sglang 0.5.2rc2__py3-none-any.whl → 0.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (377) hide show
  1. sglang/bench_one_batch.py +7 -9
  2. sglang/bench_one_batch_server.py +330 -31
  3. sglang/bench_serving.py +267 -32
  4. sglang/global_config.py +2 -2
  5. sglang/lang/backend/runtime_endpoint.py +1 -1
  6. sglang/launch_server.py +14 -0
  7. sglang/profiler.py +2 -2
  8. sglang/srt/batch_invariant_ops/__init__.py +27 -0
  9. sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
  10. sglang/srt/configs/__init__.py +8 -0
  11. sglang/srt/configs/device_config.py +3 -1
  12. sglang/srt/configs/dots_ocr.py +64 -0
  13. sglang/srt/configs/dots_vlm.py +139 -0
  14. sglang/srt/configs/falcon_h1.py +360 -0
  15. sglang/srt/configs/load_config.py +9 -0
  16. sglang/srt/configs/model_config.py +181 -82
  17. sglang/srt/configs/qwen3_next.py +326 -0
  18. sglang/srt/configs/qwen3_vl.py +586 -0
  19. sglang/srt/connector/__init__.py +8 -1
  20. sglang/srt/connector/remote_instance.py +82 -0
  21. sglang/srt/constrained/base_grammar_backend.py +49 -12
  22. sglang/srt/constrained/llguidance_backend.py +0 -1
  23. sglang/srt/constrained/outlines_backend.py +0 -1
  24. sglang/srt/constrained/outlines_jump_forward.py +1 -1
  25. sglang/srt/constrained/xgrammar_backend.py +30 -9
  26. sglang/srt/custom_op.py +11 -1
  27. sglang/srt/debug_utils/dump_comparator.py +81 -44
  28. sglang/srt/debug_utils/dump_loader.py +97 -0
  29. sglang/srt/debug_utils/dumper.py +21 -6
  30. sglang/srt/debug_utils/text_comparator.py +73 -11
  31. sglang/srt/disaggregation/ascend/conn.py +2 -2
  32. sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
  33. sglang/srt/disaggregation/base/conn.py +1 -1
  34. sglang/srt/disaggregation/common/conn.py +279 -108
  35. sglang/srt/disaggregation/decode.py +71 -19
  36. sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
  37. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
  38. sglang/srt/disaggregation/fake/conn.py +1 -1
  39. sglang/srt/disaggregation/mini_lb.py +6 -445
  40. sglang/srt/disaggregation/mooncake/conn.py +55 -537
  41. sglang/srt/disaggregation/nixl/conn.py +326 -53
  42. sglang/srt/disaggregation/prefill.py +36 -17
  43. sglang/srt/disaggregation/utils.py +40 -54
  44. sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
  45. sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
  46. sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
  47. sglang/srt/distributed/parallel_state.py +156 -80
  48. sglang/srt/entrypoints/engine.py +59 -18
  49. sglang/srt/entrypoints/grpc_request_manager.py +855 -0
  50. sglang/srt/entrypoints/grpc_server.py +810 -0
  51. sglang/srt/entrypoints/http_server.py +130 -59
  52. sglang/srt/entrypoints/openai/protocol.py +112 -4
  53. sglang/srt/entrypoints/openai/serving_base.py +65 -3
  54. sglang/srt/entrypoints/openai/serving_chat.py +204 -55
  55. sglang/srt/entrypoints/openai/serving_completions.py +14 -3
  56. sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
  57. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  58. sglang/srt/entrypoints/openai/serving_responses.py +48 -3
  59. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  60. sglang/srt/environ.py +285 -0
  61. sglang/srt/eplb/eplb_manager.py +2 -2
  62. sglang/srt/eplb/expert_distribution.py +26 -13
  63. sglang/srt/eplb/expert_location.py +38 -8
  64. sglang/srt/eplb/expert_location_updater.py +1 -1
  65. sglang/srt/function_call/base_format_detector.py +3 -6
  66. sglang/srt/function_call/ebnf_composer.py +11 -9
  67. sglang/srt/function_call/function_call_parser.py +9 -2
  68. sglang/srt/function_call/glm4_moe_detector.py +4 -4
  69. sglang/srt/function_call/gpt_oss_detector.py +23 -0
  70. sglang/srt/function_call/json_array_parser.py +63 -0
  71. sglang/srt/function_call/kimik2_detector.py +17 -4
  72. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  73. sglang/srt/function_call/utils.py +96 -5
  74. sglang/srt/grpc/__init__.py +1 -0
  75. sglang/srt/grpc/compile_proto.py +245 -0
  76. sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
  77. sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
  78. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
  79. sglang/srt/layers/activation.py +143 -9
  80. sglang/srt/layers/attention/aiter_backend.py +14 -15
  81. sglang/srt/layers/attention/ascend_backend.py +115 -9
  82. sglang/srt/layers/attention/attention_registry.py +206 -0
  83. sglang/srt/layers/attention/base_attn_backend.py +12 -3
  84. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  85. sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
  86. sglang/srt/layers/attention/fla/chunk.py +242 -0
  87. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  88. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  89. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  90. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  91. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  92. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  93. sglang/srt/layers/attention/fla/index.py +37 -0
  94. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  95. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  96. sglang/srt/layers/attention/fla/op.py +66 -0
  97. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  98. sglang/srt/layers/attention/fla/utils.py +331 -0
  99. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  100. sglang/srt/layers/attention/flashattention_backend.py +41 -8
  101. sglang/srt/layers/attention/flashinfer_backend.py +118 -198
  102. sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
  103. sglang/srt/layers/attention/flashmla_backend.py +7 -5
  104. sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
  105. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  106. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  107. sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
  108. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
  109. sglang/srt/layers/attention/mamba/mamba.py +629 -0
  110. sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
  111. sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
  112. sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
  113. sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
  114. sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
  115. sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
  116. sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
  117. sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
  118. sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
  119. sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
  120. sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
  121. sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
  122. sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
  123. sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
  124. sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
  125. sglang/srt/layers/attention/nsa/transform_index.py +144 -0
  126. sglang/srt/layers/attention/nsa/utils.py +24 -0
  127. sglang/srt/layers/attention/nsa_backend.py +887 -0
  128. sglang/srt/layers/attention/tbo_backend.py +6 -6
  129. sglang/srt/layers/attention/torch_flex_backend.py +325 -0
  130. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  131. sglang/srt/layers/attention/triton_backend.py +57 -7
  132. sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
  133. sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
  134. sglang/srt/layers/attention/vision.py +58 -0
  135. sglang/srt/layers/attention/wave_backend.py +4 -4
  136. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  137. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  138. sglang/srt/layers/communicator.py +8 -0
  139. sglang/srt/layers/dp_attention.py +41 -2
  140. sglang/srt/layers/elementwise.py +3 -1
  141. sglang/srt/layers/layernorm.py +34 -15
  142. sglang/srt/layers/linear.py +55 -7
  143. sglang/srt/layers/logits_processor.py +44 -12
  144. sglang/srt/layers/moe/__init__.py +2 -1
  145. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  146. sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
  147. sglang/srt/layers/moe/ep_moe/layer.py +256 -63
  148. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
  149. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  150. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  151. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  152. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  153. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  154. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  155. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  156. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  157. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  158. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  159. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  160. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  161. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  162. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  163. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  164. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
  165. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  166. sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
  167. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  168. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  169. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  170. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  171. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  172. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  173. sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
  174. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  175. sglang/srt/layers/moe/topk.py +30 -9
  176. sglang/srt/layers/moe/utils.py +22 -6
  177. sglang/srt/layers/parameter.py +23 -6
  178. sglang/srt/layers/quantization/awq.py +19 -7
  179. sglang/srt/layers/quantization/base_config.py +11 -6
  180. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  181. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
  182. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  183. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
  184. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  185. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
  186. sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
  187. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  188. sglang/srt/layers/quantization/fp8.py +78 -49
  189. sglang/srt/layers/quantization/fp8_utils.py +51 -32
  190. sglang/srt/layers/quantization/gptq.py +25 -17
  191. sglang/srt/layers/quantization/modelopt_quant.py +190 -55
  192. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  193. sglang/srt/layers/quantization/mxfp4.py +74 -42
  194. sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
  195. sglang/srt/layers/quantization/unquant.py +135 -47
  196. sglang/srt/layers/quantization/w4afp8.py +26 -17
  197. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  198. sglang/srt/layers/quantization/w8a8_int8.py +91 -41
  199. sglang/srt/layers/rotary_embedding.py +78 -31
  200. sglang/srt/layers/sampler.py +213 -21
  201. sglang/srt/layers/utils.py +23 -0
  202. sglang/srt/lora/backend/base_backend.py +50 -8
  203. sglang/srt/lora/backend/chunked_backend.py +348 -0
  204. sglang/srt/lora/backend/triton_backend.py +99 -5
  205. sglang/srt/lora/layers.py +32 -0
  206. sglang/srt/lora/lora.py +8 -3
  207. sglang/srt/lora/lora_manager.py +52 -118
  208. sglang/srt/lora/mem_pool.py +25 -11
  209. sglang/srt/lora/triton_ops/__init__.py +4 -0
  210. sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
  211. sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
  212. sglang/srt/lora/utils.py +22 -11
  213. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  214. sglang/srt/managers/cache_controller.py +199 -301
  215. sglang/srt/managers/data_parallel_controller.py +115 -80
  216. sglang/srt/managers/detokenizer_manager.py +19 -15
  217. sglang/srt/managers/disagg_service.py +46 -0
  218. sglang/srt/managers/io_struct.py +340 -109
  219. sglang/srt/managers/mm_utils.py +44 -6
  220. sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
  221. sglang/srt/managers/multimodal_processor.py +1 -2
  222. sglang/srt/managers/overlap_utils.py +53 -0
  223. sglang/srt/managers/schedule_batch.py +240 -138
  224. sglang/srt/managers/schedule_policy.py +144 -17
  225. sglang/srt/managers/scheduler.py +502 -209
  226. sglang/srt/managers/scheduler_input_blocker.py +1 -1
  227. sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
  228. sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
  229. sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
  230. sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
  231. sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
  232. sglang/srt/managers/tokenizer_manager.py +320 -632
  233. sglang/srt/managers/tp_worker.py +81 -22
  234. sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
  235. sglang/srt/managers/utils.py +1 -45
  236. sglang/srt/mem_cache/allocator.py +14 -20
  237. sglang/srt/mem_cache/allocator_ascend.py +41 -27
  238. sglang/srt/mem_cache/base_prefix_cache.py +1 -1
  239. sglang/srt/mem_cache/chunk_cache.py +8 -1
  240. sglang/srt/mem_cache/evict_policy.py +23 -0
  241. sglang/srt/mem_cache/hicache_storage.py +43 -24
  242. sglang/srt/mem_cache/hiradix_cache.py +222 -75
  243. sglang/srt/mem_cache/memory_pool.py +535 -58
  244. sglang/srt/mem_cache/memory_pool_host.py +239 -228
  245. sglang/srt/mem_cache/radix_cache.py +222 -73
  246. sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
  247. sglang/srt/mem_cache/storage/__init__.py +10 -0
  248. sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
  249. sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
  250. sglang/srt/mem_cache/storage/backend_factory.py +223 -0
  251. sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
  252. sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
  253. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  254. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  255. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
  256. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
  257. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  258. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
  259. sglang/srt/mem_cache/swa_radix_cache.py +25 -36
  260. sglang/srt/metrics/collector.py +511 -132
  261. sglang/srt/metrics/func_timer.py +2 -7
  262. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  263. sglang/srt/metrics/utils.py +8 -1
  264. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  265. sglang/srt/model_executor/cuda_graph_runner.py +52 -37
  266. sglang/srt/model_executor/forward_batch_info.py +82 -40
  267. sglang/srt/model_executor/model_runner.py +432 -157
  268. sglang/srt/model_executor/npu_graph_runner.py +12 -5
  269. sglang/srt/model_loader/__init__.py +9 -3
  270. sglang/srt/model_loader/loader.py +133 -5
  271. sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
  272. sglang/srt/model_loader/weight_utils.py +158 -3
  273. sglang/srt/models/apertus.py +686 -0
  274. sglang/srt/models/bailing_moe.py +820 -217
  275. sglang/srt/models/bailing_moe_nextn.py +168 -0
  276. sglang/srt/models/deepseek_nextn.py +6 -1
  277. sglang/srt/models/deepseek_v2.py +607 -130
  278. sglang/srt/models/dots_ocr.py +173 -0
  279. sglang/srt/models/dots_vlm.py +174 -0
  280. sglang/srt/models/dots_vlm_vit.py +337 -0
  281. sglang/srt/models/ernie4.py +1 -1
  282. sglang/srt/models/falcon_h1.py +576 -0
  283. sglang/srt/models/gemma3_causal.py +0 -2
  284. sglang/srt/models/gemma3_mm.py +1 -1
  285. sglang/srt/models/gemma3n_mm.py +2 -2
  286. sglang/srt/models/glm4_moe.py +4 -4
  287. sglang/srt/models/glm4_moe_nextn.py +2 -2
  288. sglang/srt/models/glm4v.py +5 -3
  289. sglang/srt/models/glm4v_moe.py +4 -1
  290. sglang/srt/models/gpt_oss.py +8 -31
  291. sglang/srt/models/kimi_vl_moonvit.py +2 -2
  292. sglang/srt/models/llama.py +4 -0
  293. sglang/srt/models/llama4.py +9 -0
  294. sglang/srt/models/llama_eagle3.py +13 -0
  295. sglang/srt/models/longcat_flash.py +3 -3
  296. sglang/srt/models/longcat_flash_nextn.py +1 -1
  297. sglang/srt/models/mllama4.py +40 -4
  298. sglang/srt/models/opt.py +637 -0
  299. sglang/srt/models/qwen2_5_vl.py +29 -5
  300. sglang/srt/models/qwen2_audio.py +1 -1
  301. sglang/srt/models/qwen2_moe.py +120 -13
  302. sglang/srt/models/qwen2_vl.py +1 -1
  303. sglang/srt/models/qwen3.py +18 -3
  304. sglang/srt/models/qwen3_moe.py +32 -4
  305. sglang/srt/models/qwen3_next.py +1069 -0
  306. sglang/srt/models/qwen3_next_mtp.py +112 -0
  307. sglang/srt/models/qwen3_vl.py +787 -0
  308. sglang/srt/models/qwen3_vl_moe.py +471 -0
  309. sglang/srt/models/registry.py +15 -3
  310. sglang/srt/models/sarashina2_vision.py +269 -0
  311. sglang/srt/models/solar.py +505 -0
  312. sglang/srt/models/starcoder2.py +357 -0
  313. sglang/srt/models/step3_vl.py +1 -1
  314. sglang/srt/models/torch_native_llama.py +9 -2
  315. sglang/srt/models/utils.py +51 -0
  316. sglang/srt/multimodal/processors/base_processor.py +15 -7
  317. sglang/srt/multimodal/processors/dots_vlm.py +98 -0
  318. sglang/srt/multimodal/processors/glm4v.py +9 -9
  319. sglang/srt/multimodal/processors/internvl.py +153 -129
  320. sglang/srt/multimodal/processors/qwen_vl.py +23 -6
  321. sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
  322. sglang/srt/offloader.py +27 -3
  323. sglang/srt/parser/jinja_template_utils.py +6 -0
  324. sglang/srt/sampling/sampling_batch_info.py +38 -17
  325. sglang/srt/sampling/sampling_params.py +7 -0
  326. sglang/srt/server_args.py +966 -267
  327. sglang/srt/server_args_config_parser.py +146 -0
  328. sglang/srt/single_batch_overlap.py +151 -0
  329. sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
  330. sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
  331. sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
  332. sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
  333. sglang/srt/speculative/cpp_ngram/param.h +125 -0
  334. sglang/srt/speculative/cpp_ngram/queue.h +71 -0
  335. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
  336. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
  337. sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
  338. sglang/srt/speculative/eagle_worker.py +99 -28
  339. sglang/srt/speculative/ngram_utils.py +428 -0
  340. sglang/srt/speculative/ngram_worker.py +245 -0
  341. sglang/srt/speculative/spec_info.py +52 -0
  342. sglang/srt/speculative/spec_utils.py +606 -0
  343. sglang/srt/speculative/standalone_worker.py +109 -0
  344. sglang/srt/torch_memory_saver_adapter.py +5 -7
  345. sglang/srt/tracing/trace.py +578 -0
  346. sglang/srt/two_batch_overlap.py +8 -5
  347. sglang/srt/utils/__init__.py +2 -0
  348. sglang/srt/{utils.py → utils/common.py} +433 -77
  349. sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
  350. sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
  351. sglang/srt/utils/rpd_utils.py +452 -0
  352. sglang/srt/utils/slow_rank_detector.py +71 -0
  353. sglang/srt/warmup.py +8 -4
  354. sglang/srt/weight_sync/utils.py +2 -2
  355. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  356. sglang/test/get_logits_ut.py +57 -0
  357. sglang/test/run_eval.py +79 -11
  358. sglang/test/runners.py +5 -1
  359. sglang/test/simple_eval_common.py +5 -2
  360. sglang/test/simple_eval_mmmu_vlm.py +441 -0
  361. sglang/test/test_block_fp8.py +2 -2
  362. sglang/test/test_cutlass_moe.py +24 -6
  363. sglang/test/test_deterministic.py +297 -0
  364. sglang/test/test_disaggregation_utils.py +77 -0
  365. sglang/test/test_fp4_moe.py +370 -1
  366. sglang/test/test_programs.py +1 -1
  367. sglang/test/test_utils.py +383 -5
  368. sglang/utils.py +21 -1
  369. sglang/version.py +1 -1
  370. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
  371. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/RECORD +375 -245
  372. sglang/srt/disaggregation/launch_lb.py +0 -118
  373. sglang/srt/mem_cache/lora_radix_cache.py +0 -421
  374. /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
  375. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
  376. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
  377. {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,314 @@
1
+ # Adapted from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/common/chunk_delta_h.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ from sglang.srt.layers.attention.fla.index import (
12
+ prepare_chunk_indices,
13
+ prepare_chunk_offsets,
14
+ )
15
+ from sglang.srt.layers.attention.fla.op import exp, safe_exp
16
+ from sglang.srt.layers.attention.fla.utils import is_nvidia_hopper
17
+
18
+ NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8, 16]
19
+
20
+
21
+ @triton.heuristics(
22
+ {
23
+ "USE_G": lambda args: args["g"] is not None,
24
+ "USE_INITIAL_STATE": lambda args: args["h0"] is not None,
25
+ "STORE_FINAL_STATE": lambda args: args["ht"] is not None,
26
+ "SAVE_NEW_VALUE": lambda args: args["v_new"] is not None,
27
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
28
+ }
29
+ )
30
+ # @triton.autotune(
31
+ # configs=[
32
+ # triton.Config({"BV": BV}, num_warps=num_warps, num_stages=num_stages)
33
+ # for num_warps in [2, 4]
34
+ # for num_stages in [2, 3, 4]
35
+ # for BV in [32, 64]
36
+ # ],
37
+ # key=["H", "K", "V", "BT", "USE_G"],
38
+ # use_cuda_graph=use_cuda_graph,
39
+ # )
40
+ @triton.jit(do_not_specialize=["T"])
41
+ def chunk_gated_delta_rule_fwd_kernel_h_blockdim64(
42
+ k,
43
+ v,
44
+ w,
45
+ v_new,
46
+ g,
47
+ h,
48
+ h0,
49
+ ht,
50
+ cu_seqlens,
51
+ chunk_offsets,
52
+ T,
53
+ H: tl.constexpr,
54
+ Hg: tl.constexpr,
55
+ K: tl.constexpr,
56
+ V: tl.constexpr,
57
+ BT: tl.constexpr,
58
+ BV: tl.constexpr,
59
+ USE_G: tl.constexpr,
60
+ USE_INITIAL_STATE: tl.constexpr,
61
+ STORE_FINAL_STATE: tl.constexpr,
62
+ SAVE_NEW_VALUE: tl.constexpr,
63
+ IS_VARLEN: tl.constexpr,
64
+ ):
65
+ i_v, i_nh = tl.program_id(0), tl.program_id(1)
66
+ i_n, i_h = i_nh // H, i_nh % H
67
+ if IS_VARLEN:
68
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
69
+ cu_seqlens + i_n + 1
70
+ ).to(tl.int32)
71
+ T = eos - bos
72
+ NT = tl.cdiv(T, BT)
73
+ boh = tl.load(chunk_offsets + i_n).to(tl.int32)
74
+ else:
75
+ bos, eos = i_n * T, i_n * T + T
76
+ NT = tl.cdiv(T, BT)
77
+ boh = i_n * NT
78
+
79
+ # [BK, BV]
80
+ b_h1 = tl.zeros([64, BV], dtype=tl.float32)
81
+ if K > 64:
82
+ b_h2 = tl.zeros([64, BV], dtype=tl.float32)
83
+ if K > 128:
84
+ b_h3 = tl.zeros([64, BV], dtype=tl.float32)
85
+ if K > 192:
86
+ b_h4 = tl.zeros([64, BV], dtype=tl.float32)
87
+
88
+ # calculate offset
89
+ h += (boh * H + i_h) * K * V
90
+ v += (bos * H + i_h) * V
91
+ k += (bos * Hg + i_h // (H // Hg)) * K
92
+ w += (bos * H + i_h) * K
93
+ if SAVE_NEW_VALUE:
94
+ v_new += (bos * H + i_h) * V
95
+ stride_v = H * V
96
+ stride_h = H * K * V
97
+ stride_k = Hg * K
98
+ stride_w = H * K
99
+ if USE_INITIAL_STATE:
100
+ h0 = h0 + i_nh * K * V
101
+ if STORE_FINAL_STATE:
102
+ ht = ht + i_nh * K * V
103
+
104
+ # load initial state
105
+ if USE_INITIAL_STATE:
106
+ p_h0_1 = tl.make_block_ptr(h0, (K, V), (V, 1), (0, i_v * BV), (64, BV), (1, 0))
107
+ b_h1 += tl.load(p_h0_1, boundary_check=(0, 1)).to(tl.float32)
108
+ if K > 64:
109
+ p_h0_2 = tl.make_block_ptr(
110
+ h0, (K, V), (V, 1), (64, i_v * BV), (64, BV), (1, 0)
111
+ )
112
+ b_h2 += tl.load(p_h0_2, boundary_check=(0, 1)).to(tl.float32)
113
+ if K > 128:
114
+ p_h0_3 = tl.make_block_ptr(
115
+ h0, (K, V), (V, 1), (128, i_v * BV), (64, BV), (1, 0)
116
+ )
117
+ b_h3 += tl.load(p_h0_3, boundary_check=(0, 1)).to(tl.float32)
118
+ if K > 192:
119
+ p_h0_4 = tl.make_block_ptr(
120
+ h0, (K, V), (V, 1), (192, i_v * BV), (64, BV), (1, 0)
121
+ )
122
+ b_h4 += tl.load(p_h0_4, boundary_check=(0, 1)).to(tl.float32)
123
+
124
+ # main recurrence
125
+ for i_t in range(NT):
126
+ p_h1 = tl.make_block_ptr(
127
+ h + i_t * stride_h, (K, V), (V, 1), (0, i_v * BV), (64, BV), (1, 0)
128
+ )
129
+ tl.store(p_h1, b_h1.to(p_h1.dtype.element_ty), boundary_check=(0, 1))
130
+ if K > 64:
131
+ p_h2 = tl.make_block_ptr(
132
+ h + i_t * stride_h, (K, V), (V, 1), (64, i_v * BV), (64, BV), (1, 0)
133
+ )
134
+ tl.store(p_h2, b_h2.to(p_h2.dtype.element_ty), boundary_check=(0, 1))
135
+ if K > 128:
136
+ p_h3 = tl.make_block_ptr(
137
+ h + i_t * stride_h, (K, V), (V, 1), (128, i_v * BV), (64, BV), (1, 0)
138
+ )
139
+ tl.store(p_h3, b_h3.to(p_h3.dtype.element_ty), boundary_check=(0, 1))
140
+ if K > 192:
141
+ p_h4 = tl.make_block_ptr(
142
+ h + i_t * stride_h, (K, V), (V, 1), (192, i_v * BV), (64, BV), (1, 0)
143
+ )
144
+ tl.store(p_h4, b_h4.to(p_h4.dtype.element_ty), boundary_check=(0, 1))
145
+
146
+ p_v = tl.make_block_ptr(
147
+ v, (T, V), (stride_v, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
148
+ )
149
+ p_v_new = (
150
+ tl.make_block_ptr(
151
+ v_new, (T, V), (stride_v, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
152
+ )
153
+ if SAVE_NEW_VALUE
154
+ else None
155
+ )
156
+ b_v_new = tl.zeros([BT, BV], dtype=tl.float32)
157
+ p_w = tl.make_block_ptr(
158
+ w, (T, K), (stride_w, 1), (i_t * BT, 0), (BT, 64), (1, 0)
159
+ )
160
+ b_w = tl.load(p_w, boundary_check=(0, 1))
161
+ b_v_new += tl.dot(b_w, b_h1.to(b_w.dtype))
162
+ if K > 64:
163
+ p_w = tl.make_block_ptr(
164
+ w, (T, K), (stride_w, 1), (i_t * BT, 64), (BT, 64), (1, 0)
165
+ )
166
+ b_w = tl.load(p_w, boundary_check=(0, 1))
167
+ b_v_new += tl.dot(b_w, b_h2.to(b_w.dtype))
168
+ if K > 128:
169
+ p_w = tl.make_block_ptr(
170
+ w, (T, K), (stride_w, 1), (i_t * BT, 128), (BT, 64), (1, 0)
171
+ )
172
+ b_w = tl.load(p_w, boundary_check=(0, 1))
173
+ b_v_new += tl.dot(b_w, b_h3.to(b_w.dtype))
174
+ if K > 192:
175
+ p_w = tl.make_block_ptr(
176
+ w, (T, K), (stride_w, 1), (i_t * BT, 192), (BT, 64), (1, 0)
177
+ )
178
+ b_w = tl.load(p_w, boundary_check=(0, 1))
179
+ b_v_new += tl.dot(b_w, b_h4.to(b_w.dtype))
180
+ b_v_new = -b_v_new + tl.load(p_v, boundary_check=(0, 1))
181
+
182
+ if SAVE_NEW_VALUE:
183
+ p_v_new = tl.make_block_ptr(
184
+ v_new, (T, V), (stride_v, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
185
+ )
186
+ tl.store(
187
+ p_v_new, b_v_new.to(p_v_new.dtype.element_ty), boundary_check=(0, 1)
188
+ )
189
+
190
+ if USE_G:
191
+ last_idx = min((i_t + 1) * BT, T) - 1
192
+ b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
193
+ p_g = tl.make_block_ptr(
194
+ g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
195
+ )
196
+ b_g = tl.load(p_g, boundary_check=(0,))
197
+ b_v_new = b_v_new * safe_exp(b_g_last - b_g)[:, None]
198
+ b_g_last = exp(b_g_last)
199
+ b_h1 = b_h1 * b_g_last
200
+ if K > 64:
201
+ b_h2 = b_h2 * b_g_last
202
+ if K > 128:
203
+ b_h3 = b_h3 * b_g_last
204
+ if K > 192:
205
+ b_h4 = b_h4 * b_g_last
206
+ b_v_new = b_v_new.to(k.dtype.element_ty)
207
+ p_k = tl.make_block_ptr(
208
+ k, (K, T), (1, stride_k), (0, i_t * BT), (64, BT), (0, 1)
209
+ )
210
+ b_k = tl.load(p_k, boundary_check=(0, 1))
211
+ b_h1 += tl.dot(b_k, b_v_new)
212
+ if K > 64:
213
+ p_k = tl.make_block_ptr(
214
+ k, (K, T), (1, stride_k), (64, i_t * BT), (64, BT), (0, 1)
215
+ )
216
+ b_k = tl.load(p_k, boundary_check=(0, 1))
217
+ b_h2 += tl.dot(b_k, b_v_new)
218
+ if K > 128:
219
+ p_k = tl.make_block_ptr(
220
+ k, (K, T), (1, stride_k), (128, i_t * BT), (64, BT), (0, 1)
221
+ )
222
+ b_k = tl.load(p_k, boundary_check=(0, 1))
223
+ b_h3 += tl.dot(b_k, b_v_new)
224
+ if K > 192:
225
+ p_k = tl.make_block_ptr(
226
+ k, (K, T), (1, stride_k), (192, i_t * BT), (64, BT), (0, 1)
227
+ )
228
+ b_k = tl.load(p_k, boundary_check=(0, 1))
229
+ b_h4 += tl.dot(b_k, b_v_new)
230
+
231
+ # epilogue
232
+ if STORE_FINAL_STATE:
233
+ p_ht = tl.make_block_ptr(ht, (K, V), (V, 1), (0, i_v * BV), (64, BV), (1, 0))
234
+ tl.store(p_ht, b_h1.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
235
+ if K > 64:
236
+ p_ht = tl.make_block_ptr(
237
+ ht, (K, V), (V, 1), (64, i_v * BV), (64, BV), (1, 0)
238
+ )
239
+ tl.store(p_ht, b_h2.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
240
+ if K > 128:
241
+ p_ht = tl.make_block_ptr(
242
+ ht, (K, V), (V, 1), (128, i_v * BV), (64, BV), (1, 0)
243
+ )
244
+ tl.store(p_ht, b_h3.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
245
+ if K > 192:
246
+ p_ht = tl.make_block_ptr(
247
+ ht, (K, V), (V, 1), (192, i_v * BV), (64, BV), (1, 0)
248
+ )
249
+ tl.store(p_ht, b_h4.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
250
+
251
+
252
+ def chunk_gated_delta_rule_fwd_h(
253
+ k: torch.Tensor,
254
+ w: torch.Tensor,
255
+ u: torch.Tensor,
256
+ g: Optional[torch.Tensor] = None,
257
+ initial_state: Optional[torch.Tensor] = None,
258
+ output_final_state: bool = False,
259
+ chunk_size: int = 64, # SY: remove this argument and force chunk size 64?
260
+ save_new_value: bool = True,
261
+ cu_seqlens: Optional[torch.LongTensor] = None,
262
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
263
+ B, T, Hg, K, V = *k.shape, u.shape[-1]
264
+ H = u.shape[-2]
265
+ BT = chunk_size
266
+
267
+ chunk_indices = (
268
+ prepare_chunk_indices(cu_seqlens, chunk_size)
269
+ if cu_seqlens is not None
270
+ else None
271
+ )
272
+ # N: the actual number of sequences in the batch with either equal or variable lengths
273
+ if cu_seqlens is None:
274
+ N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
275
+ else:
276
+ N, NT, chunk_offsets = (
277
+ len(cu_seqlens) - 1,
278
+ len(chunk_indices),
279
+ prepare_chunk_offsets(cu_seqlens, BT),
280
+ )
281
+ assert K <= 256, "current kernel does not support head dimension larger than 256."
282
+
283
+ h = k.new_empty(B, NT, H, K, V)
284
+ final_state = (
285
+ k.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None
286
+ )
287
+
288
+ v_new = torch.empty_like(u) if save_new_value else None
289
+
290
+ def grid(meta):
291
+ return (triton.cdiv(V, meta["BV"]), N * H)
292
+
293
+ chunk_gated_delta_rule_fwd_kernel_h_blockdim64[grid](
294
+ k=k,
295
+ v=u,
296
+ w=w,
297
+ v_new=v_new,
298
+ g=g,
299
+ h=h,
300
+ h0=initial_state,
301
+ ht=final_state,
302
+ cu_seqlens=cu_seqlens,
303
+ chunk_offsets=chunk_offsets,
304
+ T=T,
305
+ H=H,
306
+ Hg=Hg,
307
+ K=K,
308
+ V=V,
309
+ BT=BT,
310
+ BV=32,
311
+ num_warps=4,
312
+ num_stages=2,
313
+ )
314
+ return h, v_new, final_state
@@ -0,0 +1,178 @@
1
+ # Adapted from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/common/chunk_o.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
12
+ from sglang.srt.layers.attention.fla.op import exp, safe_exp
13
+ from sglang.srt.layers.attention.fla.utils import check_shared_mem, is_nvidia_hopper
14
+
15
+ BKV_LIST = [64, 128] if check_shared_mem() else [32, 64]
16
+ NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8]
17
+
18
+
19
+ @triton.heuristics(
20
+ {
21
+ "USE_G": lambda args: args["g"] is not None,
22
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
23
+ }
24
+ )
25
+ # @triton.autotune(
26
+ # configs=[
27
+ # triton.Config({"BK": BK, "BV": BV}, num_warps=num_warps, num_stages=num_stages)
28
+ # for BK in BKV_LIST
29
+ # for BV in BKV_LIST
30
+ # for num_warps in NUM_WARPS
31
+ # for num_stages in [2, 3, 4]
32
+ # ],
33
+ # key=["H", "K", "V", "BT"],
34
+ # )
35
+ @triton.jit(do_not_specialize=["T"])
36
+ def chunk_fwd_kernel_o(
37
+ q,
38
+ k,
39
+ v,
40
+ h,
41
+ g,
42
+ o,
43
+ cu_seqlens,
44
+ chunk_indices,
45
+ scale,
46
+ T,
47
+ H: tl.constexpr,
48
+ Hg: tl.constexpr,
49
+ K: tl.constexpr,
50
+ V: tl.constexpr,
51
+ BT: tl.constexpr,
52
+ BK: tl.constexpr,
53
+ BV: tl.constexpr,
54
+ USE_G: tl.constexpr,
55
+ IS_VARLEN: tl.constexpr,
56
+ ):
57
+ i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
58
+ i_b, i_h = i_bh // H, i_bh % H
59
+
60
+ if IS_VARLEN:
61
+ i_tg = i_t
62
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
63
+ chunk_indices + i_t * 2 + 1
64
+ ).to(tl.int32)
65
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
66
+ cu_seqlens + i_n + 1
67
+ ).to(tl.int32)
68
+ T = eos - bos
69
+ NT = tl.cdiv(T, BT)
70
+ else:
71
+ NT = tl.cdiv(T, BT)
72
+ i_tg = i_b * NT + i_t
73
+ bos, eos = i_b * T, i_b * T + T
74
+
75
+ # offset calculation
76
+ q += (bos * Hg + i_h // (H // Hg)) * K
77
+ k += (bos * Hg + i_h // (H // Hg)) * K
78
+ v += (bos * H + i_h) * V
79
+ o += (bos * H + i_h) * V
80
+ h += (i_tg * H + i_h).to(tl.int64) * K * V
81
+
82
+ b_o = tl.zeros([BT, BV], dtype=tl.float32)
83
+ b_A = tl.zeros([BT, BT], dtype=tl.float32)
84
+
85
+ for i_k in range(tl.cdiv(K, BK)):
86
+ p_q = tl.make_block_ptr(
87
+ q, (T, K), (Hg * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)
88
+ )
89
+ p_k = tl.make_block_ptr(
90
+ k, (K, T), (1, Hg * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)
91
+ )
92
+ p_h = tl.make_block_ptr(
93
+ h, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)
94
+ )
95
+ # [BT, BK]
96
+ b_q = tl.load(p_q, boundary_check=(0, 1))
97
+ # [BK, BT]
98
+ b_k = tl.load(p_k, boundary_check=(0, 1))
99
+ # [BK, BV]
100
+ b_h = tl.load(p_h, boundary_check=(0, 1))
101
+
102
+ # [BT, BK] @ [BK, BV] -> [BT, BV]
103
+ b_o += tl.dot(b_q, b_h)
104
+ # [BT, BK] @ [BK, BT] -> [BT, BT]
105
+ b_A += tl.dot(b_q, b_k)
106
+
107
+ if USE_G:
108
+ g += bos * H + i_h
109
+ p_g = tl.make_block_ptr(g, (T,), (H,), (i_t * BT,), (BT,), (0,))
110
+ b_g = tl.load(p_g, boundary_check=(0,))
111
+ b_o = b_o * exp(b_g)[:, None]
112
+ b_A = b_A * safe_exp(b_g[:, None] - b_g[None, :])
113
+
114
+ o_i = tl.arange(0, BT)
115
+ m_A = o_i[:, None] >= o_i[None, :]
116
+ b_A = tl.where(m_A, b_A, 0)
117
+
118
+ p_v = tl.make_block_ptr(
119
+ v, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
120
+ )
121
+ p_o = tl.make_block_ptr(
122
+ o, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)
123
+ )
124
+ b_v = tl.load(p_v, boundary_check=(0, 1))
125
+
126
+ # to fix mma -> mma layout conversion
127
+ # already solved by triton v3.2 or higher
128
+ b_o = b_o * scale + tl.dot(b_A.to(b_v.dtype), b_v) * scale
129
+ tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
130
+
131
+
132
+ def chunk_fwd_o(
133
+ q: torch.Tensor,
134
+ k: torch.Tensor,
135
+ v: torch.Tensor,
136
+ h: torch.Tensor,
137
+ g: Optional[torch.Tensor] = None, # cumsum of log decay
138
+ scale: Optional[float] = None,
139
+ cu_seqlens: Optional[torch.LongTensor] = None,
140
+ chunk_size: int = 64,
141
+ ) -> torch.Tensor:
142
+ B, T, Hg, K, V = *q.shape, v.shape[-1]
143
+ H = v.shape[-2]
144
+ BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
145
+ chunk_indices = (
146
+ prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
147
+ )
148
+ NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
149
+ if scale is None:
150
+ scale = k.shape[-1] ** -0.5
151
+
152
+ o = torch.empty_like(v)
153
+
154
+ def grid(meta):
155
+ return (triton.cdiv(V, meta["BV"]), NT, B * H)
156
+
157
+ chunk_fwd_kernel_o[grid](
158
+ q,
159
+ k,
160
+ v,
161
+ h,
162
+ g,
163
+ o,
164
+ cu_seqlens,
165
+ chunk_indices,
166
+ scale,
167
+ T=T,
168
+ H=H,
169
+ Hg=Hg,
170
+ K=K,
171
+ V=V,
172
+ BT=BT,
173
+ BK=128,
174
+ BV=64,
175
+ num_warps=4,
176
+ num_stages=2,
177
+ )
178
+ return o
@@ -0,0 +1,151 @@
1
+ # Adapted from https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/common/chunk_scaled_dot_kkt.py
2
+ # -*- coding: utf-8 -*-
3
+ # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
4
+
5
+ from typing import Optional
6
+
7
+ import torch
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ from sglang.srt.layers.attention.fla.index import prepare_chunk_indices
12
+ from sglang.srt.layers.attention.fla.op import safe_exp
13
+
14
+
15
+ @triton.heuristics(
16
+ {
17
+ "IS_VARLEN": lambda args: args["cu_seqlens"] is not None,
18
+ "USE_G": lambda args: args["g_cumsum"] is not None,
19
+ }
20
+ )
21
+ # @triton.autotune(
22
+ # configs=[
23
+ # triton.Config({"BK": BK}, num_warps=num_warps, num_stages=num_stages)
24
+ # for BK in [32, 64, 128]
25
+ # for num_warps in [2, 4, 8]
26
+ # for num_stages in [2, 3, 4]
27
+ # ],
28
+ # key=["H", "K", "BT", "IS_VARLEN"],
29
+ # )
30
+ @triton.jit(do_not_specialize=["T"])
31
+ def chunk_scaled_dot_kkt_fwd_kernel(
32
+ k,
33
+ beta,
34
+ g_cumsum,
35
+ A,
36
+ cu_seqlens,
37
+ chunk_indices,
38
+ T,
39
+ H: tl.constexpr,
40
+ Hg: tl.constexpr,
41
+ K: tl.constexpr,
42
+ BT: tl.constexpr,
43
+ BK: tl.constexpr,
44
+ IS_VARLEN: tl.constexpr,
45
+ USE_G: tl.constexpr,
46
+ ):
47
+ i_t, i_bh = tl.program_id(0), tl.program_id(1)
48
+ i_b, i_h = i_bh // H, i_bh % H
49
+ if IS_VARLEN:
50
+ i_n, i_t = tl.load(chunk_indices + i_t * 2).to(tl.int32), tl.load(
51
+ chunk_indices + i_t * 2 + 1
52
+ ).to(tl.int32)
53
+ bos, eos = tl.load(cu_seqlens + i_n).to(tl.int32), tl.load(
54
+ cu_seqlens + i_n + 1
55
+ ).to(tl.int32)
56
+ T = eos - bos
57
+ else:
58
+ bos, eos = i_b * T, i_b * T + T
59
+ o_t = tl.arange(0, BT)
60
+
61
+ p_beta = tl.make_block_ptr(
62
+ beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
63
+ )
64
+ b_beta = tl.load(p_beta, boundary_check=(0,))
65
+
66
+ b_A = tl.zeros([BT, BT], dtype=tl.float32)
67
+ for i_k in range(tl.cdiv(K, BK)):
68
+ p_k = tl.make_block_ptr(
69
+ k + (bos * Hg + i_h // (H // Hg)) * K,
70
+ (T, K),
71
+ (Hg * K, 1),
72
+ (i_t * BT, i_k * BK),
73
+ (BT, BK),
74
+ (1, 0),
75
+ )
76
+ b_k = tl.load(p_k, boundary_check=(0, 1))
77
+ b_A += tl.dot(b_k, tl.trans(b_k))
78
+
79
+ if USE_G:
80
+ p_g = tl.make_block_ptr(
81
+ g_cumsum + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)
82
+ )
83
+ b_g = tl.load(p_g, boundary_check=(0,))
84
+ b_g_diff = b_g[:, None] - b_g[None, :]
85
+ b_A = b_A * safe_exp(b_g_diff)
86
+
87
+ b_A *= b_beta[:, None]
88
+ b_A = tl.where(o_t[:, None] > o_t[None, :], b_A, 0)
89
+ p_A = tl.make_block_ptr(
90
+ A + (bos * H + i_h) * BT, (T, BT), (BT * H, 1), (i_t * BT, 0), (BT, BT), (1, 0)
91
+ )
92
+ tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
93
+
94
+
95
+ def chunk_scaled_dot_kkt_fwd(
96
+ k: torch.Tensor,
97
+ beta: torch.Tensor,
98
+ g_cumsum: Optional[torch.Tensor] = None,
99
+ cu_seqlens: Optional[torch.LongTensor] = None,
100
+ chunk_size: int = 64,
101
+ output_dtype: torch.dtype = torch.float32,
102
+ ) -> torch.Tensor:
103
+ r"""
104
+ Compute beta * K * K^T.
105
+
106
+ Args:
107
+ k (torch.Tensor):
108
+ The key tensor of shape `[B, T, H, K]`.
109
+ beta (torch.Tensor):
110
+ The beta tensor of shape `[B, T, H]`.
111
+ g_cumsum (torch.Tensor):
112
+ The cumulative sum of the gate tensor of shape `[B, T, H]`.
113
+ Default: None
114
+ cu_seqlens (torch.LongTensor):
115
+ The cumulative sequence lengths of the input tensor.
116
+ Default: None
117
+ chunk_size (int):
118
+ The chunk size. Default: 64.
119
+ output_dtype (torch.dtype):
120
+ The dtype of the output tensor. Default: `torch.float32`
121
+
122
+ Returns:
123
+ beta * K * K^T of shape `[B, T, H, BT]` where `BT` is the chunk size.
124
+ """
125
+
126
+ B, T, Hg, K = k.shape
127
+
128
+ H = beta.shape[-1]
129
+ BT = chunk_size
130
+ chunk_indices = (
131
+ prepare_chunk_indices(cu_seqlens, BT) if cu_seqlens is not None else None
132
+ )
133
+ NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
134
+ A = torch.empty(B, T, H, BT, device=k.device, dtype=output_dtype)
135
+ chunk_scaled_dot_kkt_fwd_kernel[(NT, B * H)](
136
+ k=k,
137
+ beta=beta,
138
+ g_cumsum=g_cumsum,
139
+ A=A,
140
+ cu_seqlens=cu_seqlens,
141
+ chunk_indices=chunk_indices,
142
+ T=T,
143
+ H=H,
144
+ Hg=Hg,
145
+ K=K,
146
+ BT=BT,
147
+ BK=64,
148
+ num_warps=8,
149
+ num_stages=3,
150
+ )
151
+ return A