sglang 0.5.2rc2__py3-none-any.whl → 0.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (377) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +267 -32
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/launch_server.py +14 -0
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +8 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +360 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/model_config.py +181 -82
  17. sglang/srt/configs/qwen3_next.py +326 -0
  18. sglang/srt/configs/qwen3_vl.py +586 -0
  19. sglang/srt/connector/__init__.py +8 -1
  20. sglang/srt/connector/remote_instance.py +82 -0
  21. sglang/srt/constrained/base_grammar_backend.py +49 -12
  22. sglang/srt/constrained/llguidance_backend.py +0 -1
  23. sglang/srt/constrained/outlines_backend.py +0 -1
  24. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  25. sglang/srt/constrained/xgrammar_backend.py +30 -9
  26. sglang/srt/custom_op.py +11 -1
  27. sglang/srt/debug_utils/dump_comparator.py +81 -44
  28. sglang/srt/debug_utils/dump_loader.py +97 -0
  29. sglang/srt/debug_utils/dumper.py +21 -6
  30. sglang/srt/debug_utils/text_comparator.py +73 -11
  31. sglang/srt/disaggregation/ascend/conn.py +2 -2
  32. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  33. sglang/srt/disaggregation/base/conn.py +1 -1
  34. sglang/srt/disaggregation/common/conn.py +279 -108
  35. sglang/srt/disaggregation/decode.py +71 -19
  36. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  37. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  38. sglang/srt/disaggregation/fake/conn.py +1 -1
  39. sglang/srt/disaggregation/mini_lb.py +6 -445
  40. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  41. sglang/srt/disaggregation/nixl/conn.py +326 -53
  42. sglang/srt/disaggregation/prefill.py +36 -17
  43. sglang/srt/disaggregation/utils.py +40 -54
  44. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  45. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  46. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  47. sglang/srt/distributed/parallel_state.py +156 -80
  48. sglang/srt/entrypoints/engine.py +59 -18
  49. sglang/srt/entrypoints/grpc_request_manager.py +855 -0
  50. sglang/srt/entrypoints/grpc_server.py +810 -0
  51. sglang/srt/entrypoints/http_server.py +130 -59
  52. sglang/srt/entrypoints/openai/protocol.py +112 -4
  53. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  54. sglang/srt/entrypoints/openai/serving_chat.py +204 -55
  55. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  56. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  57. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  58. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  59. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  60. sglang/srt/environ.py +285 -0
  61. sglang/srt/eplb/eplb_manager.py +2 -2
  62. sglang/srt/eplb/expert_distribution.py +26 -13
  63. sglang/srt/eplb/expert_location.py +38 -8
  64. sglang/srt/eplb/expert_location_updater.py +1 -1
  65. sglang/srt/function_call/base_format_detector.py +3 -6
  66. sglang/srt/function_call/ebnf_composer.py +11 -9
  67. sglang/srt/function_call/function_call_parser.py +9 -2
  68. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  69. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  70. sglang/srt/function_call/json_array_parser.py +63 -0
  71. sglang/srt/function_call/kimik2_detector.py +17 -4
  72. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  73. sglang/srt/function_call/utils.py +96 -5
  74. sglang/srt/grpc/__init__.py +1 -0
  75. sglang/srt/grpc/compile_proto.py +245 -0
  76. sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
  77. sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
  78. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
  79. sglang/srt/layers/activation.py +143 -9
  80. sglang/srt/layers/attention/aiter_backend.py +14 -15
  81. sglang/srt/layers/attention/ascend_backend.py +115 -9
  82. sglang/srt/layers/attention/attention_registry.py +206 -0
  83. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  84. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  85. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  86. sglang/srt/layers/attention/fla/chunk.py +242 -0
  87. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  88. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  89. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  90. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  91. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  92. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  93. sglang/srt/layers/attention/fla/index.py +37 -0
  94. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  95. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  96. sglang/srt/layers/attention/fla/op.py +66 -0
  97. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  98. sglang/srt/layers/attention/fla/utils.py +331 -0
  99. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  100. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  101. sglang/srt/layers/attention/flashinfer_backend.py +118 -198
  102. sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
  103. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  104. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  105. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  106. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  107. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  108. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
  109. sglang/srt/layers/attention/mamba/mamba.py +629 -0
  110. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  111. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  112. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  113. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  114. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  115. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  116. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  117. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  119. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  120. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  121. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  122. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  123. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  124. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  125. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  126. sglang/srt/layers/attention/nsa/utils.py +24 -0
  127. sglang/srt/layers/attention/nsa_backend.py +887 -0
  128. sglang/srt/layers/attention/tbo_backend.py +6 -6
  129. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  130. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  131. sglang/srt/layers/attention/triton_backend.py +57 -7
  132. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  133. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  134. sglang/srt/layers/attention/vision.py +58 -0
  135. sglang/srt/layers/attention/wave_backend.py +4 -4
  136. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  137. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  138. sglang/srt/layers/communicator.py +8 -0
  139. sglang/srt/layers/dp_attention.py +41 -2
  140. sglang/srt/layers/elementwise.py +3 -1
  141. sglang/srt/layers/layernorm.py +34 -15
  142. sglang/srt/layers/linear.py +55 -7
  143. sglang/srt/layers/logits_processor.py +44 -12
  144. sglang/srt/layers/moe/__init__.py +2 -1
  145. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  146. sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
  147. sglang/srt/layers/moe/ep_moe/layer.py +256 -63
  148. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  149. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  150. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  151. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  152. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  153. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  154. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  155. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  164. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  165. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  166. sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
  167. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  168. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  169. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  170. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  171. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  172. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  173. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  174. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  175. sglang/srt/layers/moe/topk.py +30 -9
  176. sglang/srt/layers/moe/utils.py +22 -6
  177. sglang/srt/layers/parameter.py +23 -6
  178. sglang/srt/layers/quantization/awq.py +19 -7
  179. sglang/srt/layers/quantization/base_config.py +11 -6
  180. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  181. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  182. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  183. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  184. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  185. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  186. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  187. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  188. sglang/srt/layers/quantization/fp8.py +78 -49
  189. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  190. sglang/srt/layers/quantization/gptq.py +25 -17
  191. sglang/srt/layers/quantization/modelopt_quant.py +190 -55
  192. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  193. sglang/srt/layers/quantization/mxfp4.py +74 -42
  194. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  195. sglang/srt/layers/quantization/unquant.py +135 -47
  196. sglang/srt/layers/quantization/w4afp8.py +26 -17
  197. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  198. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  199. sglang/srt/layers/rotary_embedding.py +78 -31
  200. sglang/srt/layers/sampler.py +213 -21
  201. sglang/srt/layers/utils.py +23 -0
  202. sglang/srt/lora/backend/base_backend.py +50 -8
  203. sglang/srt/lora/backend/chunked_backend.py +348 -0
  204. sglang/srt/lora/backend/triton_backend.py +99 -5
  205. sglang/srt/lora/layers.py +32 -0
  206. sglang/srt/lora/lora.py +8 -3
  207. sglang/srt/lora/lora_manager.py +52 -118
  208. sglang/srt/lora/mem_pool.py +25 -11
  209. sglang/srt/lora/triton_ops/__init__.py +4 -0
  210. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  211. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  212. sglang/srt/lora/utils.py +22 -11
  213. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  214. sglang/srt/managers/cache_controller.py +199 -301
  215. sglang/srt/managers/data_parallel_controller.py +115 -80
  216. sglang/srt/managers/detokenizer_manager.py +19 -15
  217. sglang/srt/managers/disagg_service.py +46 -0
  218. sglang/srt/managers/io_struct.py +340 -109
  219. sglang/srt/managers/mm_utils.py +44 -6
  220. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  221. sglang/srt/managers/multimodal_processor.py +1 -2
  222. sglang/srt/managers/overlap_utils.py +53 -0
  223. sglang/srt/managers/schedule_batch.py +240 -138
  224. sglang/srt/managers/schedule_policy.py +144 -17
  225. sglang/srt/managers/scheduler.py +502 -209
  226. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  227. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  228. sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
  229. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  230. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  231. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  232. sglang/srt/managers/tokenizer_manager.py +320 -632
  233. sglang/srt/managers/tp_worker.py +81 -22
  234. sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
  235. sglang/srt/managers/utils.py +1 -45
  236. sglang/srt/mem_cache/allocator.py +14 -20
  237. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  238. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  239. sglang/srt/mem_cache/chunk_cache.py +8 -1
  240. sglang/srt/mem_cache/evict_policy.py +23 -0
  241. sglang/srt/mem_cache/hicache_storage.py +43 -24
  242. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  243. sglang/srt/mem_cache/memory_pool.py +535 -58
  244. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  245. sglang/srt/mem_cache/radix_cache.py +222 -73
  246. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  247. sglang/srt/mem_cache/storage/__init__.py +10 -0
  248. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  249. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  250. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  251. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  252. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  253. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  254. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  255. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  256. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  257. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  258. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  259. sglang/srt/mem_cache/swa_radix_cache.py +25 -36
  260. sglang/srt/metrics/collector.py +511 -132
  261. sglang/srt/metrics/func_timer.py +2 -7
  262. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  263. sglang/srt/metrics/utils.py +8 -1
  264. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  265. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  266. sglang/srt/model_executor/forward_batch_info.py +82 -40
  267. sglang/srt/model_executor/model_runner.py +432 -157
  268. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  269. sglang/srt/model_loader/__init__.py +9 -3
  270. sglang/srt/model_loader/loader.py +133 -5
  271. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  272. sglang/srt/model_loader/weight_utils.py +158 -3
  273. sglang/srt/models/apertus.py +686 -0
  274. sglang/srt/models/bailing_moe.py +820 -217
  275. sglang/srt/models/bailing_moe_nextn.py +168 -0
  276. sglang/srt/models/deepseek_nextn.py +6 -1
  277. sglang/srt/models/deepseek_v2.py +607 -130
  278. sglang/srt/models/dots_ocr.py +173 -0
  279. sglang/srt/models/dots_vlm.py +174 -0
  280. sglang/srt/models/dots_vlm_vit.py +337 -0
  281. sglang/srt/models/ernie4.py +1 -1
  282. sglang/srt/models/falcon_h1.py +576 -0
  283. sglang/srt/models/gemma3_causal.py +0 -2
  284. sglang/srt/models/gemma3_mm.py +1 -1
  285. sglang/srt/models/gemma3n_mm.py +2 -2
  286. sglang/srt/models/glm4_moe.py +4 -4
  287. sglang/srt/models/glm4_moe_nextn.py +2 -2
  288. sglang/srt/models/glm4v.py +5 -3
  289. sglang/srt/models/glm4v_moe.py +4 -1
  290. sglang/srt/models/gpt_oss.py +8 -31
  291. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  292. sglang/srt/models/llama.py +4 -0
  293. sglang/srt/models/llama4.py +9 -0
  294. sglang/srt/models/llama_eagle3.py +13 -0
  295. sglang/srt/models/longcat_flash.py +3 -3
  296. sglang/srt/models/longcat_flash_nextn.py +1 -1
  297. sglang/srt/models/mllama4.py +40 -4
  298. sglang/srt/models/opt.py +637 -0
  299. sglang/srt/models/qwen2_5_vl.py +29 -5
  300. sglang/srt/models/qwen2_audio.py +1 -1
  301. sglang/srt/models/qwen2_moe.py +120 -13
  302. sglang/srt/models/qwen2_vl.py +1 -1
  303. sglang/srt/models/qwen3.py +18 -3
  304. sglang/srt/models/qwen3_moe.py +32 -4
  305. sglang/srt/models/qwen3_next.py +1069 -0
  306. sglang/srt/models/qwen3_next_mtp.py +112 -0
  307. sglang/srt/models/qwen3_vl.py +787 -0
  308. sglang/srt/models/qwen3_vl_moe.py +471 -0
  309. sglang/srt/models/registry.py +15 -3
  310. sglang/srt/models/sarashina2_vision.py +269 -0
  311. sglang/srt/models/solar.py +505 -0
  312. sglang/srt/models/starcoder2.py +357 -0
  313. sglang/srt/models/step3_vl.py +1 -1
  314. sglang/srt/models/torch_native_llama.py +9 -2
  315. sglang/srt/models/utils.py +51 -0
  316. sglang/srt/multimodal/processors/base_processor.py +15 -7
  317. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  318. sglang/srt/multimodal/processors/glm4v.py +9 -9
  319. sglang/srt/multimodal/processors/internvl.py +153 -129
  320. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  321. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  322. sglang/srt/offloader.py +27 -3
  323. sglang/srt/parser/jinja_template_utils.py +6 -0
  324. sglang/srt/sampling/sampling_batch_info.py +38 -17
  325. sglang/srt/sampling/sampling_params.py +7 -0
  326. sglang/srt/server_args.py +966 -267
  327. sglang/srt/server_args_config_parser.py +146 -0
  328. sglang/srt/single_batch_overlap.py +151 -0
  329. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  330. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  331. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  332. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  333. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  334. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  335. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  336. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  337. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  338. sglang/srt/speculative/eagle_worker.py +99 -28
  339. sglang/srt/speculative/ngram_utils.py +428 -0
  340. sglang/srt/speculative/ngram_worker.py +245 -0
  341. sglang/srt/speculative/spec_info.py +52 -0
  342. sglang/srt/speculative/spec_utils.py +606 -0
  343. sglang/srt/speculative/standalone_worker.py +109 -0
  344. sglang/srt/torch_memory_saver_adapter.py +5 -7
  345. sglang/srt/tracing/trace.py +578 -0
  346. sglang/srt/two_batch_overlap.py +8 -5
  347. sglang/srt/utils/__init__.py +2 -0
  348. sglang/srt/{utils.py → utils/common.py} +433 -77
  349. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
  350. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  351. sglang/srt/utils/rpd_utils.py +452 -0
  352. sglang/srt/utils/slow_rank_detector.py +71 -0
  353. sglang/srt/warmup.py +8 -4
  354. sglang/srt/weight_sync/utils.py +2 -2
  355. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  356. sglang/test/get_logits_ut.py +57 -0
  357. sglang/test/run_eval.py +79 -11
  358. sglang/test/runners.py +5 -1
  359. sglang/test/simple_eval_common.py +5 -2
  360. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  361. sglang/test/test_block_fp8.py +2 -2
  362. sglang/test/test_cutlass_moe.py +24 -6
  363. sglang/test/test_deterministic.py +297 -0
  364. sglang/test/test_disaggregation_utils.py +77 -0
  365. sglang/test/test_fp4_moe.py +370 -1
  366. sglang/test/test_programs.py +1 -1
  367. sglang/test/test_utils.py +383 -5
  368. sglang/utils.py +21 -1
  369. sglang/version.py +1 -1
  370. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
  371. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/RECORD +375 -245
  372. sglang/srt/disaggregation/launch_lb.py +0 -118
  373. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  374. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  375. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
  376. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
  377. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,8 @@ from typing import TYPE_CHECKING, List, Optional
22
22
  import torch
23
23
  from torch.nn.parameter import Parameter
24
24
 
25
+ from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
26
+ from sglang.srt.layers.moe.moe_runner.triton import TritonMoeQuantInfo
25
27
  from sglang.srt.layers.moe.utils import get_moe_runner_backend
26
28
  from sglang.srt.layers.quantization.base_config import (
27
29
  FusedMoEMethodBase,
@@ -59,8 +61,10 @@ if is_flashinfer_available():
59
61
  logger = logging.getLogger(__name__)
60
62
 
61
63
  if TYPE_CHECKING:
62
- from sglang.srt.layers.moe.moe_runner import MoeRunnerConfig
63
- from sglang.srt.layers.moe.topk import TopKOutput
64
+ from sglang.srt.layers.moe.token_dispatcher import (
65
+ CombineInput,
66
+ StandardDispatchOutput,
67
+ )
64
68
 
65
69
  _is_hip = is_hip()
66
70
 
@@ -283,7 +287,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
283
287
  layer: torch.nn.Module,
284
288
  num_experts: int,
285
289
  hidden_size: int,
286
- intermediate_size: int,
290
+ intermediate_size_per_partition: int,
287
291
  params_dtype: torch.dtype,
288
292
  with_bias: bool = False,
289
293
  **extra_weight_attrs,
@@ -296,26 +300,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
296
300
 
297
301
  # pad the intermediate size to be a multiple of 2 * mxfp4_block
298
302
  # for to hold non-uniform sharded tensor as well as swizzling
299
- intermediate_size_per_partition_after_pad = intermediate_size
303
+ intermediate_size_per_partition_after_pad = intermediate_size_per_partition
300
304
  if _is_sm100_supported:
301
305
  if self.use_flashinfer:
302
306
  intermediate_size_per_partition_after_pad = round_up(
303
- intermediate_size, 256
307
+ intermediate_size_per_partition, 256
304
308
  )
305
309
  hidden_size = round_up(hidden_size, 256)
306
310
  else:
307
311
  intermediate_size_per_partition_after_pad = round_up(
308
- intermediate_size, 64
312
+ intermediate_size_per_partition, 64
309
313
  )
310
314
  elif has_triton_kernels:
311
315
  # TODO: this is a hack to make
312
316
  # intermediate_size_per_partition_after_pad the same as the
313
317
  # per_rank_intermediate_size during weight loading
314
318
  intermediate_size_per_partition_after_pad = round_up(
315
- intermediate_size, mxfp4_block
319
+ intermediate_size_per_partition, mxfp4_block
316
320
  )
317
321
 
318
- self.intermediate_size = intermediate_size_per_partition_after_pad
322
+ self.intermediate_size_per_partition = intermediate_size_per_partition_after_pad
319
323
 
320
324
  self.hidden_size = hidden_size
321
325
  # Fused gate_up_proj (column parallel)
@@ -410,31 +414,35 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
410
414
  assert (
411
415
  layer.w13_weight.dim() == 3
412
416
  and layer.w13_weight.shape[0] == self.num_experts
413
- and layer.w13_weight.shape[1] == self.intermediate_size * 2
417
+ and layer.w13_weight.shape[1]
418
+ == self.intermediate_size_per_partition * 2
414
419
  and layer.w13_weight.shape[2] == self.hidden_size // 2
415
420
  )
416
421
  assert (
417
422
  layer.w13_weight_scale.dim() == 3
418
423
  and layer.w13_weight_scale.shape[0] == self.num_experts
419
- and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
424
+ and layer.w13_weight_scale.shape[1]
425
+ == self.intermediate_size_per_partition * 2
420
426
  and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
421
427
  )
422
428
  assert (
423
429
  layer.w2_weight.dim() == 3
424
430
  and layer.w2_weight.shape[0] == self.num_experts
425
431
  and layer.w2_weight.shape[1] == self.hidden_size
426
- and layer.w2_weight.shape[2] == self.intermediate_size // 2
432
+ and layer.w2_weight.shape[2]
433
+ == self.intermediate_size_per_partition // 2
427
434
  )
428
435
  assert (
429
436
  layer.w2_weight_scale.dim() == 3
430
437
  and layer.w2_weight_scale.shape[1] == self.hidden_size
431
438
  and layer.w2_weight_scale.shape[2]
432
- == self.intermediate_size // sf_block_size
439
+ == self.intermediate_size_per_partition // sf_block_size
433
440
  )
434
441
  assert (
435
442
  layer.w13_weight_bias.dim() == 2
436
443
  and layer.w13_weight_bias.shape[0] == self.num_experts
437
- and layer.w13_weight_bias.shape[1] == self.intermediate_size * 2
444
+ and layer.w13_weight_bias.shape[1]
445
+ == self.intermediate_size_per_partition * 2
438
446
  )
439
447
  assert (
440
448
  layer.w2_weight_bias.dim() == 2
@@ -511,7 +519,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
511
519
  torch.stack(gemm1_scales_mxfp4_shuffled)
512
520
  .reshape(
513
521
  self.num_experts,
514
- 2 * self.intermediate_size,
522
+ 2 * self.intermediate_size_per_partition,
515
523
  self.hidden_size // sf_block_size,
516
524
  )
517
525
  .view(torch.float8_e4m3fn)
@@ -523,7 +531,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
523
531
  .reshape(
524
532
  self.num_experts,
525
533
  self.hidden_size,
526
- self.intermediate_size // sf_block_size,
534
+ self.intermediate_size_per_partition // sf_block_size,
527
535
  )
528
536
  .view(torch.float8_e4m3fn)
529
537
  )
@@ -613,16 +621,26 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
613
621
 
614
622
  return tile_tokens_dim
615
623
 
624
+ def create_moe_runner(
625
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
626
+ ):
627
+ self.moe_runner_config = moe_runner_config
628
+ self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
629
+
616
630
  def apply(
617
631
  self,
618
632
  layer: torch.nn.Module,
619
- x: torch.Tensor,
620
- topk_output: TopKOutput,
621
- moe_runner_config: MoeRunnerConfig,
622
- ) -> torch.Tensor:
633
+ dispatch_output: StandardDispatchOutput,
634
+ ) -> CombineInput:
623
635
 
636
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
624
637
  from sglang.srt.layers.moe.topk import TopKOutputChecker
625
638
 
639
+ x = dispatch_output.hidden_states
640
+ topk_output = dispatch_output.topk_output
641
+
642
+ moe_runner_config = self.moe_runner_config
643
+
626
644
  if self.use_flashinfer:
627
645
  # When bf16 mode is enabled, we don't need to quantize the input,
628
646
  # TRT-LLM automatically handles quantization in the kernel implementation and pipelines it with GEMM operations,
@@ -674,7 +692,7 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
674
692
  top_k,
675
693
  None, # n_group # TODO: support n_group
676
694
  None, # topk_group # TODO: support topk_group
677
- self.intermediate_size, # padded to multiple of 256
695
+ self.intermediate_size_per_partition, # padded to multiple of 256
678
696
  layer.moe_ep_rank * layer.num_local_experts, # local_expert_offset
679
697
  layer.num_local_experts, # local num experts
680
698
  None,
@@ -682,14 +700,14 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
682
700
  1, # routing_method_type, renormalize
683
701
  True, # do finalize
684
702
  )[0]
685
- return trtllm_gen_output
703
+ return StandardCombineInput(hidden_states=trtllm_gen_output)
686
704
 
687
705
  if self.use_triton_kernels:
688
706
  assert (
689
707
  layer.moe_ep_size == 1
690
708
  ), "Expert parallel is not supported when using triton kernels"
691
709
  if self.with_bias:
692
- return self.triton_kernel_moe_with_bias_forward(
710
+ output = self.triton_kernel_moe_with_bias_forward(
693
711
  hidden_states=x,
694
712
  w1=self.w13_weight_triton_tensor,
695
713
  w1_pcg=self.w13_precision_config,
@@ -701,25 +719,22 @@ class Mxfp4MoEMethod(FusedMoEMethodBase):
701
719
  moe_runner_config=moe_runner_config,
702
720
  )
703
721
  else:
704
- return self.triton_kernel_moe_forward(
722
+ output = self.triton_kernel_moe_forward(
705
723
  hidden_states=x,
706
724
  w1=layer.w13_weight,
707
725
  w2=layer.w2_weight,
708
726
  topk_output=topk_output,
709
727
  moe_runner_config=moe_runner_config,
710
728
  )
729
+ return StandardCombineInput(hidden_states=output)
711
730
  else:
712
- from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
713
-
714
- return fused_experts(
715
- hidden_states=x,
716
- w1=layer.w13_weight,
717
- w2=layer.w2_weight,
718
- topk_output=topk_output,
719
- moe_runner_config=moe_runner_config,
720
- b1=layer.w13_weight_bias,
721
- b2=layer.w2_weight_bias,
731
+ quant_info = TritonMoeQuantInfo(
732
+ w13_weight=layer.w13_weight,
733
+ w2_weight=layer.w2_weight,
734
+ b13=getattr(layer, "w13_weight_bias", None),
735
+ b2=getattr(layer, "w2_weight_bias", None),
722
736
  )
737
+ return self.runner.run(dispatch_output, quant_info)
723
738
 
724
739
 
725
740
  class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
@@ -798,7 +813,7 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
798
813
 
799
814
  return w, mx_scales
800
815
 
801
- def process_weights_after_loading(self, layer: Module) -> None:
816
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
802
817
  w13, w13_mx_scales = self.mxfp4_quantize(layer.w13_weight.data)
803
818
  w2, w2_mx_scales = self.mxfp4_quantize(layer.w2_weight.data)
804
819
 
@@ -808,22 +823,38 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
808
823
  layer.w2_weight = torch.nn.Parameter(w2, requires_grad=False)
809
824
  layer.w2_weight_scale = torch.nn.Parameter(w2_mx_scales, requires_grad=False)
810
825
 
826
+ def create_moe_runner(
827
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
828
+ ):
829
+ self.moe_runner_config = moe_runner_config
830
+
811
831
  def apply(
812
832
  self,
813
833
  layer: torch.nn.Module,
814
- x: torch.Tensor,
815
- topk_output: TopKOutput,
816
- moe_runner_config: MoeRunnerConfig,
817
- ) -> torch.Tensor:
834
+ dispatch_output: StandardDispatchOutput,
835
+ ) -> CombineInput:
836
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
837
+
838
+ x = dispatch_output.hidden_states
839
+ topk_output = dispatch_output.topk_output
840
+
818
841
  topk_weights, topk_ids, _ = topk_output
819
842
  if _is_hip:
820
843
  topk_weights = topk_weights.to(
821
844
  torch.float32
822
845
  ) # aiter's moe_sorting requires topk_weights to be FP32
823
- return fused_moe(
846
+
847
+ if hasattr(torch, "float4_e2m1fn_x2"):
848
+ w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
849
+ w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
850
+ else:
851
+ w13_weight = layer.w13_weight
852
+ w2_weight = layer.w2_weight
853
+
854
+ output = fused_moe(
824
855
  x,
825
- layer.w13_weight,
826
- layer.w2_weight,
856
+ w13_weight,
857
+ w2_weight,
827
858
  topk_weights,
828
859
  topk_ids,
829
860
  quant_type=QuantType.per_1x32,
@@ -831,8 +862,9 @@ class Mxfp4DynamicQuantMoEMethod(FusedMoEMethodBase):
831
862
  w2_scale=layer.w2_weight_scale,
832
863
  activation=(
833
864
  ActivationType.Silu
834
- if moe_runner_config.activation == "silu"
865
+ if self.moe_runner_config.activation == "silu"
835
866
  else ActivationType.Gelu
836
867
  ),
837
868
  doweight_stage1=False,
838
869
  )
870
+ return StandardCombineInput(hidden_states=output)
@@ -10,40 +10,37 @@ from aiter import ActivationType, QuantType, biased_grouped_topk
10
10
  from aiter.fused_moe import fused_moe
11
11
  from aiter.utility.fp4_utils import e8m0_shuffle
12
12
 
13
- from sglang.srt.utils import get_bool_env_var, mxfp_supported, set_weight_attrs
13
+ from sglang.srt.layers.moe import MoeRunnerConfig
14
+ from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
15
+ from sglang.srt.utils import get_bool_env_var, is_hip, mxfp_supported, set_weight_attrs
16
+
17
+ if TYPE_CHECKING:
18
+ from sglang.srt.layers.moe.token_dispatcher import (
19
+ CombineInput,
20
+ StandardDispatchOutput,
21
+ )
22
+ from sglang.srt.layers.quantization.quark.quark import QuarkConfig
14
23
 
15
24
  logger = logging.getLogger(__name__)
16
25
 
26
+ _is_hip = is_hip()
27
+
17
28
  __all__ = ["QuarkMoEMethod", "QuarkW4A4MXFp4MoEMethod"]
18
29
 
19
30
  OCP_MX_BLOCK_SIZE = 32
20
31
 
21
32
  if TYPE_CHECKING:
22
- from sglang.srt.layers.moe.topk import TopKOutput
23
-
24
-
25
- class QuarkMoEMethod:
26
- def __new__(cls, *args, **kwargs):
27
- from sglang.srt.layers.quantization.base_config import FusedMoEMethodBase
28
-
29
- if not hasattr(cls, "_initialized"):
30
- original_init = cls.__init__
31
- new_cls = type(
32
- cls.__name__,
33
- (FusedMoEMethodBase,),
34
- {
35
- "__init__": original_init,
36
- **{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
37
- },
38
- )
39
- obj = super(new_cls, new_cls).__new__(new_cls)
40
- obj.__init__(*args, **kwargs)
41
- return obj
42
- return super().__new__(cls)
33
+ from sglang.srt.layers.quantization import QuarkConfig
34
+
35
+
36
+ class QuarkMoEMethod(FusedMoEMethodBase):
37
+
38
+ def __init__(self, quant_config: QuarkConfig):
39
+ self.quant_config = quant_config
43
40
 
44
41
  @staticmethod
45
42
  def get_moe_method(
46
- quant_config: "QuarkConfig", # type: ignore # noqa E501 # noqa F821
43
+ quant_config: QuarkConfig, # type: ignore # noqa E501 # noqa F821
47
44
  module: torch.nn.Module,
48
45
  layer_name: str,
49
46
  ) -> "QuarkMoEMethod":
@@ -170,19 +167,39 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
170
167
  # layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale, requires_grad=False)
171
168
  layer.w2_weight_scale.data = w2_weight_scale.view(s0, s1, -1)
172
169
 
170
+ def create_moe_runner(
171
+ self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
172
+ ):
173
+ self.moe_runner_config = moe_runner_config
174
+
173
175
  def apply(
174
176
  self,
175
177
  layer: torch.nn.Module,
176
- x: torch.Tensor,
177
- topk_output: TopKOutput,
178
- moe_runner_config: MoeRunnerConfig,
179
- ) -> torch.Tensor:
178
+ dispatch_output: StandardDispatchOutput,
179
+ ) -> CombineInput:
180
+
181
+ from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
182
+
183
+ x = dispatch_output.hidden_states
184
+ topk_output = dispatch_output.topk_output
185
+ moe_runner_config = self.moe_runner_config
180
186
  topk_weights, topk_ids, _ = topk_output
187
+ if _is_hip:
188
+ topk_weights = topk_weights.to(
189
+ torch.float32
190
+ ) # aiter's moe_sorting requires topk_weights to be FP32
191
+
192
+ if hasattr(torch, "float4_e2m1fn_x2"):
193
+ w13_weight = layer.w13_weight.view(torch.float4_e2m1fn_x2)
194
+ w2_weight = layer.w2_weight.view(torch.float4_e2m1fn_x2)
195
+ else:
196
+ w13_weight = layer.w13_weight
197
+ w2_weight = layer.w2_weight
181
198
 
182
- return fused_moe(
199
+ output = fused_moe(
183
200
  x,
184
- layer.w13_weight,
185
- layer.w2_weight,
201
+ w13_weight,
202
+ w2_weight,
186
203
  topk_weights,
187
204
  topk_ids,
188
205
  quant_type=QuantType.per_1x32,
@@ -195,3 +212,4 @@ class QuarkW4A4MXFp4MoEMethod(QuarkMoEMethod):
195
212
  ),
196
213
  doweight_stage1=False,
197
214
  )
215
+ return StandardCombineInput(hidden_states=output)