sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +130 -59
- sglang/srt/entrypoints/openai/protocol.py +112 -4
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +204 -55
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -6
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +190 -55
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +144 -17
- sglang/srt/managers/scheduler.py +502 -209
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +320 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +82 -40
- sglang/srt/model_executor/model_runner.py +432 -157
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +966 -267
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +99 -28
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +433 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/RECORD +375 -245
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,640 @@
|
|
1
|
+
# Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/gated_delta_rule/fused_recurrent.py
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
4
|
+
|
5
|
+
from typing import Optional, Tuple
|
6
|
+
|
7
|
+
import torch
|
8
|
+
import triton
|
9
|
+
import triton.language as tl
|
10
|
+
|
11
|
+
from sglang.srt.layers.attention.fla.op import exp
|
12
|
+
from sglang.srt.layers.attention.fla.utils import input_guard
|
13
|
+
|
14
|
+
|
15
|
+
@triton.heuristics(
|
16
|
+
{
|
17
|
+
"USE_INITIAL_STATE": lambda args: args["h0"] is not None,
|
18
|
+
"STORE_FINAL_STATE": lambda args: args["ht"] is not None,
|
19
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
20
|
+
}
|
21
|
+
)
|
22
|
+
@triton.jit(do_not_specialize=["T"])
|
23
|
+
def fused_recurrent_gated_delta_rule_fwd_kernel(
|
24
|
+
q,
|
25
|
+
k,
|
26
|
+
v,
|
27
|
+
g,
|
28
|
+
beta,
|
29
|
+
o,
|
30
|
+
h0,
|
31
|
+
ht,
|
32
|
+
cu_seqlens,
|
33
|
+
scale,
|
34
|
+
T,
|
35
|
+
B: tl.constexpr,
|
36
|
+
H: tl.constexpr,
|
37
|
+
HV: tl.constexpr,
|
38
|
+
K: tl.constexpr,
|
39
|
+
V: tl.constexpr,
|
40
|
+
BK: tl.constexpr,
|
41
|
+
BV: tl.constexpr,
|
42
|
+
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
43
|
+
STORE_FINAL_STATE: tl.constexpr, # whether to store final state
|
44
|
+
IS_BETA_HEADWISE: tl.constexpr, # whether beta is headwise vector or scalar,
|
45
|
+
USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
|
46
|
+
IS_VARLEN: tl.constexpr,
|
47
|
+
):
|
48
|
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
49
|
+
i_n, i_hv = i_nh // HV, i_nh % HV
|
50
|
+
i_h = i_hv // (HV // H)
|
51
|
+
if IS_VARLEN:
|
52
|
+
bos, eos = tl.load(cu_seqlens + i_n).to(tl.int64), tl.load(
|
53
|
+
cu_seqlens + i_n + 1
|
54
|
+
).to(tl.int64)
|
55
|
+
all = T
|
56
|
+
T = eos - bos
|
57
|
+
else:
|
58
|
+
bos, eos = i_n * T, i_n * T + T
|
59
|
+
all = B * T
|
60
|
+
o_k = i_k * BK + tl.arange(0, BK)
|
61
|
+
o_v = i_v * BV + tl.arange(0, BV)
|
62
|
+
|
63
|
+
p_q = q + (bos * H + i_h) * K + o_k
|
64
|
+
p_k = k + (bos * H + i_h) * K + o_k
|
65
|
+
p_v = v + (bos * HV + i_hv) * V + o_v
|
66
|
+
if IS_BETA_HEADWISE:
|
67
|
+
p_beta = beta + (bos * HV + i_hv) * V + o_v
|
68
|
+
else:
|
69
|
+
p_beta = beta + bos * HV + i_hv
|
70
|
+
p_g = g + bos * HV + i_hv
|
71
|
+
p_o = o + ((i_k * all + bos) * HV + i_hv) * V + o_v
|
72
|
+
|
73
|
+
mask_k = o_k < K
|
74
|
+
mask_v = o_v < V
|
75
|
+
mask_h = mask_k[:, None] & mask_v[None, :]
|
76
|
+
|
77
|
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
78
|
+
if USE_INITIAL_STATE:
|
79
|
+
p_h0 = h0 + i_nh * K * V + o_k[:, None] * V + o_v[None, :]
|
80
|
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
81
|
+
|
82
|
+
for _ in range(0, T):
|
83
|
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
|
84
|
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
85
|
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
86
|
+
b_g = tl.load(p_g).to(tl.float32)
|
87
|
+
|
88
|
+
if USE_QK_L2NORM_IN_KERNEL:
|
89
|
+
b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) + 1e-6))
|
90
|
+
b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) + 1e-6))
|
91
|
+
b_q = b_q * scale
|
92
|
+
# [BK, BV]
|
93
|
+
b_h *= exp(b_g)
|
94
|
+
# [BV]
|
95
|
+
b_v -= tl.sum(b_h * b_k[:, None], 0)
|
96
|
+
if IS_BETA_HEADWISE:
|
97
|
+
b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32)
|
98
|
+
else:
|
99
|
+
b_beta = tl.load(p_beta).to(tl.float32)
|
100
|
+
b_v *= b_beta
|
101
|
+
# [BK, BV]
|
102
|
+
b_h += b_k[:, None] * b_v[None, :]
|
103
|
+
# [BV]
|
104
|
+
b_o = tl.sum(b_h * b_q[:, None], 0)
|
105
|
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
106
|
+
|
107
|
+
p_q += H * K
|
108
|
+
p_k += H * K
|
109
|
+
p_o += HV * V
|
110
|
+
p_v += HV * V
|
111
|
+
p_g += HV
|
112
|
+
p_beta += HV * (V if IS_BETA_HEADWISE else 1)
|
113
|
+
|
114
|
+
if STORE_FINAL_STATE:
|
115
|
+
p_ht = ht + i_nh * K * V + o_k[:, None] * V + o_v[None, :]
|
116
|
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
|
117
|
+
|
118
|
+
|
119
|
+
def fused_recurrent_gated_delta_rule_fwd(
|
120
|
+
q: torch.Tensor,
|
121
|
+
k: torch.Tensor,
|
122
|
+
v: torch.Tensor,
|
123
|
+
g: torch.Tensor,
|
124
|
+
beta: torch.Tensor,
|
125
|
+
scale: float,
|
126
|
+
initial_state: torch.Tensor,
|
127
|
+
output_final_state: bool,
|
128
|
+
use_qk_l2norm_in_kernel: bool = False,
|
129
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
130
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
131
|
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
132
|
+
HV = v.shape[2]
|
133
|
+
N = B if cu_seqlens is None else len(cu_seqlens) - 1
|
134
|
+
BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8)
|
135
|
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
136
|
+
assert NK == 1, "NK > 1 is not supported yet"
|
137
|
+
num_stages = 3
|
138
|
+
num_warps = 1
|
139
|
+
|
140
|
+
o = q.new_empty(NK, *v.shape)
|
141
|
+
if output_final_state:
|
142
|
+
final_state = q.new_empty(N, HV, K, V, dtype=torch.float32)
|
143
|
+
else:
|
144
|
+
final_state = None
|
145
|
+
|
146
|
+
grid = (NK, NV, N * HV)
|
147
|
+
fused_recurrent_gated_delta_rule_fwd_kernel[grid](
|
148
|
+
q=q,
|
149
|
+
k=k,
|
150
|
+
v=v,
|
151
|
+
g=g,
|
152
|
+
beta=beta,
|
153
|
+
o=o,
|
154
|
+
h0=initial_state,
|
155
|
+
ht=final_state,
|
156
|
+
cu_seqlens=cu_seqlens,
|
157
|
+
scale=scale,
|
158
|
+
T=T,
|
159
|
+
B=B,
|
160
|
+
H=H,
|
161
|
+
HV=HV,
|
162
|
+
K=K,
|
163
|
+
V=V,
|
164
|
+
BK=BK,
|
165
|
+
BV=BV,
|
166
|
+
IS_BETA_HEADWISE=beta.ndim == v.ndim,
|
167
|
+
USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
|
168
|
+
num_warps=num_warps,
|
169
|
+
num_stages=num_stages,
|
170
|
+
)
|
171
|
+
o = o.squeeze(0)
|
172
|
+
return o, final_state
|
173
|
+
|
174
|
+
|
175
|
+
class FusedRecurrentFunction(torch.autograd.Function):
|
176
|
+
|
177
|
+
@staticmethod
|
178
|
+
@input_guard
|
179
|
+
def forward(
|
180
|
+
ctx,
|
181
|
+
q: torch.Tensor,
|
182
|
+
k: torch.Tensor,
|
183
|
+
v: torch.Tensor,
|
184
|
+
g: torch.Tensor,
|
185
|
+
beta: torch.Tensor,
|
186
|
+
scale: float,
|
187
|
+
initial_state: torch.Tensor,
|
188
|
+
output_final_state: bool,
|
189
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
190
|
+
use_qk_l2norm_in_kernel: bool = False,
|
191
|
+
):
|
192
|
+
o, final_state = fused_recurrent_gated_delta_rule_fwd(
|
193
|
+
q=q,
|
194
|
+
k=k,
|
195
|
+
v=v,
|
196
|
+
g=g,
|
197
|
+
beta=beta,
|
198
|
+
scale=scale,
|
199
|
+
initial_state=initial_state,
|
200
|
+
output_final_state=output_final_state,
|
201
|
+
use_qk_l2norm_in_kernel=use_qk_l2norm_in_kernel,
|
202
|
+
cu_seqlens=cu_seqlens,
|
203
|
+
)
|
204
|
+
|
205
|
+
return o, final_state
|
206
|
+
|
207
|
+
@staticmethod
|
208
|
+
@input_guard
|
209
|
+
def backward(ctx, do, dht):
|
210
|
+
raise NotImplementedError(
|
211
|
+
"Backward pass is not implemented yet and we do not have plans to implement it "
|
212
|
+
"because we haven't figured out how to compute dg without materializing the full "
|
213
|
+
"hidden states for all time steps."
|
214
|
+
)
|
215
|
+
|
216
|
+
|
217
|
+
def fused_recurrent_gated_delta_rule(
|
218
|
+
q: torch.Tensor,
|
219
|
+
k: torch.Tensor,
|
220
|
+
v: torch.Tensor,
|
221
|
+
g: torch.Tensor,
|
222
|
+
beta: torch.Tensor = None,
|
223
|
+
scale: float = None,
|
224
|
+
initial_state: torch.Tensor = None,
|
225
|
+
output_final_state: bool = False,
|
226
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
227
|
+
use_qk_l2norm_in_kernel: bool = False,
|
228
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
229
|
+
r"""
|
230
|
+
Args:
|
231
|
+
q (torch.Tensor):
|
232
|
+
queries of shape `[B, T, H, K]`.
|
233
|
+
k (torch.Tensor):
|
234
|
+
keys of shape `[B, T, H, K]`.
|
235
|
+
v (torch.Tensor):
|
236
|
+
values of shape `[B, T, HV, V]`.
|
237
|
+
GVA is applied if `HV > H`.
|
238
|
+
g (torch.Tensor):
|
239
|
+
g (decays) of shape `[B, T, HV]`.
|
240
|
+
beta (torch.Tensor):
|
241
|
+
betas of shape `[B, T, HV]`.
|
242
|
+
scale (Optional[int]):
|
243
|
+
Scale factor for the RetNet attention scores.
|
244
|
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
245
|
+
initial_state (Optional[torch.Tensor]):
|
246
|
+
Initial state of shape `[N, HV, K, V]` for `N` input sequences.
|
247
|
+
For equal-length input sequences, `N` equals the batch size `B`.
|
248
|
+
Default: `None`.
|
249
|
+
output_final_state (Optional[bool]):
|
250
|
+
Whether to output the final state of shape `[N, HV, K, V]`. Default: `False`.
|
251
|
+
cu_seqlens (torch.LongTensor):
|
252
|
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
253
|
+
consistent with the FlashAttention API.
|
254
|
+
Returns:
|
255
|
+
o (torch.Tensor):
|
256
|
+
Outputs of shape `[B, T, HV, V]`.
|
257
|
+
final_state (torch.Tensor):
|
258
|
+
Final state of shape `[N, HV, K, V]` if `output_final_state=True` else `None`.
|
259
|
+
Examples::
|
260
|
+
>>> import torch
|
261
|
+
>>> import torch.nn.functional as F
|
262
|
+
>>> from einops import rearrange
|
263
|
+
>>> from fla.ops.gated_delta_rule import fused_recurrent_gated_delta_rule
|
264
|
+
# inputs with equal lengths
|
265
|
+
>>> B, T, H, HV, K, V = 4, 2048, 4, 8, 512, 512
|
266
|
+
>>> q = torch.randn(B, T, H, K, device='cuda')
|
267
|
+
>>> k = F.normalize(torch.randn(B, T, H, K, device='cuda'), p=2, dim=-1)
|
268
|
+
>>> v = torch.randn(B, T, HV, V, device='cuda')
|
269
|
+
>>> g = F.logsigmoid(torch.rand(B, T, HV, device='cuda'))
|
270
|
+
>>> beta = torch.rand(B, T, HV, device='cuda').sigmoid()
|
271
|
+
>>> h0 = torch.randn(B, HV, K, V, device='cuda')
|
272
|
+
>>> o, ht = fused_gated_recurrent_delta_rule(
|
273
|
+
q, k, v, g, beta,
|
274
|
+
initial_state=h0,
|
275
|
+
output_final_state=True
|
276
|
+
)
|
277
|
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
278
|
+
>>> q, k, v, g, beta = map(lambda x: rearrange(x, 'b t ... -> 1 (b t) ...'), (q, k, v, g, beta))
|
279
|
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
280
|
+
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
281
|
+
>>> o_var, ht_var = fused_gated_recurrent_delta_rule(
|
282
|
+
q, k, v, g, beta,
|
283
|
+
initial_state=h0,
|
284
|
+
output_final_state=True,
|
285
|
+
cu_seqlens=cu_seqlens
|
286
|
+
)
|
287
|
+
"""
|
288
|
+
if cu_seqlens is not None:
|
289
|
+
if q.shape[0] != 1:
|
290
|
+
raise ValueError(
|
291
|
+
f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
292
|
+
f"Please flatten variable-length inputs before processing."
|
293
|
+
)
|
294
|
+
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
|
295
|
+
raise ValueError(
|
296
|
+
f"The number of initial states is expected to be equal to the number of input sequences, "
|
297
|
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}."
|
298
|
+
)
|
299
|
+
if scale is None:
|
300
|
+
scale = k.shape[-1] ** -0.5
|
301
|
+
else:
|
302
|
+
assert scale > 0, "scale must be positive"
|
303
|
+
if beta is None:
|
304
|
+
beta = torch.ones_like(q[..., 0])
|
305
|
+
o, final_state = FusedRecurrentFunction.apply(
|
306
|
+
q,
|
307
|
+
k,
|
308
|
+
v,
|
309
|
+
g,
|
310
|
+
beta,
|
311
|
+
scale,
|
312
|
+
initial_state,
|
313
|
+
output_final_state,
|
314
|
+
cu_seqlens,
|
315
|
+
use_qk_l2norm_in_kernel,
|
316
|
+
)
|
317
|
+
return o, final_state
|
318
|
+
|
319
|
+
|
320
|
+
@triton.heuristics(
|
321
|
+
{
|
322
|
+
"USE_INITIAL_STATE": lambda args: args["h0_source"] is not None,
|
323
|
+
"IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
|
324
|
+
"CACHE_INTERMEDIATE_STATES": lambda args: args["intermediate_states_buffer"]
|
325
|
+
is not None,
|
326
|
+
}
|
327
|
+
)
|
328
|
+
@triton.jit(do_not_specialize=["T"])
|
329
|
+
def fused_recurrent_gated_delta_rule_update_fwd_kernel(
|
330
|
+
q,
|
331
|
+
k,
|
332
|
+
v,
|
333
|
+
g,
|
334
|
+
beta,
|
335
|
+
o,
|
336
|
+
h0_source,
|
337
|
+
h0_indices,
|
338
|
+
cu_seqlens,
|
339
|
+
scale,
|
340
|
+
intermediate_states_buffer,
|
341
|
+
cache_steps,
|
342
|
+
T,
|
343
|
+
B: tl.constexpr,
|
344
|
+
H: tl.constexpr,
|
345
|
+
HV: tl.constexpr,
|
346
|
+
K: tl.constexpr,
|
347
|
+
V: tl.constexpr,
|
348
|
+
BK: tl.constexpr,
|
349
|
+
BV: tl.constexpr,
|
350
|
+
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
351
|
+
IS_BETA_HEADWISE: tl.constexpr, # whether beta is headwise vector or scalar,
|
352
|
+
USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
|
353
|
+
IS_VARLEN: tl.constexpr,
|
354
|
+
DISABLE_STATE_UPDATE: tl.constexpr, # whether to disable final state update
|
355
|
+
DISABLE_OUTPUT_CALCULATION: tl.constexpr, # whether to disable output calculation
|
356
|
+
CACHE_INTERMEDIATE_STATES: tl.constexpr,
|
357
|
+
):
|
358
|
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
359
|
+
i_n, i_hv = i_nh // HV, i_nh % HV
|
360
|
+
i_h = i_hv // (HV // H)
|
361
|
+
if IS_VARLEN:
|
362
|
+
bos, eos = tl.load(cu_seqlens + i_n).to(tl.int64), tl.load(
|
363
|
+
cu_seqlens + i_n + 1
|
364
|
+
).to(tl.int64)
|
365
|
+
all = T
|
366
|
+
T = eos - bos
|
367
|
+
else:
|
368
|
+
bos, eos = i_n * T, i_n * T + T
|
369
|
+
all = B * T
|
370
|
+
o_k = i_k * BK + tl.arange(0, BK)
|
371
|
+
o_v = i_v * BV + tl.arange(0, BV)
|
372
|
+
|
373
|
+
p_q = q + (bos * H + i_h) * K + o_k
|
374
|
+
p_k = k + (bos * H + i_h) * K + o_k
|
375
|
+
p_v = v + (bos * HV + i_hv) * V + o_v
|
376
|
+
if IS_BETA_HEADWISE:
|
377
|
+
p_beta = beta + (bos * HV + i_hv) * V + o_v
|
378
|
+
else:
|
379
|
+
p_beta = beta + bos * HV + i_hv
|
380
|
+
p_g = g + bos * HV + i_hv
|
381
|
+
p_o = o + ((i_k * all + bos) * HV + i_hv) * V + o_v
|
382
|
+
|
383
|
+
mask_k = o_k < K
|
384
|
+
mask_v = o_v < V
|
385
|
+
mask_h = mask_k[:, None] & mask_v[None, :]
|
386
|
+
|
387
|
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
388
|
+
if USE_INITIAL_STATE:
|
389
|
+
idx = tl.load(h0_indices + i_n)
|
390
|
+
# Add bounds checking for idx
|
391
|
+
if idx >= 0: # Assuming negative indices are invalid
|
392
|
+
p_h0 = (
|
393
|
+
h0_source
|
394
|
+
+ idx * HV * K * V
|
395
|
+
+ i_hv * K * V
|
396
|
+
+ o_k[:, None] * V
|
397
|
+
+ o_v[None, :]
|
398
|
+
)
|
399
|
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
400
|
+
|
401
|
+
# Prepare intermediate state cache variables if enabled
|
402
|
+
cache_idx = -1
|
403
|
+
if CACHE_INTERMEDIATE_STATES:
|
404
|
+
cache_idx = tl.load(h0_indices + i_n)
|
405
|
+
|
406
|
+
step_idx = 0
|
407
|
+
for _ in range(0, T):
|
408
|
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
|
409
|
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
410
|
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
411
|
+
b_g = tl.load(p_g).to(tl.float32)
|
412
|
+
|
413
|
+
if USE_QK_L2NORM_IN_KERNEL:
|
414
|
+
b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) + 1e-6))
|
415
|
+
b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) + 1e-6))
|
416
|
+
b_q = b_q * scale
|
417
|
+
# [BK, BV]
|
418
|
+
b_h *= exp(b_g)
|
419
|
+
# [BV]
|
420
|
+
b_v -= tl.sum(b_h * b_k[:, None], 0)
|
421
|
+
if IS_BETA_HEADWISE:
|
422
|
+
b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32)
|
423
|
+
else:
|
424
|
+
b_beta = tl.load(p_beta).to(tl.float32)
|
425
|
+
b_v *= b_beta
|
426
|
+
# [BK, BV]
|
427
|
+
b_h += b_k[:, None] * b_v[None, :]
|
428
|
+
# [BV]
|
429
|
+
if not DISABLE_OUTPUT_CALCULATION:
|
430
|
+
b_o = tl.sum(b_h * b_q[:, None], 0)
|
431
|
+
# core attn output
|
432
|
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
433
|
+
|
434
|
+
# store intermediate states if enabled
|
435
|
+
if CACHE_INTERMEDIATE_STATES:
|
436
|
+
if cache_idx >= 0:
|
437
|
+
# Compute cache pointer for this step
|
438
|
+
step_offset = step_idx * HV * K * V
|
439
|
+
cache_ptr = (
|
440
|
+
intermediate_states_buffer
|
441
|
+
+ cache_idx * cache_steps * HV * K * V
|
442
|
+
+ step_offset
|
443
|
+
+ i_hv * K * V
|
444
|
+
+ o_k[:, None] * V
|
445
|
+
+ o_v[None, :]
|
446
|
+
)
|
447
|
+
tl.store(cache_ptr, b_h.to(cache_ptr.dtype.element_ty), mask=mask_h)
|
448
|
+
|
449
|
+
step_idx += 1
|
450
|
+
|
451
|
+
p_q += H * K
|
452
|
+
p_k += H * K
|
453
|
+
p_o += HV * V
|
454
|
+
p_v += HV * V
|
455
|
+
p_g += HV
|
456
|
+
p_beta += HV * (V if IS_BETA_HEADWISE else 1)
|
457
|
+
|
458
|
+
# Store final state back to h0_source with bounds checking
|
459
|
+
# ssm states
|
460
|
+
if not DISABLE_STATE_UPDATE:
|
461
|
+
idx = tl.load(h0_indices + i_n)
|
462
|
+
if idx >= 0: # Add bounds checking
|
463
|
+
p_h0 = (
|
464
|
+
h0_source
|
465
|
+
+ idx * HV * K * V
|
466
|
+
+ i_hv * K * V
|
467
|
+
+ o_k[:, None] * V
|
468
|
+
+ o_v[None, :]
|
469
|
+
)
|
470
|
+
tl.store(p_h0, b_h.to(p_h0.dtype.element_ty), mask=mask_h)
|
471
|
+
|
472
|
+
|
473
|
+
def fused_recurrent_gated_delta_rule_update_fwd(
|
474
|
+
q: torch.Tensor,
|
475
|
+
k: torch.Tensor,
|
476
|
+
v: torch.Tensor,
|
477
|
+
g: torch.Tensor,
|
478
|
+
beta: torch.Tensor,
|
479
|
+
scale: float,
|
480
|
+
initial_state_source: torch.Tensor,
|
481
|
+
initial_state_indices: torch.Tensor,
|
482
|
+
use_qk_l2norm_in_kernel: bool = False,
|
483
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
484
|
+
disable_state_update: bool = False,
|
485
|
+
disable_output_calculation: bool = False,
|
486
|
+
intermediate_states_buffer: Optional[torch.Tensor] = None,
|
487
|
+
cache_steps: Optional[int] = None,
|
488
|
+
) -> torch.Tensor:
|
489
|
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
490
|
+
HV = v.shape[2]
|
491
|
+
N = B if cu_seqlens is None else len(cu_seqlens) - 1
|
492
|
+
BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8)
|
493
|
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
494
|
+
assert NK == 1, "NK > 1 is not supported yet"
|
495
|
+
num_stages = 3
|
496
|
+
num_warps = 1
|
497
|
+
|
498
|
+
if disable_output_calculation:
|
499
|
+
# When output calculation is disabled, allocate minimal tensor
|
500
|
+
o = q.new_empty(NK, 1, 1, 1, 1) # minimal allocation
|
501
|
+
else:
|
502
|
+
o = q.new_empty(NK, *v.shape)
|
503
|
+
|
504
|
+
grid = (NK, NV, N * HV)
|
505
|
+
|
506
|
+
fused_recurrent_gated_delta_rule_update_fwd_kernel[grid](
|
507
|
+
q=q,
|
508
|
+
k=k,
|
509
|
+
v=v,
|
510
|
+
g=g,
|
511
|
+
beta=beta,
|
512
|
+
o=o,
|
513
|
+
h0_source=initial_state_source,
|
514
|
+
h0_indices=initial_state_indices,
|
515
|
+
cu_seqlens=cu_seqlens,
|
516
|
+
scale=scale,
|
517
|
+
intermediate_states_buffer=intermediate_states_buffer,
|
518
|
+
cache_steps=0 if cache_steps is None else cache_steps,
|
519
|
+
T=T,
|
520
|
+
B=B,
|
521
|
+
H=H,
|
522
|
+
HV=HV,
|
523
|
+
K=K,
|
524
|
+
V=V,
|
525
|
+
BK=BK,
|
526
|
+
BV=BV,
|
527
|
+
IS_BETA_HEADWISE=beta.ndim == v.ndim,
|
528
|
+
USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
|
529
|
+
DISABLE_STATE_UPDATE=disable_state_update,
|
530
|
+
DISABLE_OUTPUT_CALCULATION=disable_output_calculation,
|
531
|
+
num_warps=num_warps,
|
532
|
+
num_stages=num_stages,
|
533
|
+
)
|
534
|
+
o = o.squeeze(0)
|
535
|
+
return o
|
536
|
+
|
537
|
+
|
538
|
+
class FusedRecurrentUpdateFunction(torch.autograd.Function):
|
539
|
+
|
540
|
+
@staticmethod
|
541
|
+
@input_guard
|
542
|
+
def forward(
|
543
|
+
ctx,
|
544
|
+
q: torch.Tensor,
|
545
|
+
k: torch.Tensor,
|
546
|
+
v: torch.Tensor,
|
547
|
+
g: torch.Tensor,
|
548
|
+
beta: torch.Tensor,
|
549
|
+
scale: float,
|
550
|
+
initial_state_source: torch.Tensor,
|
551
|
+
initial_state_indices: torch.Tensor,
|
552
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
553
|
+
use_qk_l2norm_in_kernel: bool = False,
|
554
|
+
disable_state_update: bool = False,
|
555
|
+
disable_output_calculation: bool = False,
|
556
|
+
intermediate_states_buffer: Optional[torch.Tensor] = None,
|
557
|
+
cache_steps: Optional[int] = None,
|
558
|
+
):
|
559
|
+
o = fused_recurrent_gated_delta_rule_update_fwd(
|
560
|
+
q=q,
|
561
|
+
k=k,
|
562
|
+
v=v,
|
563
|
+
g=g,
|
564
|
+
beta=beta,
|
565
|
+
scale=scale,
|
566
|
+
initial_state_source=initial_state_source,
|
567
|
+
initial_state_indices=initial_state_indices,
|
568
|
+
use_qk_l2norm_in_kernel=use_qk_l2norm_in_kernel,
|
569
|
+
cu_seqlens=cu_seqlens,
|
570
|
+
disable_state_update=disable_state_update,
|
571
|
+
disable_output_calculation=disable_output_calculation,
|
572
|
+
intermediate_states_buffer=intermediate_states_buffer,
|
573
|
+
cache_steps=cache_steps,
|
574
|
+
)
|
575
|
+
|
576
|
+
return o
|
577
|
+
|
578
|
+
@staticmethod
|
579
|
+
@input_guard
|
580
|
+
def backward(ctx, do, dht):
|
581
|
+
raise NotImplementedError(
|
582
|
+
"Backward pass is not implemented yet and we do not have plans to implement it "
|
583
|
+
"because we haven't figured out how to compute dg without materializing the full "
|
584
|
+
"hidden states for all time steps."
|
585
|
+
)
|
586
|
+
|
587
|
+
|
588
|
+
def fused_recurrent_gated_delta_rule_update(
|
589
|
+
q: torch.Tensor,
|
590
|
+
k: torch.Tensor,
|
591
|
+
v: torch.Tensor,
|
592
|
+
g: torch.Tensor,
|
593
|
+
beta: torch.Tensor = None,
|
594
|
+
scale: float = None,
|
595
|
+
initial_state_source: torch.Tensor = None,
|
596
|
+
initial_state_indices: torch.Tensor = None,
|
597
|
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
598
|
+
use_qk_l2norm_in_kernel: bool = False,
|
599
|
+
disable_state_update: bool = False,
|
600
|
+
disable_output_calculation: bool = False,
|
601
|
+
intermediate_states_buffer: Optional[torch.Tensor] = None,
|
602
|
+
cache_steps: Optional[int] = None,
|
603
|
+
) -> torch.Tensor:
|
604
|
+
if cu_seqlens is not None:
|
605
|
+
if q.shape[0] != 1:
|
606
|
+
raise ValueError(
|
607
|
+
f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
608
|
+
f"Please flatten variable-length inputs before processing."
|
609
|
+
)
|
610
|
+
if (
|
611
|
+
initial_state_source is not None
|
612
|
+
and initial_state_indices.shape[0] != len(cu_seqlens) - 1
|
613
|
+
):
|
614
|
+
raise ValueError(
|
615
|
+
f"The number of initial states is expected to be equal to the number of input sequences, "
|
616
|
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state_indices.shape[0]}."
|
617
|
+
)
|
618
|
+
if scale is None:
|
619
|
+
scale = k.shape[-1] ** -0.5
|
620
|
+
else:
|
621
|
+
assert scale > 0, "scale must be positive"
|
622
|
+
if beta is None:
|
623
|
+
beta = torch.ones_like(q[..., 0])
|
624
|
+
o = FusedRecurrentUpdateFunction.apply(
|
625
|
+
q,
|
626
|
+
k,
|
627
|
+
v,
|
628
|
+
g,
|
629
|
+
beta,
|
630
|
+
scale,
|
631
|
+
initial_state_source,
|
632
|
+
initial_state_indices,
|
633
|
+
cu_seqlens,
|
634
|
+
use_qk_l2norm_in_kernel,
|
635
|
+
disable_state_update,
|
636
|
+
disable_output_calculation,
|
637
|
+
intermediate_states_buffer,
|
638
|
+
cache_steps,
|
639
|
+
)
|
640
|
+
return o
|