sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (377) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +267 -32
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/launch_server.py +14 -0
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +8 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +360 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/model_config.py +181 -82
  17. sglang/srt/configs/qwen3_next.py +326 -0
  18. sglang/srt/configs/qwen3_vl.py +586 -0
  19. sglang/srt/connector/__init__.py +8 -1
  20. sglang/srt/connector/remote_instance.py +82 -0
  21. sglang/srt/constrained/base_grammar_backend.py +49 -12
  22. sglang/srt/constrained/llguidance_backend.py +0 -1
  23. sglang/srt/constrained/outlines_backend.py +0 -1
  24. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  25. sglang/srt/constrained/xgrammar_backend.py +30 -9
  26. sglang/srt/custom_op.py +11 -1
  27. sglang/srt/debug_utils/dump_comparator.py +81 -44
  28. sglang/srt/debug_utils/dump_loader.py +97 -0
  29. sglang/srt/debug_utils/dumper.py +21 -6
  30. sglang/srt/debug_utils/text_comparator.py +73 -11
  31. sglang/srt/disaggregation/ascend/conn.py +2 -2
  32. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  33. sglang/srt/disaggregation/base/conn.py +1 -1
  34. sglang/srt/disaggregation/common/conn.py +279 -108
  35. sglang/srt/disaggregation/decode.py +71 -19
  36. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  37. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  38. sglang/srt/disaggregation/fake/conn.py +1 -1
  39. sglang/srt/disaggregation/mini_lb.py +6 -445
  40. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  41. sglang/srt/disaggregation/nixl/conn.py +326 -53
  42. sglang/srt/disaggregation/prefill.py +36 -17
  43. sglang/srt/disaggregation/utils.py +40 -54
  44. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  45. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  46. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  47. sglang/srt/distributed/parallel_state.py +156 -80
  48. sglang/srt/entrypoints/engine.py +59 -18
  49. sglang/srt/entrypoints/grpc_request_manager.py +855 -0
  50. sglang/srt/entrypoints/grpc_server.py +810 -0
  51. sglang/srt/entrypoints/http_server.py +130 -59
  52. sglang/srt/entrypoints/openai/protocol.py +112 -4
  53. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  54. sglang/srt/entrypoints/openai/serving_chat.py +204 -55
  55. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  56. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  57. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  58. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  59. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  60. sglang/srt/environ.py +285 -0
  61. sglang/srt/eplb/eplb_manager.py +2 -2
  62. sglang/srt/eplb/expert_distribution.py +26 -13
  63. sglang/srt/eplb/expert_location.py +38 -8
  64. sglang/srt/eplb/expert_location_updater.py +1 -1
  65. sglang/srt/function_call/base_format_detector.py +3 -6
  66. sglang/srt/function_call/ebnf_composer.py +11 -9
  67. sglang/srt/function_call/function_call_parser.py +9 -2
  68. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  69. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  70. sglang/srt/function_call/json_array_parser.py +63 -0
  71. sglang/srt/function_call/kimik2_detector.py +17 -4
  72. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  73. sglang/srt/function_call/utils.py +96 -5
  74. sglang/srt/grpc/__init__.py +1 -0
  75. sglang/srt/grpc/compile_proto.py +245 -0
  76. sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
  77. sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
  78. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
  79. sglang/srt/layers/activation.py +143 -9
  80. sglang/srt/layers/attention/aiter_backend.py +14 -15
  81. sglang/srt/layers/attention/ascend_backend.py +115 -9
  82. sglang/srt/layers/attention/attention_registry.py +206 -0
  83. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  84. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  85. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  86. sglang/srt/layers/attention/fla/chunk.py +242 -0
  87. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  88. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  89. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  90. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  91. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  92. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  93. sglang/srt/layers/attention/fla/index.py +37 -0
  94. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  95. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  96. sglang/srt/layers/attention/fla/op.py +66 -0
  97. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  98. sglang/srt/layers/attention/fla/utils.py +331 -0
  99. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  100. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  101. sglang/srt/layers/attention/flashinfer_backend.py +118 -198
  102. sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
  103. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  104. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  105. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  106. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  107. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  108. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
  109. sglang/srt/layers/attention/mamba/mamba.py +629 -0
  110. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  111. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  112. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  113. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  114. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  115. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  116. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  117. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  119. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  120. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  121. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  122. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  123. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  124. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  125. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  126. sglang/srt/layers/attention/nsa/utils.py +24 -0
  127. sglang/srt/layers/attention/nsa_backend.py +887 -0
  128. sglang/srt/layers/attention/tbo_backend.py +6 -6
  129. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  130. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  131. sglang/srt/layers/attention/triton_backend.py +57 -7
  132. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  133. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  134. sglang/srt/layers/attention/vision.py +58 -0
  135. sglang/srt/layers/attention/wave_backend.py +4 -4
  136. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  137. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  138. sglang/srt/layers/communicator.py +8 -0
  139. sglang/srt/layers/dp_attention.py +41 -2
  140. sglang/srt/layers/elementwise.py +3 -1
  141. sglang/srt/layers/layernorm.py +34 -15
  142. sglang/srt/layers/linear.py +55 -7
  143. sglang/srt/layers/logits_processor.py +44 -12
  144. sglang/srt/layers/moe/__init__.py +2 -1
  145. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  146. sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
  147. sglang/srt/layers/moe/ep_moe/layer.py +256 -63
  148. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  149. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  150. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  151. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  152. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  153. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  154. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  155. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  164. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  165. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  166. sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
  167. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  168. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  169. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  170. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  171. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  172. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  173. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  174. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  175. sglang/srt/layers/moe/topk.py +30 -9
  176. sglang/srt/layers/moe/utils.py +22 -6
  177. sglang/srt/layers/parameter.py +23 -6
  178. sglang/srt/layers/quantization/awq.py +19 -7
  179. sglang/srt/layers/quantization/base_config.py +11 -6
  180. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  181. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  182. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  183. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  184. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  185. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  186. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  187. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  188. sglang/srt/layers/quantization/fp8.py +78 -49
  189. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  190. sglang/srt/layers/quantization/gptq.py +25 -17
  191. sglang/srt/layers/quantization/modelopt_quant.py +190 -55
  192. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  193. sglang/srt/layers/quantization/mxfp4.py +74 -42
  194. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  195. sglang/srt/layers/quantization/unquant.py +135 -47
  196. sglang/srt/layers/quantization/w4afp8.py +26 -17
  197. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  198. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  199. sglang/srt/layers/rotary_embedding.py +78 -31
  200. sglang/srt/layers/sampler.py +213 -21
  201. sglang/srt/layers/utils.py +23 -0
  202. sglang/srt/lora/backend/base_backend.py +50 -8
  203. sglang/srt/lora/backend/chunked_backend.py +348 -0
  204. sglang/srt/lora/backend/triton_backend.py +99 -5
  205. sglang/srt/lora/layers.py +32 -0
  206. sglang/srt/lora/lora.py +8 -3
  207. sglang/srt/lora/lora_manager.py +52 -118
  208. sglang/srt/lora/mem_pool.py +25 -11
  209. sglang/srt/lora/triton_ops/__init__.py +4 -0
  210. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  211. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  212. sglang/srt/lora/utils.py +22 -11
  213. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  214. sglang/srt/managers/cache_controller.py +199 -301
  215. sglang/srt/managers/data_parallel_controller.py +115 -80
  216. sglang/srt/managers/detokenizer_manager.py +19 -15
  217. sglang/srt/managers/disagg_service.py +46 -0
  218. sglang/srt/managers/io_struct.py +340 -109
  219. sglang/srt/managers/mm_utils.py +44 -6
  220. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  221. sglang/srt/managers/multimodal_processor.py +1 -2
  222. sglang/srt/managers/overlap_utils.py +53 -0
  223. sglang/srt/managers/schedule_batch.py +240 -138
  224. sglang/srt/managers/schedule_policy.py +144 -17
  225. sglang/srt/managers/scheduler.py +502 -209
  226. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  227. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  228. sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
  229. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  230. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  231. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  232. sglang/srt/managers/tokenizer_manager.py +320 -632
  233. sglang/srt/managers/tp_worker.py +81 -22
  234. sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
  235. sglang/srt/managers/utils.py +1 -45
  236. sglang/srt/mem_cache/allocator.py +14 -20
  237. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  238. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  239. sglang/srt/mem_cache/chunk_cache.py +8 -1
  240. sglang/srt/mem_cache/evict_policy.py +23 -0
  241. sglang/srt/mem_cache/hicache_storage.py +43 -24
  242. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  243. sglang/srt/mem_cache/memory_pool.py +535 -58
  244. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  245. sglang/srt/mem_cache/radix_cache.py +222 -73
  246. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  247. sglang/srt/mem_cache/storage/__init__.py +10 -0
  248. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  249. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  250. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  251. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  252. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  253. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  254. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  255. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  256. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  257. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  258. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  259. sglang/srt/mem_cache/swa_radix_cache.py +25 -36
  260. sglang/srt/metrics/collector.py +511 -132
  261. sglang/srt/metrics/func_timer.py +2 -7
  262. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  263. sglang/srt/metrics/utils.py +8 -1
  264. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  265. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  266. sglang/srt/model_executor/forward_batch_info.py +82 -40
  267. sglang/srt/model_executor/model_runner.py +432 -157
  268. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  269. sglang/srt/model_loader/__init__.py +9 -3
  270. sglang/srt/model_loader/loader.py +133 -5
  271. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  272. sglang/srt/model_loader/weight_utils.py +158 -3
  273. sglang/srt/models/apertus.py +686 -0
  274. sglang/srt/models/bailing_moe.py +820 -217
  275. sglang/srt/models/bailing_moe_nextn.py +168 -0
  276. sglang/srt/models/deepseek_nextn.py +6 -1
  277. sglang/srt/models/deepseek_v2.py +607 -130
  278. sglang/srt/models/dots_ocr.py +173 -0
  279. sglang/srt/models/dots_vlm.py +174 -0
  280. sglang/srt/models/dots_vlm_vit.py +337 -0
  281. sglang/srt/models/ernie4.py +1 -1
  282. sglang/srt/models/falcon_h1.py +576 -0
  283. sglang/srt/models/gemma3_causal.py +0 -2
  284. sglang/srt/models/gemma3_mm.py +1 -1
  285. sglang/srt/models/gemma3n_mm.py +2 -2
  286. sglang/srt/models/glm4_moe.py +4 -4
  287. sglang/srt/models/glm4_moe_nextn.py +2 -2
  288. sglang/srt/models/glm4v.py +5 -3
  289. sglang/srt/models/glm4v_moe.py +4 -1
  290. sglang/srt/models/gpt_oss.py +8 -31
  291. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  292. sglang/srt/models/llama.py +4 -0
  293. sglang/srt/models/llama4.py +9 -0
  294. sglang/srt/models/llama_eagle3.py +13 -0
  295. sglang/srt/models/longcat_flash.py +3 -3
  296. sglang/srt/models/longcat_flash_nextn.py +1 -1
  297. sglang/srt/models/mllama4.py +40 -4
  298. sglang/srt/models/opt.py +637 -0
  299. sglang/srt/models/qwen2_5_vl.py +29 -5
  300. sglang/srt/models/qwen2_audio.py +1 -1
  301. sglang/srt/models/qwen2_moe.py +120 -13
  302. sglang/srt/models/qwen2_vl.py +1 -1
  303. sglang/srt/models/qwen3.py +18 -3
  304. sglang/srt/models/qwen3_moe.py +32 -4
  305. sglang/srt/models/qwen3_next.py +1069 -0
  306. sglang/srt/models/qwen3_next_mtp.py +112 -0
  307. sglang/srt/models/qwen3_vl.py +787 -0
  308. sglang/srt/models/qwen3_vl_moe.py +471 -0
  309. sglang/srt/models/registry.py +15 -3
  310. sglang/srt/models/sarashina2_vision.py +269 -0
  311. sglang/srt/models/solar.py +505 -0
  312. sglang/srt/models/starcoder2.py +357 -0
  313. sglang/srt/models/step3_vl.py +1 -1
  314. sglang/srt/models/torch_native_llama.py +9 -2
  315. sglang/srt/models/utils.py +51 -0
  316. sglang/srt/multimodal/processors/base_processor.py +15 -7
  317. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  318. sglang/srt/multimodal/processors/glm4v.py +9 -9
  319. sglang/srt/multimodal/processors/internvl.py +153 -129
  320. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  321. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  322. sglang/srt/offloader.py +27 -3
  323. sglang/srt/parser/jinja_template_utils.py +6 -0
  324. sglang/srt/sampling/sampling_batch_info.py +38 -17
  325. sglang/srt/sampling/sampling_params.py +7 -0
  326. sglang/srt/server_args.py +966 -267
  327. sglang/srt/server_args_config_parser.py +146 -0
  328. sglang/srt/single_batch_overlap.py +151 -0
  329. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  330. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  331. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  332. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  333. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  334. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  335. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  336. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  337. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  338. sglang/srt/speculative/eagle_worker.py +99 -28
  339. sglang/srt/speculative/ngram_utils.py +428 -0
  340. sglang/srt/speculative/ngram_worker.py +245 -0
  341. sglang/srt/speculative/spec_info.py +52 -0
  342. sglang/srt/speculative/spec_utils.py +606 -0
  343. sglang/srt/speculative/standalone_worker.py +109 -0
  344. sglang/srt/torch_memory_saver_adapter.py +5 -7
  345. sglang/srt/tracing/trace.py +578 -0
  346. sglang/srt/two_batch_overlap.py +8 -5
  347. sglang/srt/utils/__init__.py +2 -0
  348. sglang/srt/{utils.py → utils/common.py} +433 -77
  349. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
  350. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  351. sglang/srt/utils/rpd_utils.py +452 -0
  352. sglang/srt/utils/slow_rank_detector.py +71 -0
  353. sglang/srt/warmup.py +8 -4
  354. sglang/srt/weight_sync/utils.py +2 -2
  355. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  356. sglang/test/get_logits_ut.py +57 -0
  357. sglang/test/run_eval.py +79 -11
  358. sglang/test/runners.py +5 -1
  359. sglang/test/simple_eval_common.py +5 -2
  360. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  361. sglang/test/test_block_fp8.py +2 -2
  362. sglang/test/test_cutlass_moe.py +24 -6
  363. sglang/test/test_deterministic.py +297 -0
  364. sglang/test/test_disaggregation_utils.py +77 -0
  365. sglang/test/test_fp4_moe.py +370 -1
  366. sglang/test/test_programs.py +1 -1
  367. sglang/test/test_utils.py +383 -5
  368. sglang/utils.py +21 -1
  369. sglang/version.py +1 -1
  370. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +69 -124
  371. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +375 -245
  372. sglang/srt/disaggregation/launch_lb.py +0 -118
  373. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  374. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  375. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
  376. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
  377. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,393 @@
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+ from sglang.srt.utils import get_bool_env_var, is_npu
5
+
6
+ _is_npu = is_npu()
7
+ _ENABLE_MLA_PREPROCESS_FLAG = get_bool_env_var("SGLANG_NPU_USE_MLAPO")
8
+ _NPU_FORMAT_NZ = 29
9
+
10
+
11
+ def is_mla_preprocess_enabled() -> bool:
12
+ return _is_npu and _ENABLE_MLA_PREPROCESS_FLAG
13
+
14
+
15
+ if is_mla_preprocess_enabled():
16
+ import sgl_kernel_npu
17
+ import torch_npu
18
+
19
+ torch.npu.config.allow_internal_format = True
20
+ torch.npu.set_compile_mode(jit_compile=False)
21
+
22
+
23
+ def round_up(val: int, align: int) -> int:
24
+ if align == 0:
25
+ return 0
26
+ return -(val // -align) * align
27
+
28
+
29
+ def transdata(nd_mat, block_size: tuple = (16, 16)):
30
+ r = round_up(nd_mat.shape[0], block_size[0])
31
+ c = round_up(nd_mat.shape[1], block_size[1])
32
+ r_pad = r - nd_mat.shape[0]
33
+ c_pad = c - nd_mat.shape[1]
34
+ nd_mat = F.pad(nd_mat, ((0, r_pad, 0, c_pad)))
35
+ nz_mat = torch.permute(
36
+ torch.reshape(
37
+ nd_mat,
38
+ (r // block_size[0], block_size[0], c // block_size[1], block_size[1]),
39
+ ),
40
+ [2, 0, 1, 3],
41
+ )
42
+ nz_mat = torch.reshape(
43
+ nz_mat, (nz_mat.shape[0], nz_mat.shape[1] * nz_mat.shape[2], nz_mat.shape[3])
44
+ )
45
+ return nz_mat
46
+
47
+
48
+ def trans_rope_weight(weight, rope_dim):
49
+ weight_1 = weight[..., -rope_dim::2, :].contiguous()
50
+ weight_2 = weight[..., -rope_dim + 1 :: 2, :].contiguous()
51
+ weight[..., -rope_dim:, :] = torch.cat([weight_1, weight_2], dim=-2)
52
+
53
+ return weight.contiguous()
54
+
55
+
56
+ class NPUFusedMLAPreprocess(torch.nn.Module):
57
+ def __init__(
58
+ self,
59
+ fused_qkv_a_proj_with_mqa,
60
+ q_a_layernorm,
61
+ kv_a_layernorm,
62
+ q_b_proj,
63
+ w_kc,
64
+ rotary_emb,
65
+ layer_id,
66
+ num_local_heads,
67
+ qk_nope_head_dim,
68
+ qk_rope_head_dim,
69
+ ):
70
+ super().__init__()
71
+ self.qkv_a_proj = fused_qkv_a_proj_with_mqa
72
+ self.q_a_layernorm = q_a_layernorm
73
+ self.kv_a_layernorm = kv_a_layernorm
74
+ self.q_b_proj = q_b_proj
75
+ self.w_kc = w_kc.contiguous()
76
+ self.rotary_emb = rotary_emb
77
+ self.layer_id = layer_id
78
+ self.has_preprocess_weights = False
79
+ self.dtype = None
80
+
81
+ self.q_lora_rank = self.q_b_proj.input_size # 1536
82
+ self.kv_lora_rank = self.kv_a_layernorm.hidden_size # 512
83
+ self.num_local_heads = num_local_heads # tp
84
+ self.qk_nope_head_dim = qk_nope_head_dim # 128
85
+ self.qk_rope_head_dim = qk_rope_head_dim # 64
86
+ self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
87
+
88
+ def preprocess_weights(self, hidden_states):
89
+ self.dummy = torch.empty(
90
+ (hidden_states.shape[-1]),
91
+ dtype=hidden_states.dtype,
92
+ device=hidden_states.device,
93
+ )
94
+ self.qkv_a_proj_input_offset = self.qkv_a_proj.input_offset.to(dtype=torch.int8)
95
+ self.q_b_proj_input_offset = self.q_b_proj.input_offset.to(dtype=torch.int8)
96
+
97
+ # matmul_0 weight [7168, 2112]
98
+ fused_qkv_a_proj_with_mqa_weight_q = self.qkv_a_proj.weight.data[
99
+ :, : self.q_lora_rank
100
+ ].clone() # [7168, 1536]
101
+ fused_qkv_a_proj_with_mqa_weight_kv = self.qkv_a_proj.weight.data[
102
+ :, self.q_lora_rank :
103
+ ].clone() # [7168, 576]
104
+ # rope fit
105
+ fused_qkv_a_proj_with_mqa_weight_kv_t = (
106
+ fused_qkv_a_proj_with_mqa_weight_kv.t().contiguous()
107
+ )
108
+ fused_qkv_a_proj_with_mqa_weight_kv_t = trans_rope_weight(
109
+ fused_qkv_a_proj_with_mqa_weight_kv_t, self.qk_rope_head_dim
110
+ )
111
+ fused_qkv_a_proj_with_mqa_weight_kv = (
112
+ fused_qkv_a_proj_with_mqa_weight_kv_t.t().contiguous()
113
+ )
114
+ # cat nz
115
+ fused_qkv_a_proj_with_mqa_weight_new = torch.cat(
116
+ (fused_qkv_a_proj_with_mqa_weight_kv, fused_qkv_a_proj_with_mqa_weight_q),
117
+ dim=-1,
118
+ )
119
+ fused_qkv_a_proj_with_mqa_weight = (
120
+ fused_qkv_a_proj_with_mqa_weight_new.t().contiguous()
121
+ )
122
+ fused_qkv_a_proj_with_mqa_weight_nz = (
123
+ transdata(fused_qkv_a_proj_with_mqa_weight, block_size=(16, 32))
124
+ .unsqueeze(0)
125
+ .contiguous()
126
+ )
127
+ self.qkv_a_proj_weight_nz = torch_npu.npu_format_cast(
128
+ fused_qkv_a_proj_with_mqa_weight_nz, _NPU_FORMAT_NZ
129
+ )
130
+
131
+ # matmul_0 deq_scale [2112]
132
+ fused_qkv_a_proj_with_mqa_deq_scale_q = self.qkv_a_proj.deq_scale.data[
133
+ : self.q_lora_rank
134
+ ].clone() # [7168, 1536]
135
+ fused_qkv_a_proj_with_mqa_deq_scale_kv = self.qkv_a_proj.deq_scale.data[
136
+ self.q_lora_rank :
137
+ ].clone() # [7168, 576]
138
+ # rope fit
139
+ fused_qkv_a_proj_with_mqa_deq_scale_kv = (
140
+ fused_qkv_a_proj_with_mqa_deq_scale_kv.reshape(
141
+ self.kv_lora_rank + self.qk_rope_head_dim, -1
142
+ ).contiguous()
143
+ )
144
+ fused_qkv_a_proj_with_mqa_deq_scale_kv = trans_rope_weight(
145
+ fused_qkv_a_proj_with_mqa_deq_scale_kv, self.qk_rope_head_dim
146
+ )
147
+ fused_qkv_a_proj_with_mqa_deq_scale_kv = (
148
+ fused_qkv_a_proj_with_mqa_deq_scale_kv.view(
149
+ self.kv_lora_rank + self.qk_rope_head_dim
150
+ ).contiguous()
151
+ )
152
+ self.qkv_a_proj_deq_scale_kvq = torch.cat(
153
+ (
154
+ fused_qkv_a_proj_with_mqa_deq_scale_kv,
155
+ fused_qkv_a_proj_with_mqa_deq_scale_q,
156
+ ),
157
+ dim=-1,
158
+ )
159
+
160
+ # matmul_0 quant_bias [2112]
161
+ fused_qkv_a_proj_with_mqa_quant_bias_q = self.qkv_a_proj.quant_bias.data[
162
+ : self.q_lora_rank
163
+ ].clone() # [7168, 1536]
164
+ fused_qkv_a_proj_with_mqa_quant_bias_kv = self.qkv_a_proj.quant_bias.data[
165
+ self.q_lora_rank :
166
+ ].clone() # [7168, 576]
167
+ # rope fit
168
+ fused_qkv_a_proj_with_mqa_quant_bias_kv = (
169
+ fused_qkv_a_proj_with_mqa_quant_bias_kv.reshape(
170
+ self.kv_lora_rank + self.qk_rope_head_dim, -1
171
+ ).contiguous()
172
+ )
173
+ fused_qkv_a_proj_with_mqa_quant_bias_kv = trans_rope_weight(
174
+ fused_qkv_a_proj_with_mqa_quant_bias_kv, self.qk_rope_head_dim
175
+ )
176
+ fused_qkv_a_proj_with_mqa_quant_bias_kv = (
177
+ fused_qkv_a_proj_with_mqa_quant_bias_kv.view(
178
+ self.kv_lora_rank + self.qk_rope_head_dim
179
+ ).contiguous()
180
+ )
181
+ self.qkv_a_proj_quant_bias_kvq = torch.cat(
182
+ (
183
+ fused_qkv_a_proj_with_mqa_quant_bias_kv,
184
+ fused_qkv_a_proj_with_mqa_quant_bias_q,
185
+ ),
186
+ dim=-1,
187
+ )
188
+
189
+ # matmul_1 weight [1536, num_head * 192]
190
+ q_b_proj_weight = self.q_b_proj.weight.data.clone()
191
+ q_b_proj_weight = q_b_proj_weight.t().reshape(
192
+ self.num_local_heads, self.qk_nope_head_dim + self.qk_rope_head_dim, -1
193
+ )
194
+ q_b_proj_weight = trans_rope_weight(q_b_proj_weight, self.qk_rope_head_dim)
195
+ q_b_proj_weight = q_b_proj_weight.reshape(
196
+ self.num_local_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim), -1
197
+ )
198
+ q_b_proj_weight_nz = (
199
+ transdata(q_b_proj_weight, block_size=(16, 32)).unsqueeze(0).contiguous()
200
+ )
201
+ self.q_b_proj_weight_nz = torch_npu.npu_format_cast(
202
+ q_b_proj_weight_nz, _NPU_FORMAT_NZ
203
+ )
204
+
205
+ # matmul_1 deq_scale [num_head * 192]
206
+ q_b_proj_deq_scale = self.q_b_proj.deq_scale.data.clone()
207
+ q_b_proj_deq_scale = q_b_proj_deq_scale.reshape(
208
+ self.num_local_heads, self.qk_nope_head_dim + self.qk_rope_head_dim, -1
209
+ )
210
+ q_b_proj_deq_scale = trans_rope_weight(
211
+ q_b_proj_deq_scale, self.qk_rope_head_dim
212
+ )
213
+ self.q_b_proj_deq_scale = q_b_proj_deq_scale.reshape(
214
+ self.num_local_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim)
215
+ )
216
+
217
+ # matmul_1 quant_bias [num_head * 192]
218
+ q_b_proj_quant_bias = self.q_b_proj.quant_bias.data.clone()
219
+ q_b_proj_quant_bias = q_b_proj_quant_bias.reshape(
220
+ self.num_local_heads, self.qk_nope_head_dim + self.qk_rope_head_dim, -1
221
+ )
222
+ q_b_proj_quant_bias = trans_rope_weight(
223
+ q_b_proj_quant_bias, self.qk_rope_head_dim
224
+ )
225
+ self.q_b_proj_quant_bias = q_b_proj_quant_bias.reshape(
226
+ self.num_local_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim)
227
+ )
228
+
229
+ def get_sin_cos(self, positions):
230
+ cos_sin = self.rotary_emb.cos_sin_cache[positions]
231
+ cos, sin = cos_sin.chunk(2, dim=-1)
232
+ cos = cos.repeat(1, 2)
233
+ sin = sin.repeat(1, 2)
234
+ return cos, sin
235
+
236
+ def get_kv_cache_and_cache_idx(self, forward_batch):
237
+ k_cache, v_cache = forward_batch.token_to_kv_pool.get_kv_buffer(self.layer_id)
238
+ slot_mapping = forward_batch.out_cache_loc.to(dtype=torch.int32)
239
+ return k_cache, v_cache, slot_mapping
240
+
241
+ def forward_absorb_prepare_npu_rms_norm_cache(
242
+ self,
243
+ positions: torch.Tensor,
244
+ hidden_states: torch.Tensor,
245
+ forward_batch,
246
+ zero_allocator,
247
+ ):
248
+ bsz, _ = hidden_states.view(-1, hidden_states.shape[-1]).shape
249
+ self.dtype = hidden_states.dtype
250
+ self.cos, self.sin = self.get_sin_cos(positions)
251
+ self.kvCache, self.kvCacheRope, self.slotmapping = (
252
+ self.get_kv_cache_and_cache_idx(forward_batch)
253
+ )
254
+
255
+ if not self.has_preprocess_weights:
256
+ self.has_preprocess_weights = True
257
+
258
+ cos, sin = self.cos, self.sin
259
+
260
+ if self.q_lora_rank is not None:
261
+ fused_qkv_a_proj_out = self.qkv_a_proj(hidden_states)[0]
262
+ q_lowrank, latent_cache = fused_qkv_a_proj_out.split(
263
+ [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
264
+ )
265
+ q = self.q_a_layernorm(q_lowrank)
266
+ q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
267
+ else:
268
+ q = self.q_proj(hidden_states)[0].view(
269
+ -1, self.num_local_heads, self.qk_head_dim
270
+ )
271
+ latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
272
+
273
+ q_nope, q_pe = torch.split(
274
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
275
+ ) # b*s,n,d
276
+
277
+ q_nope = q_nope.view(-1, self.num_local_heads, self.qk_nope_head_dim)
278
+ q_nope = torch.matmul(q_nope.transpose(0, 1), self.w_kc).transpose(0, 1)
279
+
280
+ q_pe = q_pe.view(-1, self.num_local_heads, 1, self.qk_rope_head_dim)
281
+ cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
282
+ sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
283
+ q_pe = torch_npu.npu_interleave_rope(q_pe, cos, sin) # (B,N,S,D)
284
+ q_pe = q_pe.view(cos.shape[0], self.num_local_heads, self.qk_rope_head_dim)
285
+
286
+ latent_cache = latent_cache.view(
287
+ -1, 1, 1, self.kv_lora_rank + self.qk_rope_head_dim
288
+ ) # (B*S,N,1,D)
289
+
290
+ cache_mode = "PA_BNSD"
291
+ self.kvCache = self.kvCache.view(
292
+ -1,
293
+ forward_batch.attn_backend.page_size,
294
+ 1,
295
+ forward_batch.attn_backend.kv_lora_rank,
296
+ )
297
+ self.kvCacheRope = self.kvCacheRope.view(
298
+ -1,
299
+ forward_batch.attn_backend.page_size,
300
+ 1,
301
+ forward_batch.attn_backend.qk_rope_head_dim,
302
+ )
303
+ k_rope, k_nope, _, _ = torch_npu.npu_kv_rmsnorm_rope_cache(
304
+ latent_cache,
305
+ self.kv_a_layernorm.weight,
306
+ cos,
307
+ sin,
308
+ self.slotmapping.to(torch.int64),
309
+ self.kvCacheRope,
310
+ self.kvCache,
311
+ epsilon=self.kv_a_layernorm.variance_epsilon,
312
+ cache_mode=cache_mode,
313
+ )
314
+
315
+ return (q_pe, k_rope, q_nope, k_nope, forward_batch, zero_allocator, positions)
316
+
317
+ def forward_mlapo(self, positions, hidden_states, forward_batch, zero_allocator):
318
+ input_dtype = hidden_states.dtype
319
+ if not self.has_preprocess_weights:
320
+ self.preprocess_weights(hidden_states)
321
+ self.has_preprocess_weights = True
322
+ self.dtype = hidden_states.dtype
323
+
324
+ cos, sin = self.get_sin_cos(positions)
325
+ k_cache, v_cache, slot_mapping = self.get_kv_cache_and_cache_idx(forward_batch)
326
+
327
+ q_nope_out = torch.empty(
328
+ (hidden_states.shape[0], self.w_kc.shape[0], k_cache.shape[-1]),
329
+ dtype=input_dtype,
330
+ device=hidden_states.device,
331
+ )
332
+ q_rope_out = torch.empty(
333
+ (hidden_states.shape[0], self.w_kc.shape[0], v_cache.shape[-1]),
334
+ dtype=input_dtype,
335
+ device=hidden_states.device,
336
+ )
337
+
338
+ # TODO: dummy inputs to be removed
339
+ # https://github.com/sgl-project/sgl-kernel-npu/issues/78
340
+ torch.ops.npu.mla_preprocess(
341
+ hidden_states,
342
+ self.dummy,
343
+ self.dummy,
344
+ self.qkv_a_proj_weight_nz,
345
+ self.qkv_a_proj_deq_scale_kvq,
346
+ self.q_a_layernorm.weight,
347
+ self.q_a_layernorm.bias,
348
+ self.q_b_proj_weight_nz,
349
+ self.q_b_proj_deq_scale,
350
+ self.kv_a_layernorm.weight,
351
+ cos,
352
+ sin,
353
+ self.w_kc,
354
+ k_cache,
355
+ v_cache,
356
+ slot_mapping,
357
+ quant_scale0=self.qkv_a_proj.input_scale,
358
+ quant_offset0=self.qkv_a_proj_input_offset,
359
+ bias0=self.qkv_a_proj_quant_bias_kvq,
360
+ quant_scale1=self.q_b_proj.input_scale,
361
+ quant_offset1=self.q_b_proj_input_offset,
362
+ bias1=self.q_b_proj_quant_bias,
363
+ cache_mode="krope_ctkv",
364
+ quant_mode="per_tensor_quant_asymm",
365
+ q_out0=q_nope_out,
366
+ kv_cache_out0=k_cache,
367
+ q_out1=q_rope_out,
368
+ kv_cache_out1=v_cache,
369
+ )
370
+ return (
371
+ q_rope_out,
372
+ v_cache,
373
+ q_nope_out,
374
+ k_cache,
375
+ forward_batch,
376
+ zero_allocator,
377
+ positions,
378
+ )
379
+
380
+ def forward(self, positions, hidden_states, forward_batch, zero_allocator):
381
+ _is_w8a8 = (
382
+ hasattr(self.qkv_a_proj.quant_method, "quantization_config")
383
+ and self.qkv_a_proj.quant_method.quantization_config.get_name()
384
+ == "w8a8_int8"
385
+ )
386
+ if _is_w8a8:
387
+ return self.forward_mlapo(
388
+ positions, hidden_states, forward_batch, zero_allocator
389
+ )
390
+ else:
391
+ return self.forward_absorb_prepare_npu_rms_norm_cache(
392
+ positions, hidden_states, forward_batch, zero_allocator
393
+ )
@@ -0,0 +1,163 @@
1
+ import torch
2
+ import triton
3
+ import triton.language as tl
4
+
5
+ from sglang.srt.layers.attention.nsa.utils import NSA_DEQUANT_K_CACHE_FAST
6
+
7
+
8
+ def dequantize_k_cache(quant_k_cache):
9
+ if NSA_DEQUANT_K_CACHE_FAST:
10
+ return _dequantize_k_cache_fast_wrapped(quant_k_cache)
11
+ else:
12
+ return _dequantize_k_cache_slow(quant_k_cache)
13
+
14
+
15
+ def _dequantize_k_cache_slow(
16
+ quant_k_cache: torch.Tensor, # (num_blocks, block_size, 1, bytes_per_token)
17
+ dv: int = 512,
18
+ tile_size: int = 128,
19
+ d: int = 576,
20
+ ) -> torch.Tensor:
21
+ """
22
+ De-quantize the k-cache
23
+ """
24
+ assert dv % tile_size == 0
25
+ num_tiles = dv // tile_size
26
+ num_blocks, block_size, h_k, _ = quant_k_cache.shape
27
+ assert h_k == 1
28
+ result = torch.empty(
29
+ (num_blocks, block_size, d), dtype=torch.bfloat16, device=quant_k_cache.device
30
+ )
31
+
32
+ quant_k_cache = quant_k_cache.view(num_blocks, block_size, -1)
33
+
34
+ input_nope = quant_k_cache[..., :dv]
35
+ input_scale = quant_k_cache[..., dv : dv + num_tiles * 4].view(torch.float32)
36
+ input_rope = quant_k_cache[..., dv + num_tiles * 4 :].view(torch.bfloat16)
37
+ result[..., dv:] = input_rope
38
+
39
+ for tile_idx in range(0, num_tiles):
40
+ cur_nope = input_nope[
41
+ ..., tile_idx * tile_size : (tile_idx + 1) * tile_size
42
+ ].to(torch.float32)
43
+ cur_scales = input_scale[..., tile_idx].unsqueeze(-1)
44
+ result[..., tile_idx * tile_size : (tile_idx + 1) * tile_size] = (
45
+ cur_nope * cur_scales
46
+ )
47
+
48
+ result = result.view(num_blocks, block_size, 1, d)
49
+ return result
50
+
51
+
52
+ def _dequantize_k_cache_fast_wrapped(
53
+ quant_k_cache: torch.Tensor,
54
+ dv: int = 512,
55
+ tile_size: int = 128,
56
+ ) -> torch.Tensor:
57
+ # TODO the final API may be 2D instead of 4D, thus we convert them here
58
+ num_blocks, block_size, _, dim_quant = quant_k_cache.shape
59
+ assert dv == 512
60
+ assert dim_quant == 656
61
+ assert tile_size == 128
62
+ quant_k_cache = quant_k_cache.view((-1, dim_quant))
63
+
64
+ output = _dequantize_k_cache_fast(quant_k_cache)
65
+
66
+ return output.view(num_blocks, block_size, 1, -1)
67
+
68
+
69
+ def _dequantize_k_cache_fast(quant_k_cache, group_size: int = 128):
70
+ num_tokens, dim_quant = quant_k_cache.shape
71
+
72
+ assert quant_k_cache.dtype == torch.float8_e4m3fn
73
+ dim_nope = 512
74
+ dim_rope = 64
75
+ num_tiles = dim_nope // group_size
76
+ assert dim_quant == 656
77
+
78
+ output = torch.empty(
79
+ (num_tokens, dim_nope + dim_rope),
80
+ dtype=torch.bfloat16,
81
+ device=quant_k_cache.device,
82
+ )
83
+
84
+ num_blocks_per_token = triton.cdiv(dim_nope + dim_rope, group_size)
85
+ assert num_blocks_per_token == 5
86
+
87
+ assert dim_nope % group_size == 0
88
+ NUM_NOPE_BLOCKS = dim_nope // group_size
89
+
90
+ input_nope_q = quant_k_cache[:, :dim_nope]
91
+ input_nope_s = quant_k_cache[:, dim_nope : dim_nope + num_tiles * 4].view(
92
+ torch.float32
93
+ )
94
+ input_rope = quant_k_cache[:, dim_nope + num_tiles * 4 :].view(torch.bfloat16)
95
+
96
+ _dequantize_k_cache_fast_kernel[(num_tokens, num_blocks_per_token)](
97
+ output,
98
+ input_nope_q,
99
+ input_nope_s,
100
+ input_rope,
101
+ output.stride(0),
102
+ input_nope_q.stride(0),
103
+ input_nope_s.stride(0),
104
+ input_rope.stride(0),
105
+ NUM_NOPE_BLOCKS=NUM_NOPE_BLOCKS,
106
+ GROUP_SIZE=group_size,
107
+ DIM_NOPE=dim_nope,
108
+ DIM_ROPE=dim_rope,
109
+ )
110
+
111
+ return output
112
+
113
+
114
+ @triton.jit
115
+ def _dequantize_k_cache_fast_kernel(
116
+ output_ptr,
117
+ input_nope_q_ptr,
118
+ input_nope_s_ptr,
119
+ input_rope_ptr,
120
+ output_stride_0: int,
121
+ input_nope_q_stride_0: int,
122
+ input_nope_s_stride_0: int,
123
+ input_rope_stride_0: int,
124
+ NUM_NOPE_BLOCKS: tl.constexpr,
125
+ GROUP_SIZE: tl.constexpr,
126
+ DIM_NOPE: tl.constexpr,
127
+ DIM_ROPE: tl.constexpr,
128
+ ):
129
+ token_id = tl.program_id(0)
130
+ raw_block_id = tl.program_id(1)
131
+
132
+ if raw_block_id < NUM_NOPE_BLOCKS:
133
+ # a. dequant nope
134
+ effective_block_id = raw_block_id
135
+
136
+ offs_q = effective_block_id * GROUP_SIZE + tl.arange(0, GROUP_SIZE)
137
+ mask = offs_q < DIM_NOPE
138
+ ptr_q = input_nope_q_ptr + token_id * input_nope_q_stride_0 + offs_q
139
+ ptr_s = input_nope_s_ptr + token_id * input_nope_s_stride_0 + effective_block_id
140
+
141
+ y_q = tl.load(ptr_q, mask=mask, other=0.0).to(tl.float32)
142
+ y_s = tl.load(ptr_s)
143
+
144
+ y = (y_q * y_s).to(output_ptr.dtype.element_ty)
145
+
146
+ dst_ptr = output_ptr + token_id * output_stride_0 + offs_q
147
+ tl.store(dst_ptr, y, mask=mask)
148
+ else:
149
+ # b. copy rope
150
+ effective_block_id = raw_block_id - NUM_NOPE_BLOCKS
151
+
152
+ offs = effective_block_id * GROUP_SIZE + tl.arange(0, GROUP_SIZE)
153
+ mask = offs < DIM_ROPE
154
+
155
+ src_ptr = input_rope_ptr + token_id * input_rope_stride_0 + offs
156
+ dst_ptr = output_ptr + token_id * output_stride_0 + DIM_NOPE + offs
157
+
158
+ data = tl.load(src_ptr, mask=mask).to(tl.bfloat16)
159
+ tl.store(dst_ptr, data, mask=mask)
160
+
161
+
162
+ if __name__ == "__main__":
163
+ raise Exception("UT is in quant_k_cache.py")