
vector of assets weights.
|
141
|
+
|
142
|
+
If a float is provided, it is applied to each asset.
|
143
|
+
If a dictionary is provided, its (key/value) pair must be the
|
144
|
+
(asset name/asset cost) and the input `X` of the `fit` methods must be a
|
145
|
+
DataFrame with the assets names in columns.
|
146
|
+
The default value is `0.0`.
|
147
|
+
|
148
|
+
.. warning::
|
149
|
+
|
150
|
+
Based on the above formula, the periodicity of the transaction costs
|
151
|
+
needs to be homogenous to the periodicity of :math:`\mu`. For example, if
|
152
|
+
the input `X` is composed of **daily** returns, the `transaction_costs` need
|
153
|
+
to be expressed in **daily** costs.
|
154
|
+
(See :ref:`sphx_glr_auto_examples_1_mean_risk_plot_6_transaction_costs.py`)
|
155
|
+
|
156
|
+
management_fees : float | dict[str, float] | array-like of shape (n_assets, ), default=0.0
|
157
|
+
Management fees of the assets. It is used to add linear management fees to the
|
158
|
+
optimization problem:
|
159
|
+
|
160
|
+
.. math:: total\_fee = \sum_{i=1}^{N} f_{i} \times w_{i}
|
161
|
+
|
162
|
+
with :math:`f_{i}` the management fee of asset i and :math:`w_{i}` its weight.
|
163
|
+
The float :math:`total\_fee` is used in the portfolio expected return:
|
164
|
+
|
165
|
+
.. math:: expected\_return = \mu^{T} \cdot w - total\_fee
|
166
|
+
|
167
|
+
with :math:`\mu` the vector af assets expected returns and :math:`w` the vector
|
168
|
+
of assets weights.
|
169
|
+
|
170
|
+
If a float is provided, it is applied to each asset.
|
171
|
+
If a dictionary is provided, its (key/value) pair must be the
|
172
|
+
(asset name/asset fee) and the input `X` of the `fit` methods must be a
|
173
|
+
DataFrame with the assets names in columns.
|
174
|
+
The default value is `0.0`.
|
175
|
+
|
176
|
+
.. warning::
|
177
|
+
|
178
|
+
Based on the above formula, the periodicity of the management fees needs to
|
179
|
+
be homogenous to the periodicity of :math:`\mu`. For example, if the input
|
180
|
+
`X` is composed of **daily** returns, the `management_fees` need to be
|
181
|
+
expressed in **daily** fees.
|
182
|
+
|
183
|
+
.. note::
|
184
|
+
|
185
|
+
Another approach is to directly impact the management fees to the input `X`
|
186
|
+
in order to express the returns net of fees. However, when estimating the
|
187
|
+
:math:`\mu` parameter using for example Shrinkage estimators, this approach
|
188
|
+
would mix a deterministic value with an uncertain one leading to unwanted
|
189
|
+
bias in the management fees.
|
190
|
+
|
191
|
+
previous_weights : float | dict[str, float] | array-like of shape (n_assets, ), optional
|
192
|
+
Previous weights of the assets. Previous weights are used to compute the
|
193
|
+
portfolio total cost. If a float is provided, it is applied to each asset.
|
194
|
+
If a dictionary is provided, its (key/value) pair must be the
|
195
|
+
(asset name/asset previous weight) and the input `X` of the `fit` methods must
|
196
|
+
be a DataFrame with the assets names in columns.
|
197
|
+
The default (`None`) means no previous weights.
|
198
|
+
|
199
|
+
portfolio_params : dict, optional
|
200
|
+
Portfolio parameters passed to the portfolio evaluated by the `predict` and
|
201
|
+
`score` methods. If not provided, the `name`, `transaction_costs`,
|
202
|
+
`management_fees` and `previous_weights` are copied from the optimization
|
203
|
+
model and systematically passed to the portfolio.
|
204
|
+
|
205
|
+
Attributes
|
206
|
+
----------
|
207
|
+
weights_ : ndarray of shape (n_assets,)
|
208
|
+
Weights of the assets.
|
209
|
+
|
210
|
+
distance_estimator_ : BaseDistance
|
211
|
+
Fitted `distance_estimator`.
|
212
|
+
|
213
|
+
hierarchical_clustering_estimator_ : HierarchicalClustering
|
214
|
+
Fitted `hierarchical_clustering_estimator`.
|
215
|
+
|
216
|
+
n_features_in_ : int
|
217
|
+
Number of assets seen during `fit`.
|
218
|
+
|
219
|
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
220
|
+
Names of assets seen during `fit`. Defined only when `X`
|
221
|
+
has assets names that are all strings.
|
222
|
+
|
223
|
+
References
|
224
|
+
----------
|
225
|
+
.. [1] "Hierarchical clustering-based asset allocation",
|
226
|
+
The Journal of Portfolio Management,
|
227
|
+
Thomas Raffinot (2017).
|
228
|
+
|
229
|
+
.. [2] "The hierarchical equal risk contribution portfolio",
|
230
|
+
Thomas Raffinot (2018).
|
231
|
+
|
232
|
+
.. [3] "Application of two-order difference to gap statistic".
|
233
|
+
Yue, Wang & Wei (2009).
|
234
|
+
|
235
|
+
.. [4] "A review of two decades of correlations, hierarchies, networks and
|
236
|
+
clustering in financial markets",
|
237
|
+
Gautier Marti, Frank Nielsen, Mikołaj Bińkowski, Philippe Donnat (2020).
|
238
|
+
"""
|
239
|
+
|
240
|
+
def __init__(
|
241
|
+
self,
|
242
|
+
risk_measure: RiskMeasure | ExtraRiskMeasure = RiskMeasure.VARIANCE,
|
243
|
+
prior_estimator: BasePrior | None = None,
|
244
|
+
distance_estimator: BaseDistance | None = None,
|
245
|
+
hierarchical_clustering_estimator: HierarchicalClustering | None = None,
|
246
|
+
min_weights: skt.MultiInput | None = 0.0,
|
247
|
+
max_weights: skt.MultiInput | None = 1.0,
|
248
|
+
transaction_costs: skt.MultiInput = 0.0,
|
249
|
+
management_fees: skt.MultiInput = 0.0,
|
250
|
+
previous_weights: skt.MultiInput | None = None,
|
251
|
+
portfolio_params: dict | None = None,
|
252
|
+
):
|
253
|
+
super().__init__(
|
254
|
+
risk_measure=risk_measure,
|
255
|
+
prior_estimator=prior_estimator,
|
256
|
+
distance_estimator=distance_estimator,
|
257
|
+
hierarchical_clustering_estimator=hierarchical_clustering_estimator,
|
258
|
+
min_weights=min_weights,
|
259
|
+
max_weights=max_weights,
|
260
|
+
transaction_costs=transaction_costs,
|
261
|
+
management_fees=management_fees,
|
262
|
+
previous_weights=previous_weights,
|
263
|
+
portfolio_params=portfolio_params,
|
264
|
+
)
|
265
|
+
|
266
|
+
def fit(
|
267
|
+
self, X: npt.ArrayLike, y: None = None
|
268
|
+
) -> "HierarchicalEqualRiskContribution":
|
269
|
+
"""Fit the Hierarchical Equal Risk Contribution estimator.
|
270
|
+
|
271
|
+
Parameters
|
272
|
+
----------
|
273
|
+
X : array-like of shape (n_observations, n_assets)
|
274
|
+
Price returns of the assets.
|
275
|
+
|
276
|
+
y : Ignored
|
277
|
+
Not used, present for API consistency by convention.
|
278
|
+
|
279
|
+
Returns
|
280
|
+
-------
|
281
|
+
self : HierarchicalEqualRiskContribution
|
282
|
+
Fitted estimator.
|
283
|
+
"""
|
284
|
+
# Validate
|
285
|
+
if not isinstance(self.risk_measure, RiskMeasure | ExtraRiskMeasure):
|
286
|
+
raise TypeError(
|
287
|
+
"`risk_measure` must be of type `RiskMeasure` or `ExtraRiskMeasure`"
|
288
|
+
)
|
289
|
+
self.prior_estimator_ = check_estimator(
|
290
|
+
self.prior_estimator,
|
291
|
+
default=EmpiricalPrior(),
|
292
|
+
check_type=BasePrior,
|
293
|
+
)
|
294
|
+
self.distance_estimator_ = check_estimator(
|
295
|
+
self.distance_estimator,
|
296
|
+
default=PearsonDistance(),
|
297
|
+
check_type=BaseDistance,
|
298
|
+
)
|
299
|
+
self.hierarchical_clustering_estimator_ = check_estimator(
|
300
|
+
self.hierarchical_clustering_estimator,
|
301
|
+
default=HierarchicalClustering(),
|
302
|
+
check_type=HierarchicalClustering,
|
303
|
+
)
|
304
|
+
|
305
|
+
# Fit the estimators
|
306
|
+
self.prior_estimator_.fit(X, y)
|
307
|
+
prior_model = self.prior_estimator_.prior_model_
|
308
|
+
returns = prior_model.returns
|
309
|
+
|
310
|
+
# To keep the asset_names
|
311
|
+
if isinstance(X, pd.DataFrame):
|
312
|
+
returns = pd.DataFrame(returns, columns=X.columns)
|
313
|
+
|
314
|
+
self.distance_estimator_.fit(returns)
|
315
|
+
distance = self.distance_estimator_.distance_
|
316
|
+
|
317
|
+
# To keep the asset_names
|
318
|
+
if isinstance(X, pd.DataFrame):
|
319
|
+
distance = pd.DataFrame(distance, columns=X.columns)
|
320
|
+
|
321
|
+
self.hierarchical_clustering_estimator_.fit(distance)
|
322
|
+
|
323
|
+
n_clusters = self.hierarchical_clustering_estimator_.n_clusters_
|
324
|
+
labels = self.hierarchical_clustering_estimator_.labels_
|
325
|
+
linkage_matrix = self.hierarchical_clustering_estimator_.linkage_matrix_
|
326
|
+
|
327
|
+
X = self._validate_data(X)
|
328
|
+
n_assets = X.shape[1]
|
329
|
+
|
330
|
+
min_weights, max_weights = self._convert_weights_bounds(n_assets=n_assets)
|
331
|
+
|
332
|
+
assets_risks = self._unitary_risks(prior_model=prior_model)
|
333
|
+
weights = np.ones(n_assets)
|
334
|
+
clusters_weights = np.ones(n_clusters)
|
335
|
+
|
336
|
+
clusters = [np.argwhere(labels == i).flatten() for i in range(n_clusters)]
|
337
|
+
clusters_sets = [set(cluster_ids) for cluster_ids in clusters]
|
338
|
+
|
339
|
+
# Compute cluster total risk based on inverse-risk allocation
|
340
|
+
cluster_risks = []
|
341
|
+
for cluster_ids in clusters:
|
342
|
+
inv_risk_w = np.zeros(n_assets)
|
343
|
+
inv_risk_w[cluster_ids] = 1 / assets_risks[cluster_ids]
|
344
|
+
inv_risk_w /= inv_risk_w.sum()
|
345
|
+
cluster_risks.append(
|
346
|
+
self._risk(weights=inv_risk_w, prior_model=prior_model)
|
347
|
+
)
|
348
|
+
weights[cluster_ids] = inv_risk_w[cluster_ids]
|
349
|
+
cluster_risks = np.array(cluster_risks)
|
350
|
+
|
351
|
+
# Compute the cluster weights using the dendrogram structure.
|
352
|
+
# Recurse from the root until each of the defined cluster is reached and
|
353
|
+
# update the weights using the naive risk parity.
|
354
|
+
def _recurse(node):
|
355
|
+
# Stop when the cluster is reached
|
356
|
+
if set(node.pre_order()) in clusters_sets:
|
357
|
+
return
|
358
|
+
|
359
|
+
left_node = node.get_left()
|
360
|
+
right_node = node.get_right()
|
361
|
+
left_cluster_tree = set(left_node.pre_order())
|
362
|
+
right_cluster_tree = set(right_node.pre_order())
|
363
|
+
|
364
|
+
left_cluster = []
|
365
|
+
right_cluster = []
|
366
|
+
for i, cluster_ids in enumerate(clusters_sets):
|
367
|
+
if cluster_ids.issubset(left_cluster_tree):
|
368
|
+
left_cluster.append(i)
|
369
|
+
elif cluster_ids.issubset(right_cluster_tree):
|
370
|
+
right_cluster.append(i)
|
371
|
+
|
372
|
+
if not left_cluster or not right_cluster:
|
373
|
+
raise ValueError("Corrupted")
|
374
|
+
|
375
|
+
left_cluster = np.array(left_cluster)
|
376
|
+
right_cluster = np.array(right_cluster)
|
377
|
+
left_risk = np.sum(cluster_risks[left_cluster])
|
378
|
+
right_risk = np.sum(cluster_risks[right_cluster])
|
379
|
+
|
380
|
+
alpha = 1 - left_risk / (left_risk + right_risk)
|
381
|
+
|
382
|
+
# Weights constraints
|
383
|
+
alpha = self._apply_weight_constraints_to_alpha(
|
384
|
+
alpha=alpha,
|
385
|
+
weights=weights,
|
386
|
+
max_weights=max_weights,
|
387
|
+
min_weights=min_weights,
|
388
|
+
left_cluster=left_cluster,
|
389
|
+
right_cluster=right_cluster,
|
390
|
+
)
|
391
|
+
|
392
|
+
clusters_weights[left_cluster] *= alpha
|
393
|
+
clusters_weights[right_cluster] *= 1 - alpha
|
394
|
+
|
395
|
+
_recurse(left_node)
|
396
|
+
_recurse(right_node)
|
397
|
+
|
398
|
+
root = sch.to_tree(linkage_matrix)
|
399
|
+
_recurse(root)
|
400
|
+
|
401
|
+
# Combine intra-cluster weights with inter-cluster weights
|
402
|
+
for i, cluster_ids in enumerate(clusters):
|
403
|
+
weights[cluster_ids] *= clusters_weights[i]
|
404
|
+
|
405
|
+
self.weights_ = weights
|
406
|
+
return self
|