sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +130 -59
- sglang/srt/entrypoints/openai/protocol.py +112 -4
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +204 -55
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -6
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +190 -55
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +144 -17
- sglang/srt/managers/scheduler.py +502 -209
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +320 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +82 -40
- sglang/srt/model_executor/model_runner.py +432 -157
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +966 -267
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +99 -28
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +433 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +375 -245
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,428 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
import copy
|
4
|
+
import logging
|
5
|
+
from typing import Optional, Tuple
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import triton
|
9
|
+
|
10
|
+
logger = logging.getLogger(__name__)
|
11
|
+
|
12
|
+
from dataclasses import dataclass
|
13
|
+
|
14
|
+
import torch.nn.functional as F
|
15
|
+
|
16
|
+
from sglang.srt.layers.attention.utils import create_flashinfer_kv_indices_triton
|
17
|
+
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
|
18
|
+
from sglang.srt.layers.sampler import apply_custom_logit_processor
|
19
|
+
from sglang.srt.managers.schedule_batch import (
|
20
|
+
ScheduleBatch,
|
21
|
+
get_last_loc,
|
22
|
+
global_server_args_dict,
|
23
|
+
)
|
24
|
+
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
|
25
|
+
from sglang.srt.speculative.spec_info import SpecInput, SpecInputType
|
26
|
+
from sglang.srt.speculative.spec_utils import (
|
27
|
+
TREE_SPEC_KERNEL_AVAILABLE,
|
28
|
+
assign_req_to_token_pool,
|
29
|
+
get_src_tgt_cache_loc,
|
30
|
+
get_target_cache_loc,
|
31
|
+
)
|
32
|
+
from sglang.srt.utils import is_cuda, is_hip, next_power_of_2
|
33
|
+
|
34
|
+
if is_cuda():
|
35
|
+
from sgl_kernel import (
|
36
|
+
top_k_renorm_prob,
|
37
|
+
top_p_renorm_prob,
|
38
|
+
tree_speculative_sampling_target_only,
|
39
|
+
verify_tree_greedy,
|
40
|
+
)
|
41
|
+
elif is_hip():
|
42
|
+
from sgl_kernel import verify_tree_greedy
|
43
|
+
|
44
|
+
|
45
|
+
@dataclass
|
46
|
+
class NgramVerifyInput(SpecInput):
|
47
|
+
def __init__(
|
48
|
+
self,
|
49
|
+
draft_token: torch.Tensor,
|
50
|
+
tree_mask: torch.Tensor,
|
51
|
+
positions: torch.Tensor,
|
52
|
+
retrive_index: torch.Tensor,
|
53
|
+
retrive_next_token: torch.Tensor,
|
54
|
+
retrive_next_sibling: torch.Tensor,
|
55
|
+
draft_token_num: int,
|
56
|
+
):
|
57
|
+
super().__init__(SpecInputType.NGRAM_VERIFY)
|
58
|
+
self.draft_token = draft_token
|
59
|
+
self.custom_mask = tree_mask
|
60
|
+
self.positions = positions
|
61
|
+
self.retrive_index = retrive_index
|
62
|
+
self.retrive_next_token = retrive_next_token
|
63
|
+
self.retrive_next_sibling = retrive_next_sibling
|
64
|
+
self.draft_token_num = draft_token_num
|
65
|
+
self.device = self.custom_mask.device
|
66
|
+
|
67
|
+
def get_spec_adjust_token_coefficient(self) -> Tuple[int, int]:
|
68
|
+
return self.draft_token_num, self.draft_token_num
|
69
|
+
|
70
|
+
def prepare_for_verify(self, batch: ScheduleBatch, page_size: int):
|
71
|
+
if batch.forward_mode.is_idle():
|
72
|
+
return
|
73
|
+
|
74
|
+
batch.input_ids = self.draft_token
|
75
|
+
|
76
|
+
if page_size == 1:
|
77
|
+
batch.out_cache_loc = batch.alloc_token_slots(len(batch.input_ids))
|
78
|
+
end_offset = batch.seq_lens + self.draft_token_num
|
79
|
+
else:
|
80
|
+
# TODO(lsyin): add prefix lens cpu here to support page size > 1
|
81
|
+
prefix_lens = batch.seq_lens
|
82
|
+
prefix_lens_cpu = batch.seq_lens_cpu
|
83
|
+
end_offset = prefix_lens + self.draft_token_num
|
84
|
+
end_offset_cpu = prefix_lens_cpu + self.draft_token_num
|
85
|
+
last_loc = get_last_loc(
|
86
|
+
batch.req_to_token_pool.req_to_token,
|
87
|
+
batch.req_pool_indices,
|
88
|
+
prefix_lens,
|
89
|
+
)
|
90
|
+
batch.out_cache_loc = batch.alloc_paged_token_slots_extend(
|
91
|
+
prefix_lens,
|
92
|
+
prefix_lens_cpu,
|
93
|
+
end_offset,
|
94
|
+
end_offset_cpu,
|
95
|
+
last_loc,
|
96
|
+
len(batch.input_ids),
|
97
|
+
)
|
98
|
+
self.last_loc = last_loc
|
99
|
+
|
100
|
+
bs = batch.batch_size()
|
101
|
+
assign_req_to_token_pool[(bs,)](
|
102
|
+
batch.req_pool_indices,
|
103
|
+
batch.req_to_token_pool.req_to_token,
|
104
|
+
batch.seq_lens,
|
105
|
+
end_offset,
|
106
|
+
batch.out_cache_loc,
|
107
|
+
batch.req_to_token_pool.req_to_token.shape[1],
|
108
|
+
triton.next_power_of_2(bs),
|
109
|
+
)
|
110
|
+
|
111
|
+
def generate_attn_arg_prefill(
|
112
|
+
self,
|
113
|
+
req_pool_indices: torch.Tensor,
|
114
|
+
paged_kernel_lens: torch.Tensor,
|
115
|
+
paged_kernel_lens_sum: int,
|
116
|
+
req_to_token: torch.Tensor,
|
117
|
+
):
|
118
|
+
bs = len(req_pool_indices)
|
119
|
+
|
120
|
+
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device=self.device)
|
121
|
+
|
122
|
+
paged_kernel_lens = paged_kernel_lens + self.draft_token_num
|
123
|
+
cum_kv_seq_len[1:] = torch.cumsum(paged_kernel_lens, dim=0)
|
124
|
+
|
125
|
+
self.qo_indptr = (
|
126
|
+
torch.arange(0, bs + 1, dtype=torch.int32, device=self.device)
|
127
|
+
* self.draft_token_num
|
128
|
+
)
|
129
|
+
|
130
|
+
kv_indices = torch.empty(
|
131
|
+
cum_kv_seq_len[-1], dtype=torch.int32, device=self.device
|
132
|
+
)
|
133
|
+
|
134
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
135
|
+
req_to_token,
|
136
|
+
req_pool_indices,
|
137
|
+
paged_kernel_lens,
|
138
|
+
cum_kv_seq_len,
|
139
|
+
None,
|
140
|
+
kv_indices,
|
141
|
+
req_to_token.size(1),
|
142
|
+
)
|
143
|
+
return kv_indices, cum_kv_seq_len, self.qo_indptr, self.custom_mask
|
144
|
+
|
145
|
+
def _fill_requests(
|
146
|
+
self,
|
147
|
+
batch: ScheduleBatch,
|
148
|
+
logits_output: torch.Tensor,
|
149
|
+
):
|
150
|
+
accept_index_cpu = self.accept_index.tolist()
|
151
|
+
predict_cpu = self.predict.tolist()
|
152
|
+
has_finished = False
|
153
|
+
|
154
|
+
# Iterate every accepted token and check if req has finished after append the token
|
155
|
+
# should be checked BEFORE free kv cache slots
|
156
|
+
for i, (req, accept_index_row) in enumerate(zip(batch.reqs, accept_index_cpu)):
|
157
|
+
for j, idx in enumerate(accept_index_row):
|
158
|
+
if idx == -1:
|
159
|
+
break
|
160
|
+
id = predict_cpu[idx]
|
161
|
+
req.output_ids.append(id)
|
162
|
+
req.check_finished()
|
163
|
+
if req.finished():
|
164
|
+
has_finished = True
|
165
|
+
# set all tokens after finished token to -1 and break
|
166
|
+
self.accept_index[i, j + 1 :] = -1
|
167
|
+
break
|
168
|
+
else:
|
169
|
+
if req.grammar is not None:
|
170
|
+
try:
|
171
|
+
req.grammar.accept_token(id)
|
172
|
+
except ValueError as e:
|
173
|
+
logger.info(
|
174
|
+
f"{i=}, {req=}\n"
|
175
|
+
f"{self.accept_index=}\n"
|
176
|
+
f"{self.predict=}\n"
|
177
|
+
)
|
178
|
+
raise e
|
179
|
+
req.spec_verify_ct += 1
|
180
|
+
if has_finished:
|
181
|
+
self.accept_length = (self.accept_index != -1).sum(dim=1) - 1
|
182
|
+
self.accept_index = self.accept_index[self.accept_index != -1]
|
183
|
+
|
184
|
+
logits_output.next_token_logits = logits_output.next_token_logits[
|
185
|
+
self.accept_index
|
186
|
+
]
|
187
|
+
if logits_output.hidden_states:
|
188
|
+
logits_output.hidden_states = logits_output.hidden_states[self.accept_index]
|
189
|
+
self.verified_id = self.predict[self.accept_index]
|
190
|
+
|
191
|
+
def _free_cache(self, batch: ScheduleBatch, page_size: int):
|
192
|
+
bs = batch.batch_size()
|
193
|
+
# Free the KV cache for unaccepted tokens
|
194
|
+
if page_size == 1:
|
195
|
+
# TODO: boolean array index leads to a device sync. Remove it.
|
196
|
+
evict_mask = torch.full_like(self.draft_token, True, dtype=torch.bool)
|
197
|
+
evict_mask[self.accept_index] = False
|
198
|
+
batch.token_to_kv_pool_allocator.free(batch.out_cache_loc[evict_mask])
|
199
|
+
batch.out_cache_loc = batch.out_cache_loc[self.accept_index]
|
200
|
+
else:
|
201
|
+
# Shift the accepted tokens to the beginning.
|
202
|
+
# Only evict the last part
|
203
|
+
src_cache_loc, tgt_cache_loc, to_free_num_slots = get_src_tgt_cache_loc(
|
204
|
+
batch.seq_lens,
|
205
|
+
batch.out_cache_loc,
|
206
|
+
self.accept_index,
|
207
|
+
self.accept_length,
|
208
|
+
self.draft_token_num,
|
209
|
+
page_size,
|
210
|
+
)
|
211
|
+
to_free_slots = torch.empty(
|
212
|
+
(to_free_num_slots.sum().item(),),
|
213
|
+
dtype=torch.int64,
|
214
|
+
device=to_free_num_slots.device,
|
215
|
+
)
|
216
|
+
|
217
|
+
# out_cache_loc: [0 1 2, 3 4 5, 6 7 8]
|
218
|
+
# accept_index: [0 -1 2, 3 4 -1, 6 -1 -1]
|
219
|
+
# tgt_cache_loc: [0 1 , 3 4 , 6 ]
|
220
|
+
# to_free_slots: [ 2, 5, 7 8]
|
221
|
+
# to_free_slots also needs to be page-aligned without the first partial page
|
222
|
+
#
|
223
|
+
# split each row of out_cache_loc into two parts.
|
224
|
+
# 1. the first part goes to tgt_cache_loc. length = accept_length[i] + 1
|
225
|
+
# 2. the second part goes to to_free_slots.
|
226
|
+
get_target_cache_loc[(bs,)](
|
227
|
+
tgt_cache_loc,
|
228
|
+
to_free_slots,
|
229
|
+
self.accept_length,
|
230
|
+
to_free_num_slots,
|
231
|
+
batch.out_cache_loc,
|
232
|
+
self.draft_token_num,
|
233
|
+
next_power_of_2(self.draft_token_num),
|
234
|
+
next_power_of_2(bs),
|
235
|
+
)
|
236
|
+
|
237
|
+
# Free the kv cache
|
238
|
+
batch.token_to_kv_pool_allocator.free(to_free_slots)
|
239
|
+
|
240
|
+
# Copy the kv cache
|
241
|
+
batch.token_to_kv_pool_allocator.get_kvcache().move_kv_cache(
|
242
|
+
tgt_cache_loc, src_cache_loc
|
243
|
+
)
|
244
|
+
batch.out_cache_loc = tgt_cache_loc
|
245
|
+
|
246
|
+
assign_req_to_token_pool[(bs,)](
|
247
|
+
batch.req_pool_indices,
|
248
|
+
batch.req_to_token_pool.req_to_token,
|
249
|
+
batch.seq_lens,
|
250
|
+
batch.seq_lens + self.accept_length + 1,
|
251
|
+
batch.out_cache_loc,
|
252
|
+
batch.req_to_token_pool.req_to_token.shape[1],
|
253
|
+
triton.next_power_of_2(bs),
|
254
|
+
)
|
255
|
+
|
256
|
+
def _greedy_verify(
|
257
|
+
self,
|
258
|
+
batch: ScheduleBatch,
|
259
|
+
logits_output: LogitsProcessorOutput,
|
260
|
+
):
|
261
|
+
bs = batch.batch_size()
|
262
|
+
target_predict = torch.argmax(logits_output.next_token_logits, dim=-1)
|
263
|
+
target_predict = target_predict.reshape(bs, self.draft_token_num)
|
264
|
+
|
265
|
+
candidates = self.draft_token.reshape(bs, self.draft_token_num)
|
266
|
+
predict_shape = list(logits_output.next_token_logits.shape)[:-1]
|
267
|
+
predict_shape[-1] += 1
|
268
|
+
self.predict = torch.empty(predict_shape, dtype=torch.int32, device=self.device)
|
269
|
+
self.accept_index = torch.full(
|
270
|
+
(bs, self.draft_token_num), -1, dtype=torch.int32, device=self.device
|
271
|
+
)
|
272
|
+
self.accept_length = torch.empty((bs,), dtype=torch.int32, device=self.device)
|
273
|
+
|
274
|
+
verify_tree_greedy(
|
275
|
+
predicts=self.predict, # mutable
|
276
|
+
accept_index=self.accept_index, # mutable
|
277
|
+
accept_token_num=self.accept_length, # mutable
|
278
|
+
candidates=candidates,
|
279
|
+
retrive_index=self.retrive_index,
|
280
|
+
retrive_next_token=self.retrive_next_token,
|
281
|
+
retrive_next_sibling=self.retrive_next_sibling,
|
282
|
+
target_predict=target_predict,
|
283
|
+
)
|
284
|
+
|
285
|
+
def _sampling_verify(
|
286
|
+
self,
|
287
|
+
batch: ScheduleBatch,
|
288
|
+
logits_output: LogitsProcessorOutput,
|
289
|
+
sampling_info: SamplingBatchInfo,
|
290
|
+
):
|
291
|
+
bs = batch.batch_size()
|
292
|
+
candidates = self.draft_token.reshape(bs, self.draft_token_num)
|
293
|
+
predict_shape = list(logits_output.next_token_logits.shape)[:-1]
|
294
|
+
predict_shape[-1] += 1
|
295
|
+
self.predict = torch.empty(predict_shape, dtype=torch.int32, device=self.device)
|
296
|
+
self.accept_index = torch.full(
|
297
|
+
(bs, self.draft_token_num), -1, dtype=torch.int32, device=self.device
|
298
|
+
)
|
299
|
+
self.accept_length = torch.empty((bs,), dtype=torch.int32, device=self.device)
|
300
|
+
# apply temperature and get target probs
|
301
|
+
expanded_temperature = torch.repeat_interleave(
|
302
|
+
sampling_info.temperatures, self.draft_token_num, dim=0
|
303
|
+
) # (bs * draft_token_num, 1)
|
304
|
+
|
305
|
+
target_probs = F.softmax(
|
306
|
+
logits_output.next_token_logits / expanded_temperature, dim=-1
|
307
|
+
) # (bs * draft_token_num, vocab_size)
|
308
|
+
|
309
|
+
# NOTE: The test shows that top_p_renorm_prob and top_k_renorm_prob are the key factors
|
310
|
+
# contributing to the poor performance of _sampling_verify.
|
311
|
+
target_probs = top_k_renorm_prob(
|
312
|
+
target_probs,
|
313
|
+
torch.repeat_interleave(sampling_info.top_ks, self.draft_token_num, dim=0),
|
314
|
+
) # (bs * draft_token_num, vocab_size)
|
315
|
+
|
316
|
+
if sampling_info.need_top_p_sampling:
|
317
|
+
# logger.info("Using top-p sampling in speculative decoding verification.")
|
318
|
+
target_probs = top_p_renorm_prob(
|
319
|
+
target_probs,
|
320
|
+
torch.repeat_interleave(
|
321
|
+
sampling_info.top_ps, self.draft_token_num, dim=0
|
322
|
+
),
|
323
|
+
)
|
324
|
+
|
325
|
+
target_probs = target_probs.reshape(bs, self.draft_token_num, -1)
|
326
|
+
draft_probs = torch.zeros(
|
327
|
+
target_probs.shape, dtype=torch.float32, device=self.device
|
328
|
+
)
|
329
|
+
|
330
|
+
# coins for rejection sampling
|
331
|
+
coins = torch.rand_like(candidates, dtype=torch.float32, device=self.device)
|
332
|
+
# coins for final sampling
|
333
|
+
coins_for_final_sampling = torch.rand(
|
334
|
+
(bs,), dtype=torch.float32, device=self.device
|
335
|
+
)
|
336
|
+
tree_speculative_sampling_target_only(
|
337
|
+
predicts=self.predict, # mutable
|
338
|
+
accept_index=self.accept_index, # mutable
|
339
|
+
accept_token_num=self.accept_length, # mutable
|
340
|
+
candidates=candidates.to(torch.int64),
|
341
|
+
retrive_index=self.retrive_index.to(torch.int64),
|
342
|
+
retrive_next_token=self.retrive_next_token.to(torch.int64),
|
343
|
+
retrive_next_sibling=self.retrive_next_sibling.to(torch.int64),
|
344
|
+
uniform_samples=coins,
|
345
|
+
uniform_samples_for_final_sampling=coins_for_final_sampling,
|
346
|
+
target_probs=target_probs,
|
347
|
+
draft_probs=draft_probs,
|
348
|
+
threshold_single=global_server_args_dict[
|
349
|
+
"speculative_accept_threshold_single"
|
350
|
+
],
|
351
|
+
threshold_acc=global_server_args_dict["speculative_accept_threshold_acc"],
|
352
|
+
deterministic=True,
|
353
|
+
)
|
354
|
+
|
355
|
+
def verify(
|
356
|
+
self,
|
357
|
+
batch: ScheduleBatch,
|
358
|
+
logits_output: LogitsProcessorOutput,
|
359
|
+
page_size: int,
|
360
|
+
vocab_mask: Optional[torch.Tensor] = None, # For grammar
|
361
|
+
) -> torch.Tensor:
|
362
|
+
bs = self.retrive_index.shape[0]
|
363
|
+
sampling_info = batch.sampling_info
|
364
|
+
|
365
|
+
if bs != len(sampling_info):
|
366
|
+
sampling_info = copy.deepcopy(sampling_info)
|
367
|
+
# NOTE: retrive_index are the indices of the requests that are kept.
|
368
|
+
sampling_info.filter_batch(self.retrive_index.tolist(), self.retrive_index)
|
369
|
+
|
370
|
+
# Apply the custom logit processors if registered in the sampling info.
|
371
|
+
if sampling_info.has_custom_logit_processor:
|
372
|
+
apply_custom_logit_processor(
|
373
|
+
logits_output.next_token_logits,
|
374
|
+
sampling_info,
|
375
|
+
num_tokens_in_batch=self.draft_token_num,
|
376
|
+
)
|
377
|
+
|
378
|
+
# Apply penalty
|
379
|
+
if sampling_info.penalizer_orchestrator.is_required:
|
380
|
+
# This is a relaxed version of penalties for speculative decoding.
|
381
|
+
linear_penalty = torch.zeros(
|
382
|
+
(bs, logits_output.next_token_logits.shape[1]),
|
383
|
+
dtype=torch.float32,
|
384
|
+
device=self.device,
|
385
|
+
)
|
386
|
+
sampling_info.apply_logits_bias(linear_penalty)
|
387
|
+
logits_output.next_token_logits.add_(
|
388
|
+
torch.repeat_interleave(linear_penalty, self.draft_token_num, dim=0)
|
389
|
+
)
|
390
|
+
|
391
|
+
# Apply grammar mask
|
392
|
+
if vocab_mask is not None:
|
393
|
+
assert self.grammar is not None
|
394
|
+
self.grammar.apply_vocab_mask(
|
395
|
+
logits=logits_output.next_token_logits, vocab_mask=vocab_mask
|
396
|
+
)
|
397
|
+
|
398
|
+
# Sample tokens. Force greedy sampling on AMD
|
399
|
+
is_all_greedy = sampling_info.is_all_greedy
|
400
|
+
if (not is_all_greedy) and (not TREE_SPEC_KERNEL_AVAILABLE):
|
401
|
+
logger.warning(
|
402
|
+
"Tree speculative sampling kernel unavailable (likely AMD/HIP build). "
|
403
|
+
"Falling back to greedy verification."
|
404
|
+
)
|
405
|
+
|
406
|
+
if is_all_greedy or not TREE_SPEC_KERNEL_AVAILABLE:
|
407
|
+
self._greedy_verify(batch, logits_output)
|
408
|
+
else:
|
409
|
+
# NOTE: Compared with greedy_verify, the performance of _sampling_verify is relatively poor.
|
410
|
+
self._greedy_verify(batch, logits_output)
|
411
|
+
# self._sampling_verify(batch, logits_output, sampling_info)
|
412
|
+
|
413
|
+
self._fill_requests(batch, logits_output)
|
414
|
+
self._free_cache(batch, page_size)
|
415
|
+
|
416
|
+
accept_length_cpu = self.accept_length.cpu()
|
417
|
+
num_accepted_tokens = accept_length_cpu.sum().item()
|
418
|
+
|
419
|
+
batch.seq_lens.add_(self.accept_length + 1)
|
420
|
+
batch.seq_lens_cpu.add_(accept_length_cpu + 1)
|
421
|
+
|
422
|
+
return logits_output, self.verified_id, num_accepted_tokens
|
423
|
+
|
424
|
+
def filter_batch(self, new_indices: torch.Tensor, has_been_filtered: bool = True):
|
425
|
+
pass
|
426
|
+
|
427
|
+
def merge_batch(self, spec_info: NgramVerifyInput):
|
428
|
+
pass
|
@@ -0,0 +1,245 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import List, Optional
|
3
|
+
|
4
|
+
import numpy as np
|
5
|
+
import torch
|
6
|
+
from sgl_kernel.speculative import reconstruct_indices_from_tree_mask
|
7
|
+
|
8
|
+
from sglang.srt.managers.schedule_batch import ScheduleBatch
|
9
|
+
from sglang.srt.managers.tp_worker import TpModelWorker
|
10
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatchOutput, ForwardMode
|
11
|
+
from sglang.srt.server_args import ServerArgs
|
12
|
+
from sglang.srt.speculative.cpp_ngram.ngram_cache import NgramCache
|
13
|
+
from sglang.srt.speculative.ngram_utils import NgramVerifyInput
|
14
|
+
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
|
15
|
+
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
18
|
+
USE_FULL_MASK = True
|
19
|
+
|
20
|
+
|
21
|
+
class NGRAMWorker:
|
22
|
+
def __init__(
|
23
|
+
self,
|
24
|
+
server_args: ServerArgs,
|
25
|
+
gpu_id: int,
|
26
|
+
tp_rank: int,
|
27
|
+
dp_rank: Optional[int],
|
28
|
+
moe_ep_rank: int,
|
29
|
+
nccl_port: int,
|
30
|
+
target_worker: TpModelWorker,
|
31
|
+
):
|
32
|
+
self.target_worker = target_worker
|
33
|
+
self.model_runner = target_worker.model_runner
|
34
|
+
self.tp_rank = tp_rank
|
35
|
+
self.page_size = server_args.page_size
|
36
|
+
self.draft_token_num: int = server_args.speculative_num_draft_tokens
|
37
|
+
self.branch_length: int = server_args.speculative_ngram_branch_length
|
38
|
+
self.max_match_window_size: int = (
|
39
|
+
server_args.speculative_ngram_max_match_window_size
|
40
|
+
)
|
41
|
+
|
42
|
+
self.max_batch_size = target_worker.max_running_requests
|
43
|
+
self.device = f"cuda:{gpu_id}" if gpu_id >= 0 else "cuda"
|
44
|
+
|
45
|
+
self._init_preallocated_tensors()
|
46
|
+
|
47
|
+
self.ngram_cache = NgramCache(
|
48
|
+
min_match_window_size=server_args.speculative_ngram_min_match_window_size,
|
49
|
+
max_match_window_size=server_args.speculative_ngram_max_match_window_size,
|
50
|
+
min_bfs_breadth=server_args.speculative_ngram_min_bfs_breadth,
|
51
|
+
max_bfs_breadth=server_args.speculative_ngram_max_bfs_breadth,
|
52
|
+
capacity=server_args.speculative_ngram_capacity,
|
53
|
+
branch_length=server_args.speculative_ngram_branch_length,
|
54
|
+
draft_token_num=server_args.speculative_num_draft_tokens,
|
55
|
+
)
|
56
|
+
|
57
|
+
def clear_cache_pool(self):
|
58
|
+
self.ngram_cache.reset()
|
59
|
+
|
60
|
+
def _efficient_concat_last_n(self, seq1: List[int], seq2: List[int], n: int):
|
61
|
+
seq2_len = len(seq2)
|
62
|
+
if seq2_len >= n:
|
63
|
+
return seq2[-n:]
|
64
|
+
|
65
|
+
need_from_seq1 = n - seq2_len
|
66
|
+
return seq1[-need_from_seq1:] + seq2
|
67
|
+
|
68
|
+
def _init_preallocated_tensors(self):
|
69
|
+
max_total_drafts = self.max_batch_size * self.draft_token_num
|
70
|
+
max_total_mask_size = (
|
71
|
+
self.max_batch_size * self.draft_token_num * self.draft_token_num
|
72
|
+
)
|
73
|
+
|
74
|
+
self.draft_tokens = torch.empty(
|
75
|
+
(max_total_drafts,), dtype=torch.int64, device=self.device
|
76
|
+
)
|
77
|
+
self.retrieve_indexes = torch.empty(
|
78
|
+
(self.max_batch_size, self.draft_token_num),
|
79
|
+
dtype=torch.int64,
|
80
|
+
device=self.device,
|
81
|
+
)
|
82
|
+
self.retrive_next_token = torch.empty(
|
83
|
+
(self.max_batch_size, self.draft_token_num),
|
84
|
+
dtype=torch.int64,
|
85
|
+
device=self.device,
|
86
|
+
)
|
87
|
+
self.retrive_next_sibling = torch.empty(
|
88
|
+
(self.max_batch_size, self.draft_token_num),
|
89
|
+
dtype=torch.int64,
|
90
|
+
device=self.device,
|
91
|
+
)
|
92
|
+
self.positions = torch.empty(
|
93
|
+
(max_total_drafts,), dtype=torch.int64, device=self.device
|
94
|
+
)
|
95
|
+
self.tree_mask = torch.empty(
|
96
|
+
(max_total_mask_size,), dtype=torch.bool, device=self.device
|
97
|
+
)
|
98
|
+
|
99
|
+
self.draft_tokens_batch = []
|
100
|
+
self.tree_mask_batch = []
|
101
|
+
self.retrieve_indexes_batch = []
|
102
|
+
self.retrive_next_token_batch = []
|
103
|
+
self.retrive_next_sibling_batch = []
|
104
|
+
self.positions_batch = []
|
105
|
+
|
106
|
+
for bs in range(0, self.max_batch_size + 1):
|
107
|
+
self.retrieve_indexes_batch.append(self.retrieve_indexes[:bs, :])
|
108
|
+
self.retrive_next_token_batch.append(self.retrive_next_token[:bs, :])
|
109
|
+
self.retrive_next_sibling_batch.append(self.retrive_next_sibling[:bs, :])
|
110
|
+
self.positions_batch.append(self.positions[: bs * self.draft_token_num])
|
111
|
+
self.draft_tokens_batch.append(
|
112
|
+
self.draft_tokens[: bs * self.draft_token_num]
|
113
|
+
)
|
114
|
+
self.tree_mask_batch.append(
|
115
|
+
self.tree_mask[: bs * self.draft_token_num * self.draft_token_num]
|
116
|
+
)
|
117
|
+
|
118
|
+
def _prepare_draft_tokens(
|
119
|
+
self, batch: ScheduleBatch
|
120
|
+
) -> tuple[np.ndarray, np.ndarray]:
|
121
|
+
bs = batch.batch_size()
|
122
|
+
|
123
|
+
self.ngram_cache.synchronize()
|
124
|
+
batch_tokens = []
|
125
|
+
for req in batch.reqs:
|
126
|
+
check_token = self._efficient_concat_last_n(
|
127
|
+
req.origin_input_ids, req.output_ids, self.max_match_window_size
|
128
|
+
)
|
129
|
+
batch_tokens.append(check_token)
|
130
|
+
req_drafts, mask = self.ngram_cache.batch_get(batch_tokens)
|
131
|
+
total_draft_token_num = len(req_drafts)
|
132
|
+
|
133
|
+
# Check if speculative decoding is needed; here we always enforce it
|
134
|
+
assert (
|
135
|
+
total_draft_token_num == bs * self.draft_token_num
|
136
|
+
), f"{total_draft_token_num=}, {bs=}, {self.draft_token_num=}"
|
137
|
+
return req_drafts, mask
|
138
|
+
|
139
|
+
def _prepare_for_speculative_decoding(self, batch: ScheduleBatch):
|
140
|
+
if batch.forward_mode.is_extend():
|
141
|
+
return
|
142
|
+
|
143
|
+
bs = batch.batch_size()
|
144
|
+
|
145
|
+
retrive_index = self.retrieve_indexes_batch[bs]
|
146
|
+
retrive_next_token = self.retrive_next_token_batch[bs]
|
147
|
+
retrive_next_sibling = self.retrive_next_sibling_batch[bs]
|
148
|
+
positions = self.positions_batch[bs]
|
149
|
+
tree_mask = self.tree_mask_batch[bs]
|
150
|
+
draft_tokens = self.draft_tokens_batch[bs]
|
151
|
+
|
152
|
+
req_drafts, mask = self._prepare_draft_tokens(batch)
|
153
|
+
tree_mask.copy_(torch.from_numpy(mask), non_blocking=True)
|
154
|
+
draft_tokens.copy_(torch.from_numpy(req_drafts), non_blocking=True)
|
155
|
+
|
156
|
+
reconstruct_indices_from_tree_mask(
|
157
|
+
tree_mask,
|
158
|
+
batch.seq_lens,
|
159
|
+
positions, # mutable
|
160
|
+
retrive_index, # mutable
|
161
|
+
retrive_next_token, # mutable
|
162
|
+
retrive_next_sibling, # mutable
|
163
|
+
bs,
|
164
|
+
self.draft_token_num,
|
165
|
+
)
|
166
|
+
|
167
|
+
# NOTE: QLEN_MASK is faster than FULL_MASK, but requires corresponding changes in flashinfer.
|
168
|
+
# Testing shows about 8% performance improvement (the effect is roughly proportional to batch size).
|
169
|
+
if USE_FULL_MASK:
|
170
|
+
tree_mask = []
|
171
|
+
mask = mask.reshape(
|
172
|
+
batch.batch_size(), self.draft_token_num, self.draft_token_num
|
173
|
+
)
|
174
|
+
for i, req in enumerate(batch.reqs):
|
175
|
+
seq_len = len(req.origin_input_ids) + len(req.output_ids)
|
176
|
+
req_mask = torch.ones((self.draft_token_num, seq_len - 1)).cuda()
|
177
|
+
req_mask = torch.cat(
|
178
|
+
(req_mask, torch.from_numpy(mask[i]).cuda()), dim=1
|
179
|
+
).to(torch.bool)
|
180
|
+
tree_mask.append(req_mask.flatten())
|
181
|
+
tree_mask = torch.cat(tree_mask, dim=0)
|
182
|
+
|
183
|
+
batch.spec_algorithm = SpeculativeAlgorithm.NGRAM
|
184
|
+
batch.forward_mode = ForwardMode.TARGET_VERIFY
|
185
|
+
batch.spec_info = NgramVerifyInput(
|
186
|
+
draft_tokens,
|
187
|
+
tree_mask,
|
188
|
+
positions,
|
189
|
+
retrive_index,
|
190
|
+
retrive_next_token,
|
191
|
+
retrive_next_sibling,
|
192
|
+
self.draft_token_num,
|
193
|
+
)
|
194
|
+
batch.spec_info.prepare_for_verify(batch, self.page_size)
|
195
|
+
|
196
|
+
def _update_ngram_cache(self, batch: ScheduleBatch):
|
197
|
+
batch_tokens = []
|
198
|
+
for req in batch.reqs:
|
199
|
+
# FIXME: Whether to insert 'extend' into the cache or not, after testing,
|
200
|
+
# there is not much difference, so we will not insert it for now.
|
201
|
+
# if batch.forward_mode.is_extend():
|
202
|
+
# put_ids = req.origin_input_ids + req.output_ids
|
203
|
+
# else:
|
204
|
+
put_ids = self._efficient_concat_last_n(
|
205
|
+
req.origin_input_ids, req.output_ids, self.branch_length
|
206
|
+
)
|
207
|
+
batch_tokens.append(put_ids)
|
208
|
+
self.ngram_cache.batch_put(batch_tokens)
|
209
|
+
|
210
|
+
def forward_batch_generation(self, batch: ScheduleBatch) -> ForwardBatchOutput:
|
211
|
+
self._prepare_for_speculative_decoding(batch)
|
212
|
+
model_worker_batch = batch.get_model_worker_batch()
|
213
|
+
num_accepted_tokens = 0
|
214
|
+
|
215
|
+
if model_worker_batch.forward_mode.is_target_verify():
|
216
|
+
forward_batch_output = self.target_worker.forward_batch_generation(
|
217
|
+
model_worker_batch, is_verify=True
|
218
|
+
)
|
219
|
+
logits_output, can_run_cuda_graph = (
|
220
|
+
forward_batch_output.logits_output,
|
221
|
+
forward_batch_output.can_run_cuda_graph,
|
222
|
+
)
|
223
|
+
verify_input = model_worker_batch.spec_info
|
224
|
+
logits_output, next_token_ids, num_accepted_tokens = verify_input.verify(
|
225
|
+
batch, logits_output, self.page_size
|
226
|
+
)
|
227
|
+
self._update_ngram_cache(batch)
|
228
|
+
batch.forward_mode = ForwardMode.DECODE
|
229
|
+
|
230
|
+
else:
|
231
|
+
forward_batch_output = self.target_worker.forward_batch_generation(
|
232
|
+
model_worker_batch
|
233
|
+
)
|
234
|
+
logits_output, next_token_ids, can_run_cuda_graph = (
|
235
|
+
forward_batch_output.logits_output,
|
236
|
+
forward_batch_output.next_token_ids,
|
237
|
+
forward_batch_output.can_run_cuda_graph,
|
238
|
+
)
|
239
|
+
|
240
|
+
return ForwardBatchOutput(
|
241
|
+
logits_output=logits_output,
|
242
|
+
next_token_ids=next_token_ids,
|
243
|
+
num_accepted_tokens=num_accepted_tokens,
|
244
|
+
can_run_cuda_graph=can_run_cuda_graph,
|
245
|
+
)
|