sglang 0.5.2rc2__py3-none-any.whl → 0.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (377) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +267 -32
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/launch_server.py +14 -0
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +8 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +360 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/model_config.py +181 -82
  17. sglang/srt/configs/qwen3_next.py +326 -0
  18. sglang/srt/configs/qwen3_vl.py +586 -0
  19. sglang/srt/connector/__init__.py +8 -1
  20. sglang/srt/connector/remote_instance.py +82 -0
  21. sglang/srt/constrained/base_grammar_backend.py +49 -12
  22. sglang/srt/constrained/llguidance_backend.py +0 -1
  23. sglang/srt/constrained/outlines_backend.py +0 -1
  24. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  25. sglang/srt/constrained/xgrammar_backend.py +30 -9
  26. sglang/srt/custom_op.py +11 -1
  27. sglang/srt/debug_utils/dump_comparator.py +81 -44
  28. sglang/srt/debug_utils/dump_loader.py +97 -0
  29. sglang/srt/debug_utils/dumper.py +21 -6
  30. sglang/srt/debug_utils/text_comparator.py +73 -11
  31. sglang/srt/disaggregation/ascend/conn.py +2 -2
  32. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  33. sglang/srt/disaggregation/base/conn.py +1 -1
  34. sglang/srt/disaggregation/common/conn.py +279 -108
  35. sglang/srt/disaggregation/decode.py +71 -19
  36. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  37. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  38. sglang/srt/disaggregation/fake/conn.py +1 -1
  39. sglang/srt/disaggregation/mini_lb.py +6 -445
  40. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  41. sglang/srt/disaggregation/nixl/conn.py +326 -53
  42. sglang/srt/disaggregation/prefill.py +36 -17
  43. sglang/srt/disaggregation/utils.py +40 -54
  44. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  45. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  46. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  47. sglang/srt/distributed/parallel_state.py +156 -80
  48. sglang/srt/entrypoints/engine.py +59 -18
  49. sglang/srt/entrypoints/grpc_request_manager.py +855 -0
  50. sglang/srt/entrypoints/grpc_server.py +810 -0
  51. sglang/srt/entrypoints/http_server.py +130 -59
  52. sglang/srt/entrypoints/openai/protocol.py +112 -4
  53. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  54. sglang/srt/entrypoints/openai/serving_chat.py +204 -55
  55. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  56. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  57. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  58. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  59. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  60. sglang/srt/environ.py +285 -0
  61. sglang/srt/eplb/eplb_manager.py +2 -2
  62. sglang/srt/eplb/expert_distribution.py +26 -13
  63. sglang/srt/eplb/expert_location.py +38 -8
  64. sglang/srt/eplb/expert_location_updater.py +1 -1
  65. sglang/srt/function_call/base_format_detector.py +3 -6
  66. sglang/srt/function_call/ebnf_composer.py +11 -9
  67. sglang/srt/function_call/function_call_parser.py +9 -2
  68. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  69. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  70. sglang/srt/function_call/json_array_parser.py +63 -0
  71. sglang/srt/function_call/kimik2_detector.py +17 -4
  72. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  73. sglang/srt/function_call/utils.py +96 -5
  74. sglang/srt/grpc/__init__.py +1 -0
  75. sglang/srt/grpc/compile_proto.py +245 -0
  76. sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
  77. sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
  78. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
  79. sglang/srt/layers/activation.py +143 -9
  80. sglang/srt/layers/attention/aiter_backend.py +14 -15
  81. sglang/srt/layers/attention/ascend_backend.py +115 -9
  82. sglang/srt/layers/attention/attention_registry.py +206 -0
  83. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  84. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  85. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  86. sglang/srt/layers/attention/fla/chunk.py +242 -0
  87. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  88. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  89. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  90. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  91. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  92. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  93. sglang/srt/layers/attention/fla/index.py +37 -0
  94. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  95. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  96. sglang/srt/layers/attention/fla/op.py +66 -0
  97. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  98. sglang/srt/layers/attention/fla/utils.py +331 -0
  99. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  100. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  101. sglang/srt/layers/attention/flashinfer_backend.py +118 -198
  102. sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
  103. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  104. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  105. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  106. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  107. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  108. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
  109. sglang/srt/layers/attention/mamba/mamba.py +629 -0
  110. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  111. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  112. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  113. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  114. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  115. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  116. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  117. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  119. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  120. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  121. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  122. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  123. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  124. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  125. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  126. sglang/srt/layers/attention/nsa/utils.py +24 -0
  127. sglang/srt/layers/attention/nsa_backend.py +887 -0
  128. sglang/srt/layers/attention/tbo_backend.py +6 -6
  129. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  130. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  131. sglang/srt/layers/attention/triton_backend.py +57 -7
  132. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  133. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  134. sglang/srt/layers/attention/vision.py +58 -0
  135. sglang/srt/layers/attention/wave_backend.py +4 -4
  136. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  137. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  138. sglang/srt/layers/communicator.py +8 -0
  139. sglang/srt/layers/dp_attention.py +41 -2
  140. sglang/srt/layers/elementwise.py +3 -1
  141. sglang/srt/layers/layernorm.py +34 -15
  142. sglang/srt/layers/linear.py +55 -7
  143. sglang/srt/layers/logits_processor.py +44 -12
  144. sglang/srt/layers/moe/__init__.py +2 -1
  145. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  146. sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
  147. sglang/srt/layers/moe/ep_moe/layer.py +256 -63
  148. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  149. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  150. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  151. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  152. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  153. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  154. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  155. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  164. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  165. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  166. sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
  167. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  168. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  169. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  170. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  171. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  172. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  173. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  174. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  175. sglang/srt/layers/moe/topk.py +30 -9
  176. sglang/srt/layers/moe/utils.py +22 -6
  177. sglang/srt/layers/parameter.py +23 -6
  178. sglang/srt/layers/quantization/awq.py +19 -7
  179. sglang/srt/layers/quantization/base_config.py +11 -6
  180. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  181. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  182. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  183. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  184. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  185. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  186. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  187. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  188. sglang/srt/layers/quantization/fp8.py +78 -49
  189. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  190. sglang/srt/layers/quantization/gptq.py +25 -17
  191. sglang/srt/layers/quantization/modelopt_quant.py +190 -55
  192. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  193. sglang/srt/layers/quantization/mxfp4.py +74 -42
  194. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  195. sglang/srt/layers/quantization/unquant.py +135 -47
  196. sglang/srt/layers/quantization/w4afp8.py +26 -17
  197. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  198. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  199. sglang/srt/layers/rotary_embedding.py +78 -31
  200. sglang/srt/layers/sampler.py +213 -21
  201. sglang/srt/layers/utils.py +23 -0
  202. sglang/srt/lora/backend/base_backend.py +50 -8
  203. sglang/srt/lora/backend/chunked_backend.py +348 -0
  204. sglang/srt/lora/backend/triton_backend.py +99 -5
  205. sglang/srt/lora/layers.py +32 -0
  206. sglang/srt/lora/lora.py +8 -3
  207. sglang/srt/lora/lora_manager.py +52 -118
  208. sglang/srt/lora/mem_pool.py +25 -11
  209. sglang/srt/lora/triton_ops/__init__.py +4 -0
  210. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  211. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  212. sglang/srt/lora/utils.py +22 -11
  213. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  214. sglang/srt/managers/cache_controller.py +199 -301
  215. sglang/srt/managers/data_parallel_controller.py +115 -80
  216. sglang/srt/managers/detokenizer_manager.py +19 -15
  217. sglang/srt/managers/disagg_service.py +46 -0
  218. sglang/srt/managers/io_struct.py +340 -109
  219. sglang/srt/managers/mm_utils.py +44 -6
  220. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  221. sglang/srt/managers/multimodal_processor.py +1 -2
  222. sglang/srt/managers/overlap_utils.py +53 -0
  223. sglang/srt/managers/schedule_batch.py +240 -138
  224. sglang/srt/managers/schedule_policy.py +144 -17
  225. sglang/srt/managers/scheduler.py +502 -209
  226. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  227. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  228. sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
  229. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  230. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  231. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  232. sglang/srt/managers/tokenizer_manager.py +320 -632
  233. sglang/srt/managers/tp_worker.py +81 -22
  234. sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
  235. sglang/srt/managers/utils.py +1 -45
  236. sglang/srt/mem_cache/allocator.py +14 -20
  237. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  238. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  239. sglang/srt/mem_cache/chunk_cache.py +8 -1
  240. sglang/srt/mem_cache/evict_policy.py +23 -0
  241. sglang/srt/mem_cache/hicache_storage.py +43 -24
  242. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  243. sglang/srt/mem_cache/memory_pool.py +535 -58
  244. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  245. sglang/srt/mem_cache/radix_cache.py +222 -73
  246. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  247. sglang/srt/mem_cache/storage/__init__.py +10 -0
  248. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  249. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  250. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  251. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  252. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  253. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  254. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  255. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  256. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  257. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  258. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  259. sglang/srt/mem_cache/swa_radix_cache.py +25 -36
  260. sglang/srt/metrics/collector.py +511 -132
  261. sglang/srt/metrics/func_timer.py +2 -7
  262. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  263. sglang/srt/metrics/utils.py +8 -1
  264. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  265. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  266. sglang/srt/model_executor/forward_batch_info.py +82 -40
  267. sglang/srt/model_executor/model_runner.py +432 -157
  268. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  269. sglang/srt/model_loader/__init__.py +9 -3
  270. sglang/srt/model_loader/loader.py +133 -5
  271. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  272. sglang/srt/model_loader/weight_utils.py +158 -3
  273. sglang/srt/models/apertus.py +686 -0
  274. sglang/srt/models/bailing_moe.py +820 -217
  275. sglang/srt/models/bailing_moe_nextn.py +168 -0
  276. sglang/srt/models/deepseek_nextn.py +6 -1
  277. sglang/srt/models/deepseek_v2.py +607 -130
  278. sglang/srt/models/dots_ocr.py +173 -0
  279. sglang/srt/models/dots_vlm.py +174 -0
  280. sglang/srt/models/dots_vlm_vit.py +337 -0
  281. sglang/srt/models/ernie4.py +1 -1
  282. sglang/srt/models/falcon_h1.py +576 -0
  283. sglang/srt/models/gemma3_causal.py +0 -2
  284. sglang/srt/models/gemma3_mm.py +1 -1
  285. sglang/srt/models/gemma3n_mm.py +2 -2
  286. sglang/srt/models/glm4_moe.py +4 -4
  287. sglang/srt/models/glm4_moe_nextn.py +2 -2
  288. sglang/srt/models/glm4v.py +5 -3
  289. sglang/srt/models/glm4v_moe.py +4 -1
  290. sglang/srt/models/gpt_oss.py +8 -31
  291. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  292. sglang/srt/models/llama.py +4 -0
  293. sglang/srt/models/llama4.py +9 -0
  294. sglang/srt/models/llama_eagle3.py +13 -0
  295. sglang/srt/models/longcat_flash.py +3 -3
  296. sglang/srt/models/longcat_flash_nextn.py +1 -1
  297. sglang/srt/models/mllama4.py +40 -4
  298. sglang/srt/models/opt.py +637 -0
  299. sglang/srt/models/qwen2_5_vl.py +29 -5
  300. sglang/srt/models/qwen2_audio.py +1 -1
  301. sglang/srt/models/qwen2_moe.py +120 -13
  302. sglang/srt/models/qwen2_vl.py +1 -1
  303. sglang/srt/models/qwen3.py +18 -3
  304. sglang/srt/models/qwen3_moe.py +32 -4
  305. sglang/srt/models/qwen3_next.py +1069 -0
  306. sglang/srt/models/qwen3_next_mtp.py +112 -0
  307. sglang/srt/models/qwen3_vl.py +787 -0
  308. sglang/srt/models/qwen3_vl_moe.py +471 -0
  309. sglang/srt/models/registry.py +15 -3
  310. sglang/srt/models/sarashina2_vision.py +269 -0
  311. sglang/srt/models/solar.py +505 -0
  312. sglang/srt/models/starcoder2.py +357 -0
  313. sglang/srt/models/step3_vl.py +1 -1
  314. sglang/srt/models/torch_native_llama.py +9 -2
  315. sglang/srt/models/utils.py +51 -0
  316. sglang/srt/multimodal/processors/base_processor.py +15 -7
  317. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  318. sglang/srt/multimodal/processors/glm4v.py +9 -9
  319. sglang/srt/multimodal/processors/internvl.py +153 -129
  320. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  321. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  322. sglang/srt/offloader.py +27 -3
  323. sglang/srt/parser/jinja_template_utils.py +6 -0
  324. sglang/srt/sampling/sampling_batch_info.py +38 -17
  325. sglang/srt/sampling/sampling_params.py +7 -0
  326. sglang/srt/server_args.py +966 -267
  327. sglang/srt/server_args_config_parser.py +146 -0
  328. sglang/srt/single_batch_overlap.py +151 -0
  329. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  330. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  331. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  332. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  333. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  334. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  335. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  336. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  337. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  338. sglang/srt/speculative/eagle_worker.py +99 -28
  339. sglang/srt/speculative/ngram_utils.py +428 -0
  340. sglang/srt/speculative/ngram_worker.py +245 -0
  341. sglang/srt/speculative/spec_info.py +52 -0
  342. sglang/srt/speculative/spec_utils.py +606 -0
  343. sglang/srt/speculative/standalone_worker.py +109 -0
  344. sglang/srt/torch_memory_saver_adapter.py +5 -7
  345. sglang/srt/tracing/trace.py +578 -0
  346. sglang/srt/two_batch_overlap.py +8 -5
  347. sglang/srt/utils/__init__.py +2 -0
  348. sglang/srt/{utils.py → utils/common.py} +433 -77
  349. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
  350. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  351. sglang/srt/utils/rpd_utils.py +452 -0
  352. sglang/srt/utils/slow_rank_detector.py +71 -0
  353. sglang/srt/warmup.py +8 -4
  354. sglang/srt/weight_sync/utils.py +2 -2
  355. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  356. sglang/test/get_logits_ut.py +57 -0
  357. sglang/test/run_eval.py +79 -11
  358. sglang/test/runners.py +5 -1
  359. sglang/test/simple_eval_common.py +5 -2
  360. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  361. sglang/test/test_block_fp8.py +2 -2
  362. sglang/test/test_cutlass_moe.py +24 -6
  363. sglang/test/test_deterministic.py +297 -0
  364. sglang/test/test_disaggregation_utils.py +77 -0
  365. sglang/test/test_fp4_moe.py +370 -1
  366. sglang/test/test_programs.py +1 -1
  367. sglang/test/test_utils.py +383 -5
  368. sglang/utils.py +21 -1
  369. sglang/version.py +1 -1
  370. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
  371. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/RECORD +375 -245
  372. sglang/srt/disaggregation/launch_lb.py +0 -118
  373. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  374. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  375. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
  376. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
  377. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,232 @@
1
+ from typing import Optional
2
+
3
+ import torch
4
+ import triton
5
+ import triton.language as tl
6
+
7
+ from sglang.srt.layers.attention.fla.utils import input_guard
8
+
9
+
10
+ @triton.heuristics(
11
+ {
12
+ "USE_INITIAL_STATE": lambda args: args["h0_source"] is not None,
13
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
14
+ }
15
+ )
16
+ @triton.jit(do_not_specialize=["T"])
17
+ def fused_sigmoid_gating_delta_rule_update_kernel(
18
+ A_log,
19
+ a,
20
+ dt_bias,
21
+ softplus_beta,
22
+ softplus_threshold,
23
+ q,
24
+ k,
25
+ v,
26
+ b,
27
+ o,
28
+ h0_source,
29
+ h0_indices,
30
+ cu_seqlens,
31
+ scale,
32
+ T,
33
+ B: tl.constexpr,
34
+ H: tl.constexpr,
35
+ HV: tl.constexpr,
36
+ K: tl.constexpr,
37
+ V: tl.constexpr,
38
+ BK: tl.constexpr,
39
+ BV: tl.constexpr,
40
+ USE_INITIAL_STATE: tl.constexpr,
41
+ USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
42
+ IS_VARLEN: tl.constexpr,
43
+ ):
44
+ """
45
+ Fused kernel that combines sigmoid gating computation with recurrent delta rule update.
46
+ """
47
+ i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
48
+ i_n, i_hv = i_nh // HV, i_nh % HV
49
+ i_h = i_hv // (HV // H)
50
+
51
+ if IS_VARLEN:
52
+ bos, eos = (
53
+ tl.load(cu_seqlens + i_n).to(tl.int64),
54
+ tl.load(cu_seqlens + i_n + 1).to(tl.int64),
55
+ )
56
+ all = T
57
+ T = eos - bos
58
+ else:
59
+ bos, eos = i_n * T, i_n * T + T
60
+ all = B * T
61
+
62
+ o_k = i_k * BK + tl.arange(0, BK)
63
+ o_v = i_v * BV + tl.arange(0, BV)
64
+
65
+ p_q = q + (bos * H + i_h) * K + o_k
66
+ p_k = k + (bos * H + i_h) * K + o_k
67
+ p_v = v + (bos * HV + i_hv) * V + o_v
68
+ p_b = b + bos * HV + i_hv
69
+ p_o = o + ((i_k * all + bos) * HV + i_hv) * V + o_v
70
+
71
+ # Gating computation pointers
72
+ p_A_log = A_log + i_hv
73
+ p_a = a + bos * HV + i_hv
74
+ p_dt_bias = dt_bias + i_hv
75
+
76
+ mask_k = o_k < K
77
+ mask_v = o_v < V
78
+ mask_h = mask_k[:, None] & mask_v[None, :]
79
+
80
+ b_h = tl.zeros([BK, BV], dtype=tl.float32)
81
+ if USE_INITIAL_STATE:
82
+ idx = tl.load(h0_indices + i_n)
83
+ if idx >= 0:
84
+ p_h0 = (
85
+ h0_source
86
+ + idx * HV * K * V
87
+ + i_hv * K * V
88
+ + o_k[:, None] * V
89
+ + o_v[None, :]
90
+ )
91
+ b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
92
+
93
+ for _ in range(0, T):
94
+ # Load inputs
95
+ b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
96
+ b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
97
+ b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
98
+ b_b = tl.load(p_b).to(tl.float32)
99
+
100
+ # Compute sigmoid gating
101
+ # Load gating parameters
102
+ b_A_log = tl.load(p_A_log).to(tl.float32)
103
+ b_a = tl.load(p_a).to(tl.float32)
104
+ b_dt_bias = tl.load(p_dt_bias).to(tl.float32)
105
+
106
+ # Compute g = -exp(A_log) * softplus(a + dt_bias)
107
+ x = b_a + b_dt_bias
108
+ beta_x = softplus_beta * x
109
+ # Apply softplus with numerical stability
110
+ softplus_x = tl.where(
111
+ beta_x <= softplus_threshold,
112
+ (1.0 / softplus_beta) * tl.log(1.0 + tl.exp(beta_x)),
113
+ x,
114
+ )
115
+ b_g = -tl.exp(b_A_log) * softplus_x
116
+
117
+ # Compute beta = sigmoid(b)
118
+ b_beta = 1.0 / (1.0 + tl.exp(-b_b))
119
+
120
+ # Apply L2 normalization if enabled
121
+ if USE_QK_L2NORM_IN_KERNEL:
122
+ b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q) + 1e-6))
123
+ b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k) + 1e-6))
124
+
125
+ b_q = b_q * scale
126
+
127
+ # Apply gating to hidden state: h *= exp(g)
128
+ b_h *= tl.exp(b_g)
129
+
130
+ # Delta rule: v -= sum(h * k, dim=0)
131
+ b_v -= tl.sum(b_h * b_k[:, None], 0)
132
+
133
+ # Apply beta gating: v *= beta
134
+ b_v *= b_beta
135
+
136
+ # Update hidden state: h += k[:, None] * v[None, :]
137
+ b_h += b_k[:, None] * b_v[None, :]
138
+
139
+ # Compute output: o = sum(h * q, dim=0)
140
+ b_o = tl.sum(b_h * b_q[:, None], 0)
141
+ tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
142
+
143
+ # Update pointers for next timestep
144
+ p_q += H * K
145
+ p_k += H * K
146
+ p_o += HV * V
147
+ p_v += HV * V
148
+ p_b += HV
149
+ p_a += HV
150
+
151
+ # Store final state back to h0_source with bounds checking
152
+ if USE_INITIAL_STATE:
153
+ idx = tl.load(h0_indices + i_n)
154
+ if idx >= 0:
155
+ p_h0 = (
156
+ h0_source
157
+ + idx * HV * K * V
158
+ + i_hv * K * V
159
+ + o_k[:, None] * V
160
+ + o_v[None, :]
161
+ )
162
+ tl.store(p_h0, b_h.to(p_h0.dtype.element_ty), mask=mask_h)
163
+
164
+
165
+ @input_guard
166
+ def fused_sigmoid_gating_delta_rule_update(
167
+ A_log: torch.Tensor,
168
+ a: torch.Tensor,
169
+ dt_bias: torch.Tensor,
170
+ softplus_beta: float,
171
+ softplus_threshold: float,
172
+ q: torch.Tensor,
173
+ k: torch.Tensor,
174
+ v: torch.Tensor,
175
+ b: torch.Tensor,
176
+ initial_state_source: torch.Tensor,
177
+ initial_state_indices: torch.Tensor,
178
+ scale: Optional[float] = None,
179
+ use_qk_l2norm_in_kernel: bool = False,
180
+ cu_seqlens: Optional[torch.Tensor] = None,
181
+ ):
182
+ """
183
+ Fused triton implementation of sigmoid gating delta rule update.
184
+ This function uses a single fused kernel that combines both sigmoid gating computation
185
+ and the recurrent delta rule update for better performance.
186
+ """
187
+ B, T, H, K, V = *k.shape, v.shape[-1]
188
+ HV = v.shape[2]
189
+ N = B if cu_seqlens is None else len(cu_seqlens) - 1
190
+ BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8)
191
+ NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
192
+ assert NK == 1, "NK > 1 is not supported yet"
193
+ num_stages = 3
194
+ num_warps = 1
195
+
196
+ if scale is None:
197
+ scale = k.shape[-1] ** -0.5
198
+ else:
199
+ assert scale > 0, "scale must be positive"
200
+
201
+ o = q.new_empty(NK, *v.shape)
202
+ grid = (NK, NV, N * HV)
203
+
204
+ fused_sigmoid_gating_delta_rule_update_kernel[grid](
205
+ A_log=A_log,
206
+ a=a,
207
+ dt_bias=dt_bias,
208
+ softplus_beta=softplus_beta,
209
+ softplus_threshold=softplus_threshold,
210
+ q=q,
211
+ k=k,
212
+ v=v,
213
+ b=b,
214
+ o=o,
215
+ h0_source=initial_state_source,
216
+ h0_indices=initial_state_indices,
217
+ cu_seqlens=cu_seqlens,
218
+ scale=scale,
219
+ T=T,
220
+ B=B,
221
+ H=H,
222
+ HV=HV,
223
+ K=K,
224
+ V=V,
225
+ BK=BK,
226
+ BV=BV,
227
+ USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
228
+ num_warps=num_warps,
229
+ num_stages=num_stages,
230
+ )
231
+ o = o.squeeze(0)
232
+ return o
@@ -0,0 +1,37 @@
1
+ # Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/utils/index.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import triton
8
+ import triton.language as tl
9
+
10
+ from sglang.srt.layers.attention.fla.utils import tensor_cache
11
+
12
+
13
+ @tensor_cache
14
+ def prepare_lens(cu_seqlens: torch.LongTensor) -> torch.LongTensor:
15
+ return cu_seqlens[1:] - cu_seqlens[:-1]
16
+
17
+
18
+ @tensor_cache
19
+ def prepare_chunk_indices(
20
+ cu_seqlens: torch.LongTensor, chunk_size: int
21
+ ) -> torch.LongTensor:
22
+ indices = torch.cat(
23
+ [
24
+ torch.arange(n)
25
+ for n in triton.cdiv(prepare_lens(cu_seqlens), chunk_size).tolist()
26
+ ]
27
+ )
28
+ return torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(cu_seqlens)
29
+
30
+
31
+ @tensor_cache
32
+ def prepare_chunk_offsets(
33
+ cu_seqlens: torch.LongTensor, chunk_size: int
34
+ ) -> torch.LongTensor:
35
+ return torch.cat(
36
+ [cu_seqlens.new_tensor([0]), triton.cdiv(prepare_lens(cu_seqlens), chunk_size)]
37
+ ).cumsum(-1)
@@ -0,0 +1,150 @@
1
+ # Adapt from https://github.com/fla-org/flash-linear-attention/blob/main/fla/modules/l2norm.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import triton
10
+ import triton.language as tl
11
+
12
+ from sglang.srt.layers.attention.fla.utils import input_guard
13
+
14
+ BT_LIST = [8, 16, 32, 64, 128]
15
+
16
+
17
+ # @triton.autotune(
18
+ # configs=[
19
+ # triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16, 32]
20
+ # ],
21
+ # key=["D"],
22
+ # )
23
+ @triton.jit
24
+ def l2norm_fwd_kernel1(
25
+ x,
26
+ y,
27
+ D,
28
+ BD: tl.constexpr,
29
+ eps,
30
+ ):
31
+ i_t = tl.program_id(0)
32
+ x += i_t * D
33
+ y += i_t * D
34
+ # Compute mean and variance
35
+ cols = tl.arange(0, BD)
36
+ mask = cols < D
37
+ b_x = tl.load(x + cols, mask=mask, other=0.0).to(tl.float32)
38
+ b_var = tl.sum(b_x * b_x, axis=0)
39
+ b_rstd = 1 / tl.sqrt(b_var + eps)
40
+ # tl.store(Rstd + i_t, rstd)
41
+ # Normalize and apply linear transformation
42
+ b_y = b_x * b_rstd
43
+ tl.store(y + cols, b_y, mask=mask)
44
+
45
+
46
+ # @triton.autotune(
47
+ # configs=[
48
+ # triton.Config({"BT": BT}, num_warps=num_warps)
49
+ # for num_warps in [1, 2, 4, 8, 16]
50
+ # for BT in BT_LIST
51
+ # ],
52
+ # key=["D", "NB"],
53
+ # )
54
+ @triton.jit
55
+ def l2norm_fwd_kernel(
56
+ x,
57
+ y,
58
+ eps,
59
+ NB: tl.constexpr,
60
+ T: tl.constexpr,
61
+ D: tl.constexpr,
62
+ BT: tl.constexpr,
63
+ BD: tl.constexpr,
64
+ ):
65
+ i_t = tl.program_id(0)
66
+ p_x = tl.make_block_ptr(x, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0))
67
+ b_x = tl.load(p_x, boundary_check=(0, 1)).to(tl.float32)
68
+ b_var = tl.sum(b_x * b_x, axis=1)
69
+ b_y = b_x / tl.sqrt(b_var + eps)[:, None]
70
+ p_y = tl.make_block_ptr(y, (T, D), (D, 1), (i_t * BT, 0), (BT, BD), (1, 0))
71
+ tl.store(p_y, b_y.to(p_y.dtype.element_ty), boundary_check=(0, 1))
72
+
73
+
74
+ def l2norm_fwd(
75
+ x: torch.Tensor, eps: float = 1e-6, output_dtype: Optional[torch.dtype] = None
76
+ ):
77
+ x_shape_og = x.shape
78
+ x = x.view(-1, x.shape[-1])
79
+ # allocate output
80
+ if output_dtype is None:
81
+ y = torch.empty_like(x)
82
+ else:
83
+ y = torch.empty_like(x, dtype=output_dtype)
84
+ assert y.stride(-1) == 1
85
+ T, D = x.shape[0], x.shape[-1]
86
+ # rstd = torch.empty((T,), dtype=torch.float32, device=x.device)
87
+ # Less than 64KB per feature: enqueue fused kernel
88
+ MAX_FUSED_SIZE = 65536 // x.element_size()
89
+ BD = min(MAX_FUSED_SIZE, triton.next_power_of_2(D))
90
+ if D > BD:
91
+ raise RuntimeError("This layer doesn't support feature dim >= 64KB.")
92
+
93
+ if D <= 512:
94
+ NB = triton.cdiv(T, 2048)
95
+
96
+ def grid(meta):
97
+ return (triton.cdiv(T, meta["BT"]),)
98
+
99
+ l2norm_fwd_kernel[grid](
100
+ x,
101
+ y,
102
+ eps,
103
+ NB=NB,
104
+ T=T,
105
+ D=D,
106
+ BD=BD,
107
+ BT=16,
108
+ num_warps=8,
109
+ num_stages=3,
110
+ )
111
+ else:
112
+ l2norm_fwd_kernel1[(T,)](
113
+ x,
114
+ y,
115
+ eps=eps,
116
+ D=D,
117
+ BD=BD,
118
+ num_warps=8,
119
+ num_stages=3,
120
+ )
121
+
122
+ return y.view(x_shape_og)
123
+
124
+
125
+ class L2NormFunction(torch.autograd.Function):
126
+
127
+ @staticmethod
128
+ @input_guard
129
+ def forward(ctx, x, eps=1e-6, output_dtype=None):
130
+ return l2norm_fwd(x, eps, output_dtype)
131
+
132
+
133
+ def l2norm(
134
+ x: torch.Tensor, eps: float = 1e-6, output_dtype: Optional[torch.dtype] = None
135
+ ) -> torch.Tensor:
136
+ return L2NormFunction.apply(x, eps, output_dtype)
137
+
138
+
139
+ l2_norm = l2norm
140
+
141
+
142
+ class L2Norm(nn.Module):
143
+
144
+ def __init__(self, eps: float = 1e-6, output_dtype: Optional[torch.dtype] = None):
145
+ super().__init__()
146
+ self.eps = eps
147
+ self.output_dtype = output_dtype
148
+
149
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
150
+ return l2norm(x, self.eps, self.output_dtype)