sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +130 -59
- sglang/srt/entrypoints/openai/protocol.py +112 -4
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +204 -55
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -6
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +190 -55
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +144 -17
- sglang/srt/managers/scheduler.py +502 -209
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +320 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +82 -40
- sglang/srt/model_executor/model_runner.py +432 -157
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +966 -267
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +99 -28
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +433 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +375 -245
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,393 @@
|
|
1
|
+
import torch
|
2
|
+
import torch.nn.functional as F
|
3
|
+
|
4
|
+
from sglang.srt.utils import get_bool_env_var, is_npu
|
5
|
+
|
6
|
+
_is_npu = is_npu()
|
7
|
+
_ENABLE_MLA_PREPROCESS_FLAG = get_bool_env_var("SGLANG_NPU_USE_MLAPO")
|
8
|
+
_NPU_FORMAT_NZ = 29
|
9
|
+
|
10
|
+
|
11
|
+
def is_mla_preprocess_enabled() -> bool:
|
12
|
+
return _is_npu and _ENABLE_MLA_PREPROCESS_FLAG
|
13
|
+
|
14
|
+
|
15
|
+
if is_mla_preprocess_enabled():
|
16
|
+
import sgl_kernel_npu
|
17
|
+
import torch_npu
|
18
|
+
|
19
|
+
torch.npu.config.allow_internal_format = True
|
20
|
+
torch.npu.set_compile_mode(jit_compile=False)
|
21
|
+
|
22
|
+
|
23
|
+
def round_up(val: int, align: int) -> int:
|
24
|
+
if align == 0:
|
25
|
+
return 0
|
26
|
+
return -(val // -align) * align
|
27
|
+
|
28
|
+
|
29
|
+
def transdata(nd_mat, block_size: tuple = (16, 16)):
|
30
|
+
r = round_up(nd_mat.shape[0], block_size[0])
|
31
|
+
c = round_up(nd_mat.shape[1], block_size[1])
|
32
|
+
r_pad = r - nd_mat.shape[0]
|
33
|
+
c_pad = c - nd_mat.shape[1]
|
34
|
+
nd_mat = F.pad(nd_mat, ((0, r_pad, 0, c_pad)))
|
35
|
+
nz_mat = torch.permute(
|
36
|
+
torch.reshape(
|
37
|
+
nd_mat,
|
38
|
+
(r // block_size[0], block_size[0], c // block_size[1], block_size[1]),
|
39
|
+
),
|
40
|
+
[2, 0, 1, 3],
|
41
|
+
)
|
42
|
+
nz_mat = torch.reshape(
|
43
|
+
nz_mat, (nz_mat.shape[0], nz_mat.shape[1] * nz_mat.shape[2], nz_mat.shape[3])
|
44
|
+
)
|
45
|
+
return nz_mat
|
46
|
+
|
47
|
+
|
48
|
+
def trans_rope_weight(weight, rope_dim):
|
49
|
+
weight_1 = weight[..., -rope_dim::2, :].contiguous()
|
50
|
+
weight_2 = weight[..., -rope_dim + 1 :: 2, :].contiguous()
|
51
|
+
weight[..., -rope_dim:, :] = torch.cat([weight_1, weight_2], dim=-2)
|
52
|
+
|
53
|
+
return weight.contiguous()
|
54
|
+
|
55
|
+
|
56
|
+
class NPUFusedMLAPreprocess(torch.nn.Module):
|
57
|
+
def __init__(
|
58
|
+
self,
|
59
|
+
fused_qkv_a_proj_with_mqa,
|
60
|
+
q_a_layernorm,
|
61
|
+
kv_a_layernorm,
|
62
|
+
q_b_proj,
|
63
|
+
w_kc,
|
64
|
+
rotary_emb,
|
65
|
+
layer_id,
|
66
|
+
num_local_heads,
|
67
|
+
qk_nope_head_dim,
|
68
|
+
qk_rope_head_dim,
|
69
|
+
):
|
70
|
+
super().__init__()
|
71
|
+
self.qkv_a_proj = fused_qkv_a_proj_with_mqa
|
72
|
+
self.q_a_layernorm = q_a_layernorm
|
73
|
+
self.kv_a_layernorm = kv_a_layernorm
|
74
|
+
self.q_b_proj = q_b_proj
|
75
|
+
self.w_kc = w_kc.contiguous()
|
76
|
+
self.rotary_emb = rotary_emb
|
77
|
+
self.layer_id = layer_id
|
78
|
+
self.has_preprocess_weights = False
|
79
|
+
self.dtype = None
|
80
|
+
|
81
|
+
self.q_lora_rank = self.q_b_proj.input_size # 1536
|
82
|
+
self.kv_lora_rank = self.kv_a_layernorm.hidden_size # 512
|
83
|
+
self.num_local_heads = num_local_heads # tp
|
84
|
+
self.qk_nope_head_dim = qk_nope_head_dim # 128
|
85
|
+
self.qk_rope_head_dim = qk_rope_head_dim # 64
|
86
|
+
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
87
|
+
|
88
|
+
def preprocess_weights(self, hidden_states):
|
89
|
+
self.dummy = torch.empty(
|
90
|
+
(hidden_states.shape[-1]),
|
91
|
+
dtype=hidden_states.dtype,
|
92
|
+
device=hidden_states.device,
|
93
|
+
)
|
94
|
+
self.qkv_a_proj_input_offset = self.qkv_a_proj.input_offset.to(dtype=torch.int8)
|
95
|
+
self.q_b_proj_input_offset = self.q_b_proj.input_offset.to(dtype=torch.int8)
|
96
|
+
|
97
|
+
# matmul_0 weight [7168, 2112]
|
98
|
+
fused_qkv_a_proj_with_mqa_weight_q = self.qkv_a_proj.weight.data[
|
99
|
+
:, : self.q_lora_rank
|
100
|
+
].clone() # [7168, 1536]
|
101
|
+
fused_qkv_a_proj_with_mqa_weight_kv = self.qkv_a_proj.weight.data[
|
102
|
+
:, self.q_lora_rank :
|
103
|
+
].clone() # [7168, 576]
|
104
|
+
# rope fit
|
105
|
+
fused_qkv_a_proj_with_mqa_weight_kv_t = (
|
106
|
+
fused_qkv_a_proj_with_mqa_weight_kv.t().contiguous()
|
107
|
+
)
|
108
|
+
fused_qkv_a_proj_with_mqa_weight_kv_t = trans_rope_weight(
|
109
|
+
fused_qkv_a_proj_with_mqa_weight_kv_t, self.qk_rope_head_dim
|
110
|
+
)
|
111
|
+
fused_qkv_a_proj_with_mqa_weight_kv = (
|
112
|
+
fused_qkv_a_proj_with_mqa_weight_kv_t.t().contiguous()
|
113
|
+
)
|
114
|
+
# cat nz
|
115
|
+
fused_qkv_a_proj_with_mqa_weight_new = torch.cat(
|
116
|
+
(fused_qkv_a_proj_with_mqa_weight_kv, fused_qkv_a_proj_with_mqa_weight_q),
|
117
|
+
dim=-1,
|
118
|
+
)
|
119
|
+
fused_qkv_a_proj_with_mqa_weight = (
|
120
|
+
fused_qkv_a_proj_with_mqa_weight_new.t().contiguous()
|
121
|
+
)
|
122
|
+
fused_qkv_a_proj_with_mqa_weight_nz = (
|
123
|
+
transdata(fused_qkv_a_proj_with_mqa_weight, block_size=(16, 32))
|
124
|
+
.unsqueeze(0)
|
125
|
+
.contiguous()
|
126
|
+
)
|
127
|
+
self.qkv_a_proj_weight_nz = torch_npu.npu_format_cast(
|
128
|
+
fused_qkv_a_proj_with_mqa_weight_nz, _NPU_FORMAT_NZ
|
129
|
+
)
|
130
|
+
|
131
|
+
# matmul_0 deq_scale [2112]
|
132
|
+
fused_qkv_a_proj_with_mqa_deq_scale_q = self.qkv_a_proj.deq_scale.data[
|
133
|
+
: self.q_lora_rank
|
134
|
+
].clone() # [7168, 1536]
|
135
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv = self.qkv_a_proj.deq_scale.data[
|
136
|
+
self.q_lora_rank :
|
137
|
+
].clone() # [7168, 576]
|
138
|
+
# rope fit
|
139
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv = (
|
140
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv.reshape(
|
141
|
+
self.kv_lora_rank + self.qk_rope_head_dim, -1
|
142
|
+
).contiguous()
|
143
|
+
)
|
144
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv = trans_rope_weight(
|
145
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv, self.qk_rope_head_dim
|
146
|
+
)
|
147
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv = (
|
148
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv.view(
|
149
|
+
self.kv_lora_rank + self.qk_rope_head_dim
|
150
|
+
).contiguous()
|
151
|
+
)
|
152
|
+
self.qkv_a_proj_deq_scale_kvq = torch.cat(
|
153
|
+
(
|
154
|
+
fused_qkv_a_proj_with_mqa_deq_scale_kv,
|
155
|
+
fused_qkv_a_proj_with_mqa_deq_scale_q,
|
156
|
+
),
|
157
|
+
dim=-1,
|
158
|
+
)
|
159
|
+
|
160
|
+
# matmul_0 quant_bias [2112]
|
161
|
+
fused_qkv_a_proj_with_mqa_quant_bias_q = self.qkv_a_proj.quant_bias.data[
|
162
|
+
: self.q_lora_rank
|
163
|
+
].clone() # [7168, 1536]
|
164
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv = self.qkv_a_proj.quant_bias.data[
|
165
|
+
self.q_lora_rank :
|
166
|
+
].clone() # [7168, 576]
|
167
|
+
# rope fit
|
168
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv = (
|
169
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv.reshape(
|
170
|
+
self.kv_lora_rank + self.qk_rope_head_dim, -1
|
171
|
+
).contiguous()
|
172
|
+
)
|
173
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv = trans_rope_weight(
|
174
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv, self.qk_rope_head_dim
|
175
|
+
)
|
176
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv = (
|
177
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv.view(
|
178
|
+
self.kv_lora_rank + self.qk_rope_head_dim
|
179
|
+
).contiguous()
|
180
|
+
)
|
181
|
+
self.qkv_a_proj_quant_bias_kvq = torch.cat(
|
182
|
+
(
|
183
|
+
fused_qkv_a_proj_with_mqa_quant_bias_kv,
|
184
|
+
fused_qkv_a_proj_with_mqa_quant_bias_q,
|
185
|
+
),
|
186
|
+
dim=-1,
|
187
|
+
)
|
188
|
+
|
189
|
+
# matmul_1 weight [1536, num_head * 192]
|
190
|
+
q_b_proj_weight = self.q_b_proj.weight.data.clone()
|
191
|
+
q_b_proj_weight = q_b_proj_weight.t().reshape(
|
192
|
+
self.num_local_heads, self.qk_nope_head_dim + self.qk_rope_head_dim, -1
|
193
|
+
)
|
194
|
+
q_b_proj_weight = trans_rope_weight(q_b_proj_weight, self.qk_rope_head_dim)
|
195
|
+
q_b_proj_weight = q_b_proj_weight.reshape(
|
196
|
+
self.num_local_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim), -1
|
197
|
+
)
|
198
|
+
q_b_proj_weight_nz = (
|
199
|
+
transdata(q_b_proj_weight, block_size=(16, 32)).unsqueeze(0).contiguous()
|
200
|
+
)
|
201
|
+
self.q_b_proj_weight_nz = torch_npu.npu_format_cast(
|
202
|
+
q_b_proj_weight_nz, _NPU_FORMAT_NZ
|
203
|
+
)
|
204
|
+
|
205
|
+
# matmul_1 deq_scale [num_head * 192]
|
206
|
+
q_b_proj_deq_scale = self.q_b_proj.deq_scale.data.clone()
|
207
|
+
q_b_proj_deq_scale = q_b_proj_deq_scale.reshape(
|
208
|
+
self.num_local_heads, self.qk_nope_head_dim + self.qk_rope_head_dim, -1
|
209
|
+
)
|
210
|
+
q_b_proj_deq_scale = trans_rope_weight(
|
211
|
+
q_b_proj_deq_scale, self.qk_rope_head_dim
|
212
|
+
)
|
213
|
+
self.q_b_proj_deq_scale = q_b_proj_deq_scale.reshape(
|
214
|
+
self.num_local_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim)
|
215
|
+
)
|
216
|
+
|
217
|
+
# matmul_1 quant_bias [num_head * 192]
|
218
|
+
q_b_proj_quant_bias = self.q_b_proj.quant_bias.data.clone()
|
219
|
+
q_b_proj_quant_bias = q_b_proj_quant_bias.reshape(
|
220
|
+
self.num_local_heads, self.qk_nope_head_dim + self.qk_rope_head_dim, -1
|
221
|
+
)
|
222
|
+
q_b_proj_quant_bias = trans_rope_weight(
|
223
|
+
q_b_proj_quant_bias, self.qk_rope_head_dim
|
224
|
+
)
|
225
|
+
self.q_b_proj_quant_bias = q_b_proj_quant_bias.reshape(
|
226
|
+
self.num_local_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim)
|
227
|
+
)
|
228
|
+
|
229
|
+
def get_sin_cos(self, positions):
|
230
|
+
cos_sin = self.rotary_emb.cos_sin_cache[positions]
|
231
|
+
cos, sin = cos_sin.chunk(2, dim=-1)
|
232
|
+
cos = cos.repeat(1, 2)
|
233
|
+
sin = sin.repeat(1, 2)
|
234
|
+
return cos, sin
|
235
|
+
|
236
|
+
def get_kv_cache_and_cache_idx(self, forward_batch):
|
237
|
+
k_cache, v_cache = forward_batch.token_to_kv_pool.get_kv_buffer(self.layer_id)
|
238
|
+
slot_mapping = forward_batch.out_cache_loc.to(dtype=torch.int32)
|
239
|
+
return k_cache, v_cache, slot_mapping
|
240
|
+
|
241
|
+
def forward_absorb_prepare_npu_rms_norm_cache(
|
242
|
+
self,
|
243
|
+
positions: torch.Tensor,
|
244
|
+
hidden_states: torch.Tensor,
|
245
|
+
forward_batch,
|
246
|
+
zero_allocator,
|
247
|
+
):
|
248
|
+
bsz, _ = hidden_states.view(-1, hidden_states.shape[-1]).shape
|
249
|
+
self.dtype = hidden_states.dtype
|
250
|
+
self.cos, self.sin = self.get_sin_cos(positions)
|
251
|
+
self.kvCache, self.kvCacheRope, self.slotmapping = (
|
252
|
+
self.get_kv_cache_and_cache_idx(forward_batch)
|
253
|
+
)
|
254
|
+
|
255
|
+
if not self.has_preprocess_weights:
|
256
|
+
self.has_preprocess_weights = True
|
257
|
+
|
258
|
+
cos, sin = self.cos, self.sin
|
259
|
+
|
260
|
+
if self.q_lora_rank is not None:
|
261
|
+
fused_qkv_a_proj_out = self.qkv_a_proj(hidden_states)[0]
|
262
|
+
q_lowrank, latent_cache = fused_qkv_a_proj_out.split(
|
263
|
+
[self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
|
264
|
+
)
|
265
|
+
q = self.q_a_layernorm(q_lowrank)
|
266
|
+
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
|
267
|
+
else:
|
268
|
+
q = self.q_proj(hidden_states)[0].view(
|
269
|
+
-1, self.num_local_heads, self.qk_head_dim
|
270
|
+
)
|
271
|
+
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
|
272
|
+
|
273
|
+
q_nope, q_pe = torch.split(
|
274
|
+
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
275
|
+
) # b*s,n,d
|
276
|
+
|
277
|
+
q_nope = q_nope.view(-1, self.num_local_heads, self.qk_nope_head_dim)
|
278
|
+
q_nope = torch.matmul(q_nope.transpose(0, 1), self.w_kc).transpose(0, 1)
|
279
|
+
|
280
|
+
q_pe = q_pe.view(-1, self.num_local_heads, 1, self.qk_rope_head_dim)
|
281
|
+
cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
|
282
|
+
sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
|
283
|
+
q_pe = torch_npu.npu_interleave_rope(q_pe, cos, sin) # (B,N,S,D)
|
284
|
+
q_pe = q_pe.view(cos.shape[0], self.num_local_heads, self.qk_rope_head_dim)
|
285
|
+
|
286
|
+
latent_cache = latent_cache.view(
|
287
|
+
-1, 1, 1, self.kv_lora_rank + self.qk_rope_head_dim
|
288
|
+
) # (B*S,N,1,D)
|
289
|
+
|
290
|
+
cache_mode = "PA_BNSD"
|
291
|
+
self.kvCache = self.kvCache.view(
|
292
|
+
-1,
|
293
|
+
forward_batch.attn_backend.page_size,
|
294
|
+
1,
|
295
|
+
forward_batch.attn_backend.kv_lora_rank,
|
296
|
+
)
|
297
|
+
self.kvCacheRope = self.kvCacheRope.view(
|
298
|
+
-1,
|
299
|
+
forward_batch.attn_backend.page_size,
|
300
|
+
1,
|
301
|
+
forward_batch.attn_backend.qk_rope_head_dim,
|
302
|
+
)
|
303
|
+
k_rope, k_nope, _, _ = torch_npu.npu_kv_rmsnorm_rope_cache(
|
304
|
+
latent_cache,
|
305
|
+
self.kv_a_layernorm.weight,
|
306
|
+
cos,
|
307
|
+
sin,
|
308
|
+
self.slotmapping.to(torch.int64),
|
309
|
+
self.kvCacheRope,
|
310
|
+
self.kvCache,
|
311
|
+
epsilon=self.kv_a_layernorm.variance_epsilon,
|
312
|
+
cache_mode=cache_mode,
|
313
|
+
)
|
314
|
+
|
315
|
+
return (q_pe, k_rope, q_nope, k_nope, forward_batch, zero_allocator, positions)
|
316
|
+
|
317
|
+
def forward_mlapo(self, positions, hidden_states, forward_batch, zero_allocator):
|
318
|
+
input_dtype = hidden_states.dtype
|
319
|
+
if not self.has_preprocess_weights:
|
320
|
+
self.preprocess_weights(hidden_states)
|
321
|
+
self.has_preprocess_weights = True
|
322
|
+
self.dtype = hidden_states.dtype
|
323
|
+
|
324
|
+
cos, sin = self.get_sin_cos(positions)
|
325
|
+
k_cache, v_cache, slot_mapping = self.get_kv_cache_and_cache_idx(forward_batch)
|
326
|
+
|
327
|
+
q_nope_out = torch.empty(
|
328
|
+
(hidden_states.shape[0], self.w_kc.shape[0], k_cache.shape[-1]),
|
329
|
+
dtype=input_dtype,
|
330
|
+
device=hidden_states.device,
|
331
|
+
)
|
332
|
+
q_rope_out = torch.empty(
|
333
|
+
(hidden_states.shape[0], self.w_kc.shape[0], v_cache.shape[-1]),
|
334
|
+
dtype=input_dtype,
|
335
|
+
device=hidden_states.device,
|
336
|
+
)
|
337
|
+
|
338
|
+
# TODO: dummy inputs to be removed
|
339
|
+
# https://github.com/sgl-project/sgl-kernel-npu/issues/78
|
340
|
+
torch.ops.npu.mla_preprocess(
|
341
|
+
hidden_states,
|
342
|
+
self.dummy,
|
343
|
+
self.dummy,
|
344
|
+
self.qkv_a_proj_weight_nz,
|
345
|
+
self.qkv_a_proj_deq_scale_kvq,
|
346
|
+
self.q_a_layernorm.weight,
|
347
|
+
self.q_a_layernorm.bias,
|
348
|
+
self.q_b_proj_weight_nz,
|
349
|
+
self.q_b_proj_deq_scale,
|
350
|
+
self.kv_a_layernorm.weight,
|
351
|
+
cos,
|
352
|
+
sin,
|
353
|
+
self.w_kc,
|
354
|
+
k_cache,
|
355
|
+
v_cache,
|
356
|
+
slot_mapping,
|
357
|
+
quant_scale0=self.qkv_a_proj.input_scale,
|
358
|
+
quant_offset0=self.qkv_a_proj_input_offset,
|
359
|
+
bias0=self.qkv_a_proj_quant_bias_kvq,
|
360
|
+
quant_scale1=self.q_b_proj.input_scale,
|
361
|
+
quant_offset1=self.q_b_proj_input_offset,
|
362
|
+
bias1=self.q_b_proj_quant_bias,
|
363
|
+
cache_mode="krope_ctkv",
|
364
|
+
quant_mode="per_tensor_quant_asymm",
|
365
|
+
q_out0=q_nope_out,
|
366
|
+
kv_cache_out0=k_cache,
|
367
|
+
q_out1=q_rope_out,
|
368
|
+
kv_cache_out1=v_cache,
|
369
|
+
)
|
370
|
+
return (
|
371
|
+
q_rope_out,
|
372
|
+
v_cache,
|
373
|
+
q_nope_out,
|
374
|
+
k_cache,
|
375
|
+
forward_batch,
|
376
|
+
zero_allocator,
|
377
|
+
positions,
|
378
|
+
)
|
379
|
+
|
380
|
+
def forward(self, positions, hidden_states, forward_batch, zero_allocator):
|
381
|
+
_is_w8a8 = (
|
382
|
+
hasattr(self.qkv_a_proj.quant_method, "quantization_config")
|
383
|
+
and self.qkv_a_proj.quant_method.quantization_config.get_name()
|
384
|
+
== "w8a8_int8"
|
385
|
+
)
|
386
|
+
if _is_w8a8:
|
387
|
+
return self.forward_mlapo(
|
388
|
+
positions, hidden_states, forward_batch, zero_allocator
|
389
|
+
)
|
390
|
+
else:
|
391
|
+
return self.forward_absorb_prepare_npu_rms_norm_cache(
|
392
|
+
positions, hidden_states, forward_batch, zero_allocator
|
393
|
+
)
|
@@ -0,0 +1,163 @@
|
|
1
|
+
import torch
|
2
|
+
import triton
|
3
|
+
import triton.language as tl
|
4
|
+
|
5
|
+
from sglang.srt.layers.attention.nsa.utils import NSA_DEQUANT_K_CACHE_FAST
|
6
|
+
|
7
|
+
|
8
|
+
def dequantize_k_cache(quant_k_cache):
|
9
|
+
if NSA_DEQUANT_K_CACHE_FAST:
|
10
|
+
return _dequantize_k_cache_fast_wrapped(quant_k_cache)
|
11
|
+
else:
|
12
|
+
return _dequantize_k_cache_slow(quant_k_cache)
|
13
|
+
|
14
|
+
|
15
|
+
def _dequantize_k_cache_slow(
|
16
|
+
quant_k_cache: torch.Tensor, # (num_blocks, block_size, 1, bytes_per_token)
|
17
|
+
dv: int = 512,
|
18
|
+
tile_size: int = 128,
|
19
|
+
d: int = 576,
|
20
|
+
) -> torch.Tensor:
|
21
|
+
"""
|
22
|
+
De-quantize the k-cache
|
23
|
+
"""
|
24
|
+
assert dv % tile_size == 0
|
25
|
+
num_tiles = dv // tile_size
|
26
|
+
num_blocks, block_size, h_k, _ = quant_k_cache.shape
|
27
|
+
assert h_k == 1
|
28
|
+
result = torch.empty(
|
29
|
+
(num_blocks, block_size, d), dtype=torch.bfloat16, device=quant_k_cache.device
|
30
|
+
)
|
31
|
+
|
32
|
+
quant_k_cache = quant_k_cache.view(num_blocks, block_size, -1)
|
33
|
+
|
34
|
+
input_nope = quant_k_cache[..., :dv]
|
35
|
+
input_scale = quant_k_cache[..., dv : dv + num_tiles * 4].view(torch.float32)
|
36
|
+
input_rope = quant_k_cache[..., dv + num_tiles * 4 :].view(torch.bfloat16)
|
37
|
+
result[..., dv:] = input_rope
|
38
|
+
|
39
|
+
for tile_idx in range(0, num_tiles):
|
40
|
+
cur_nope = input_nope[
|
41
|
+
..., tile_idx * tile_size : (tile_idx + 1) * tile_size
|
42
|
+
].to(torch.float32)
|
43
|
+
cur_scales = input_scale[..., tile_idx].unsqueeze(-1)
|
44
|
+
result[..., tile_idx * tile_size : (tile_idx + 1) * tile_size] = (
|
45
|
+
cur_nope * cur_scales
|
46
|
+
)
|
47
|
+
|
48
|
+
result = result.view(num_blocks, block_size, 1, d)
|
49
|
+
return result
|
50
|
+
|
51
|
+
|
52
|
+
def _dequantize_k_cache_fast_wrapped(
|
53
|
+
quant_k_cache: torch.Tensor,
|
54
|
+
dv: int = 512,
|
55
|
+
tile_size: int = 128,
|
56
|
+
) -> torch.Tensor:
|
57
|
+
# TODO the final API may be 2D instead of 4D, thus we convert them here
|
58
|
+
num_blocks, block_size, _, dim_quant = quant_k_cache.shape
|
59
|
+
assert dv == 512
|
60
|
+
assert dim_quant == 656
|
61
|
+
assert tile_size == 128
|
62
|
+
quant_k_cache = quant_k_cache.view((-1, dim_quant))
|
63
|
+
|
64
|
+
output = _dequantize_k_cache_fast(quant_k_cache)
|
65
|
+
|
66
|
+
return output.view(num_blocks, block_size, 1, -1)
|
67
|
+
|
68
|
+
|
69
|
+
def _dequantize_k_cache_fast(quant_k_cache, group_size: int = 128):
|
70
|
+
num_tokens, dim_quant = quant_k_cache.shape
|
71
|
+
|
72
|
+
assert quant_k_cache.dtype == torch.float8_e4m3fn
|
73
|
+
dim_nope = 512
|
74
|
+
dim_rope = 64
|
75
|
+
num_tiles = dim_nope // group_size
|
76
|
+
assert dim_quant == 656
|
77
|
+
|
78
|
+
output = torch.empty(
|
79
|
+
(num_tokens, dim_nope + dim_rope),
|
80
|
+
dtype=torch.bfloat16,
|
81
|
+
device=quant_k_cache.device,
|
82
|
+
)
|
83
|
+
|
84
|
+
num_blocks_per_token = triton.cdiv(dim_nope + dim_rope, group_size)
|
85
|
+
assert num_blocks_per_token == 5
|
86
|
+
|
87
|
+
assert dim_nope % group_size == 0
|
88
|
+
NUM_NOPE_BLOCKS = dim_nope // group_size
|
89
|
+
|
90
|
+
input_nope_q = quant_k_cache[:, :dim_nope]
|
91
|
+
input_nope_s = quant_k_cache[:, dim_nope : dim_nope + num_tiles * 4].view(
|
92
|
+
torch.float32
|
93
|
+
)
|
94
|
+
input_rope = quant_k_cache[:, dim_nope + num_tiles * 4 :].view(torch.bfloat16)
|
95
|
+
|
96
|
+
_dequantize_k_cache_fast_kernel[(num_tokens, num_blocks_per_token)](
|
97
|
+
output,
|
98
|
+
input_nope_q,
|
99
|
+
input_nope_s,
|
100
|
+
input_rope,
|
101
|
+
output.stride(0),
|
102
|
+
input_nope_q.stride(0),
|
103
|
+
input_nope_s.stride(0),
|
104
|
+
input_rope.stride(0),
|
105
|
+
NUM_NOPE_BLOCKS=NUM_NOPE_BLOCKS,
|
106
|
+
GROUP_SIZE=group_size,
|
107
|
+
DIM_NOPE=dim_nope,
|
108
|
+
DIM_ROPE=dim_rope,
|
109
|
+
)
|
110
|
+
|
111
|
+
return output
|
112
|
+
|
113
|
+
|
114
|
+
@triton.jit
|
115
|
+
def _dequantize_k_cache_fast_kernel(
|
116
|
+
output_ptr,
|
117
|
+
input_nope_q_ptr,
|
118
|
+
input_nope_s_ptr,
|
119
|
+
input_rope_ptr,
|
120
|
+
output_stride_0: int,
|
121
|
+
input_nope_q_stride_0: int,
|
122
|
+
input_nope_s_stride_0: int,
|
123
|
+
input_rope_stride_0: int,
|
124
|
+
NUM_NOPE_BLOCKS: tl.constexpr,
|
125
|
+
GROUP_SIZE: tl.constexpr,
|
126
|
+
DIM_NOPE: tl.constexpr,
|
127
|
+
DIM_ROPE: tl.constexpr,
|
128
|
+
):
|
129
|
+
token_id = tl.program_id(0)
|
130
|
+
raw_block_id = tl.program_id(1)
|
131
|
+
|
132
|
+
if raw_block_id < NUM_NOPE_BLOCKS:
|
133
|
+
# a. dequant nope
|
134
|
+
effective_block_id = raw_block_id
|
135
|
+
|
136
|
+
offs_q = effective_block_id * GROUP_SIZE + tl.arange(0, GROUP_SIZE)
|
137
|
+
mask = offs_q < DIM_NOPE
|
138
|
+
ptr_q = input_nope_q_ptr + token_id * input_nope_q_stride_0 + offs_q
|
139
|
+
ptr_s = input_nope_s_ptr + token_id * input_nope_s_stride_0 + effective_block_id
|
140
|
+
|
141
|
+
y_q = tl.load(ptr_q, mask=mask, other=0.0).to(tl.float32)
|
142
|
+
y_s = tl.load(ptr_s)
|
143
|
+
|
144
|
+
y = (y_q * y_s).to(output_ptr.dtype.element_ty)
|
145
|
+
|
146
|
+
dst_ptr = output_ptr + token_id * output_stride_0 + offs_q
|
147
|
+
tl.store(dst_ptr, y, mask=mask)
|
148
|
+
else:
|
149
|
+
# b. copy rope
|
150
|
+
effective_block_id = raw_block_id - NUM_NOPE_BLOCKS
|
151
|
+
|
152
|
+
offs = effective_block_id * GROUP_SIZE + tl.arange(0, GROUP_SIZE)
|
153
|
+
mask = offs < DIM_ROPE
|
154
|
+
|
155
|
+
src_ptr = input_rope_ptr + token_id * input_rope_stride_0 + offs
|
156
|
+
dst_ptr = output_ptr + token_id * output_stride_0 + DIM_NOPE + offs
|
157
|
+
|
158
|
+
data = tl.load(src_ptr, mask=mask).to(tl.bfloat16)
|
159
|
+
tl.store(dst_ptr, data, mask=mask)
|
160
|
+
|
161
|
+
|
162
|
+
if __name__ == "__main__":
|
163
|
+
raise Exception("UT is in quant_k_cache.py")
|