sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +130 -59
- sglang/srt/entrypoints/openai/protocol.py +112 -4
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +204 -55
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -6
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +190 -55
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +144 -17
- sglang/srt/managers/scheduler.py +502 -209
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +320 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +82 -40
- sglang/srt/model_executor/model_runner.py +432 -157
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +966 -267
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +99 -28
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +433 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +375 -245
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,686 @@
|
|
1
|
+
# Copyright 2025 The SwissAI Initiative
|
2
|
+
# Copyright 2023-2024 SGLang Team
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# Adapted from
|
17
|
+
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1
|
18
|
+
"""Inference-only Apertus model compatible with HuggingFace weights."""
|
19
|
+
|
20
|
+
import logging
|
21
|
+
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
22
|
+
|
23
|
+
import torch
|
24
|
+
from torch import nn
|
25
|
+
from transformers import ApertusConfig
|
26
|
+
|
27
|
+
from sglang.srt.distributed import (
|
28
|
+
get_pp_group,
|
29
|
+
get_tensor_model_parallel_rank,
|
30
|
+
get_tensor_model_parallel_world_size,
|
31
|
+
)
|
32
|
+
from sglang.srt.layers.activation import XIELU
|
33
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
34
|
+
from sglang.srt.layers.linear import (
|
35
|
+
ColumnParallelLinear,
|
36
|
+
QKVParallelLinear,
|
37
|
+
RowParallelLinear,
|
38
|
+
)
|
39
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
40
|
+
from sglang.srt.layers.pooler import Pooler, PoolingType
|
41
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
42
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
43
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
44
|
+
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
|
45
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
46
|
+
ParallelLMHead,
|
47
|
+
VocabParallelEmbedding,
|
48
|
+
)
|
49
|
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
50
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
|
51
|
+
from sglang.srt.model_loader.weight_utils import (
|
52
|
+
default_weight_loader,
|
53
|
+
kv_cache_scales_loader,
|
54
|
+
maybe_remap_kv_scale_name,
|
55
|
+
)
|
56
|
+
from sglang.srt.utils import add_prefix, make_layers
|
57
|
+
from sglang.utils import get_exception_traceback
|
58
|
+
|
59
|
+
logger = logging.getLogger(__name__)
|
60
|
+
|
61
|
+
|
62
|
+
class ApertusMLP(nn.Module):
|
63
|
+
def __init__(
|
64
|
+
self,
|
65
|
+
hidden_size: int,
|
66
|
+
intermediate_size: int,
|
67
|
+
hidden_act: str,
|
68
|
+
quant_config: Optional[QuantizationConfig] = None,
|
69
|
+
bias: bool = False,
|
70
|
+
prefix: str = "",
|
71
|
+
reduce_results: bool = True,
|
72
|
+
) -> None:
|
73
|
+
super().__init__()
|
74
|
+
self.up_proj = ColumnParallelLinear(
|
75
|
+
hidden_size,
|
76
|
+
intermediate_size,
|
77
|
+
bias=bias,
|
78
|
+
quant_config=quant_config,
|
79
|
+
prefix=add_prefix("up_proj", prefix),
|
80
|
+
)
|
81
|
+
self.down_proj = RowParallelLinear(
|
82
|
+
intermediate_size,
|
83
|
+
hidden_size,
|
84
|
+
bias=bias,
|
85
|
+
quant_config=quant_config,
|
86
|
+
prefix=add_prefix("down_proj", prefix),
|
87
|
+
reduce_results=reduce_results,
|
88
|
+
)
|
89
|
+
if hidden_act != "xielu":
|
90
|
+
raise ValueError(
|
91
|
+
f"Unsupported activation: {hidden_act}. "
|
92
|
+
"Only xIELU is supported for now."
|
93
|
+
)
|
94
|
+
self.act_fn = XIELU()
|
95
|
+
|
96
|
+
def forward(
|
97
|
+
self,
|
98
|
+
x,
|
99
|
+
forward_batch=None,
|
100
|
+
use_reduce_scatter: bool = False,
|
101
|
+
):
|
102
|
+
# note: with xielu, there's no gate_proj
|
103
|
+
x, _ = self.up_proj(x)
|
104
|
+
x = self.act_fn(x)
|
105
|
+
x, _ = self.down_proj(
|
106
|
+
x,
|
107
|
+
skip_all_reduce=use_reduce_scatter,
|
108
|
+
)
|
109
|
+
return x
|
110
|
+
|
111
|
+
|
112
|
+
class ApertusAttention(nn.Module):
|
113
|
+
def __init__(
|
114
|
+
self,
|
115
|
+
config: ApertusConfig,
|
116
|
+
hidden_size: int,
|
117
|
+
num_heads: int,
|
118
|
+
num_kv_heads: int,
|
119
|
+
layer_id: int = 0,
|
120
|
+
rope_theta: float = 10000,
|
121
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
122
|
+
rope_is_neox_style: bool = True,
|
123
|
+
max_position_embeddings: int = 8192,
|
124
|
+
quant_config: Optional[QuantizationConfig] = None,
|
125
|
+
prefix: str = "",
|
126
|
+
bias: bool = False,
|
127
|
+
bias_o_proj: bool = False,
|
128
|
+
) -> None:
|
129
|
+
super().__init__()
|
130
|
+
self.layer_id = layer_id
|
131
|
+
self.hidden_size = hidden_size
|
132
|
+
tp_size = get_tensor_model_parallel_world_size()
|
133
|
+
self.total_num_heads = num_heads
|
134
|
+
assert self.total_num_heads % tp_size == 0
|
135
|
+
self.num_heads = self.total_num_heads // tp_size
|
136
|
+
self.total_num_kv_heads = num_kv_heads
|
137
|
+
if self.total_num_kv_heads >= tp_size:
|
138
|
+
# Number of KV heads is greater than TP size, so we partition
|
139
|
+
# the KV heads across multiple tensor parallel GPUs.
|
140
|
+
assert self.total_num_kv_heads % tp_size == 0
|
141
|
+
else:
|
142
|
+
# Number of KV heads is less than TP size, so we replicate
|
143
|
+
# the KV heads across multiple tensor parallel GPUs.
|
144
|
+
assert tp_size % self.total_num_kv_heads == 0
|
145
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
146
|
+
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
147
|
+
self.head_dim = getattr(
|
148
|
+
config, "head_dim", self.hidden_size // self.total_num_heads
|
149
|
+
)
|
150
|
+
partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
|
151
|
+
self.rotary_dim = int(partial_rotary_factor * self.head_dim)
|
152
|
+
self.q_size = self.num_heads * self.head_dim
|
153
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
154
|
+
self.scaling = self.head_dim**-0.5
|
155
|
+
self.rope_theta = rope_theta
|
156
|
+
self.max_position_embeddings = max_position_embeddings
|
157
|
+
|
158
|
+
self.qkv_proj = QKVParallelLinear(
|
159
|
+
hidden_size,
|
160
|
+
self.head_dim,
|
161
|
+
self.total_num_heads,
|
162
|
+
self.total_num_kv_heads,
|
163
|
+
bias=bias,
|
164
|
+
quant_config=quant_config,
|
165
|
+
prefix=add_prefix("qkv_proj", prefix),
|
166
|
+
)
|
167
|
+
self.o_proj = RowParallelLinear(
|
168
|
+
self.total_num_heads * self.head_dim,
|
169
|
+
hidden_size,
|
170
|
+
bias=bias_o_proj,
|
171
|
+
quant_config=quant_config,
|
172
|
+
prefix=add_prefix("o_proj", prefix),
|
173
|
+
)
|
174
|
+
|
175
|
+
self.rotary_emb = get_rope(
|
176
|
+
self.head_dim,
|
177
|
+
rotary_dim=self.rotary_dim,
|
178
|
+
max_position=max_position_embeddings,
|
179
|
+
base=rope_theta,
|
180
|
+
rope_scaling=rope_scaling,
|
181
|
+
is_neox_style=rope_is_neox_style,
|
182
|
+
)
|
183
|
+
self.attn = RadixAttention(
|
184
|
+
self.num_heads,
|
185
|
+
self.head_dim,
|
186
|
+
self.scaling,
|
187
|
+
num_kv_heads=self.num_kv_heads,
|
188
|
+
layer_id=layer_id,
|
189
|
+
quant_config=quant_config,
|
190
|
+
prefix=add_prefix("attn", prefix),
|
191
|
+
)
|
192
|
+
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
193
|
+
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
194
|
+
|
195
|
+
def forward(
|
196
|
+
self,
|
197
|
+
positions: torch.Tensor,
|
198
|
+
hidden_states: torch.Tensor,
|
199
|
+
forward_batch: ForwardBatch,
|
200
|
+
) -> torch.Tensor:
|
201
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
202
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
203
|
+
q = self.q_norm(q.contiguous().view(-1, self.head_dim)).view_as(q)
|
204
|
+
k = self.k_norm(k.contiguous().view(-1, self.head_dim)).view_as(k)
|
205
|
+
q, k = self.rotary_emb(positions, q, k)
|
206
|
+
attn_output = self.attn(q, k, v, forward_batch)
|
207
|
+
output, _ = self.o_proj(attn_output)
|
208
|
+
return output
|
209
|
+
|
210
|
+
|
211
|
+
class ApertusDecoderLayer(nn.Module):
|
212
|
+
def __init__(
|
213
|
+
self,
|
214
|
+
config: ApertusConfig,
|
215
|
+
layer_id: int = 0,
|
216
|
+
quant_config: Optional[QuantizationConfig] = None,
|
217
|
+
prefix: str = "",
|
218
|
+
) -> None:
|
219
|
+
super().__init__()
|
220
|
+
self.hidden_size = config.hidden_size
|
221
|
+
rope_theta = getattr(config, "rope_theta", 10000)
|
222
|
+
rope_scaling = getattr(config, "rope_scaling", None)
|
223
|
+
if rope_scaling is not None and getattr(
|
224
|
+
config, "original_max_position_embeddings", None
|
225
|
+
):
|
226
|
+
rope_scaling["original_max_position_embeddings"] = (
|
227
|
+
config.original_max_position_embeddings
|
228
|
+
)
|
229
|
+
rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
|
230
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
231
|
+
# Support llamafy/Qwen-Qwen2.5-7B-Instruct-llamafied with attention_bias
|
232
|
+
# Support internlm/internlm-7b with bias
|
233
|
+
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
234
|
+
config, "bias", False
|
235
|
+
)
|
236
|
+
bias_o_proj = attention_bias
|
237
|
+
# support internlm/internlm3-8b with qkv_bias
|
238
|
+
if hasattr(config, "qkv_bias"):
|
239
|
+
attention_bias = config.qkv_bias
|
240
|
+
self.self_attn = ApertusAttention(
|
241
|
+
config=config,
|
242
|
+
hidden_size=self.hidden_size,
|
243
|
+
num_heads=config.num_attention_heads,
|
244
|
+
num_kv_heads=config.num_key_value_heads,
|
245
|
+
layer_id=layer_id,
|
246
|
+
rope_theta=rope_theta,
|
247
|
+
rope_scaling=rope_scaling,
|
248
|
+
rope_is_neox_style=rope_is_neox_style,
|
249
|
+
max_position_embeddings=max_position_embeddings,
|
250
|
+
quant_config=quant_config,
|
251
|
+
prefix=add_prefix("self_attn", prefix),
|
252
|
+
bias=attention_bias,
|
253
|
+
bias_o_proj=bias_o_proj,
|
254
|
+
)
|
255
|
+
self.mlp = ApertusMLP(
|
256
|
+
hidden_size=self.hidden_size,
|
257
|
+
intermediate_size=config.intermediate_size,
|
258
|
+
hidden_act=config.hidden_act,
|
259
|
+
quant_config=quant_config,
|
260
|
+
bias=getattr(config, "mlp_bias", False),
|
261
|
+
prefix=add_prefix("mlp", prefix),
|
262
|
+
)
|
263
|
+
self.attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
264
|
+
self.feedforward_layernorm = RMSNorm(
|
265
|
+
config.hidden_size, eps=config.rms_norm_eps
|
266
|
+
)
|
267
|
+
|
268
|
+
def forward(
|
269
|
+
self,
|
270
|
+
positions: torch.Tensor,
|
271
|
+
hidden_states: torch.Tensor,
|
272
|
+
forward_batch: ForwardBatch,
|
273
|
+
residual: Optional[torch.Tensor],
|
274
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
275
|
+
# Self Attention
|
276
|
+
if residual is None:
|
277
|
+
residual = hidden_states
|
278
|
+
hidden_states = self.attention_layernorm(hidden_states)
|
279
|
+
else:
|
280
|
+
hidden_states, residual = self.attention_layernorm(hidden_states, residual)
|
281
|
+
hidden_states = self.self_attn(
|
282
|
+
positions=positions,
|
283
|
+
hidden_states=hidden_states,
|
284
|
+
forward_batch=forward_batch,
|
285
|
+
)
|
286
|
+
|
287
|
+
# Fully Connected
|
288
|
+
hidden_states, residual = self.feedforward_layernorm(hidden_states, residual)
|
289
|
+
hidden_states = self.mlp(hidden_states)
|
290
|
+
return hidden_states, residual
|
291
|
+
|
292
|
+
|
293
|
+
class ApertusModel(nn.Module):
|
294
|
+
def __init__(
|
295
|
+
self,
|
296
|
+
config: ApertusConfig,
|
297
|
+
quant_config: Optional[QuantizationConfig] = None,
|
298
|
+
prefix: str = "",
|
299
|
+
) -> None:
|
300
|
+
super().__init__()
|
301
|
+
self.quant_config = quant_config
|
302
|
+
self.config = config
|
303
|
+
self.padding_idx = config.pad_token_id
|
304
|
+
self.vocab_size = config.vocab_size
|
305
|
+
self.org_vocab_size = config.vocab_size
|
306
|
+
self.pp_group = get_pp_group()
|
307
|
+
if self.pp_group.is_first_rank:
|
308
|
+
self.embed_tokens = VocabParallelEmbedding(
|
309
|
+
config.vocab_size,
|
310
|
+
config.hidden_size,
|
311
|
+
quant_config=quant_config,
|
312
|
+
prefix=add_prefix("embed_tokens", prefix),
|
313
|
+
)
|
314
|
+
else:
|
315
|
+
self.embed_tokens = PPMissingLayer()
|
316
|
+
|
317
|
+
self.layers, self.start_layer, self.end_layer = make_layers(
|
318
|
+
config.num_hidden_layers,
|
319
|
+
lambda idx, prefix: ApertusDecoderLayer(
|
320
|
+
config=config, quant_config=quant_config, layer_id=idx, prefix=prefix
|
321
|
+
),
|
322
|
+
pp_rank=self.pp_group.rank_in_group,
|
323
|
+
pp_size=self.pp_group.world_size,
|
324
|
+
prefix="model.layers",
|
325
|
+
)
|
326
|
+
|
327
|
+
if self.pp_group.is_last_rank:
|
328
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
329
|
+
else:
|
330
|
+
self.norm = PPMissingLayer(return_tuple=True)
|
331
|
+
self.layers_to_capture = []
|
332
|
+
|
333
|
+
def forward(
|
334
|
+
self,
|
335
|
+
input_ids: torch.Tensor,
|
336
|
+
positions: torch.Tensor,
|
337
|
+
forward_batch: ForwardBatch,
|
338
|
+
input_embeds: torch.Tensor = None,
|
339
|
+
pp_proxy_tensors: Optional[PPProxyTensors] = None,
|
340
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]], PPProxyTensors]:
|
341
|
+
if self.pp_group.is_first_rank:
|
342
|
+
if input_embeds is None:
|
343
|
+
hidden_states = self.embed_tokens(input_ids)
|
344
|
+
else:
|
345
|
+
hidden_states = input_embeds
|
346
|
+
residual = None
|
347
|
+
else:
|
348
|
+
assert pp_proxy_tensors is not None
|
349
|
+
# FIXME(@ying): reduce the number of proxy tensors by not fusing layer norms
|
350
|
+
hidden_states = pp_proxy_tensors["hidden_states"]
|
351
|
+
residual = pp_proxy_tensors["residual"]
|
352
|
+
deferred_norm = None
|
353
|
+
|
354
|
+
aux_hidden_states = []
|
355
|
+
for i in range(self.start_layer, self.end_layer):
|
356
|
+
if i in self.layers_to_capture:
|
357
|
+
aux_hidden_states.append(hidden_states + residual)
|
358
|
+
layer = self.layers[i]
|
359
|
+
hidden_states, residual = layer(
|
360
|
+
positions,
|
361
|
+
hidden_states,
|
362
|
+
forward_batch,
|
363
|
+
residual,
|
364
|
+
)
|
365
|
+
|
366
|
+
if not self.pp_group.is_last_rank:
|
367
|
+
return PPProxyTensors(
|
368
|
+
{
|
369
|
+
"hidden_states": hidden_states,
|
370
|
+
"residual": residual,
|
371
|
+
}
|
372
|
+
)
|
373
|
+
else:
|
374
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
375
|
+
|
376
|
+
if len(aux_hidden_states) == 0:
|
377
|
+
return hidden_states
|
378
|
+
|
379
|
+
return hidden_states, aux_hidden_states
|
380
|
+
|
381
|
+
# If this function is called, it should always initialize KV cache scale
|
382
|
+
# factors (or else raise an exception). Thus, handled exceptions should
|
383
|
+
# make sure to leave KV cache scale factors in a known good (dummy) state
|
384
|
+
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
385
|
+
tp_size = get_tensor_model_parallel_world_size()
|
386
|
+
tp_rank = get_tensor_model_parallel_rank()
|
387
|
+
for layer_idx, scaling_factor in kv_cache_scales_loader(
|
388
|
+
quantization_param_path,
|
389
|
+
tp_rank,
|
390
|
+
tp_size,
|
391
|
+
self.config.num_hidden_layers,
|
392
|
+
self.config.__class__.model_type,
|
393
|
+
):
|
394
|
+
if not isinstance(self.layers[layer_idx], nn.Identity):
|
395
|
+
layer_self_attn = self.layers[layer_idx].self_attn
|
396
|
+
|
397
|
+
if hasattr(layer_self_attn.attn, "k_scale"):
|
398
|
+
layer_self_attn.attn.k_scale = scaling_factor
|
399
|
+
layer_self_attn.attn.v_scale = scaling_factor
|
400
|
+
else:
|
401
|
+
raise RuntimeError(
|
402
|
+
"Self attention has no KV cache scaling " "factor attribute!"
|
403
|
+
)
|
404
|
+
|
405
|
+
|
406
|
+
class ApertusForCausalLM(nn.Module):
|
407
|
+
# LoRA specific attributes
|
408
|
+
embedding_modules = {
|
409
|
+
"embed_tokens": "input_embeddings",
|
410
|
+
"lm_head": "output_embeddings",
|
411
|
+
}
|
412
|
+
embedding_padding_modules = ["lm_head"]
|
413
|
+
# BitandBytes specific attributes
|
414
|
+
default_bitsandbytes_target_modules = [
|
415
|
+
".down_proj.",
|
416
|
+
".up_proj.",
|
417
|
+
".q_proj.",
|
418
|
+
".k_proj.",
|
419
|
+
".v_proj.",
|
420
|
+
".o_proj.",
|
421
|
+
]
|
422
|
+
# in TP, these weights are partitioned along the column dimension (dim=-1)
|
423
|
+
column_parallel_weights_modules = [".down_proj.", ".o_proj."]
|
424
|
+
bitsandbytes_stacked_params_mapping = {
|
425
|
+
# shard_name, weight_name, index
|
426
|
+
".q_proj": (".qkv_proj", 0),
|
427
|
+
".k_proj": (".qkv_proj", 1),
|
428
|
+
".v_proj": (".qkv_proj", 2),
|
429
|
+
}
|
430
|
+
|
431
|
+
def __init__(
|
432
|
+
self,
|
433
|
+
config: ApertusConfig,
|
434
|
+
quant_config: Optional[QuantizationConfig] = None,
|
435
|
+
prefix: str = "",
|
436
|
+
) -> None:
|
437
|
+
super().__init__()
|
438
|
+
self.pp_group = get_pp_group()
|
439
|
+
self.config = config
|
440
|
+
self.quant_config = quant_config
|
441
|
+
self.model = self._init_model(config, quant_config, add_prefix("model", prefix))
|
442
|
+
if self.config.tie_word_embeddings:
|
443
|
+
self.lm_head = self.model.embed_tokens
|
444
|
+
else:
|
445
|
+
self.lm_head = ParallelLMHead(
|
446
|
+
config.vocab_size,
|
447
|
+
config.hidden_size,
|
448
|
+
quant_config=quant_config,
|
449
|
+
prefix=add_prefix("lm_head", prefix),
|
450
|
+
use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
|
451
|
+
)
|
452
|
+
self.logits_processor = LogitsProcessor(config)
|
453
|
+
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
|
454
|
+
self.stacked_params_mapping = [
|
455
|
+
# (param_name, shard_name, shard_id)
|
456
|
+
(".qkv_proj", ".q_proj", "q"),
|
457
|
+
(".qkv_proj", ".k_proj", "k"),
|
458
|
+
(".qkv_proj", ".v_proj", "v"),
|
459
|
+
]
|
460
|
+
|
461
|
+
self.capture_aux_hidden_states = False
|
462
|
+
|
463
|
+
def _init_model(
|
464
|
+
self,
|
465
|
+
config: ApertusConfig,
|
466
|
+
quant_config: Optional[QuantizationConfig] = None,
|
467
|
+
prefix: str = "",
|
468
|
+
):
|
469
|
+
return ApertusModel(config, quant_config=quant_config, prefix=prefix)
|
470
|
+
|
471
|
+
@torch.no_grad()
|
472
|
+
def forward(
|
473
|
+
self,
|
474
|
+
input_ids: torch.Tensor,
|
475
|
+
positions: torch.Tensor,
|
476
|
+
forward_batch: ForwardBatch,
|
477
|
+
input_embeds: torch.Tensor = None,
|
478
|
+
get_embedding: bool = False,
|
479
|
+
pp_proxy_tensors: Optional[PPProxyTensors] = None,
|
480
|
+
) -> LogitsProcessorOutput:
|
481
|
+
hidden_states = self.model(
|
482
|
+
input_ids,
|
483
|
+
positions,
|
484
|
+
forward_batch,
|
485
|
+
input_embeds,
|
486
|
+
pp_proxy_tensors=pp_proxy_tensors,
|
487
|
+
)
|
488
|
+
|
489
|
+
aux_hidden_states = None
|
490
|
+
if self.capture_aux_hidden_states:
|
491
|
+
hidden_states, aux_hidden_states = hidden_states
|
492
|
+
|
493
|
+
if self.pp_group.is_last_rank:
|
494
|
+
if not get_embedding:
|
495
|
+
return self.logits_processor(
|
496
|
+
input_ids,
|
497
|
+
hidden_states,
|
498
|
+
self.lm_head,
|
499
|
+
forward_batch,
|
500
|
+
aux_hidden_states,
|
501
|
+
)
|
502
|
+
else:
|
503
|
+
return self.pooler(hidden_states, forward_batch)
|
504
|
+
else:
|
505
|
+
return hidden_states
|
506
|
+
|
507
|
+
@torch.no_grad()
|
508
|
+
def forward_split_prefill(
|
509
|
+
self,
|
510
|
+
input_ids: torch.Tensor,
|
511
|
+
positions: torch.Tensor,
|
512
|
+
forward_batch: ForwardBatch,
|
513
|
+
split_interval: Tuple[int, int], # [start, end) 0-based
|
514
|
+
input_embeds: torch.Tensor = None,
|
515
|
+
) -> Optional[LogitsProcessorOutput]:
|
516
|
+
start, end = split_interval
|
517
|
+
# embed
|
518
|
+
if start == 0:
|
519
|
+
if input_embeds is None:
|
520
|
+
forward_batch.hidden_states = self.model.embed_tokens(input_ids)
|
521
|
+
else:
|
522
|
+
forward_batch.hidden_states = input_embeds
|
523
|
+
# decoder layer
|
524
|
+
for i in range(start, end):
|
525
|
+
layer = self.model.layers[i]
|
526
|
+
forward_batch.hidden_states, forward_batch.residual = layer(
|
527
|
+
positions,
|
528
|
+
forward_batch.hidden_states,
|
529
|
+
forward_batch,
|
530
|
+
forward_batch.residual,
|
531
|
+
)
|
532
|
+
|
533
|
+
if end == self.model.config.num_hidden_layers:
|
534
|
+
# norm
|
535
|
+
hidden_states, _ = self.model.norm(
|
536
|
+
forward_batch.hidden_states, forward_batch.residual
|
537
|
+
)
|
538
|
+
forward_batch.hidden_states = hidden_states
|
539
|
+
# logits process
|
540
|
+
result = self.logits_processor(
|
541
|
+
input_ids, forward_batch.hidden_states, self.lm_head, forward_batch
|
542
|
+
)
|
543
|
+
else:
|
544
|
+
result = None
|
545
|
+
|
546
|
+
return result
|
547
|
+
|
548
|
+
@property
|
549
|
+
def start_layer(self):
|
550
|
+
return self.model.start_layer
|
551
|
+
|
552
|
+
@property
|
553
|
+
def end_layer(self):
|
554
|
+
return self.model.end_layer
|
555
|
+
|
556
|
+
def get_input_embeddings(self) -> nn.Embedding:
|
557
|
+
return self.model.embed_tokens
|
558
|
+
|
559
|
+
def get_module_name_from_weight_name(self, name):
|
560
|
+
for param_name, weight_name, shard_id, num_shard in self.stacked_params_mapping:
|
561
|
+
if weight_name in name:
|
562
|
+
return (
|
563
|
+
name.replace(weight_name, param_name)[: -len(".weight")],
|
564
|
+
num_shard,
|
565
|
+
)
|
566
|
+
return name[: -len(".weight")], 1
|
567
|
+
|
568
|
+
def get_num_params(self):
|
569
|
+
params_dict = dict(self.named_parameters())
|
570
|
+
return len(params_dict)
|
571
|
+
|
572
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
573
|
+
stacked_params_mapping = [
|
574
|
+
# (param_name, shard_name, shard_id)
|
575
|
+
(".qkv_proj", ".q_proj", "q"),
|
576
|
+
(".qkv_proj", ".k_proj", "k"),
|
577
|
+
(".qkv_proj", ".v_proj", "v"),
|
578
|
+
]
|
579
|
+
|
580
|
+
params_dict = dict(self.named_parameters())
|
581
|
+
|
582
|
+
for name, buffer in self.named_buffers():
|
583
|
+
if name.endswith(".beta") or name.endswith(".eps"):
|
584
|
+
params_dict[name] = buffer
|
585
|
+
|
586
|
+
for name, loaded_weight in weights:
|
587
|
+
layer_id = get_layer_id(name)
|
588
|
+
if (
|
589
|
+
layer_id is not None
|
590
|
+
and hasattr(self.model, "start_layer")
|
591
|
+
and (
|
592
|
+
layer_id < self.model.start_layer
|
593
|
+
or layer_id >= self.model.end_layer
|
594
|
+
)
|
595
|
+
):
|
596
|
+
continue
|
597
|
+
if "rotary_emb.inv_freq" in name or "projector" in name:
|
598
|
+
continue
|
599
|
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
600
|
+
# Models trained using ColossalAI may include these tensors in
|
601
|
+
# the checkpoint. Skip them.
|
602
|
+
continue
|
603
|
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
604
|
+
continue
|
605
|
+
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
606
|
+
continue
|
607
|
+
# Handle FP8 kv-scale remapping
|
608
|
+
if "scale" in name:
|
609
|
+
name = maybe_remap_kv_scale_name(name, params_dict)
|
610
|
+
if name is None:
|
611
|
+
continue
|
612
|
+
|
613
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
614
|
+
if weight_name not in name:
|
615
|
+
continue
|
616
|
+
name = name.replace(weight_name, param_name)
|
617
|
+
# Skip loading extra bias for GPTQ models.
|
618
|
+
if name.endswith(".bias") and name not in params_dict:
|
619
|
+
continue
|
620
|
+
if name not in params_dict:
|
621
|
+
continue
|
622
|
+
param = params_dict[name]
|
623
|
+
weight_loader = param.weight_loader
|
624
|
+
weight_loader(param, loaded_weight, shard_id)
|
625
|
+
break
|
626
|
+
else:
|
627
|
+
# Skip loading extra bias for GPTQ models.
|
628
|
+
if name.endswith(".bias") and name not in params_dict:
|
629
|
+
continue
|
630
|
+
# Skip loading kv_scale from ckpts towards new design.
|
631
|
+
if name.endswith(".kv_scale") and name not in params_dict:
|
632
|
+
continue
|
633
|
+
if name in params_dict.keys():
|
634
|
+
param = params_dict[name]
|
635
|
+
weight_loader = getattr(
|
636
|
+
param, "weight_loader", default_weight_loader
|
637
|
+
)
|
638
|
+
weight_loader(param, loaded_weight)
|
639
|
+
else:
|
640
|
+
logger.warning(f"Parameter {name} not found in params_dict")
|
641
|
+
|
642
|
+
def get_embed_and_head(self):
|
643
|
+
return self.model.embed_tokens.weight, self.lm_head.weight
|
644
|
+
|
645
|
+
def set_embed_and_head(self, embed, head):
|
646
|
+
del self.model.embed_tokens.weight
|
647
|
+
del self.lm_head.weight
|
648
|
+
self.model.embed_tokens.weight = embed
|
649
|
+
self.lm_head.weight = head
|
650
|
+
torch.cuda.empty_cache()
|
651
|
+
torch.cuda.synchronize()
|
652
|
+
|
653
|
+
def get_embed(self):
|
654
|
+
return self.model.embed_tokens.weight
|
655
|
+
|
656
|
+
def set_embed(self, embed):
|
657
|
+
# NOTE: If draft hidden size != target hidden size, the embed weight cannot be shared for EAGLE3
|
658
|
+
if (
|
659
|
+
hasattr(self.config, "target_hidden_size")
|
660
|
+
and self.config.target_hidden_size != self.config.hidden_size
|
661
|
+
):
|
662
|
+
return
|
663
|
+
del self.model.embed_tokens.weight
|
664
|
+
self.model.embed_tokens.weight = embed
|
665
|
+
torch.cuda.empty_cache()
|
666
|
+
torch.cuda.synchronize()
|
667
|
+
|
668
|
+
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
669
|
+
self.model.load_kv_cache_scales(quantization_param_path)
|
670
|
+
|
671
|
+
def set_eagle3_layers_to_capture(self, layer_ids: Optional[List[int]] = None):
|
672
|
+
if not self.pp_group.is_last_rank:
|
673
|
+
return
|
674
|
+
|
675
|
+
if layer_ids is None:
|
676
|
+
self.capture_aux_hidden_states = True
|
677
|
+
num_layers = self.config.num_hidden_layers
|
678
|
+
self.model.layers_to_capture = [2, num_layers // 2, num_layers - 3]
|
679
|
+
else:
|
680
|
+
self.capture_aux_hidden_states = True
|
681
|
+
# we plus 1 here because in sglang, for the ith layer, it takes the output
|
682
|
+
# of the (i-1)th layer as aux hidden state
|
683
|
+
self.model.layers_to_capture = [val + 1 for val in layer_ids]
|
684
|
+
|
685
|
+
|
686
|
+
EntryClass = [ApertusForCausalLM]
|