sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (377) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +267 -32
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/launch_server.py +14 -0
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +8 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +360 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/model_config.py +181 -82
  17. sglang/srt/configs/qwen3_next.py +326 -0
  18. sglang/srt/configs/qwen3_vl.py +586 -0
  19. sglang/srt/connector/__init__.py +8 -1
  20. sglang/srt/connector/remote_instance.py +82 -0
  21. sglang/srt/constrained/base_grammar_backend.py +49 -12
  22. sglang/srt/constrained/llguidance_backend.py +0 -1
  23. sglang/srt/constrained/outlines_backend.py +0 -1
  24. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  25. sglang/srt/constrained/xgrammar_backend.py +30 -9
  26. sglang/srt/custom_op.py +11 -1
  27. sglang/srt/debug_utils/dump_comparator.py +81 -44
  28. sglang/srt/debug_utils/dump_loader.py +97 -0
  29. sglang/srt/debug_utils/dumper.py +21 -6
  30. sglang/srt/debug_utils/text_comparator.py +73 -11
  31. sglang/srt/disaggregation/ascend/conn.py +2 -2
  32. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  33. sglang/srt/disaggregation/base/conn.py +1 -1
  34. sglang/srt/disaggregation/common/conn.py +279 -108
  35. sglang/srt/disaggregation/decode.py +71 -19
  36. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  37. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  38. sglang/srt/disaggregation/fake/conn.py +1 -1
  39. sglang/srt/disaggregation/mini_lb.py +6 -445
  40. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  41. sglang/srt/disaggregation/nixl/conn.py +326 -53
  42. sglang/srt/disaggregation/prefill.py +36 -17
  43. sglang/srt/disaggregation/utils.py +40 -54
  44. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  45. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  46. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  47. sglang/srt/distributed/parallel_state.py +156 -80
  48. sglang/srt/entrypoints/engine.py +59 -18
  49. sglang/srt/entrypoints/grpc_request_manager.py +855 -0
  50. sglang/srt/entrypoints/grpc_server.py +810 -0
  51. sglang/srt/entrypoints/http_server.py +130 -59
  52. sglang/srt/entrypoints/openai/protocol.py +112 -4
  53. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  54. sglang/srt/entrypoints/openai/serving_chat.py +204 -55
  55. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  56. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  57. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  58. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  59. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  60. sglang/srt/environ.py +285 -0
  61. sglang/srt/eplb/eplb_manager.py +2 -2
  62. sglang/srt/eplb/expert_distribution.py +26 -13
  63. sglang/srt/eplb/expert_location.py +38 -8
  64. sglang/srt/eplb/expert_location_updater.py +1 -1
  65. sglang/srt/function_call/base_format_detector.py +3 -6
  66. sglang/srt/function_call/ebnf_composer.py +11 -9
  67. sglang/srt/function_call/function_call_parser.py +9 -2
  68. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  69. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  70. sglang/srt/function_call/json_array_parser.py +63 -0
  71. sglang/srt/function_call/kimik2_detector.py +17 -4
  72. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  73. sglang/srt/function_call/utils.py +96 -5
  74. sglang/srt/grpc/__init__.py +1 -0
  75. sglang/srt/grpc/compile_proto.py +245 -0
  76. sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
  77. sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
  78. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
  79. sglang/srt/layers/activation.py +143 -9
  80. sglang/srt/layers/attention/aiter_backend.py +14 -15
  81. sglang/srt/layers/attention/ascend_backend.py +115 -9
  82. sglang/srt/layers/attention/attention_registry.py +206 -0
  83. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  84. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  85. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  86. sglang/srt/layers/attention/fla/chunk.py +242 -0
  87. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  88. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  89. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  90. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  91. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  92. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  93. sglang/srt/layers/attention/fla/index.py +37 -0
  94. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  95. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  96. sglang/srt/layers/attention/fla/op.py +66 -0
  97. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  98. sglang/srt/layers/attention/fla/utils.py +331 -0
  99. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  100. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  101. sglang/srt/layers/attention/flashinfer_backend.py +118 -198
  102. sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
  103. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  104. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  105. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  106. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  107. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  108. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
  109. sglang/srt/layers/attention/mamba/mamba.py +629 -0
  110. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  111. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  112. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  113. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  114. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  115. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  116. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  117. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  119. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  120. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  121. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  122. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  123. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  124. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  125. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  126. sglang/srt/layers/attention/nsa/utils.py +24 -0
  127. sglang/srt/layers/attention/nsa_backend.py +887 -0
  128. sglang/srt/layers/attention/tbo_backend.py +6 -6
  129. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  130. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  131. sglang/srt/layers/attention/triton_backend.py +57 -7
  132. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  133. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  134. sglang/srt/layers/attention/vision.py +58 -0
  135. sglang/srt/layers/attention/wave_backend.py +4 -4
  136. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  137. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  138. sglang/srt/layers/communicator.py +8 -0
  139. sglang/srt/layers/dp_attention.py +41 -2
  140. sglang/srt/layers/elementwise.py +3 -1
  141. sglang/srt/layers/layernorm.py +34 -15
  142. sglang/srt/layers/linear.py +55 -7
  143. sglang/srt/layers/logits_processor.py +44 -12
  144. sglang/srt/layers/moe/__init__.py +2 -1
  145. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  146. sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
  147. sglang/srt/layers/moe/ep_moe/layer.py +256 -63
  148. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  149. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  150. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  151. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  152. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  153. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  154. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  155. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  164. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  165. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  166. sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
  167. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  168. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  169. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  170. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  171. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  172. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  173. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  174. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  175. sglang/srt/layers/moe/topk.py +30 -9
  176. sglang/srt/layers/moe/utils.py +22 -6
  177. sglang/srt/layers/parameter.py +23 -6
  178. sglang/srt/layers/quantization/awq.py +19 -7
  179. sglang/srt/layers/quantization/base_config.py +11 -6
  180. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  181. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  182. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  183. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  184. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  185. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  186. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  187. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  188. sglang/srt/layers/quantization/fp8.py +78 -49
  189. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  190. sglang/srt/layers/quantization/gptq.py +25 -17
  191. sglang/srt/layers/quantization/modelopt_quant.py +190 -55
  192. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  193. sglang/srt/layers/quantization/mxfp4.py +74 -42
  194. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  195. sglang/srt/layers/quantization/unquant.py +135 -47
  196. sglang/srt/layers/quantization/w4afp8.py +26 -17
  197. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  198. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  199. sglang/srt/layers/rotary_embedding.py +78 -31
  200. sglang/srt/layers/sampler.py +213 -21
  201. sglang/srt/layers/utils.py +23 -0
  202. sglang/srt/lora/backend/base_backend.py +50 -8
  203. sglang/srt/lora/backend/chunked_backend.py +348 -0
  204. sglang/srt/lora/backend/triton_backend.py +99 -5
  205. sglang/srt/lora/layers.py +32 -0
  206. sglang/srt/lora/lora.py +8 -3
  207. sglang/srt/lora/lora_manager.py +52 -118
  208. sglang/srt/lora/mem_pool.py +25 -11
  209. sglang/srt/lora/triton_ops/__init__.py +4 -0
  210. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  211. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  212. sglang/srt/lora/utils.py +22 -11
  213. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  214. sglang/srt/managers/cache_controller.py +199 -301
  215. sglang/srt/managers/data_parallel_controller.py +115 -80
  216. sglang/srt/managers/detokenizer_manager.py +19 -15
  217. sglang/srt/managers/disagg_service.py +46 -0
  218. sglang/srt/managers/io_struct.py +340 -109
  219. sglang/srt/managers/mm_utils.py +44 -6
  220. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  221. sglang/srt/managers/multimodal_processor.py +1 -2
  222. sglang/srt/managers/overlap_utils.py +53 -0
  223. sglang/srt/managers/schedule_batch.py +240 -138
  224. sglang/srt/managers/schedule_policy.py +144 -17
  225. sglang/srt/managers/scheduler.py +502 -209
  226. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  227. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  228. sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
  229. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  230. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  231. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  232. sglang/srt/managers/tokenizer_manager.py +320 -632
  233. sglang/srt/managers/tp_worker.py +81 -22
  234. sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
  235. sglang/srt/managers/utils.py +1 -45
  236. sglang/srt/mem_cache/allocator.py +14 -20
  237. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  238. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  239. sglang/srt/mem_cache/chunk_cache.py +8 -1
  240. sglang/srt/mem_cache/evict_policy.py +23 -0
  241. sglang/srt/mem_cache/hicache_storage.py +43 -24
  242. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  243. sglang/srt/mem_cache/memory_pool.py +535 -58
  244. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  245. sglang/srt/mem_cache/radix_cache.py +222 -73
  246. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  247. sglang/srt/mem_cache/storage/__init__.py +10 -0
  248. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  249. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  250. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  251. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  252. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  253. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  254. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  255. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  256. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  257. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  258. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  259. sglang/srt/mem_cache/swa_radix_cache.py +25 -36
  260. sglang/srt/metrics/collector.py +511 -132
  261. sglang/srt/metrics/func_timer.py +2 -7
  262. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  263. sglang/srt/metrics/utils.py +8 -1
  264. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  265. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  266. sglang/srt/model_executor/forward_batch_info.py +82 -40
  267. sglang/srt/model_executor/model_runner.py +432 -157
  268. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  269. sglang/srt/model_loader/__init__.py +9 -3
  270. sglang/srt/model_loader/loader.py +133 -5
  271. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  272. sglang/srt/model_loader/weight_utils.py +158 -3
  273. sglang/srt/models/apertus.py +686 -0
  274. sglang/srt/models/bailing_moe.py +820 -217
  275. sglang/srt/models/bailing_moe_nextn.py +168 -0
  276. sglang/srt/models/deepseek_nextn.py +6 -1
  277. sglang/srt/models/deepseek_v2.py +607 -130
  278. sglang/srt/models/dots_ocr.py +173 -0
  279. sglang/srt/models/dots_vlm.py +174 -0
  280. sglang/srt/models/dots_vlm_vit.py +337 -0
  281. sglang/srt/models/ernie4.py +1 -1
  282. sglang/srt/models/falcon_h1.py +576 -0
  283. sglang/srt/models/gemma3_causal.py +0 -2
  284. sglang/srt/models/gemma3_mm.py +1 -1
  285. sglang/srt/models/gemma3n_mm.py +2 -2
  286. sglang/srt/models/glm4_moe.py +4 -4
  287. sglang/srt/models/glm4_moe_nextn.py +2 -2
  288. sglang/srt/models/glm4v.py +5 -3
  289. sglang/srt/models/glm4v_moe.py +4 -1
  290. sglang/srt/models/gpt_oss.py +8 -31
  291. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  292. sglang/srt/models/llama.py +4 -0
  293. sglang/srt/models/llama4.py +9 -0
  294. sglang/srt/models/llama_eagle3.py +13 -0
  295. sglang/srt/models/longcat_flash.py +3 -3
  296. sglang/srt/models/longcat_flash_nextn.py +1 -1
  297. sglang/srt/models/mllama4.py +40 -4
  298. sglang/srt/models/opt.py +637 -0
  299. sglang/srt/models/qwen2_5_vl.py +29 -5
  300. sglang/srt/models/qwen2_audio.py +1 -1
  301. sglang/srt/models/qwen2_moe.py +120 -13
  302. sglang/srt/models/qwen2_vl.py +1 -1
  303. sglang/srt/models/qwen3.py +18 -3
  304. sglang/srt/models/qwen3_moe.py +32 -4
  305. sglang/srt/models/qwen3_next.py +1069 -0
  306. sglang/srt/models/qwen3_next_mtp.py +112 -0
  307. sglang/srt/models/qwen3_vl.py +787 -0
  308. sglang/srt/models/qwen3_vl_moe.py +471 -0
  309. sglang/srt/models/registry.py +15 -3
  310. sglang/srt/models/sarashina2_vision.py +269 -0
  311. sglang/srt/models/solar.py +505 -0
  312. sglang/srt/models/starcoder2.py +357 -0
  313. sglang/srt/models/step3_vl.py +1 -1
  314. sglang/srt/models/torch_native_llama.py +9 -2
  315. sglang/srt/models/utils.py +51 -0
  316. sglang/srt/multimodal/processors/base_processor.py +15 -7
  317. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  318. sglang/srt/multimodal/processors/glm4v.py +9 -9
  319. sglang/srt/multimodal/processors/internvl.py +153 -129
  320. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  321. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  322. sglang/srt/offloader.py +27 -3
  323. sglang/srt/parser/jinja_template_utils.py +6 -0
  324. sglang/srt/sampling/sampling_batch_info.py +38 -17
  325. sglang/srt/sampling/sampling_params.py +7 -0
  326. sglang/srt/server_args.py +966 -267
  327. sglang/srt/server_args_config_parser.py +146 -0
  328. sglang/srt/single_batch_overlap.py +151 -0
  329. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  330. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  331. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  332. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  333. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  334. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  335. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  336. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  337. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  338. sglang/srt/speculative/eagle_worker.py +99 -28
  339. sglang/srt/speculative/ngram_utils.py +428 -0
  340. sglang/srt/speculative/ngram_worker.py +245 -0
  341. sglang/srt/speculative/spec_info.py +52 -0
  342. sglang/srt/speculative/spec_utils.py +606 -0
  343. sglang/srt/speculative/standalone_worker.py +109 -0
  344. sglang/srt/torch_memory_saver_adapter.py +5 -7
  345. sglang/srt/tracing/trace.py +578 -0
  346. sglang/srt/two_batch_overlap.py +8 -5
  347. sglang/srt/utils/__init__.py +2 -0
  348. sglang/srt/{utils.py → utils/common.py} +433 -77
  349. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
  350. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  351. sglang/srt/utils/rpd_utils.py +452 -0
  352. sglang/srt/utils/slow_rank_detector.py +71 -0
  353. sglang/srt/warmup.py +8 -4
  354. sglang/srt/weight_sync/utils.py +2 -2
  355. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  356. sglang/test/get_logits_ut.py +57 -0
  357. sglang/test/run_eval.py +79 -11
  358. sglang/test/runners.py +5 -1
  359. sglang/test/simple_eval_common.py +5 -2
  360. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  361. sglang/test/test_block_fp8.py +2 -2
  362. sglang/test/test_cutlass_moe.py +24 -6
  363. sglang/test/test_deterministic.py +297 -0
  364. sglang/test/test_disaggregation_utils.py +77 -0
  365. sglang/test/test_fp4_moe.py +370 -1
  366. sglang/test/test_programs.py +1 -1
  367. sglang/test/test_utils.py +383 -5
  368. sglang/utils.py +21 -1
  369. sglang/version.py +1 -1
  370. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +69 -124
  371. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +375 -245
  372. sglang/srt/disaggregation/launch_lb.py +0 -118
  373. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  374. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  375. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
  376. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
  377. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,602 @@
1
+ from dataclasses import astuple, dataclass
2
+ from functools import lru_cache
3
+ from typing import Optional, Union
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+
8
+ from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
9
+ from sglang.srt.layers.attention.fla.chunk import chunk_gated_delta_rule
10
+ from sglang.srt.layers.attention.fla.fused_recurrent import (
11
+ fused_recurrent_gated_delta_rule_update,
12
+ )
13
+ from sglang.srt.layers.attention.fla.fused_sigmoid_gating_recurrent import (
14
+ fused_sigmoid_gating_delta_rule_update,
15
+ )
16
+ from sglang.srt.layers.attention.mamba.causal_conv1d_triton import (
17
+ causal_conv1d_fn,
18
+ causal_conv1d_update,
19
+ )
20
+ from sglang.srt.layers.radix_attention import RadixAttention
21
+ from sglang.srt.mem_cache.memory_pool import HybridReqToTokenPool
22
+ from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
23
+ from sglang.srt.model_executor.model_runner import ModelRunner
24
+ from sglang.srt.models.qwen3_next import fused_gdn_gating
25
+ from sglang.srt.speculative.spec_info import SpecInput
26
+ from sglang.srt.utils import is_cuda, is_npu
27
+
28
+ if is_cuda():
29
+ from sglang.srt.layers.attention.mamba.causal_conv1d import (
30
+ causal_conv1d_fn as causal_conv1d_fn_cuda,
31
+ )
32
+
33
+ causal_conv1d_fn = causal_conv1d_fn_cuda
34
+ elif is_npu():
35
+ from sgl_kernel_npu.fla.chunk import chunk_gated_delta_rule_npu
36
+ from sgl_kernel_npu.fla.fused_sigmoid_gating_recurrent import (
37
+ fused_sigmoid_gating_delta_rule_update_npu,
38
+ )
39
+ from sgl_kernel_npu.mamba.causal_conv1d import (
40
+ causal_conv1d_fn_npu,
41
+ causal_conv1d_update_npu,
42
+ )
43
+
44
+ chunk_gated_delta_rule = chunk_gated_delta_rule_npu
45
+ fused_sigmoid_gating_delta_rule_update = fused_sigmoid_gating_delta_rule_update_npu
46
+ causal_conv1d_fn = causal_conv1d_fn_npu
47
+ causal_conv1d_update = causal_conv1d_update_npu
48
+
49
+
50
+ @dataclass
51
+ class ForwardMetadata:
52
+ query_start_loc: Optional[torch.Tensor]
53
+ mamba_cache_indices: torch.Tensor
54
+
55
+
56
+ class MambaAttnBackend(AttentionBackend):
57
+ """Attention backend using Mamba kernel."""
58
+
59
+ def __init__(self, model_runner: ModelRunner):
60
+ super().__init__()
61
+ self.pad_slot_id = -1 # Default pad slot id
62
+ self.device = model_runner.device
63
+ self.req_to_token_pool: HybridReqToTokenPool = model_runner.req_to_token_pool
64
+ self.forward_metadata: ForwardMetadata = None
65
+ self.state_indices_list = []
66
+ self.query_start_loc_list = []
67
+ self.cached_cuda_graph_decode_query_start_loc: torch.Tensor = None
68
+ self.cached_cuda_graph_verify_query_start_loc: torch.Tensor = None
69
+
70
+ def init_forward_metadata(self, forward_batch: ForwardBatch):
71
+ bs = forward_batch.batch_size
72
+
73
+ if forward_batch.forward_mode.is_decode_or_idle():
74
+ query_start_loc = torch.arange(
75
+ 0, bs + 1, dtype=torch.int32, device=self.device
76
+ )
77
+ elif forward_batch.forward_mode.is_extend():
78
+ if forward_batch.forward_mode.is_target_verify():
79
+ query_start_loc = torch.arange(
80
+ 0,
81
+ forward_batch.input_ids.shape[0] + 1,
82
+ step=forward_batch.spec_info.draft_token_num,
83
+ dtype=torch.int32,
84
+ device=forward_batch.input_ids.device,
85
+ )
86
+ else:
87
+ query_start_loc = torch.empty(
88
+ (bs + 1,), dtype=torch.int32, device=self.device
89
+ )
90
+ query_start_loc[:bs] = forward_batch.extend_start_loc
91
+ query_start_loc[bs] = (
92
+ forward_batch.extend_start_loc[-1]
93
+ + forward_batch.extend_seq_lens[-1]
94
+ )
95
+ else:
96
+ raise ValueError(f"Invalid forward mode: {forward_batch.forward_mode=}")
97
+ mamba_cache_indices = self.req_to_token_pool.get_mamba_indices(
98
+ forward_batch.req_pool_indices
99
+ )
100
+ self.forward_metadata = ForwardMetadata(
101
+ query_start_loc=query_start_loc,
102
+ mamba_cache_indices=mamba_cache_indices,
103
+ )
104
+
105
+ def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
106
+ assert (
107
+ max_num_tokens % max_bs == 0
108
+ ), f"max_num_tokens={max_num_tokens} must be divisible by max_bs={max_bs}"
109
+ verify_step = max_num_tokens / max_bs
110
+ for i in range(max_bs):
111
+ self.state_indices_list.append(
112
+ torch.full(
113
+ (i + 1,), self.pad_slot_id, dtype=torch.int32, device=self.device
114
+ )
115
+ )
116
+ self.query_start_loc_list.append(
117
+ torch.empty((i + 2,), dtype=torch.int32, device=self.device)
118
+ )
119
+ self.cached_cuda_graph_decode_query_start_loc = torch.arange(
120
+ 0, max_bs + 1, dtype=torch.int32, device=self.device
121
+ )
122
+ self.cached_cuda_graph_verify_query_start_loc = torch.arange(
123
+ 0,
124
+ max_bs * verify_step + 1,
125
+ step=verify_step,
126
+ dtype=torch.int32,
127
+ device=self.device,
128
+ )
129
+
130
+ def init_forward_metadata_capture_cuda_graph(
131
+ self,
132
+ bs: int,
133
+ num_tokens: int,
134
+ req_pool_indices: torch.Tensor,
135
+ seq_lens: torch.Tensor,
136
+ encoder_lens: Optional[torch.Tensor],
137
+ forward_mode: ForwardMode,
138
+ spec_info: Optional[SpecInput],
139
+ ):
140
+ if forward_mode.is_decode_or_idle():
141
+ self.query_start_loc_list[bs - 1].copy_(
142
+ self.cached_cuda_graph_decode_query_start_loc[: bs + 1]
143
+ )
144
+ elif forward_mode.is_target_verify():
145
+ self.query_start_loc_list[bs - 1].copy_(
146
+ self.cached_cuda_graph_verify_query_start_loc[: bs + 1]
147
+ )
148
+ else:
149
+ raise ValueError(f"Invalid forward mode: {forward_mode=}")
150
+ mamba_indices = self.req_to_token_pool.get_mamba_indices(req_pool_indices)
151
+ self.state_indices_list[bs - 1][: len(mamba_indices)].copy_(mamba_indices)
152
+ self.forward_metadata = ForwardMetadata(
153
+ query_start_loc=self.query_start_loc_list[bs - 1],
154
+ mamba_cache_indices=self.state_indices_list[bs - 1],
155
+ )
156
+
157
+ def init_forward_metadata_replay_cuda_graph(
158
+ self,
159
+ bs: int,
160
+ req_pool_indices: torch.Tensor,
161
+ seq_lens: torch.Tensor,
162
+ seq_lens_sum: int,
163
+ encoder_lens: Optional[torch.Tensor],
164
+ forward_mode: ForwardMode,
165
+ spec_info: Optional[SpecInput],
166
+ seq_lens_cpu: Optional[torch.Tensor],
167
+ ):
168
+ num_padding = torch.count_nonzero(
169
+ seq_lens_cpu == self.get_cuda_graph_seq_len_fill_value()
170
+ )
171
+ # Make sure forward metadata is correctly handled for padding reqs
172
+ req_pool_indices[bs - num_padding :] = 0
173
+ mamba_indices = self.req_to_token_pool.get_mamba_indices(req_pool_indices)
174
+ mamba_indices[bs - num_padding :] = -1
175
+ self.state_indices_list[bs - 1][: len(mamba_indices)].copy_(mamba_indices)
176
+ if forward_mode.is_decode_or_idle():
177
+ if num_padding == 0:
178
+ self.query_start_loc_list[bs - 1].copy_(
179
+ self.cached_cuda_graph_decode_query_start_loc[: bs + 1]
180
+ )
181
+ else:
182
+ self.query_start_loc_list[bs - 1][: bs - num_padding].copy_(
183
+ self.cached_cuda_graph_decode_query_start_loc[: bs - num_padding]
184
+ )
185
+ self.query_start_loc_list[bs - 1][bs - num_padding :].copy_(
186
+ bs - num_padding
187
+ )
188
+ elif forward_mode.is_target_verify():
189
+ if num_padding == 0:
190
+ self.query_start_loc_list[bs - 1].copy_(
191
+ self.cached_cuda_graph_verify_query_start_loc[: bs + 1]
192
+ )
193
+ else:
194
+ self.query_start_loc_list[bs - 1][: bs - num_padding].copy_(
195
+ self.cached_cuda_graph_verify_query_start_loc[: bs - num_padding]
196
+ )
197
+ self.query_start_loc_list[bs - 1][bs - num_padding :].copy_(
198
+ (bs - num_padding) * spec_info.draft_token_num
199
+ )
200
+ else:
201
+ raise ValueError(f"Invalid forward mode: {forward_mode=}")
202
+
203
+ self.forward_metadata = ForwardMetadata(
204
+ query_start_loc=self.query_start_loc_list[bs - 1],
205
+ mamba_cache_indices=self.state_indices_list[bs - 1],
206
+ )
207
+
208
+ def get_cuda_graph_seq_len_fill_value(self):
209
+ return 1 # Mamba attn does not use seq lens to index kv cache
210
+
211
+ def forward_decode(
212
+ self,
213
+ q: torch.Tensor,
214
+ k: torch.Tensor,
215
+ v: torch.Tensor,
216
+ layer: RadixAttention,
217
+ forward_batch: ForwardBatch,
218
+ save_kv_cache: bool = True,
219
+ **kwargs,
220
+ ):
221
+ mixed_qkv = kwargs["mixed_qkv"]
222
+ conv_weights = kwargs["conv_weights"]
223
+ bias = kwargs["bias"]
224
+ activation = kwargs["activation"]
225
+ key_dim = kwargs["key_dim"]
226
+ value_dim = kwargs["value_dim"]
227
+ attn_tp_size = kwargs["attention_tp_size"]
228
+ head_k_dim = kwargs["head_k_dim"]
229
+ head_v_dim = kwargs["head_v_dim"]
230
+ a = kwargs["a"]
231
+ b = kwargs["b"]
232
+ A_log = kwargs["A_log"]
233
+ dt_bias = kwargs["dt_bias"]
234
+ layer_id = kwargs["layer_id"]
235
+
236
+ conv_states, ssm_states, *rest = self.req_to_token_pool.get_mamba_params(
237
+ layer_id
238
+ )
239
+ query_start_loc = self.forward_metadata.query_start_loc
240
+ cache_indices = self.forward_metadata.mamba_cache_indices
241
+
242
+ mixed_qkv = causal_conv1d_update(
243
+ mixed_qkv,
244
+ conv_states,
245
+ conv_weights,
246
+ bias,
247
+ activation,
248
+ conv_state_indices=cache_indices,
249
+ )
250
+
251
+ query, key, value = torch.split(
252
+ mixed_qkv,
253
+ [
254
+ key_dim // attn_tp_size,
255
+ key_dim // attn_tp_size,
256
+ value_dim // attn_tp_size,
257
+ ],
258
+ dim=-1,
259
+ )
260
+ # Reshape from [l, h*d] to [1, l, h, d]
261
+ seq_len = query.shape[0]
262
+ num_heads = query.shape[1] // head_k_dim
263
+ query = query.view(1, seq_len, num_heads, head_k_dim)
264
+ key = key.view(1, seq_len, num_heads, head_k_dim)
265
+ value = value.view(1, seq_len, value.shape[1] // head_v_dim, head_v_dim)
266
+
267
+ core_attn_out = fused_sigmoid_gating_delta_rule_update(
268
+ A_log=A_log,
269
+ dt_bias=dt_bias,
270
+ q=query,
271
+ k=key,
272
+ v=value,
273
+ a=a,
274
+ b=b,
275
+ initial_state_source=ssm_states,
276
+ initial_state_indices=cache_indices,
277
+ cu_seqlens=query_start_loc,
278
+ use_qk_l2norm_in_kernel=True,
279
+ softplus_beta=1.0,
280
+ softplus_threshold=20.0,
281
+ )
282
+
283
+ return core_attn_out
284
+
285
+ def forward_extend(
286
+ self,
287
+ q: torch.Tensor,
288
+ k: torch.Tensor,
289
+ v: torch.Tensor,
290
+ layer: RadixAttention,
291
+ forward_batch: ForwardBatch,
292
+ save_kv_cache: bool = True,
293
+ **kwargs,
294
+ ):
295
+ mixed_qkv = kwargs["mixed_qkv"]
296
+ conv_weights = kwargs["conv_weights"]
297
+ bias = kwargs["bias"]
298
+ activation = kwargs["activation"]
299
+ key_dim = kwargs["key_dim"]
300
+ value_dim = kwargs["value_dim"]
301
+ attn_tp_size = kwargs["attention_tp_size"]
302
+ head_k_dim = kwargs["head_k_dim"]
303
+ head_v_dim = kwargs["head_v_dim"]
304
+ a = kwargs["a"]
305
+ b = kwargs["b"]
306
+ A_log = kwargs["A_log"]
307
+ dt_bias = kwargs["dt_bias"]
308
+ layer_id = kwargs["layer_id"]
309
+ seq_len = kwargs["seq_len"]
310
+
311
+ is_target_verify = forward_batch.forward_mode.is_target_verify()
312
+
313
+ query_start_loc = self.forward_metadata.query_start_loc
314
+ cache_indices = self.forward_metadata.mamba_cache_indices
315
+
316
+ if is_target_verify:
317
+ (
318
+ conv_states,
319
+ ssm_states,
320
+ intermediate_state_cache,
321
+ intermediate_conv_window_cache,
322
+ ) = self.req_to_token_pool.get_mamba_params(layer_id)
323
+ has_initial_states = torch.ones(
324
+ seq_len // forward_batch.spec_info.draft_token_num,
325
+ dtype=torch.bool,
326
+ device=forward_batch.input_ids.device,
327
+ )
328
+ conv_states_to_use = conv_states.clone()
329
+ else:
330
+ conv_states, ssm_states, *rest = self.req_to_token_pool.get_mamba_params(
331
+ layer_id
332
+ )
333
+ has_initial_states = forward_batch.extend_prefix_lens > 0
334
+ conv_states_to_use = conv_states
335
+
336
+ if is_target_verify:
337
+ batch_size = seq_len // forward_batch.spec_info.draft_token_num
338
+ draft_token_num = forward_batch.spec_info.draft_token_num
339
+ mixed_qkv_reshaped = (
340
+ mixed_qkv.view(batch_size, draft_token_num, -1)
341
+ .transpose(1, 2)
342
+ .contiguous()
343
+ )
344
+ mixed_qkv_processed = causal_conv1d_update(
345
+ mixed_qkv_reshaped,
346
+ conv_states_to_use,
347
+ conv_weights,
348
+ bias,
349
+ activation,
350
+ conv_state_indices=cache_indices[:batch_size],
351
+ intermediate_conv_window=intermediate_conv_window_cache,
352
+ )
353
+ mixed_qkv = (
354
+ mixed_qkv_processed.transpose(1, 2).contiguous().view(seq_len, -1)
355
+ )
356
+ else:
357
+ mixed_qkv = causal_conv1d_fn(
358
+ mixed_qkv.transpose(0, 1),
359
+ conv_weights,
360
+ bias,
361
+ activation=activation,
362
+ conv_states=conv_states_to_use,
363
+ has_initial_state=has_initial_states,
364
+ cache_indices=cache_indices,
365
+ query_start_loc=query_start_loc,
366
+ seq_lens_cpu=forward_batch.extend_seq_lens_cpu,
367
+ ).transpose(0, 1)[:seq_len]
368
+
369
+ key_split_dim = key_dim // attn_tp_size
370
+ value_split_dim = value_dim // attn_tp_size
371
+
372
+ query, key, value = torch.split(
373
+ mixed_qkv,
374
+ [key_split_dim, key_split_dim, value_split_dim],
375
+ dim=-1,
376
+ )
377
+
378
+ actual_seq_len = query.shape[0]
379
+ num_heads = query.shape[1] // head_k_dim
380
+ num_value_heads = value.shape[1] // head_v_dim
381
+
382
+ query = query.view(1, actual_seq_len, num_heads, head_k_dim)
383
+ key = key.view(1, actual_seq_len, num_heads, head_k_dim)
384
+ value = value.view(1, actual_seq_len, num_value_heads, head_v_dim)
385
+
386
+ beta = b.sigmoid()
387
+ g = fused_gdn_gating(A_log, a, dt_bias)
388
+
389
+ g = g.unsqueeze(0)
390
+ beta = beta.unsqueeze(0)
391
+
392
+ if is_target_verify:
393
+ core_attn_out = fused_recurrent_gated_delta_rule_update(
394
+ q=query,
395
+ k=key,
396
+ v=value,
397
+ g=g,
398
+ beta=beta,
399
+ initial_state_source=ssm_states,
400
+ initial_state_indices=cache_indices,
401
+ cu_seqlens=query_start_loc,
402
+ use_qk_l2norm_in_kernel=True,
403
+ disable_state_update=True,
404
+ intermediate_states_buffer=intermediate_state_cache,
405
+ cache_steps=forward_batch.spec_info.draft_token_num,
406
+ )
407
+ else:
408
+ recurrent_state = ssm_states[cache_indices]
409
+ core_attn_out, last_recurrent_state = chunk_gated_delta_rule(
410
+ q=query,
411
+ k=key,
412
+ v=value,
413
+ g=g,
414
+ beta=beta,
415
+ initial_state=recurrent_state,
416
+ output_final_state=True,
417
+ cu_seqlens=query_start_loc,
418
+ head_first=False,
419
+ use_qk_l2norm_in_kernel=True,
420
+ )
421
+ last_recurrent_state = last_recurrent_state.to(ssm_states.dtype, copy=False)
422
+ ssm_states[cache_indices] = last_recurrent_state
423
+
424
+ return core_attn_out
425
+
426
+
427
+ class HybridLinearAttnBackend(AttentionBackend):
428
+ """Support different backends for prefill and decode."""
429
+
430
+ def __init__(
431
+ self,
432
+ full_attn_backend: AttentionBackend,
433
+ linear_attn_backend: AttentionBackend,
434
+ full_attn_layers: list[int],
435
+ ):
436
+ self.full_attn_layers = full_attn_layers
437
+ self.attn_backend_list = [full_attn_backend, linear_attn_backend]
438
+
439
+ def init_forward_metadata(self, forward_batch: ForwardBatch):
440
+ for attn_backend in self.attn_backend_list:
441
+ attn_backend.init_forward_metadata(forward_batch)
442
+
443
+ def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
444
+ for attn_backend in self.attn_backend_list:
445
+ attn_backend.init_cuda_graph_state(max_bs, max_num_tokens)
446
+
447
+ def init_forward_metadata_capture_cuda_graph(
448
+ self,
449
+ bs: int,
450
+ num_tokens: int,
451
+ req_pool_indices: torch.Tensor,
452
+ seq_lens: torch.Tensor,
453
+ encoder_lens: Optional[torch.Tensor],
454
+ forward_mode: ForwardMode,
455
+ spec_info: Optional[SpecInput],
456
+ ):
457
+ for attn_backend in self.attn_backend_list:
458
+ attn_backend.init_forward_metadata_capture_cuda_graph(
459
+ bs,
460
+ num_tokens,
461
+ req_pool_indices,
462
+ seq_lens,
463
+ encoder_lens,
464
+ forward_mode,
465
+ spec_info,
466
+ )
467
+
468
+ def init_forward_metadata_replay_cuda_graph(
469
+ self,
470
+ bs: int,
471
+ req_pool_indices: torch.Tensor,
472
+ seq_lens: torch.Tensor,
473
+ seq_lens_sum: int,
474
+ encoder_lens: Optional[torch.Tensor],
475
+ forward_mode: ForwardMode,
476
+ spec_info: Optional[SpecInput],
477
+ seq_lens_cpu: Optional[torch.Tensor],
478
+ ):
479
+ for attn_backend in self.attn_backend_list:
480
+ attn_backend.init_forward_metadata_replay_cuda_graph(
481
+ bs,
482
+ req_pool_indices,
483
+ seq_lens,
484
+ seq_lens_sum,
485
+ encoder_lens,
486
+ forward_mode,
487
+ spec_info,
488
+ seq_lens_cpu,
489
+ )
490
+
491
+ def get_cuda_graph_seq_len_fill_value(self):
492
+ return self.attn_backend_list[0].get_cuda_graph_seq_len_fill_value()
493
+
494
+ def forward_decode(
495
+ self,
496
+ q: torch.Tensor,
497
+ k: torch.Tensor,
498
+ v: torch.Tensor,
499
+ layer: RadixAttention,
500
+ forward_batch: ForwardBatch,
501
+ save_kv_cache: bool = True,
502
+ **kwargs,
503
+ ):
504
+ layer_id = layer.layer_id if layer else kwargs["layer_id"]
505
+ if layer_id in self.full_attn_layers:
506
+ return self.attn_backend_list[0].forward_decode(
507
+ q, k, v, layer, forward_batch, save_kv_cache, **kwargs
508
+ )
509
+ return self.attn_backend_list[1].forward_decode(
510
+ q, k, v, layer, forward_batch, save_kv_cache, **kwargs
511
+ )
512
+
513
+ def forward_extend(
514
+ self,
515
+ q: torch.Tensor,
516
+ k: torch.Tensor,
517
+ v: torch.Tensor,
518
+ layer: RadixAttention,
519
+ forward_batch: ForwardBatch,
520
+ save_kv_cache: bool = True,
521
+ **kwargs,
522
+ ):
523
+ layer_id = layer.layer_id if layer else kwargs["layer_id"]
524
+ if layer_id in self.full_attn_layers:
525
+ return self.attn_backend_list[0].forward_extend(
526
+ q, k, v, layer, forward_batch, save_kv_cache, **kwargs
527
+ )
528
+ return self.attn_backend_list[1].forward_extend(
529
+ q, k, v, layer, forward_batch, save_kv_cache, **kwargs
530
+ )
531
+
532
+ def forward(
533
+ self,
534
+ q: torch.Tensor,
535
+ k: torch.Tensor,
536
+ v: torch.Tensor,
537
+ layer: RadixAttention,
538
+ forward_batch: ForwardBatch,
539
+ save_kv_cache: bool = True,
540
+ **kwargs,
541
+ ):
542
+ """Run forward on an attention layer."""
543
+ if forward_batch.forward_mode.is_idle():
544
+ if layer is None:
545
+ return torch.empty_like(kwargs["z"])
546
+ return q.new_empty(q.shape[0], layer.tp_q_head_num * layer.v_head_dim)
547
+ elif forward_batch.forward_mode.is_decode():
548
+ return self.forward_decode(
549
+ q,
550
+ k,
551
+ v,
552
+ layer,
553
+ forward_batch,
554
+ save_kv_cache=save_kv_cache,
555
+ **kwargs,
556
+ )
557
+ else:
558
+ return self.forward_extend(
559
+ q,
560
+ k,
561
+ v,
562
+ layer,
563
+ forward_batch,
564
+ save_kv_cache=save_kv_cache,
565
+ **kwargs,
566
+ )
567
+
568
+ def update_mamba_state_after_mtp_verify(self, accepted_length, model):
569
+ request_number = accepted_length.shape[0]
570
+
571
+ state_indices_tensor = self.attn_backend_list[
572
+ 1
573
+ ].forward_metadata.mamba_cache_indices[:request_number]
574
+
575
+ mamba_caches = self.attn_backend_list[
576
+ 1
577
+ ].req_to_token_pool.get_mamba_params_all_layers()
578
+
579
+ (
580
+ conv_states,
581
+ ssm_states,
582
+ intermediate_state_cache,
583
+ intermediate_conv_window_cache,
584
+ ) = mamba_caches
585
+
586
+ # SSM state updates (chunked to reduce peak memory)
587
+ valid_mask = accepted_length > 0
588
+
589
+ # Compute common indices once to avoid duplication
590
+ last_steps_all = (accepted_length - 1).to(torch.int64)
591
+ valid_state_indices = state_indices_tensor[valid_mask].to(torch.int64) # [N]
592
+ last_steps = last_steps_all[valid_mask].to(torch.int64) # [N]
593
+
594
+ # scatter into ssm_states at the chosen cache lines
595
+ ssm_states[:, valid_state_indices, :] = intermediate_state_cache[
596
+ :, valid_state_indices, last_steps
597
+ ].to(ssm_states.dtype, copy=False)
598
+
599
+ # Scatter into conv_states at the chosen cache lines
600
+ conv_states[:, valid_state_indices, :, :] = intermediate_conv_window_cache[
601
+ :, valid_state_indices, last_steps
602
+ ].to(conv_states.dtype, copy=False)
@@ -49,6 +49,9 @@ class IntelAMXAttnBackend(AttentionBackend):
49
49
  max_extend_len = torch.max(forward_batch.extend_seq_lens).item()
50
50
  self.forward_metadata = (attn_logits, max_extend_len)
51
51
 
52
+ def get_graph_seq_len_fill_value(self):
53
+ return 1
54
+
52
55
  def forward_extend(
53
56
  self,
54
57
  q,