sglang 0.5.2rc2__py3-none-any.whl → 0.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (377) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +267 -32
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/launch_server.py +14 -0
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +8 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +360 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/model_config.py +181 -82
  17. sglang/srt/configs/qwen3_next.py +326 -0
  18. sglang/srt/configs/qwen3_vl.py +586 -0
  19. sglang/srt/connector/__init__.py +8 -1
  20. sglang/srt/connector/remote_instance.py +82 -0
  21. sglang/srt/constrained/base_grammar_backend.py +49 -12
  22. sglang/srt/constrained/llguidance_backend.py +0 -1
  23. sglang/srt/constrained/outlines_backend.py +0 -1
  24. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  25. sglang/srt/constrained/xgrammar_backend.py +30 -9
  26. sglang/srt/custom_op.py +11 -1
  27. sglang/srt/debug_utils/dump_comparator.py +81 -44
  28. sglang/srt/debug_utils/dump_loader.py +97 -0
  29. sglang/srt/debug_utils/dumper.py +21 -6
  30. sglang/srt/debug_utils/text_comparator.py +73 -11
  31. sglang/srt/disaggregation/ascend/conn.py +2 -2
  32. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  33. sglang/srt/disaggregation/base/conn.py +1 -1
  34. sglang/srt/disaggregation/common/conn.py +279 -108
  35. sglang/srt/disaggregation/decode.py +71 -19
  36. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  37. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  38. sglang/srt/disaggregation/fake/conn.py +1 -1
  39. sglang/srt/disaggregation/mini_lb.py +6 -445
  40. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  41. sglang/srt/disaggregation/nixl/conn.py +326 -53
  42. sglang/srt/disaggregation/prefill.py +36 -17
  43. sglang/srt/disaggregation/utils.py +40 -54
  44. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  45. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  46. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  47. sglang/srt/distributed/parallel_state.py +156 -80
  48. sglang/srt/entrypoints/engine.py +59 -18
  49. sglang/srt/entrypoints/grpc_request_manager.py +855 -0
  50. sglang/srt/entrypoints/grpc_server.py +810 -0
  51. sglang/srt/entrypoints/http_server.py +130 -59
  52. sglang/srt/entrypoints/openai/protocol.py +112 -4
  53. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  54. sglang/srt/entrypoints/openai/serving_chat.py +204 -55
  55. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  56. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  57. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  58. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  59. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  60. sglang/srt/environ.py +285 -0
  61. sglang/srt/eplb/eplb_manager.py +2 -2
  62. sglang/srt/eplb/expert_distribution.py +26 -13
  63. sglang/srt/eplb/expert_location.py +38 -8
  64. sglang/srt/eplb/expert_location_updater.py +1 -1
  65. sglang/srt/function_call/base_format_detector.py +3 -6
  66. sglang/srt/function_call/ebnf_composer.py +11 -9
  67. sglang/srt/function_call/function_call_parser.py +9 -2
  68. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  69. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  70. sglang/srt/function_call/json_array_parser.py +63 -0
  71. sglang/srt/function_call/kimik2_detector.py +17 -4
  72. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  73. sglang/srt/function_call/utils.py +96 -5
  74. sglang/srt/grpc/__init__.py +1 -0
  75. sglang/srt/grpc/compile_proto.py +245 -0
  76. sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
  77. sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
  78. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
  79. sglang/srt/layers/activation.py +143 -9
  80. sglang/srt/layers/attention/aiter_backend.py +14 -15
  81. sglang/srt/layers/attention/ascend_backend.py +115 -9
  82. sglang/srt/layers/attention/attention_registry.py +206 -0
  83. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  84. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  85. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  86. sglang/srt/layers/attention/fla/chunk.py +242 -0
  87. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  88. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  89. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  90. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  91. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  92. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  93. sglang/srt/layers/attention/fla/index.py +37 -0
  94. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  95. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  96. sglang/srt/layers/attention/fla/op.py +66 -0
  97. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  98. sglang/srt/layers/attention/fla/utils.py +331 -0
  99. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  100. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  101. sglang/srt/layers/attention/flashinfer_backend.py +118 -198
  102. sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
  103. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  104. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  105. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  106. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  107. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  108. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
  109. sglang/srt/layers/attention/mamba/mamba.py +629 -0
  110. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  111. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  112. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  113. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  114. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  115. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  116. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  117. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  119. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  120. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  121. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  122. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  123. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  124. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  125. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  126. sglang/srt/layers/attention/nsa/utils.py +24 -0
  127. sglang/srt/layers/attention/nsa_backend.py +887 -0
  128. sglang/srt/layers/attention/tbo_backend.py +6 -6
  129. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  130. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  131. sglang/srt/layers/attention/triton_backend.py +57 -7
  132. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  133. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  134. sglang/srt/layers/attention/vision.py +58 -0
  135. sglang/srt/layers/attention/wave_backend.py +4 -4
  136. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  137. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  138. sglang/srt/layers/communicator.py +8 -0
  139. sglang/srt/layers/dp_attention.py +41 -2
  140. sglang/srt/layers/elementwise.py +3 -1
  141. sglang/srt/layers/layernorm.py +34 -15
  142. sglang/srt/layers/linear.py +55 -7
  143. sglang/srt/layers/logits_processor.py +44 -12
  144. sglang/srt/layers/moe/__init__.py +2 -1
  145. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  146. sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
  147. sglang/srt/layers/moe/ep_moe/layer.py +256 -63
  148. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  149. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  150. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  151. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  152. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  153. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  154. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  155. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  164. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  165. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  166. sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
  167. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  168. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  169. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  170. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  171. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  172. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  173. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  174. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  175. sglang/srt/layers/moe/topk.py +30 -9
  176. sglang/srt/layers/moe/utils.py +22 -6
  177. sglang/srt/layers/parameter.py +23 -6
  178. sglang/srt/layers/quantization/awq.py +19 -7
  179. sglang/srt/layers/quantization/base_config.py +11 -6
  180. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  181. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  182. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  183. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  184. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  185. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  186. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  187. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  188. sglang/srt/layers/quantization/fp8.py +78 -49
  189. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  190. sglang/srt/layers/quantization/gptq.py +25 -17
  191. sglang/srt/layers/quantization/modelopt_quant.py +190 -55
  192. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  193. sglang/srt/layers/quantization/mxfp4.py +74 -42
  194. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  195. sglang/srt/layers/quantization/unquant.py +135 -47
  196. sglang/srt/layers/quantization/w4afp8.py +26 -17
  197. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  198. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  199. sglang/srt/layers/rotary_embedding.py +78 -31
  200. sglang/srt/layers/sampler.py +213 -21
  201. sglang/srt/layers/utils.py +23 -0
  202. sglang/srt/lora/backend/base_backend.py +50 -8
  203. sglang/srt/lora/backend/chunked_backend.py +348 -0
  204. sglang/srt/lora/backend/triton_backend.py +99 -5
  205. sglang/srt/lora/layers.py +32 -0
  206. sglang/srt/lora/lora.py +8 -3
  207. sglang/srt/lora/lora_manager.py +52 -118
  208. sglang/srt/lora/mem_pool.py +25 -11
  209. sglang/srt/lora/triton_ops/__init__.py +4 -0
  210. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  211. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  212. sglang/srt/lora/utils.py +22 -11
  213. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  214. sglang/srt/managers/cache_controller.py +199 -301
  215. sglang/srt/managers/data_parallel_controller.py +115 -80
  216. sglang/srt/managers/detokenizer_manager.py +19 -15
  217. sglang/srt/managers/disagg_service.py +46 -0
  218. sglang/srt/managers/io_struct.py +340 -109
  219. sglang/srt/managers/mm_utils.py +44 -6
  220. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  221. sglang/srt/managers/multimodal_processor.py +1 -2
  222. sglang/srt/managers/overlap_utils.py +53 -0
  223. sglang/srt/managers/schedule_batch.py +240 -138
  224. sglang/srt/managers/schedule_policy.py +144 -17
  225. sglang/srt/managers/scheduler.py +502 -209
  226. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  227. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  228. sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
  229. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  230. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  231. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  232. sglang/srt/managers/tokenizer_manager.py +320 -632
  233. sglang/srt/managers/tp_worker.py +81 -22
  234. sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
  235. sglang/srt/managers/utils.py +1 -45
  236. sglang/srt/mem_cache/allocator.py +14 -20
  237. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  238. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  239. sglang/srt/mem_cache/chunk_cache.py +8 -1
  240. sglang/srt/mem_cache/evict_policy.py +23 -0
  241. sglang/srt/mem_cache/hicache_storage.py +43 -24
  242. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  243. sglang/srt/mem_cache/memory_pool.py +535 -58
  244. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  245. sglang/srt/mem_cache/radix_cache.py +222 -73
  246. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  247. sglang/srt/mem_cache/storage/__init__.py +10 -0
  248. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  249. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  250. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  251. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  252. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  253. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  254. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  255. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  256. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  257. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  258. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  259. sglang/srt/mem_cache/swa_radix_cache.py +25 -36
  260. sglang/srt/metrics/collector.py +511 -132
  261. sglang/srt/metrics/func_timer.py +2 -7
  262. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  263. sglang/srt/metrics/utils.py +8 -1
  264. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  265. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  266. sglang/srt/model_executor/forward_batch_info.py +82 -40
  267. sglang/srt/model_executor/model_runner.py +432 -157
  268. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  269. sglang/srt/model_loader/__init__.py +9 -3
  270. sglang/srt/model_loader/loader.py +133 -5
  271. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  272. sglang/srt/model_loader/weight_utils.py +158 -3
  273. sglang/srt/models/apertus.py +686 -0
  274. sglang/srt/models/bailing_moe.py +820 -217
  275. sglang/srt/models/bailing_moe_nextn.py +168 -0
  276. sglang/srt/models/deepseek_nextn.py +6 -1
  277. sglang/srt/models/deepseek_v2.py +607 -130
  278. sglang/srt/models/dots_ocr.py +173 -0
  279. sglang/srt/models/dots_vlm.py +174 -0
  280. sglang/srt/models/dots_vlm_vit.py +337 -0
  281. sglang/srt/models/ernie4.py +1 -1
  282. sglang/srt/models/falcon_h1.py +576 -0
  283. sglang/srt/models/gemma3_causal.py +0 -2
  284. sglang/srt/models/gemma3_mm.py +1 -1
  285. sglang/srt/models/gemma3n_mm.py +2 -2
  286. sglang/srt/models/glm4_moe.py +4 -4
  287. sglang/srt/models/glm4_moe_nextn.py +2 -2
  288. sglang/srt/models/glm4v.py +5 -3
  289. sglang/srt/models/glm4v_moe.py +4 -1
  290. sglang/srt/models/gpt_oss.py +8 -31
  291. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  292. sglang/srt/models/llama.py +4 -0
  293. sglang/srt/models/llama4.py +9 -0
  294. sglang/srt/models/llama_eagle3.py +13 -0
  295. sglang/srt/models/longcat_flash.py +3 -3
  296. sglang/srt/models/longcat_flash_nextn.py +1 -1
  297. sglang/srt/models/mllama4.py +40 -4
  298. sglang/srt/models/opt.py +637 -0
  299. sglang/srt/models/qwen2_5_vl.py +29 -5
  300. sglang/srt/models/qwen2_audio.py +1 -1
  301. sglang/srt/models/qwen2_moe.py +120 -13
  302. sglang/srt/models/qwen2_vl.py +1 -1
  303. sglang/srt/models/qwen3.py +18 -3
  304. sglang/srt/models/qwen3_moe.py +32 -4
  305. sglang/srt/models/qwen3_next.py +1069 -0
  306. sglang/srt/models/qwen3_next_mtp.py +112 -0
  307. sglang/srt/models/qwen3_vl.py +787 -0
  308. sglang/srt/models/qwen3_vl_moe.py +471 -0
  309. sglang/srt/models/registry.py +15 -3
  310. sglang/srt/models/sarashina2_vision.py +269 -0
  311. sglang/srt/models/solar.py +505 -0
  312. sglang/srt/models/starcoder2.py +357 -0
  313. sglang/srt/models/step3_vl.py +1 -1
  314. sglang/srt/models/torch_native_llama.py +9 -2
  315. sglang/srt/models/utils.py +51 -0
  316. sglang/srt/multimodal/processors/base_processor.py +15 -7
  317. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  318. sglang/srt/multimodal/processors/glm4v.py +9 -9
  319. sglang/srt/multimodal/processors/internvl.py +153 -129
  320. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  321. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  322. sglang/srt/offloader.py +27 -3
  323. sglang/srt/parser/jinja_template_utils.py +6 -0
  324. sglang/srt/sampling/sampling_batch_info.py +38 -17
  325. sglang/srt/sampling/sampling_params.py +7 -0
  326. sglang/srt/server_args.py +966 -267
  327. sglang/srt/server_args_config_parser.py +146 -0
  328. sglang/srt/single_batch_overlap.py +151 -0
  329. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  330. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  331. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  332. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  333. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  334. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  335. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  336. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  337. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  338. sglang/srt/speculative/eagle_worker.py +99 -28
  339. sglang/srt/speculative/ngram_utils.py +428 -0
  340. sglang/srt/speculative/ngram_worker.py +245 -0
  341. sglang/srt/speculative/spec_info.py +52 -0
  342. sglang/srt/speculative/spec_utils.py +606 -0
  343. sglang/srt/speculative/standalone_worker.py +109 -0
  344. sglang/srt/torch_memory_saver_adapter.py +5 -7
  345. sglang/srt/tracing/trace.py +578 -0
  346. sglang/srt/two_batch_overlap.py +8 -5
  347. sglang/srt/utils/__init__.py +2 -0
  348. sglang/srt/{utils.py → utils/common.py} +433 -77
  349. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
  350. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  351. sglang/srt/utils/rpd_utils.py +452 -0
  352. sglang/srt/utils/slow_rank_detector.py +71 -0
  353. sglang/srt/warmup.py +8 -4
  354. sglang/srt/weight_sync/utils.py +2 -2
  355. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  356. sglang/test/get_logits_ut.py +57 -0
  357. sglang/test/run_eval.py +79 -11
  358. sglang/test/runners.py +5 -1
  359. sglang/test/simple_eval_common.py +5 -2
  360. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  361. sglang/test/test_block_fp8.py +2 -2
  362. sglang/test/test_cutlass_moe.py +24 -6
  363. sglang/test/test_deterministic.py +297 -0
  364. sglang/test/test_disaggregation_utils.py +77 -0
  365. sglang/test/test_fp4_moe.py +370 -1
  366. sglang/test/test_programs.py +1 -1
  367. sglang/test/test_utils.py +383 -5
  368. sglang/utils.py +21 -1
  369. sglang/version.py +1 -1
  370. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
  371. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/RECORD +375 -245
  372. sglang/srt/disaggregation/launch_lb.py +0 -118
  373. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  374. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  375. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
  376. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
  377. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -3,12 +3,15 @@ from typing import Callable
3
3
 
4
4
  import pytest
5
5
  import torch
6
+ from flashinfer import fp4_quantize
6
7
  from flashinfer.fused_moe import cutlass_fused_moe as flashinfer_cutlass_fused_moe
7
- from sgl_kernel import scaled_fp4_quant
8
+ from sgl_kernel import scaled_fp4_grouped_quant, scaled_fp4_quant
9
+ from torch.nn import functional as F
8
10
 
9
11
  from sglang.srt.layers.activation import SiluAndMul
10
12
  from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4
11
13
  from sglang.srt.layers.moe.cutlass_moe_params import CutlassMoEParams, CutlassMoEType
14
+ from sglang.srt.layers.moe.flashinfer_cutedsl_moe import flashinfer_cutedsl_moe_masked
12
15
  from sglang.srt.layers.moe.topk import TopKConfig, select_experts
13
16
 
14
17
  if torch.cuda.get_device_capability() < (10, 0):
@@ -78,6 +81,37 @@ def break_fp4_bytes(a, dtype):
78
81
  return values.reshape(m, n * 2).to(dtype=dtype)
79
82
 
80
83
 
84
+ def compute_routing(router_logits: torch.Tensor, top_k: int):
85
+ routing_weights = torch.softmax(router_logits, dim=1, dtype=torch.float)
86
+ routing_weights, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
87
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
88
+ routing_weights = routing_weights.float()
89
+ return routing_weights, selected_experts
90
+
91
+
92
+ def prepare_inputs(
93
+ hidden_states: torch.Tensor,
94
+ router_logits: torch.Tensor,
95
+ num_experts: int,
96
+ topk: int,
97
+ ):
98
+ routing_weights, topk_idx = compute_routing(router_logits, topk)
99
+
100
+ masked_m = []
101
+ for i in range(num_experts):
102
+ mask = topk_idx.view(-1) == i
103
+ masked_m.append(mask.sum())
104
+
105
+ masked_m = torch.tensor(masked_m, dtype=torch.int32)
106
+ hidden_states_3d = torch.empty(
107
+ (num_experts, max(masked_m), hidden_states.shape[1]), dtype=hidden_states.dtype
108
+ )
109
+ for i in range(num_experts):
110
+ hidden_states_3d[i, : masked_m[i], :] = hidden_states[topk_idx.view(-1) == i]
111
+
112
+ return hidden_states_3d, masked_m, topk_idx, routing_weights
113
+
114
+
81
115
  MNK_FACTORS = [
82
116
  (2, 1024, 1024),
83
117
  (2, 1024, 1536),
@@ -114,6 +148,99 @@ def torch_moe(a, w1, w2, score, topk, expert_map):
114
148
  ).sum(dim=1)
115
149
 
116
150
 
151
+ def torch_moe_nvfp4(a, w1, w2, topk, topk_weight, topk_ids):
152
+ B, D = a.shape
153
+ a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
154
+ out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
155
+
156
+ topk_weight = topk_weight.view(-1)
157
+ topk_ids = topk_ids.view(-1)
158
+
159
+ for i in range(w1.shape[0]):
160
+ mask = topk_ids == i
161
+ if mask.sum():
162
+ m = w1[i].shape[0]
163
+ assert m % 2 == 0
164
+ # Note: w1 and w3 are swapped!
165
+ w3_expert, w1_expert = w1[i][m // 2 :, :], w1[i][: m // 2, :]
166
+ inter = F.silu(a[mask] @ w1_expert.t()) * (a[mask] @ w3_expert.t())
167
+ inter_gs = torch.tensor(1.0).cuda()
168
+ inter_q, inter_blockscale = fp4_quantize(inter, inter_gs)
169
+ inter = dequantize_nvfp4_to_dtype(
170
+ inter_q,
171
+ inter_blockscale,
172
+ inter_gs,
173
+ dtype=inter.dtype,
174
+ device=inter.device,
175
+ block_size=16,
176
+ ).cuda()
177
+ out[mask] = inter @ w2[i].transpose(0, 1)
178
+ return (
179
+ out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
180
+ ).sum(dim=1)
181
+
182
+
183
+ def flashinfer_cutedsl_grouped_gemm_nt_masked(
184
+ hidden_states: torch.Tensor, # 3d
185
+ input_global_scale: torch.Tensor, # (l,)
186
+ weights: torch.Tensor,
187
+ w_global_scale: torch.Tensor, # (l,)
188
+ masked_m: torch.Tensor,
189
+ ):
190
+ from flashinfer.cute_dsl.blockscaled_gemm import grouped_gemm_nt_masked
191
+
192
+ # hidden_states: [l, m, k]
193
+ # weights: [l, n, k]
194
+ aq, aq_sf = scaled_fp4_grouped_quant(
195
+ hidden_states,
196
+ input_global_scale,
197
+ masked_m.to(hidden_states.device),
198
+ )
199
+ num_experts, n, k = weights.shape
200
+ bq, bq_sf = scaled_fp4_grouped_quant(
201
+ weights,
202
+ w_global_scale,
203
+ torch.ones(num_experts, device=weights.device, dtype=torch.int32) * n,
204
+ )
205
+
206
+ out = torch.zeros(
207
+ (num_experts, max(masked_m), n), dtype=weights.dtype, device=aq.device
208
+ )
209
+ out = out.permute(1, 2, 0) # requirement of kernel
210
+ sf_vec_size = 16
211
+ ab_dtype = "float4_e2m1fn"
212
+ sf_dtype = "float8_e4m3fn"
213
+ c_dtype = "bfloat16"
214
+ alpha = 1.0 / (input_global_scale * w_global_scale).to(out.dtype).view(
215
+ 1, 1, num_experts
216
+ )
217
+
218
+ def get_cute_dtype(input: torch.Tensor) -> str:
219
+ if input.dtype == torch.bfloat16:
220
+ return "bfloat16"
221
+ elif input.dtype == torch.float16:
222
+ return "float16"
223
+ elif input.dtype == torch.float32:
224
+ return "float32"
225
+ else:
226
+ raise ValueError(f"Unsupported cute dtype {input.dtype}")
227
+
228
+ grouped_gemm_nt_masked(
229
+ (aq, aq_sf),
230
+ (bq, bq_sf),
231
+ out,
232
+ masked_m.to(aq.device),
233
+ ab_dtype=ab_dtype,
234
+ sf_dtype=sf_dtype,
235
+ c_dtype=c_dtype,
236
+ sf_vec_size=sf_vec_size,
237
+ alpha=alpha,
238
+ alpha_dtype=get_cute_dtype(alpha),
239
+ )
240
+
241
+ return out
242
+
243
+
117
244
  def check_moe(
118
245
  m: int,
119
246
  n: int,
@@ -324,6 +451,248 @@ def test_flashinfer_fp4_moe_no_graph(
324
451
  check_moe(m, n, k, e, topk, dtype, flashinfer_moe_impl, flip_w13=True)
325
452
 
326
453
 
454
+ @pytest.mark.parametrize("bs, hidden_dim, inter_dim", [(2, 128, 256), (16, 128, 512)])
455
+ @pytest.mark.parametrize("topk", [1, 2, 4])
456
+ @torch.inference_mode()
457
+ def test_flashinfer_cutedsl_moe_masked(
458
+ bs: int, hidden_dim: int, inter_dim: int, topk: int
459
+ ):
460
+ torch.manual_seed(42)
461
+ device = "cuda"
462
+ dtype = torch.bfloat16
463
+ num_experts = 8
464
+ hidden_states = (
465
+ torch.randn(bs, hidden_dim, dtype=torch.bfloat16, device=device) / 5.0
466
+ )
467
+ w1 = (
468
+ torch.randn(
469
+ num_experts, 2 * inter_dim, hidden_dim, dtype=torch.bfloat16, device=device
470
+ )
471
+ / 10.0
472
+ )
473
+ w2 = (
474
+ torch.randn(
475
+ num_experts, hidden_dim, inter_dim, dtype=torch.bfloat16, device=device
476
+ )
477
+ / 10.0
478
+ )
479
+ router_logits = torch.randn(bs, num_experts, dtype=torch.float32)
480
+
481
+ hidden_states_expanded = (
482
+ hidden_states.view(bs, -1, hidden_dim)
483
+ .repeat(1, topk, 1)
484
+ .reshape(-1, hidden_dim)
485
+ )
486
+ hidden_states_3d, masked_m, topk_idx, routing_weights = prepare_inputs(
487
+ hidden_states_expanded, router_logits, num_experts, topk
488
+ )
489
+
490
+ w1_amax = w1.abs().amax(dim=(1, 2)).to(torch.float32).to(w1.device)
491
+ w2_amax = w2.abs().amax(dim=(1, 2)).to(torch.float32).to(w2.device)
492
+ input_global_scale = torch.ones(
493
+ (num_experts,), dtype=torch.float32, device=hidden_states.device
494
+ )
495
+
496
+ w1_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w1_amax
497
+ w2_global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w2_amax
498
+ a2_global_scale = torch.ones(
499
+ (num_experts,), dtype=torch.float32, device=hidden_states.device
500
+ ) # assume intermediate scale is 1.0
501
+
502
+ w1_fp4, w1_blockscale = scaled_fp4_grouped_quant(
503
+ w1,
504
+ w1_global_scale,
505
+ torch.ones(num_experts, dtype=torch.int32, device=w1.device) * 2 * inter_dim,
506
+ )
507
+ w2_fp4, w2_blockscale = scaled_fp4_grouped_quant(
508
+ w2,
509
+ w2_global_scale,
510
+ torch.ones(num_experts, dtype=torch.int32, device=w2.device) * hidden_dim,
511
+ )
512
+
513
+ w1_alpha = 1.0 / (input_global_scale * w1_global_scale)
514
+ w2_alpha = 1.0 / (a2_global_scale * w2_global_scale)
515
+
516
+ out = flashinfer_cutedsl_moe_masked(
517
+ hidden_states_3d.to(hidden_states.device),
518
+ input_global_scale,
519
+ w1_fp4.permute(2, 0, 1),
520
+ w1_blockscale,
521
+ w1_alpha,
522
+ w2_fp4.permute(2, 0, 1),
523
+ a2_global_scale,
524
+ w2_blockscale,
525
+ w2_alpha,
526
+ masked_m.to(hidden_states.device),
527
+ )
528
+
529
+ # reference
530
+ a_fp4, a_scale_interleaved = fp4_quantize(hidden_states, input_global_scale)
531
+ a_in_dtype = dequantize_nvfp4_to_dtype(
532
+ a_fp4,
533
+ a_scale_interleaved,
534
+ input_global_scale,
535
+ dtype=hidden_states.dtype,
536
+ device=hidden_states.device,
537
+ block_size=16,
538
+ )
539
+ w1_d = torch.empty(
540
+ (num_experts, 2 * inter_dim, hidden_dim), device=w1.device, dtype=w1.dtype
541
+ )
542
+ w2_d = torch.empty(
543
+ (num_experts, hidden_dim, inter_dim), device=w2.device, dtype=w2.dtype
544
+ )
545
+
546
+ for idx in range(0, num_experts):
547
+ w1_fp4_sliced, w1_blockscale_sliced = fp4_quantize(
548
+ w1[idx], w1_global_scale[idx]
549
+ )
550
+ w2_fp4_sliced, w2_blockscale_sliced = fp4_quantize(
551
+ w2[idx], w2_global_scale[idx]
552
+ )
553
+ w1_d[idx] = dequantize_nvfp4_to_dtype(
554
+ w1_fp4_sliced,
555
+ w1_blockscale_sliced,
556
+ w1_global_scale[idx],
557
+ dtype=w1.dtype,
558
+ device=w1.device,
559
+ block_size=16,
560
+ )
561
+ w2_d[idx] = dequantize_nvfp4_to_dtype(
562
+ w2_fp4_sliced,
563
+ w2_blockscale_sliced,
564
+ w2_global_scale[idx],
565
+ dtype=w2.dtype,
566
+ device=w2.device,
567
+ block_size=16,
568
+ )
569
+
570
+ ref_output = torch_moe_nvfp4(
571
+ a_in_dtype,
572
+ w1_d,
573
+ w2_d,
574
+ topk,
575
+ routing_weights.to(a_in_dtype.device),
576
+ topk_idx.to(a_in_dtype.device),
577
+ )
578
+ out_weighted = torch.zeros_like(ref_output, device=out.device, dtype=out.dtype)
579
+
580
+ positions = torch.nonzero(masked_m[topk_idx], as_tuple=False)
581
+ rows, cols = positions[:, 0], positions[:, 1]
582
+ experts = topk_idx[rows, cols]
583
+ for i in range(num_experts):
584
+ mask = experts == i
585
+ if mask.any():
586
+ idx = torch.nonzero(mask, as_tuple=False).squeeze(-1)
587
+ r, c = rows[idx], cols[idx]
588
+ out_weighted[r] += out[i, : len(r), :] * routing_weights[r, c].to(
589
+ out.device
590
+ ).unsqueeze(-1)
591
+ torch.testing.assert_close(
592
+ out_weighted.cpu(), ref_output.cpu(), atol=5e-2, rtol=5e-2
593
+ )
594
+
595
+
596
+ @pytest.mark.parametrize(
597
+ "bs, hidden_dim, inter_dim, topk", [(2, 128, 256, 2), (16, 128, 512, 5)]
598
+ )
599
+ @torch.inference_mode()
600
+ def test_grouped_gemm_nt_masked(
601
+ bs: int, hidden_dim: int, inter_dim: int, topk: int
602
+ ) -> None:
603
+ torch.manual_seed(42)
604
+ B = bs
605
+ D = hidden_dim
606
+ N = inter_dim
607
+ num_experts = 8
608
+ hidden_states = torch.randn(B, D, dtype=torch.bfloat16, device="cuda")
609
+ weights = torch.randn(num_experts, N, D, dtype=torch.bfloat16, device="cuda")
610
+ router_logits = torch.randn(B, num_experts, dtype=torch.float32)
611
+
612
+ hidden_states_expanded = (
613
+ hidden_states.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
614
+ )
615
+ hidden_states_3d, masked_m, topk_idx, _ = prepare_inputs(
616
+ hidden_states_expanded, router_logits, num_experts, topk
617
+ )
618
+
619
+ # reference
620
+ out = torch.zeros(
621
+ (B * topk, weights.shape[1]), dtype=weights.dtype, device=weights.device
622
+ )
623
+ for i in range(num_experts):
624
+ mask = topk_idx.view(-1) == i
625
+ if mask.sum():
626
+ lhs = hidden_states_expanded[mask]
627
+ rhs = weights[i]
628
+ a_amax = lhs.abs().max().to(torch.float32).to(hidden_states.device)
629
+ b_amax = rhs.abs().amax().to(torch.float32).to(weights.device)
630
+ a_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / a_amax
631
+ b_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
632
+
633
+ lhsq, lhsq_sf = fp4_quantize(
634
+ lhs,
635
+ a_gs,
636
+ )
637
+ rhsq, rhsq_sf = fp4_quantize(
638
+ rhs,
639
+ b_gs,
640
+ )
641
+
642
+ lhs_in_dtype = dequantize_nvfp4_to_dtype(
643
+ lhsq,
644
+ lhsq_sf,
645
+ a_gs,
646
+ dtype=hidden_states.dtype,
647
+ device=hidden_states.device,
648
+ block_size=16,
649
+ )
650
+
651
+ rhs_in_dtype = dequantize_nvfp4_to_dtype(
652
+ rhsq,
653
+ rhsq_sf,
654
+ b_gs,
655
+ dtype=hidden_states.dtype,
656
+ device=hidden_states.device,
657
+ block_size=16,
658
+ )
659
+ out[mask] = lhs_in_dtype @ rhs_in_dtype.t()
660
+
661
+ a_amax = (
662
+ hidden_states_3d.abs()
663
+ .amax(dim=(1, 2))
664
+ .to(torch.float32)
665
+ .to(hidden_states.device)
666
+ )
667
+ b_amax = weights.abs().amax(dim=(1, 2)).to(torch.float32).to(weights.device)
668
+ a_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / a_amax
669
+ b_gs = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / b_amax
670
+ out_flashinfer = flashinfer_cutedsl_grouped_gemm_nt_masked(
671
+ hidden_states_3d.to(hidden_states.device), a_gs, weights, b_gs, masked_m
672
+ )
673
+
674
+ # re-pack out into [num_experts, max_m, n]
675
+ out_ref = torch.zeros(
676
+ (num_experts, max(masked_m), weights.shape[1]), dtype=out.dtype
677
+ )
678
+ expert_slot = [0] * num_experts
679
+ for i, expert_id in enumerate(topk_idx.view(-1).tolist()):
680
+ out_ref[expert_id, expert_slot[expert_id], :] = out[i]
681
+ expert_slot[expert_id] += 1
682
+
683
+ # Note: just to compare the masked position due to cutedsl may write nan
684
+ # into unmasked position.
685
+ for i in range(num_experts):
686
+ torch.testing.assert_close(
687
+ out_flashinfer.permute(2, 0, 1)[i, : masked_m[i]],
688
+ out_ref.to(out_flashinfer.device)[i, : masked_m[i]],
689
+ atol=1e-1,
690
+ rtol=5e-2,
691
+ )
692
+
693
+
327
694
  if __name__ == "__main__":
328
695
  test_cutlass_fp4_moe_no_graph(224, 1024, 1024, 256, 8, torch.half)
329
696
  test_flashinfer_fp4_moe_no_graph(224, 1024, 1024, 256, 8, torch.half)
697
+ test_flashinfer_cutedsl_moe_masked(16, 128, 512, 4)
698
+ test_grouped_gemm_nt_masked(16, 128, 512, 4)
@@ -551,7 +551,7 @@ def test_gen_min_new_tokens():
551
551
  We verify that the number of tokens in the answer is >= the min_tokens threshold.
552
552
  """
553
553
  import sglang as sgl
554
- from sglang.srt.hf_transformers_utils import get_tokenizer
554
+ from sglang.srt.utils.hf_transformers_utils import get_tokenizer
555
555
 
556
556
  model_path = sgl.global_config.default_backend.endpoint.get_model_name()
557
557
  MIN_TOKENS, MAX_TOKENS = 64, 128