sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +130 -59
- sglang/srt/entrypoints/openai/protocol.py +112 -4
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +204 -55
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -6
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +190 -55
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +144 -17
- sglang/srt/managers/scheduler.py +502 -209
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +320 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +82 -40
- sglang/srt/model_executor/model_runner.py +432 -157
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +966 -267
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +99 -28
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +433 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +375 -245
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -1,10 +1,16 @@
|
|
1
|
+
from abc import ABC, abstractmethod
|
1
2
|
from enum import IntEnum, auto
|
3
|
+
from typing import List, Tuple
|
4
|
+
|
5
|
+
from sglang.srt.managers.schedule_batch import ModelWorkerBatch
|
2
6
|
|
3
7
|
|
4
8
|
class SpeculativeAlgorithm(IntEnum):
|
5
9
|
NONE = auto()
|
6
10
|
EAGLE = auto()
|
7
11
|
EAGLE3 = auto()
|
12
|
+
STANDALONE = auto()
|
13
|
+
NGRAM = auto()
|
8
14
|
|
9
15
|
def is_none(self):
|
10
16
|
return self == SpeculativeAlgorithm.NONE
|
@@ -15,13 +21,59 @@ class SpeculativeAlgorithm(IntEnum):
|
|
15
21
|
def is_eagle3(self):
|
16
22
|
return self == SpeculativeAlgorithm.EAGLE3
|
17
23
|
|
24
|
+
def is_standalone(self):
|
25
|
+
return self == SpeculativeAlgorithm.STANDALONE
|
26
|
+
|
27
|
+
def is_ngram(self):
|
28
|
+
return self == SpeculativeAlgorithm.NGRAM
|
29
|
+
|
18
30
|
@staticmethod
|
19
31
|
def from_string(name: str):
|
20
32
|
name_map = {
|
21
33
|
"EAGLE": SpeculativeAlgorithm.EAGLE,
|
22
34
|
"EAGLE3": SpeculativeAlgorithm.EAGLE3,
|
35
|
+
"STANDALONE": SpeculativeAlgorithm.STANDALONE,
|
36
|
+
"NGRAM": SpeculativeAlgorithm.NGRAM,
|
23
37
|
None: SpeculativeAlgorithm.NONE,
|
24
38
|
}
|
25
39
|
if name is not None:
|
26
40
|
name = name.upper()
|
27
41
|
return name_map[name]
|
42
|
+
|
43
|
+
|
44
|
+
class SpecInputType(IntEnum):
|
45
|
+
# NOTE: introduce this to distinguish the SpecInput types of multiple algorithms when asserting in attention backends.
|
46
|
+
# If all algorithms can share the same datastrucutre of draft_input and verify_input, consider simplify it
|
47
|
+
EAGLE_DRAFT = auto()
|
48
|
+
EAGLE_VERIFY = auto()
|
49
|
+
NGRAM_VERIFY = auto()
|
50
|
+
|
51
|
+
|
52
|
+
class SpecInput(ABC):
|
53
|
+
def __init__(self, spec_input_type: SpecInputType):
|
54
|
+
self.spec_input_type = spec_input_type
|
55
|
+
|
56
|
+
def is_draft_input(self) -> bool:
|
57
|
+
# FIXME: remove this function which is only used for assertion
|
58
|
+
# or use another variable name like `draft_input` to substitute `spec_info`
|
59
|
+
return self.spec_input_type == SpecInputType.EAGLE_DRAFT
|
60
|
+
|
61
|
+
def is_verify_input(self) -> bool:
|
62
|
+
return self.spec_input_type in {
|
63
|
+
SpecInputType.EAGLE_VERIFY,
|
64
|
+
SpecInputType.NGRAM_VERIFY,
|
65
|
+
}
|
66
|
+
|
67
|
+
@abstractmethod
|
68
|
+
def get_spec_adjust_token_coefficient(self) -> Tuple[int, int]:
|
69
|
+
pass
|
70
|
+
|
71
|
+
def get_spec_adjusted_global_num_tokens(
|
72
|
+
self, forward_batch: ModelWorkerBatch
|
73
|
+
) -> Tuple[List[int], List[int]]:
|
74
|
+
c1, c2 = self.get_spec_adjust_token_coefficient()
|
75
|
+
global_num_tokens = [x * c1 for x in forward_batch.global_num_tokens]
|
76
|
+
global_num_tokens_for_logprob = [
|
77
|
+
x * c2 for x in forward_batch.global_num_tokens_for_logprob
|
78
|
+
]
|
79
|
+
return global_num_tokens, global_num_tokens_for_logprob
|
@@ -0,0 +1,606 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
import logging
|
4
|
+
import os
|
5
|
+
import time
|
6
|
+
from typing import TYPE_CHECKING, List
|
7
|
+
|
8
|
+
import torch
|
9
|
+
import triton
|
10
|
+
import triton.language as tl
|
11
|
+
|
12
|
+
from sglang.srt.constrained.base_grammar_backend import BaseGrammarObject
|
13
|
+
from sglang.srt.environ import envs
|
14
|
+
from sglang.srt.managers.schedule_batch import Req
|
15
|
+
from sglang.srt.utils import is_cuda, is_hip
|
16
|
+
|
17
|
+
if is_cuda():
|
18
|
+
from sgl_kernel import fast_topk
|
19
|
+
elif is_hip():
|
20
|
+
from sgl_kernel import fast_topk
|
21
|
+
|
22
|
+
if TYPE_CHECKING:
|
23
|
+
from sglang.srt.speculative.eagle_info import EagleVerifyInput
|
24
|
+
|
25
|
+
logger = logging.getLogger(__name__)
|
26
|
+
|
27
|
+
|
28
|
+
# Simulate acceptance length for benchmarking purposes
|
29
|
+
SIMULATE_ACC_LEN = envs.SGLANG_SIMULATE_ACC_LEN.get() # turn off if < 0
|
30
|
+
SIMULATE_ACC_METHOD = envs.SGLANG_SIMULATE_ACC_METHOD.get()
|
31
|
+
|
32
|
+
TREE_TRAVERSE_TIME_THRESHOLD = 1 # TODO: set this properly
|
33
|
+
TREE_SPEC_KERNEL_AVAILABLE = is_cuda() # This kernel is only available for CUDA now
|
34
|
+
|
35
|
+
|
36
|
+
@triton.jit
|
37
|
+
def create_extend_after_decode_spec_info(
|
38
|
+
verified_id,
|
39
|
+
seq_lens,
|
40
|
+
accept_lens,
|
41
|
+
positions,
|
42
|
+
new_verified_id,
|
43
|
+
bs_upper: tl.constexpr,
|
44
|
+
):
|
45
|
+
pid = tl.program_id(axis=0)
|
46
|
+
offsets = tl.arange(0, bs_upper)
|
47
|
+
seq_length = tl.load(seq_lens + pid)
|
48
|
+
accept_length = tl.load(accept_lens + pid)
|
49
|
+
|
50
|
+
accept_len_cumsum = tl.sum(
|
51
|
+
tl.load(accept_lens + offsets, mask=offsets < pid, other=0)
|
52
|
+
)
|
53
|
+
positions_ptr = positions + accept_len_cumsum
|
54
|
+
mask = offsets < accept_length
|
55
|
+
tl.store(positions_ptr + offsets, seq_length - accept_length + offsets, mask)
|
56
|
+
|
57
|
+
accept_len_cumsum += accept_length - 1
|
58
|
+
verified_id_data = tl.load(verified_id + accept_len_cumsum)
|
59
|
+
tl.store(new_verified_id + pid, verified_id_data)
|
60
|
+
|
61
|
+
|
62
|
+
@triton.jit
|
63
|
+
def assign_req_to_token_pool(
|
64
|
+
req_pool_indices,
|
65
|
+
req_to_token,
|
66
|
+
start_offset,
|
67
|
+
end_offset,
|
68
|
+
out_cache_loc,
|
69
|
+
pool_len: tl.constexpr,
|
70
|
+
bs_upper: tl.constexpr,
|
71
|
+
):
|
72
|
+
BLOCK_SIZE: tl.constexpr = 32
|
73
|
+
pid = tl.program_id(axis=0)
|
74
|
+
kv_start = tl.load(start_offset + pid)
|
75
|
+
kv_end = tl.load(end_offset + pid)
|
76
|
+
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
77
|
+
|
78
|
+
length_offset = tl.arange(0, bs_upper)
|
79
|
+
start = tl.load(start_offset + length_offset, mask=length_offset < pid, other=0)
|
80
|
+
end = tl.load(end_offset + length_offset, mask=length_offset < pid, other=0)
|
81
|
+
out_offset = tl.sum(end - start, axis=0)
|
82
|
+
|
83
|
+
out_cache_ptr = out_cache_loc + out_offset
|
84
|
+
|
85
|
+
save_offset = tl.arange(0, BLOCK_SIZE) + kv_start
|
86
|
+
load_offset = tl.arange(0, BLOCK_SIZE)
|
87
|
+
|
88
|
+
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
|
89
|
+
for _ in range(num_loop):
|
90
|
+
mask = save_offset < kv_end
|
91
|
+
data = tl.load(out_cache_ptr + load_offset, mask=mask)
|
92
|
+
tl.store(token_pool + save_offset, data, mask=mask)
|
93
|
+
save_offset += BLOCK_SIZE
|
94
|
+
load_offset += BLOCK_SIZE
|
95
|
+
|
96
|
+
|
97
|
+
@triton.jit
|
98
|
+
def assign_draft_cache_locs(
|
99
|
+
req_pool_indices,
|
100
|
+
req_to_token,
|
101
|
+
seq_lens,
|
102
|
+
extend_lens,
|
103
|
+
num_new_pages_per_topk,
|
104
|
+
out_cache_loc,
|
105
|
+
pool_len: tl.constexpr,
|
106
|
+
topk: tl.constexpr,
|
107
|
+
speculative_num_steps: tl.constexpr,
|
108
|
+
page_size: tl.constexpr,
|
109
|
+
bs_upper: tl.constexpr,
|
110
|
+
iter_upper: tl.constexpr,
|
111
|
+
):
|
112
|
+
BLOCK_SIZE: tl.constexpr = 128
|
113
|
+
pid = tl.program_id(axis=0)
|
114
|
+
|
115
|
+
if page_size == 1 or topk == 1:
|
116
|
+
copy_len = topk * speculative_num_steps
|
117
|
+
out_cache_ptr = out_cache_loc + pid * topk * speculative_num_steps
|
118
|
+
else:
|
119
|
+
bs_offset = tl.arange(0, bs_upper)
|
120
|
+
copy_len = tl.load(extend_lens + pid)
|
121
|
+
cum_copy_len = tl.sum(tl.load(extend_lens + bs_offset, mask=bs_offset < pid))
|
122
|
+
out_cache_ptr = out_cache_loc + cum_copy_len
|
123
|
+
|
124
|
+
# Part 1: Copy from out_cache_loc to req_to_token
|
125
|
+
kv_start = tl.load(seq_lens + pid)
|
126
|
+
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
127
|
+
num_loop = tl.cdiv(copy_len, BLOCK_SIZE)
|
128
|
+
for i in range(num_loop):
|
129
|
+
copy_offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
|
130
|
+
mask = copy_offset < copy_len
|
131
|
+
data = tl.load(out_cache_ptr + copy_offset, mask=mask)
|
132
|
+
tl.store(token_pool + kv_start + copy_offset, data, mask=mask)
|
133
|
+
|
134
|
+
if page_size == 1 or topk == 1:
|
135
|
+
return
|
136
|
+
|
137
|
+
# Part 2: Copy the indices for the last partial page
|
138
|
+
prefix_len = tl.load(seq_lens + pid)
|
139
|
+
last_page_len = prefix_len % page_size
|
140
|
+
offsets = tl.arange(0, page_size)
|
141
|
+
mask = offsets < last_page_len
|
142
|
+
num_new_pages_per_topk_ = tl.load(num_new_pages_per_topk + pid)
|
143
|
+
prefix_base = token_pool + prefix_len - last_page_len
|
144
|
+
|
145
|
+
for topk_id in range(topk):
|
146
|
+
value = tl.load(prefix_base + offsets, mask=mask)
|
147
|
+
tl.store(
|
148
|
+
prefix_base + topk_id * num_new_pages_per_topk_ * page_size + offsets,
|
149
|
+
value,
|
150
|
+
mask=mask,
|
151
|
+
)
|
152
|
+
|
153
|
+
# Part 3: Remove the padding in out_cache_loc
|
154
|
+
iter_offest = tl.arange(0, iter_upper)
|
155
|
+
for topk_id in range(topk):
|
156
|
+
indices = tl.load(
|
157
|
+
prefix_base
|
158
|
+
+ topk_id * num_new_pages_per_topk_ * page_size
|
159
|
+
+ last_page_len
|
160
|
+
+ iter_offest,
|
161
|
+
mask=iter_offest < speculative_num_steps,
|
162
|
+
)
|
163
|
+
tl.store(
|
164
|
+
out_cache_loc
|
165
|
+
+ pid * topk * speculative_num_steps
|
166
|
+
+ topk_id * speculative_num_steps
|
167
|
+
+ iter_offest,
|
168
|
+
indices,
|
169
|
+
mask=iter_offest < speculative_num_steps,
|
170
|
+
)
|
171
|
+
|
172
|
+
|
173
|
+
@triton.jit
|
174
|
+
def generate_draft_decode_kv_indices(
|
175
|
+
req_pool_indices,
|
176
|
+
req_to_token,
|
177
|
+
paged_kernel_lens,
|
178
|
+
kv_indices,
|
179
|
+
kv_indptr,
|
180
|
+
positions,
|
181
|
+
pool_len: tl.constexpr,
|
182
|
+
kv_indices_stride: tl.constexpr,
|
183
|
+
kv_indptr_stride: tl.constexpr,
|
184
|
+
bs_upper: tl.constexpr,
|
185
|
+
iter_upper: tl.constexpr,
|
186
|
+
num_tokens_upper: tl.constexpr,
|
187
|
+
page_size: tl.constexpr,
|
188
|
+
):
|
189
|
+
BLOCK_SIZE: tl.constexpr = 128
|
190
|
+
iters = tl.program_id(axis=0)
|
191
|
+
bid = tl.program_id(axis=1)
|
192
|
+
topk_id = tl.program_id(axis=2)
|
193
|
+
|
194
|
+
num_steps = tl.num_programs(axis=0)
|
195
|
+
num_seqs = tl.num_programs(axis=1)
|
196
|
+
topk = tl.num_programs(axis=2)
|
197
|
+
|
198
|
+
kv_indices += kv_indices_stride * iters
|
199
|
+
kv_indptr += kv_indptr_stride * iters
|
200
|
+
iters += 1
|
201
|
+
|
202
|
+
load_offset = tl.arange(0, bs_upper)
|
203
|
+
seq_lens = tl.load(paged_kernel_lens + load_offset, mask=load_offset < bid, other=0)
|
204
|
+
seq_len = tl.load(paged_kernel_lens + bid)
|
205
|
+
cum_seq_len = tl.sum(seq_lens)
|
206
|
+
|
207
|
+
# Update kv_indices
|
208
|
+
kv_offset = cum_seq_len * topk + bid * iters * topk + topk_id * (seq_len + iters)
|
209
|
+
kv_ptr = kv_indices + kv_offset
|
210
|
+
token_pool_ptr = req_to_token + tl.load(req_pool_indices + bid) * pool_len
|
211
|
+
|
212
|
+
kv_offset = tl.arange(0, BLOCK_SIZE)
|
213
|
+
num_loop = tl.cdiv(seq_len, BLOCK_SIZE)
|
214
|
+
for _ in range(num_loop):
|
215
|
+
mask = kv_offset < seq_len
|
216
|
+
data = tl.load(token_pool_ptr + kv_offset, mask=mask)
|
217
|
+
tl.store(kv_ptr + kv_offset, data, mask=mask)
|
218
|
+
kv_offset += BLOCK_SIZE
|
219
|
+
|
220
|
+
extend_offset = tl.arange(0, iter_upper)
|
221
|
+
if page_size == 1 or topk == 1:
|
222
|
+
extend_data = tl.load(
|
223
|
+
token_pool_ptr + seq_len + topk_id * num_steps + tl.arange(0, iter_upper),
|
224
|
+
mask=extend_offset < iters,
|
225
|
+
)
|
226
|
+
else:
|
227
|
+
prefix_len = seq_len
|
228
|
+
last_page_len = prefix_len % page_size
|
229
|
+
num_new_pages_per_topk = (
|
230
|
+
last_page_len + num_steps + page_size - 1
|
231
|
+
) // page_size
|
232
|
+
prefix_base = seq_len // page_size * page_size
|
233
|
+
start = (
|
234
|
+
prefix_base + topk_id * num_new_pages_per_topk * page_size + last_page_len
|
235
|
+
)
|
236
|
+
extend_data = tl.load(
|
237
|
+
token_pool_ptr + start + extend_offset,
|
238
|
+
mask=extend_offset < iters,
|
239
|
+
)
|
240
|
+
|
241
|
+
tl.store(kv_ptr + seq_len + extend_offset, extend_data, mask=extend_offset < iters)
|
242
|
+
|
243
|
+
# Update kv_indptr
|
244
|
+
bs_offset = tl.arange(0, num_tokens_upper)
|
245
|
+
|
246
|
+
zid = bid * topk + topk_id
|
247
|
+
if zid == 0:
|
248
|
+
zid = num_seqs * topk
|
249
|
+
positions = tl.load(positions + bs_offset, mask=bs_offset < zid, other=0)
|
250
|
+
base = tl.sum(positions)
|
251
|
+
tl.store(kv_indptr + zid, base + zid * iters)
|
252
|
+
|
253
|
+
|
254
|
+
@triton.jit
|
255
|
+
def align_evict_mask_to_page_size(
|
256
|
+
seq_lens,
|
257
|
+
evict_mask,
|
258
|
+
page_size: tl.constexpr,
|
259
|
+
num_draft_tokens: tl.constexpr,
|
260
|
+
BLOCK_SIZE: tl.constexpr,
|
261
|
+
):
|
262
|
+
t_range = tl.arange(0, BLOCK_SIZE)
|
263
|
+
|
264
|
+
bid = tl.program_id(axis=0)
|
265
|
+
seq_len = tl.load(seq_lens + bid)
|
266
|
+
io_mask = t_range < num_draft_tokens
|
267
|
+
mask_row = tl.load(
|
268
|
+
evict_mask + bid * num_draft_tokens + t_range, mask=io_mask, other=0
|
269
|
+
)
|
270
|
+
|
271
|
+
num_trues = tl.sum(mask_row)
|
272
|
+
num_false = num_draft_tokens - num_trues
|
273
|
+
|
274
|
+
start = (seq_len + num_false - 1) // page_size * page_size - seq_len
|
275
|
+
for i in range(max(start, 0), min(start + page_size, num_draft_tokens)):
|
276
|
+
tl.store(evict_mask + bid * num_draft_tokens + i, False)
|
277
|
+
|
278
|
+
|
279
|
+
@triton.jit
|
280
|
+
def get_target_cache_loc(
|
281
|
+
tgt_cache_loc,
|
282
|
+
to_free_slots,
|
283
|
+
accept_length,
|
284
|
+
to_free_num_slots,
|
285
|
+
out_cache_loc,
|
286
|
+
num_verify_tokens: tl.constexpr,
|
287
|
+
num_verify_tokens_upper: tl.constexpr,
|
288
|
+
bs_upper: tl.constexpr,
|
289
|
+
):
|
290
|
+
bid = tl.program_id(axis=0)
|
291
|
+
offset = tl.arange(0, num_verify_tokens_upper)
|
292
|
+
bs_offset = tl.arange(0, bs_upper)
|
293
|
+
|
294
|
+
# write the first part to tgt_cache_loc
|
295
|
+
accept_len_all = tl.load(accept_length + bs_offset, mask=bs_offset < bid)
|
296
|
+
tgt_cache_loc_start = tl.sum(accept_len_all) + bid
|
297
|
+
copy_len = tl.load(accept_length + bid) + 1
|
298
|
+
out_cache_loc_row = tl.load(
|
299
|
+
out_cache_loc + bid * num_verify_tokens + offset, mask=offset < copy_len
|
300
|
+
)
|
301
|
+
tl.store(
|
302
|
+
tgt_cache_loc + tgt_cache_loc_start + offset,
|
303
|
+
out_cache_loc_row,
|
304
|
+
mask=offset < copy_len,
|
305
|
+
)
|
306
|
+
|
307
|
+
# write the second part to to_free_num_pages
|
308
|
+
to_free_num_slots_all = tl.load(to_free_num_slots + bs_offset, mask=bs_offset < bid)
|
309
|
+
to_free_num_slots_cur = tl.load(to_free_num_slots + bid)
|
310
|
+
out_cache_loc_start = num_verify_tokens - to_free_num_slots_cur
|
311
|
+
to_free_slots_start = tl.sum(to_free_num_slots_all)
|
312
|
+
|
313
|
+
copy_len = to_free_num_slots_cur
|
314
|
+
out_cache_loc_row = tl.load(
|
315
|
+
out_cache_loc + bid * num_verify_tokens + out_cache_loc_start + offset,
|
316
|
+
mask=offset < copy_len,
|
317
|
+
)
|
318
|
+
tl.store(
|
319
|
+
to_free_slots + to_free_slots_start + offset,
|
320
|
+
out_cache_loc_row,
|
321
|
+
mask=offset < copy_len,
|
322
|
+
)
|
323
|
+
|
324
|
+
|
325
|
+
@torch.compile(dynamic=True)
|
326
|
+
def get_src_tgt_cache_loc(
|
327
|
+
seq_lens: torch.Tensor,
|
328
|
+
out_cache_loc: torch.Tensor,
|
329
|
+
accept_index: torch.Tensor,
|
330
|
+
accept_length: torch.Tensor,
|
331
|
+
draft_token_num: int,
|
332
|
+
page_size: int,
|
333
|
+
):
|
334
|
+
src_cache_loc = out_cache_loc[accept_index]
|
335
|
+
tgt_cache_loc = torch.empty_like(src_cache_loc)
|
336
|
+
extended_len = seq_lens + draft_token_num
|
337
|
+
keep_len = torch.minimum(
|
338
|
+
(seq_lens + accept_length + 1 + page_size - 1) // page_size * page_size,
|
339
|
+
extended_len,
|
340
|
+
)
|
341
|
+
to_free_num_slots = extended_len - keep_len
|
342
|
+
return src_cache_loc, tgt_cache_loc, to_free_num_slots
|
343
|
+
|
344
|
+
|
345
|
+
@triton.jit
|
346
|
+
def filter_finished_cache_loc_kernel(
|
347
|
+
out_cache_loc,
|
348
|
+
tgt_cache_loc,
|
349
|
+
accept_length,
|
350
|
+
accept_length_filter,
|
351
|
+
bs_upper: tl.constexpr,
|
352
|
+
num_verify_tokens_upper: tl.constexpr,
|
353
|
+
):
|
354
|
+
bid = tl.program_id(0)
|
355
|
+
bs_offset = tl.arange(0, bs_upper)
|
356
|
+
|
357
|
+
accept_length_all = tl.load(accept_length + bs_offset, mask=bs_offset < bid)
|
358
|
+
old_start = tl.sum(accept_length_all) + bid
|
359
|
+
|
360
|
+
accept_length_filter_all = tl.load(
|
361
|
+
accept_length_filter + bs_offset, mask=bs_offset < bid
|
362
|
+
)
|
363
|
+
new_start = tl.sum(accept_length_filter_all)
|
364
|
+
|
365
|
+
copy_len = tl.load(accept_length_filter + bid)
|
366
|
+
copy_offset = tl.arange(0, num_verify_tokens_upper)
|
367
|
+
value = tl.load(
|
368
|
+
tgt_cache_loc + old_start + copy_offset, mask=copy_offset < copy_len
|
369
|
+
)
|
370
|
+
tl.store(
|
371
|
+
out_cache_loc + new_start + copy_offset, value, mask=copy_offset < copy_len
|
372
|
+
)
|
373
|
+
|
374
|
+
|
375
|
+
@torch.compile(dynamic=True)
|
376
|
+
def create_accept_length_filter(
|
377
|
+
accept_length: torch.Tensor,
|
378
|
+
unfinished_index_device: torch.Tensor,
|
379
|
+
seq_lens: torch.Tensor,
|
380
|
+
):
|
381
|
+
accept_length_filter = torch.zeros_like(accept_length)
|
382
|
+
accept_length_filter[unfinished_index_device] = (
|
383
|
+
accept_length[unfinished_index_device] + 1
|
384
|
+
)
|
385
|
+
seq_lens.add_(accept_length + 1)
|
386
|
+
return accept_length_filter
|
387
|
+
|
388
|
+
|
389
|
+
@torch.compile(dynamic=True)
|
390
|
+
def select_top_k_tokens(
|
391
|
+
i: int,
|
392
|
+
topk_p: torch.Tensor,
|
393
|
+
topk_index: torch.Tensor,
|
394
|
+
hidden_states: torch.Tensor,
|
395
|
+
scores: torch.Tensor,
|
396
|
+
topk: int,
|
397
|
+
):
|
398
|
+
if i == 0:
|
399
|
+
# The first step after extend
|
400
|
+
input_ids = topk_index.flatten()
|
401
|
+
hidden_states = hidden_states.repeat_interleave(topk, dim=0)
|
402
|
+
scores = topk_p # shape: (b, topk)
|
403
|
+
|
404
|
+
tree_info = (
|
405
|
+
topk_p.unsqueeze(1), # shape: (b, 1, topk)
|
406
|
+
topk_index, # shape: (b, topk)
|
407
|
+
torch.arange(-1, topk, dtype=torch.long, device="cuda")
|
408
|
+
.unsqueeze(0)
|
409
|
+
.repeat(topk_p.shape[0], 1), # shape: (b, topk + 1)
|
410
|
+
)
|
411
|
+
else:
|
412
|
+
# The later decode steps
|
413
|
+
expand_scores = torch.mul(
|
414
|
+
scores.unsqueeze(2), topk_p.reshape(-1, topk, topk)
|
415
|
+
) # (b, topk, 1) x (b, topk ,topk) -> (b, topk, topk)
|
416
|
+
topk_cs_p, topk_cs_index = fast_topk(
|
417
|
+
expand_scores.flatten(start_dim=1), topk, dim=-1
|
418
|
+
) # (b, topk)
|
419
|
+
scores = topk_cs_p # shape: (b, topk)
|
420
|
+
|
421
|
+
topk_index = topk_index.reshape(-1, topk**2)
|
422
|
+
input_ids = torch.gather(topk_index, index=topk_cs_index, dim=1).flatten()
|
423
|
+
|
424
|
+
if hidden_states.shape[0] > 0:
|
425
|
+
selected_input_index = topk_cs_index.flatten() // topk + torch.arange(
|
426
|
+
0, hidden_states.shape[0], step=topk, device="cuda"
|
427
|
+
).repeat_interleave(topk)
|
428
|
+
hidden_states = hidden_states[selected_input_index, :]
|
429
|
+
|
430
|
+
tree_info = (
|
431
|
+
expand_scores, # shape: (b, topk, topk)
|
432
|
+
topk_index, # shape: (b, topk * topk)
|
433
|
+
topk_cs_index + (topk**2 * (i - 1) + topk), # shape: (b, topk)
|
434
|
+
)
|
435
|
+
|
436
|
+
return input_ids, hidden_states, scores, tree_info
|
437
|
+
|
438
|
+
|
439
|
+
def _generate_simulated_accept_index(
|
440
|
+
accept_index,
|
441
|
+
predict,
|
442
|
+
accept_length,
|
443
|
+
bs,
|
444
|
+
spec_steps,
|
445
|
+
simulate_acc_len: float = SIMULATE_ACC_LEN,
|
446
|
+
simulate_acc_method: str = SIMULATE_ACC_METHOD,
|
447
|
+
):
|
448
|
+
assert simulate_acc_len > 0.0
|
449
|
+
|
450
|
+
if simulate_acc_method == "multinomial":
|
451
|
+
simulated_values = torch.normal(
|
452
|
+
mean=simulate_acc_len,
|
453
|
+
std=1.0,
|
454
|
+
size=(1,),
|
455
|
+
device="cpu",
|
456
|
+
)
|
457
|
+
# clamp simulated values to be between 1 and self.spec_steps
|
458
|
+
simulated_values = torch.clamp(simulated_values, min=1.0, max=spec_steps + 1)
|
459
|
+
simulate_acc_len = int(simulated_values.round().item())
|
460
|
+
elif simulate_acc_method == "match-expected":
|
461
|
+
# multinomial sampling does not match the expected length
|
462
|
+
# we keep it for the sake of compatibility of existing tests
|
463
|
+
# but it's better to use "match-expected" for the cases that need to
|
464
|
+
# match the expected length, One caveat is that this will only sample
|
465
|
+
# either round down or round up of the expected length
|
466
|
+
simulate_acc_len = max(1.0, min(spec_steps + 1, simulate_acc_len))
|
467
|
+
lower = int(simulate_acc_len // 1)
|
468
|
+
upper = lower + 1 if lower < spec_steps + 1 else lower
|
469
|
+
if lower == upper:
|
470
|
+
simulate_acc_len = lower
|
471
|
+
else:
|
472
|
+
weight_upper = simulate_acc_len - lower
|
473
|
+
weight_lower = 1.0 - weight_upper
|
474
|
+
probs = torch.tensor([weight_lower, weight_upper], device="cpu")
|
475
|
+
sampled_index = torch.multinomial(probs, num_samples=1)
|
476
|
+
simulate_acc_len = lower if sampled_index == 0 else upper
|
477
|
+
else:
|
478
|
+
raise ValueError(f"Invalid simulate_acc_method: {SIMULATE_ACC_METHOD}")
|
479
|
+
|
480
|
+
accept_indx_first_col = accept_index[:, 0].view(-1, 1)
|
481
|
+
sim_accept_index = torch.full(
|
482
|
+
(bs, spec_steps + 1), -1, dtype=torch.int32, device="cuda"
|
483
|
+
)
|
484
|
+
sim_accept_index[:, :simulate_acc_len] = accept_indx_first_col + torch.arange(
|
485
|
+
simulate_acc_len, device=accept_index.device
|
486
|
+
)
|
487
|
+
accept_length.fill_(simulate_acc_len - 1)
|
488
|
+
predict.fill_(100) # some legit token id
|
489
|
+
return sim_accept_index
|
490
|
+
|
491
|
+
|
492
|
+
def traverse_tree(
|
493
|
+
retrieve_next_token: torch.Tensor,
|
494
|
+
retrieve_next_sibling: torch.Tensor,
|
495
|
+
draft_tokens: torch.Tensor,
|
496
|
+
grammar: BaseGrammarObject,
|
497
|
+
allocate_token_bitmask: torch.Tensor,
|
498
|
+
):
|
499
|
+
"""
|
500
|
+
Traverse the tree constructed by the draft model to generate the logits mask.
|
501
|
+
"""
|
502
|
+
assert (
|
503
|
+
retrieve_next_token.shape == retrieve_next_sibling.shape == draft_tokens.shape
|
504
|
+
)
|
505
|
+
|
506
|
+
allocate_token_bitmask.fill_(0)
|
507
|
+
|
508
|
+
def dfs(
|
509
|
+
curr: int,
|
510
|
+
retrieve_next_token: torch.Tensor,
|
511
|
+
retrieve_next_sibling: torch.Tensor,
|
512
|
+
parent_pos: int,
|
513
|
+
):
|
514
|
+
if curr == 0:
|
515
|
+
# the first token generated by the target model, and thus it is always
|
516
|
+
# accepted from the previous iteration
|
517
|
+
accepted = True
|
518
|
+
else:
|
519
|
+
parent_bitmask = allocate_token_bitmask[parent_pos]
|
520
|
+
curr_token_id = draft_tokens[curr]
|
521
|
+
# 32 boolean bitmask values are packed into 32-bit integers
|
522
|
+
accepted = (
|
523
|
+
parent_bitmask[curr_token_id // 32] & (1 << (curr_token_id % 32))
|
524
|
+
) != 0
|
525
|
+
|
526
|
+
if accepted:
|
527
|
+
if curr != 0:
|
528
|
+
# Accept the current token
|
529
|
+
grammar.accept_token(draft_tokens[curr])
|
530
|
+
if not grammar.is_terminated():
|
531
|
+
# Generate the bitmask for the current token
|
532
|
+
grammar.fill_vocab_mask(allocate_token_bitmask, curr)
|
533
|
+
if retrieve_next_token[curr] != -1:
|
534
|
+
# Visit the child node
|
535
|
+
dfs(
|
536
|
+
retrieve_next_token[curr],
|
537
|
+
retrieve_next_token,
|
538
|
+
retrieve_next_sibling,
|
539
|
+
curr,
|
540
|
+
)
|
541
|
+
|
542
|
+
if curr != 0:
|
543
|
+
# Rollback the current token
|
544
|
+
grammar.rollback(1)
|
545
|
+
|
546
|
+
if retrieve_next_sibling[curr] != -1:
|
547
|
+
# Visit the sibling node
|
548
|
+
dfs(
|
549
|
+
retrieve_next_sibling[curr],
|
550
|
+
retrieve_next_token,
|
551
|
+
retrieve_next_sibling,
|
552
|
+
parent_pos,
|
553
|
+
)
|
554
|
+
|
555
|
+
dfs(0, retrieve_next_token, retrieve_next_sibling, -1)
|
556
|
+
|
557
|
+
|
558
|
+
def generate_token_bitmask(
|
559
|
+
reqs: List[Req],
|
560
|
+
verify_input: EagleVerifyInput,
|
561
|
+
retrieve_next_token_cpu: torch.Tensor,
|
562
|
+
retrieve_next_sibling_cpu: torch.Tensor,
|
563
|
+
draft_tokens_cpu: torch.Tensor,
|
564
|
+
vocab_size: int,
|
565
|
+
):
|
566
|
+
"""
|
567
|
+
Generate the logit mask for structured output.
|
568
|
+
Draft model's token can be either valid or invalid with respect to the grammar.
|
569
|
+
We need to perform DFS to
|
570
|
+
1. figure out which tokens are accepted by the grammar.
|
571
|
+
2. if so, what is the corresponding logit mask.
|
572
|
+
"""
|
573
|
+
|
574
|
+
num_draft_tokens = draft_tokens_cpu.shape[-1]
|
575
|
+
|
576
|
+
allocate_token_bitmask = None
|
577
|
+
assert len(reqs) == retrieve_next_token_cpu.shape[0]
|
578
|
+
grammar = None
|
579
|
+
for i, req in enumerate(reqs):
|
580
|
+
if req.grammar is not None:
|
581
|
+
if allocate_token_bitmask is None:
|
582
|
+
allocate_token_bitmask = req.grammar.allocate_vocab_mask(
|
583
|
+
vocab_size=vocab_size,
|
584
|
+
batch_size=draft_tokens_cpu.numel(),
|
585
|
+
device="cpu",
|
586
|
+
)
|
587
|
+
grammar = req.grammar
|
588
|
+
s = time.perf_counter()
|
589
|
+
traverse_tree(
|
590
|
+
retrieve_next_token_cpu[i],
|
591
|
+
retrieve_next_sibling_cpu[i],
|
592
|
+
draft_tokens_cpu[i],
|
593
|
+
req.grammar,
|
594
|
+
allocate_token_bitmask[
|
595
|
+
i * num_draft_tokens : (i + 1) * num_draft_tokens
|
596
|
+
],
|
597
|
+
)
|
598
|
+
tree_traverse_time = time.perf_counter() - s
|
599
|
+
if tree_traverse_time > TREE_TRAVERSE_TIME_THRESHOLD:
|
600
|
+
logger.warning(
|
601
|
+
f"Bit mask generation took {tree_traverse_time} seconds with "
|
602
|
+
f"grammar: {req.grammar}"
|
603
|
+
)
|
604
|
+
|
605
|
+
verify_input.grammar = grammar
|
606
|
+
return allocate_token_bitmask
|