sglang 0.5.2rc2__py3-none-any.whl → 0.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +130 -59
- sglang/srt/entrypoints/openai/protocol.py +112 -4
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +204 -55
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -6
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +190 -55
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +144 -17
- sglang/srt/managers/scheduler.py +502 -209
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +320 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +82 -40
- sglang/srt/model_executor/model_runner.py +432 -157
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +966 -267
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +99 -28
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +433 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/RECORD +375 -245
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -1,236 +1,52 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
import copy
|
4
1
|
import logging
|
5
|
-
import
|
6
|
-
import time
|
2
|
+
from copy import copy
|
7
3
|
from dataclasses import dataclass
|
8
|
-
from typing import List, Optional
|
4
|
+
from typing import List, Optional, Tuple
|
9
5
|
|
10
6
|
import torch
|
11
7
|
import torch.nn.functional as F
|
12
|
-
import triton
|
13
|
-
import triton.language as tl
|
14
8
|
|
15
9
|
from sglang.srt.constrained.base_grammar_backend import BaseGrammarObject
|
16
10
|
from sglang.srt.layers.attention.utils import create_flashinfer_kv_indices_triton
|
17
11
|
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
|
18
12
|
from sglang.srt.layers.sampler import apply_custom_logit_processor
|
19
13
|
from sglang.srt.managers.schedule_batch import (
|
20
|
-
Req,
|
21
14
|
ScheduleBatch,
|
22
15
|
get_last_loc,
|
23
16
|
global_server_args_dict,
|
24
17
|
)
|
25
18
|
from sglang.srt.mem_cache.allocator import BaseTokenToKVPoolAllocator
|
26
|
-
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode
|
19
|
+
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode
|
20
|
+
from sglang.srt.speculative.spec_info import SpecInput, SpecInputType
|
21
|
+
from sglang.srt.speculative.spec_utils import (
|
22
|
+
SIMULATE_ACC_LEN,
|
23
|
+
TREE_SPEC_KERNEL_AVAILABLE,
|
24
|
+
_generate_simulated_accept_index,
|
25
|
+
align_evict_mask_to_page_size,
|
26
|
+
assign_req_to_token_pool,
|
27
|
+
create_accept_length_filter,
|
28
|
+
create_extend_after_decode_spec_info,
|
29
|
+
filter_finished_cache_loc_kernel,
|
30
|
+
get_src_tgt_cache_loc,
|
31
|
+
get_target_cache_loc,
|
32
|
+
)
|
27
33
|
from sglang.srt.utils import is_cuda, is_hip, next_power_of_2
|
28
34
|
|
29
|
-
logger = logging.getLogger(__name__)
|
30
|
-
|
31
35
|
if is_cuda():
|
32
36
|
from sgl_kernel import (
|
33
|
-
fast_topk,
|
34
37
|
top_k_renorm_prob,
|
35
38
|
top_p_renorm_prob,
|
36
39
|
tree_speculative_sampling_target_only,
|
37
40
|
verify_tree_greedy,
|
38
41
|
)
|
39
42
|
elif is_hip():
|
40
|
-
from sgl_kernel import
|
41
|
-
|
43
|
+
from sgl_kernel import verify_tree_greedy
|
42
44
|
|
43
45
|
logger = logging.getLogger(__name__)
|
44
46
|
|
45
47
|
|
46
|
-
# Simulate acceptance length for benchmarking purposes
|
47
|
-
SIMULATE_ACC_LEN = os.environ.get("SIMULATE_ACC_LEN")
|
48
|
-
SIMULATE_ACC_METHOD = os.environ.get("SIMULATE_ACC_METHOD", "multinomial")
|
49
|
-
|
50
|
-
TREE_TRAVERSE_TIME_THRESHOLD = 1 # TODO: set this properly
|
51
|
-
|
52
|
-
TREE_SPEC_KERNEL_AVAILABLE = "tree_speculative_sampling_target_only" in globals()
|
53
|
-
|
54
|
-
|
55
|
-
@dataclass
|
56
|
-
class EagleDraftInput:
|
57
|
-
# The inputs for decode
|
58
|
-
# shape: (b, topk)
|
59
|
-
topk_p: torch.Tensor = None
|
60
|
-
topk_index: torch.Tensor = None
|
61
|
-
# shape: (b, hidden_size)
|
62
|
-
hidden_states: torch.Tensor = None
|
63
|
-
capture_hidden_mode: CaptureHiddenMode = CaptureHiddenMode.FULL
|
64
|
-
|
65
|
-
# Inputs for extend
|
66
|
-
# shape: (b,)
|
67
|
-
verified_id: torch.Tensor = None
|
68
|
-
accept_length: torch.Tensor = None
|
69
|
-
accept_length_cpu: List[int] = None
|
70
|
-
|
71
|
-
# Inputs for the attention backends
|
72
|
-
# shape: (b + 1,)
|
73
|
-
kv_indptr: torch.Tensor = None
|
74
|
-
kv_indices: torch.Tensor = None
|
75
|
-
|
76
|
-
# Shape info for padding
|
77
|
-
num_tokens_per_batch: int = -1
|
78
|
-
num_tokens_for_logprob_per_batch: int = -1
|
79
|
-
|
80
|
-
# Inputs for draft extend
|
81
|
-
# shape: (b,)
|
82
|
-
seq_lens_for_draft_extend: torch.Tensor = None
|
83
|
-
req_pool_indices_for_draft_extend: torch.Tensor = None
|
84
|
-
|
85
|
-
def prepare_for_extend(self, batch: ScheduleBatch):
|
86
|
-
|
87
|
-
if batch.forward_mode.is_idle():
|
88
|
-
return
|
89
|
-
|
90
|
-
# Prefill only generate 1 token.
|
91
|
-
assert len(self.verified_id) == len(batch.seq_lens)
|
92
|
-
|
93
|
-
pt = 0
|
94
|
-
for i, extend_len in enumerate(batch.extend_lens):
|
95
|
-
input_ids = batch.input_ids[pt : pt + extend_len]
|
96
|
-
batch.input_ids[pt : pt + extend_len] = torch.cat(
|
97
|
-
(input_ids[1:], self.verified_id[i].reshape(1))
|
98
|
-
)
|
99
|
-
pt += extend_len
|
100
|
-
|
101
|
-
@classmethod
|
102
|
-
def create_idle_input(
|
103
|
-
cls,
|
104
|
-
device: torch.device,
|
105
|
-
hidden_size: int,
|
106
|
-
dtype: torch.dtype,
|
107
|
-
topk: int,
|
108
|
-
capture_hidden_mode: CaptureHiddenMode,
|
109
|
-
):
|
110
|
-
return cls(
|
111
|
-
verified_id=torch.empty((0,), device=device, dtype=torch.int32),
|
112
|
-
hidden_states=torch.empty((0, hidden_size), device=device, dtype=dtype),
|
113
|
-
topk_p=torch.empty((0, topk), device=device, dtype=torch.float32),
|
114
|
-
topk_index=torch.empty((0, topk), device=device, dtype=torch.int64),
|
115
|
-
capture_hidden_mode=capture_hidden_mode,
|
116
|
-
accept_length=torch.empty((0,), device=device, dtype=torch.int32),
|
117
|
-
accept_length_cpu=[],
|
118
|
-
)
|
119
|
-
|
120
|
-
def prepare_extend_after_decode(
|
121
|
-
self,
|
122
|
-
batch: ScheduleBatch,
|
123
|
-
speculative_num_steps: int,
|
124
|
-
):
|
125
|
-
|
126
|
-
if batch.forward_mode.is_idle():
|
127
|
-
return
|
128
|
-
|
129
|
-
batch.input_ids = self.verified_id
|
130
|
-
batch.extend_lens = [x + 1 for x in batch.spec_info.accept_length_cpu]
|
131
|
-
batch.extend_num_tokens = sum(batch.extend_lens)
|
132
|
-
batch.seq_lens = batch.spec_info.seq_lens_for_draft_extend
|
133
|
-
batch.req_pool_indices = batch.spec_info.req_pool_indices_for_draft_extend
|
134
|
-
batch.return_logprob = False
|
135
|
-
batch.return_hidden_states = False
|
136
|
-
|
137
|
-
self.capture_hidden_mode = CaptureHiddenMode.LAST
|
138
|
-
self.accept_length.add_(1)
|
139
|
-
self.positions = torch.empty_like(batch.input_ids, dtype=torch.long)
|
140
|
-
self.verified_id = torch.empty_like(self.accept_length, dtype=torch.int32)
|
141
|
-
|
142
|
-
create_extend_after_decode_spec_info[(len(batch.seq_lens),)](
|
143
|
-
batch.input_ids,
|
144
|
-
batch.seq_lens,
|
145
|
-
self.accept_length,
|
146
|
-
self.positions,
|
147
|
-
self.verified_id,
|
148
|
-
next_power_of_2(max(speculative_num_steps + 1, len(batch.seq_lens))),
|
149
|
-
)
|
150
|
-
|
151
|
-
def generate_attn_arg_prefill(
|
152
|
-
self,
|
153
|
-
req_pool_indices: torch.Tensor,
|
154
|
-
paged_kernel_lens: torch.Tensor,
|
155
|
-
paged_kernel_lens_sum: int,
|
156
|
-
req_to_token: torch.Tensor,
|
157
|
-
):
|
158
|
-
bs = self.accept_length.numel()
|
159
|
-
qo_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
160
|
-
qo_indptr[1:] = torch.cumsum(self.accept_length, dim=0)
|
161
|
-
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
162
|
-
cum_kv_seq_len[1:] = torch.cumsum(paged_kernel_lens, dim=0)
|
163
|
-
|
164
|
-
if paged_kernel_lens_sum is None:
|
165
|
-
paged_kernel_lens_sum = cum_kv_seq_len[-1]
|
166
|
-
|
167
|
-
kv_indices = torch.empty(
|
168
|
-
paged_kernel_lens_sum, dtype=torch.int32, device="cuda"
|
169
|
-
)
|
170
|
-
|
171
|
-
create_flashinfer_kv_indices_triton[(bs,)](
|
172
|
-
req_to_token,
|
173
|
-
req_pool_indices,
|
174
|
-
paged_kernel_lens,
|
175
|
-
cum_kv_seq_len,
|
176
|
-
None,
|
177
|
-
kv_indices,
|
178
|
-
req_to_token.size(1),
|
179
|
-
)
|
180
|
-
return kv_indices, cum_kv_seq_len, qo_indptr, None
|
181
|
-
|
182
|
-
def filter_batch(self, new_indices: torch.Tensor, has_been_filtered: bool = True):
|
183
|
-
if has_been_filtered:
|
184
|
-
# in eagle_utils.py:verify, we have already filtered the batch by `unfinished_index`
|
185
|
-
# therefore, we don't need to filter the batch again in scheduler
|
186
|
-
if len(new_indices) != len(self.topk_p):
|
187
|
-
logger.warning(
|
188
|
-
f"length of new_indices: {len(new_indices)} != length of topk_p: {len(self.topk_p)}, this should not happen"
|
189
|
-
)
|
190
|
-
self.topk_p = self.topk_p[: len(new_indices)]
|
191
|
-
self.topk_index = self.topk_index[: len(new_indices)]
|
192
|
-
self.hidden_states = self.hidden_states[: len(new_indices)]
|
193
|
-
self.verified_id = self.verified_id[: len(new_indices)]
|
194
|
-
else:
|
195
|
-
# in some cases(e.g draft_extend), we have not filtered the batch by `unfinished_index`
|
196
|
-
self.topk_p = self.topk_p[new_indices]
|
197
|
-
self.topk_index = self.topk_index[new_indices]
|
198
|
-
self.hidden_states = self.hidden_states[new_indices]
|
199
|
-
self.verified_id = self.verified_id[new_indices]
|
200
|
-
|
201
|
-
def merge_batch(self, spec_info: EagleDraftInput):
|
202
|
-
if self.hidden_states is None:
|
203
|
-
self.hidden_states = spec_info.hidden_states
|
204
|
-
self.verified_id = spec_info.verified_id
|
205
|
-
self.topk_p = spec_info.topk_p
|
206
|
-
self.topk_index = spec_info.topk_index
|
207
|
-
return
|
208
|
-
if spec_info.hidden_states is None:
|
209
|
-
return
|
210
|
-
self.hidden_states = torch.cat(
|
211
|
-
[self.hidden_states, spec_info.hidden_states], axis=0
|
212
|
-
)
|
213
|
-
self.verified_id = torch.cat([self.verified_id, spec_info.verified_id], axis=0)
|
214
|
-
self.topk_p = torch.cat([self.topk_p, spec_info.topk_p])
|
215
|
-
self.topk_index = torch.cat([self.topk_index, spec_info.topk_index])
|
216
|
-
|
217
|
-
|
218
48
|
@dataclass
|
219
|
-
class
|
220
|
-
# Draft input batch
|
221
|
-
draft_input: EagleDraftInput
|
222
|
-
# Logit outputs from target worker
|
223
|
-
logits_output: LogitsProcessorOutput
|
224
|
-
# Accepted token ids including the bonus token
|
225
|
-
verified_id: torch.Tensor
|
226
|
-
# Accepted token length per sequence in a batch in CPU.
|
227
|
-
accept_length_per_req_cpu: List[int]
|
228
|
-
# Accepted indices from logits_output.next_token_logits
|
229
|
-
accepted_indices: torch.Tensor
|
230
|
-
|
231
|
-
|
232
|
-
@dataclass
|
233
|
-
class EagleVerifyInput:
|
49
|
+
class EagleVerifyInput(SpecInput):
|
234
50
|
draft_token: torch.Tensor
|
235
51
|
custom_mask: torch.Tensor
|
236
52
|
positions: torch.Tensor
|
@@ -246,6 +62,12 @@ class EagleVerifyInput:
|
|
246
62
|
seq_lens_cpu: torch.Tensor
|
247
63
|
grammar: BaseGrammarObject = None
|
248
64
|
|
65
|
+
def __post_init__(self):
|
66
|
+
super().__init__(SpecInputType.EAGLE_VERIFY)
|
67
|
+
|
68
|
+
def get_spec_adjust_token_coefficient(self) -> Tuple[int, int]:
|
69
|
+
return self.draft_token_num, self.draft_token_num
|
70
|
+
|
249
71
|
@classmethod
|
250
72
|
def create_idle_input(cls, topk: int, spec_steps: int, num_verify_tokens: int):
|
251
73
|
return cls(
|
@@ -282,14 +104,21 @@ class EagleVerifyInput:
|
|
282
104
|
end_offset = batch.seq_lens + self.draft_token_num
|
283
105
|
else:
|
284
106
|
prefix_lens = batch.seq_lens
|
107
|
+
prefix_lens_cpu = batch.seq_lens_cpu
|
285
108
|
end_offset = prefix_lens + self.draft_token_num
|
109
|
+
end_offset_cpu = prefix_lens_cpu + self.draft_token_num
|
286
110
|
last_loc = get_last_loc(
|
287
111
|
batch.req_to_token_pool.req_to_token,
|
288
112
|
batch.req_pool_indices,
|
289
113
|
prefix_lens,
|
290
114
|
)
|
291
115
|
batch.out_cache_loc = batch.alloc_paged_token_slots_extend(
|
292
|
-
prefix_lens,
|
116
|
+
prefix_lens,
|
117
|
+
prefix_lens_cpu,
|
118
|
+
end_offset,
|
119
|
+
end_offset_cpu,
|
120
|
+
last_loc,
|
121
|
+
len(batch.input_ids),
|
293
122
|
)
|
294
123
|
self.last_loc = last_loc
|
295
124
|
|
@@ -502,13 +331,12 @@ class EagleVerifyInput:
|
|
502
331
|
deterministic=True,
|
503
332
|
)
|
504
333
|
|
505
|
-
if SIMULATE_ACC_LEN:
|
334
|
+
if SIMULATE_ACC_LEN > 0.0:
|
506
335
|
# Do simulation
|
507
336
|
accept_index = _generate_simulated_accept_index(
|
508
337
|
accept_index=accept_index,
|
509
338
|
predict=predict, # mutable
|
510
339
|
accept_length=accept_length, # mutable
|
511
|
-
simulate_acc_len=SIMULATE_ACC_LEN,
|
512
340
|
bs=bs,
|
513
341
|
spec_steps=self.spec_steps,
|
514
342
|
)
|
@@ -559,6 +387,10 @@ class EagleVerifyInput:
|
|
559
387
|
verified_id = predict[accept_index]
|
560
388
|
evict_mask = torch.full_like(self.draft_token, True, dtype=torch.bool)
|
561
389
|
evict_mask[accept_index] = False
|
390
|
+
accept_length_cpu = accept_length.cpu()
|
391
|
+
# FIXME: this `tolist()` fixes the numerical calculation consistency
|
392
|
+
# try to unify the tensor representation and list representation
|
393
|
+
accept_length_list = accept_length_cpu.tolist()
|
562
394
|
|
563
395
|
if page_size == 1:
|
564
396
|
# TODO: boolean array index leads to a device sync. Remove it.
|
@@ -635,13 +467,15 @@ class EagleVerifyInput:
|
|
635
467
|
else:
|
636
468
|
batch.out_cache_loc = tgt_cache_loc
|
637
469
|
batch.seq_lens.add_(accept_length + 1)
|
470
|
+
batch.seq_lens_cpu.add_(accept_length_cpu + 1)
|
638
471
|
|
639
472
|
draft_input = EagleDraftInput(
|
640
473
|
hidden_states=batch.spec_info.hidden_states[accept_index],
|
641
474
|
verified_id=verified_id,
|
642
475
|
accept_length=accept_length,
|
643
|
-
accept_length_cpu=
|
476
|
+
accept_length_cpu=accept_length_list,
|
644
477
|
seq_lens_for_draft_extend=batch.seq_lens,
|
478
|
+
seq_lens_for_draft_extend_cpu=batch.seq_lens_cpu,
|
645
479
|
req_pool_indices_for_draft_extend=batch.req_pool_indices,
|
646
480
|
)
|
647
481
|
|
@@ -664,15 +498,15 @@ class EagleVerifyInput:
|
|
664
498
|
next_power_of_2(bs),
|
665
499
|
)
|
666
500
|
batch.seq_lens.add_(accept_length + 1)
|
501
|
+
batch.seq_lens_cpu.add_(accept_length_cpu + 1)
|
667
502
|
|
668
|
-
accept_length_cpu = accept_length.tolist()
|
669
503
|
if len(unfinished_accept_index) > 0:
|
670
504
|
unfinished_accept_index = torch.cat(unfinished_accept_index)
|
671
505
|
unfinished_index_device = torch.tensor(
|
672
506
|
unfinished_index, dtype=torch.int64, device=predict.device
|
673
507
|
)
|
674
508
|
draft_input_accept_length_cpu = [
|
675
|
-
|
509
|
+
accept_length_list[i] for i in unfinished_index
|
676
510
|
]
|
677
511
|
if page_size == 1 or self.topk == 1:
|
678
512
|
batch.out_cache_loc = batch.out_cache_loc[unfinished_accept_index]
|
@@ -687,6 +521,7 @@ class EagleVerifyInput:
|
|
687
521
|
unfinished_index_device,
|
688
522
|
batch.seq_lens,
|
689
523
|
)
|
524
|
+
batch.seq_lens_cpu.add_(accept_length_cpu + 1)
|
690
525
|
filter_finished_cache_loc_kernel[(bs,)](
|
691
526
|
batch.out_cache_loc,
|
692
527
|
tgt_cache_loc,
|
@@ -704,6 +539,7 @@ class EagleVerifyInput:
|
|
704
539
|
accept_length_cpu=draft_input_accept_length_cpu,
|
705
540
|
accept_length=accept_length[unfinished_index_device],
|
706
541
|
seq_lens_for_draft_extend=batch.seq_lens[unfinished_index_device],
|
542
|
+
seq_lens_for_draft_extend_cpu=batch.seq_lens_cpu[unfinished_index],
|
707
543
|
req_pool_indices_for_draft_extend=batch.req_pool_indices[
|
708
544
|
unfinished_index_device
|
709
545
|
],
|
@@ -721,577 +557,191 @@ class EagleVerifyInput:
|
|
721
557
|
draft_input=draft_input,
|
722
558
|
logits_output=logits_output,
|
723
559
|
verified_id=verified_id,
|
724
|
-
accept_length_per_req_cpu=
|
560
|
+
accept_length_per_req_cpu=accept_length_list,
|
725
561
|
accepted_indices=accept_index,
|
726
562
|
)
|
727
563
|
|
728
564
|
|
729
|
-
@
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
736
|
-
|
737
|
-
|
738
|
-
pid = tl.program_id(axis=0)
|
739
|
-
offsets = tl.arange(0, bs_upper)
|
740
|
-
seq_length = tl.load(seq_lens + pid)
|
741
|
-
accept_length = tl.load(accept_lens + pid)
|
742
|
-
|
743
|
-
accept_len_cumsum = tl.sum(
|
744
|
-
tl.load(accept_lens + offsets, mask=offsets < pid, other=0)
|
745
|
-
)
|
746
|
-
positions_ptr = positions + accept_len_cumsum
|
747
|
-
mask = offsets < accept_length
|
748
|
-
tl.store(positions_ptr + offsets, seq_length - accept_length + offsets, mask)
|
749
|
-
|
750
|
-
accept_len_cumsum += accept_length - 1
|
751
|
-
verified_id_data = tl.load(verified_id + accept_len_cumsum)
|
752
|
-
tl.store(new_verified_id + pid, verified_id_data)
|
753
|
-
|
754
|
-
|
755
|
-
@triton.jit
|
756
|
-
def assign_req_to_token_pool(
|
757
|
-
req_pool_indices,
|
758
|
-
req_to_token,
|
759
|
-
start_offset,
|
760
|
-
end_offset,
|
761
|
-
out_cache_loc,
|
762
|
-
pool_len: tl.constexpr,
|
763
|
-
bs_upper: tl.constexpr,
|
764
|
-
):
|
765
|
-
BLOCK_SIZE: tl.constexpr = 32
|
766
|
-
pid = tl.program_id(axis=0)
|
767
|
-
kv_start = tl.load(start_offset + pid)
|
768
|
-
kv_end = tl.load(end_offset + pid)
|
769
|
-
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
770
|
-
|
771
|
-
length_offset = tl.arange(0, bs_upper)
|
772
|
-
start = tl.load(start_offset + length_offset, mask=length_offset < pid, other=0)
|
773
|
-
end = tl.load(end_offset + length_offset, mask=length_offset < pid, other=0)
|
774
|
-
out_offset = tl.sum(end - start, axis=0)
|
775
|
-
|
776
|
-
out_cache_ptr = out_cache_loc + out_offset
|
777
|
-
|
778
|
-
save_offset = tl.arange(0, BLOCK_SIZE) + kv_start
|
779
|
-
load_offset = tl.arange(0, BLOCK_SIZE)
|
780
|
-
|
781
|
-
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
|
782
|
-
for _ in range(num_loop):
|
783
|
-
mask = save_offset < kv_end
|
784
|
-
data = tl.load(out_cache_ptr + load_offset, mask=mask)
|
785
|
-
tl.store(token_pool + save_offset, data, mask=mask)
|
786
|
-
save_offset += BLOCK_SIZE
|
787
|
-
load_offset += BLOCK_SIZE
|
788
|
-
|
789
|
-
|
790
|
-
@triton.jit
|
791
|
-
def assign_draft_cache_locs(
|
792
|
-
req_pool_indices,
|
793
|
-
req_to_token,
|
794
|
-
seq_lens,
|
795
|
-
extend_lens,
|
796
|
-
num_new_pages_per_topk,
|
797
|
-
out_cache_loc,
|
798
|
-
pool_len: tl.constexpr,
|
799
|
-
topk: tl.constexpr,
|
800
|
-
speculative_num_steps: tl.constexpr,
|
801
|
-
page_size: tl.constexpr,
|
802
|
-
bs_upper: tl.constexpr,
|
803
|
-
iter_upper: tl.constexpr,
|
804
|
-
):
|
805
|
-
BLOCK_SIZE: tl.constexpr = 128
|
806
|
-
pid = tl.program_id(axis=0)
|
807
|
-
|
808
|
-
if page_size == 1 or topk == 1:
|
809
|
-
copy_len = topk * speculative_num_steps
|
810
|
-
out_cache_ptr = out_cache_loc + pid * topk * speculative_num_steps
|
811
|
-
else:
|
812
|
-
bs_offset = tl.arange(0, bs_upper)
|
813
|
-
copy_len = tl.load(extend_lens + pid)
|
814
|
-
cum_copy_len = tl.sum(tl.load(extend_lens + bs_offset, mask=bs_offset < pid))
|
815
|
-
out_cache_ptr = out_cache_loc + cum_copy_len
|
816
|
-
|
817
|
-
# Part 1: Copy from out_cache_loc to req_to_token
|
818
|
-
kv_start = tl.load(seq_lens + pid)
|
819
|
-
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
820
|
-
num_loop = tl.cdiv(copy_len, BLOCK_SIZE)
|
821
|
-
for i in range(num_loop):
|
822
|
-
copy_offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
|
823
|
-
mask = copy_offset < copy_len
|
824
|
-
data = tl.load(out_cache_ptr + copy_offset, mask=mask)
|
825
|
-
tl.store(token_pool + kv_start + copy_offset, data, mask=mask)
|
826
|
-
|
827
|
-
if page_size == 1 or topk == 1:
|
828
|
-
return
|
829
|
-
|
830
|
-
# Part 2: Copy the indices for the last partial page
|
831
|
-
prefix_len = tl.load(seq_lens + pid)
|
832
|
-
last_page_len = prefix_len % page_size
|
833
|
-
offsets = tl.arange(0, page_size)
|
834
|
-
mask = offsets < last_page_len
|
835
|
-
num_new_pages_per_topk_ = tl.load(num_new_pages_per_topk + pid)
|
836
|
-
prefix_base = token_pool + prefix_len - last_page_len
|
837
|
-
|
838
|
-
for topk_id in range(topk):
|
839
|
-
value = tl.load(prefix_base + offsets, mask=mask)
|
840
|
-
tl.store(
|
841
|
-
prefix_base + topk_id * num_new_pages_per_topk_ * page_size + offsets,
|
842
|
-
value,
|
843
|
-
mask=mask,
|
844
|
-
)
|
845
|
-
|
846
|
-
# Part 3: Remove the padding in out_cache_loc
|
847
|
-
iter_offest = tl.arange(0, iter_upper)
|
848
|
-
for topk_id in range(topk):
|
849
|
-
indices = tl.load(
|
850
|
-
prefix_base
|
851
|
-
+ topk_id * num_new_pages_per_topk_ * page_size
|
852
|
-
+ last_page_len
|
853
|
-
+ iter_offest,
|
854
|
-
mask=iter_offest < speculative_num_steps,
|
855
|
-
)
|
856
|
-
tl.store(
|
857
|
-
out_cache_loc
|
858
|
-
+ pid * topk * speculative_num_steps
|
859
|
-
+ topk_id * speculative_num_steps
|
860
|
-
+ iter_offest,
|
861
|
-
indices,
|
862
|
-
mask=iter_offest < speculative_num_steps,
|
863
|
-
)
|
565
|
+
@dataclass
|
566
|
+
class EagleDraftInput(SpecInput):
|
567
|
+
# The inputs for decode
|
568
|
+
# shape: (b, topk)
|
569
|
+
topk_p: torch.Tensor = None
|
570
|
+
topk_index: torch.Tensor = None
|
571
|
+
# shape: (b, hidden_size)
|
572
|
+
hidden_states: torch.Tensor = None
|
573
|
+
capture_hidden_mode: CaptureHiddenMode = CaptureHiddenMode.FULL
|
864
574
|
|
575
|
+
# Inputs for extend
|
576
|
+
# shape: (b,)
|
577
|
+
verified_id: torch.Tensor = None
|
578
|
+
accept_length: torch.Tensor = None
|
579
|
+
accept_length_cpu: List[int] = None
|
865
580
|
|
866
|
-
|
867
|
-
|
868
|
-
|
869
|
-
|
870
|
-
paged_kernel_lens,
|
871
|
-
kv_indices,
|
872
|
-
kv_indptr,
|
873
|
-
positions,
|
874
|
-
pool_len: tl.constexpr,
|
875
|
-
kv_indices_stride: tl.constexpr,
|
876
|
-
kv_indptr_stride: tl.constexpr,
|
877
|
-
bs_upper: tl.constexpr,
|
878
|
-
iter_upper: tl.constexpr,
|
879
|
-
num_tokens_upper: tl.constexpr,
|
880
|
-
page_size: tl.constexpr,
|
881
|
-
):
|
882
|
-
BLOCK_SIZE: tl.constexpr = 128
|
883
|
-
iters = tl.program_id(axis=0)
|
884
|
-
bid = tl.program_id(axis=1)
|
885
|
-
topk_id = tl.program_id(axis=2)
|
886
|
-
|
887
|
-
num_steps = tl.num_programs(axis=0)
|
888
|
-
num_seqs = tl.num_programs(axis=1)
|
889
|
-
topk = tl.num_programs(axis=2)
|
890
|
-
|
891
|
-
kv_indices += kv_indices_stride * iters
|
892
|
-
kv_indptr += kv_indptr_stride * iters
|
893
|
-
iters += 1
|
894
|
-
|
895
|
-
load_offset = tl.arange(0, bs_upper)
|
896
|
-
seq_lens = tl.load(paged_kernel_lens + load_offset, mask=load_offset < bid, other=0)
|
897
|
-
seq_len = tl.load(paged_kernel_lens + bid)
|
898
|
-
cum_seq_len = tl.sum(seq_lens)
|
899
|
-
|
900
|
-
# Update kv_indices
|
901
|
-
kv_offset = cum_seq_len * topk + bid * iters * topk + topk_id * (seq_len + iters)
|
902
|
-
kv_ptr = kv_indices + kv_offset
|
903
|
-
token_pool_ptr = req_to_token + tl.load(req_pool_indices + bid) * pool_len
|
904
|
-
|
905
|
-
kv_offset = tl.arange(0, BLOCK_SIZE)
|
906
|
-
num_loop = tl.cdiv(seq_len, BLOCK_SIZE)
|
907
|
-
for _ in range(num_loop):
|
908
|
-
mask = kv_offset < seq_len
|
909
|
-
data = tl.load(token_pool_ptr + kv_offset, mask=mask)
|
910
|
-
tl.store(kv_ptr + kv_offset, data, mask=mask)
|
911
|
-
kv_offset += BLOCK_SIZE
|
912
|
-
|
913
|
-
extend_offset = tl.arange(0, iter_upper)
|
914
|
-
if page_size == 1 or topk == 1:
|
915
|
-
extend_data = tl.load(
|
916
|
-
token_pool_ptr + seq_len + topk_id * num_steps + tl.arange(0, iter_upper),
|
917
|
-
mask=extend_offset < iters,
|
918
|
-
)
|
919
|
-
else:
|
920
|
-
prefix_len = seq_len
|
921
|
-
last_page_len = prefix_len % page_size
|
922
|
-
num_new_pages_per_topk = (
|
923
|
-
last_page_len + num_steps + page_size - 1
|
924
|
-
) // page_size
|
925
|
-
prefix_base = seq_len // page_size * page_size
|
926
|
-
start = (
|
927
|
-
prefix_base + topk_id * num_new_pages_per_topk * page_size + last_page_len
|
928
|
-
)
|
929
|
-
extend_data = tl.load(
|
930
|
-
token_pool_ptr + start + extend_offset,
|
931
|
-
mask=extend_offset < iters,
|
932
|
-
)
|
581
|
+
# Inputs for the attention backends
|
582
|
+
# shape: (b + 1,)
|
583
|
+
kv_indptr: torch.Tensor = None
|
584
|
+
kv_indices: torch.Tensor = None
|
933
585
|
|
934
|
-
|
935
|
-
|
936
|
-
|
937
|
-
bs_offset = tl.arange(0, num_tokens_upper)
|
938
|
-
|
939
|
-
zid = bid * topk + topk_id
|
940
|
-
if zid == 0:
|
941
|
-
zid = num_seqs * topk
|
942
|
-
positions = tl.load(positions + bs_offset, mask=bs_offset < zid, other=0)
|
943
|
-
base = tl.sum(positions)
|
944
|
-
tl.store(kv_indptr + zid, base + zid * iters)
|
945
|
-
|
946
|
-
|
947
|
-
@triton.jit
|
948
|
-
def align_evict_mask_to_page_size(
|
949
|
-
seq_lens,
|
950
|
-
evict_mask,
|
951
|
-
page_size: tl.constexpr,
|
952
|
-
num_draft_tokens: tl.constexpr,
|
953
|
-
BLOCK_SIZE: tl.constexpr,
|
954
|
-
):
|
955
|
-
t_range = tl.arange(0, BLOCK_SIZE)
|
956
|
-
|
957
|
-
bid = tl.program_id(axis=0)
|
958
|
-
seq_len = tl.load(seq_lens + bid)
|
959
|
-
io_mask = t_range < num_draft_tokens
|
960
|
-
mask_row = tl.load(
|
961
|
-
evict_mask + bid * num_draft_tokens + t_range, mask=io_mask, other=0
|
962
|
-
)
|
586
|
+
# Shape info for padding
|
587
|
+
num_tokens_per_batch: int = -1
|
588
|
+
num_tokens_for_logprob_per_batch: int = -1
|
963
589
|
|
964
|
-
|
965
|
-
|
966
|
-
|
967
|
-
|
968
|
-
|
969
|
-
tl.store(evict_mask + bid * num_draft_tokens + i, False)
|
970
|
-
|
971
|
-
|
972
|
-
@triton.jit
|
973
|
-
def get_target_cache_loc(
|
974
|
-
tgt_cache_loc,
|
975
|
-
to_free_slots,
|
976
|
-
accept_length,
|
977
|
-
to_free_num_slots,
|
978
|
-
out_cache_loc,
|
979
|
-
num_verify_tokens: tl.constexpr,
|
980
|
-
num_verify_tokens_upper: tl.constexpr,
|
981
|
-
bs_upper: tl.constexpr,
|
982
|
-
):
|
983
|
-
bid = tl.program_id(axis=0)
|
984
|
-
offset = tl.arange(0, num_verify_tokens_upper)
|
985
|
-
bs_offset = tl.arange(0, bs_upper)
|
986
|
-
|
987
|
-
# write the first part to tgt_cache_loc
|
988
|
-
accept_len_all = tl.load(accept_length + bs_offset, mask=bs_offset < bid)
|
989
|
-
tgt_cache_loc_start = tl.sum(accept_len_all) + bid
|
990
|
-
copy_len = tl.load(accept_length + bid) + 1
|
991
|
-
out_cache_loc_row = tl.load(
|
992
|
-
out_cache_loc + bid * num_verify_tokens + offset, mask=offset < copy_len
|
993
|
-
)
|
994
|
-
tl.store(
|
995
|
-
tgt_cache_loc + tgt_cache_loc_start + offset,
|
996
|
-
out_cache_loc_row,
|
997
|
-
mask=offset < copy_len,
|
998
|
-
)
|
590
|
+
# Inputs for draft extend
|
591
|
+
# shape: (b,)
|
592
|
+
seq_lens_for_draft_extend: torch.Tensor = None
|
593
|
+
seq_lens_for_draft_extend_cpu: torch.Tensor = None
|
594
|
+
req_pool_indices_for_draft_extend: torch.Tensor = None
|
999
595
|
|
1000
|
-
|
1001
|
-
|
1002
|
-
to_free_num_slots_cur = tl.load(to_free_num_slots + bid)
|
1003
|
-
out_cache_loc_start = num_verify_tokens - to_free_num_slots_cur
|
1004
|
-
to_free_slots_start = tl.sum(to_free_num_slots_all)
|
596
|
+
def __post_init__(self):
|
597
|
+
super().__init__(SpecInputType.EAGLE_DRAFT)
|
1005
598
|
|
1006
|
-
|
1007
|
-
|
1008
|
-
out_cache_loc + bid * num_verify_tokens + out_cache_loc_start + offset,
|
1009
|
-
mask=offset < copy_len,
|
1010
|
-
)
|
1011
|
-
tl.store(
|
1012
|
-
to_free_slots + to_free_slots_start + offset,
|
1013
|
-
out_cache_loc_row,
|
1014
|
-
mask=offset < copy_len,
|
1015
|
-
)
|
599
|
+
def get_spec_adjust_token_coefficient(self) -> Tuple[int, int]:
|
600
|
+
return self.num_tokens_per_batch, self.num_tokens_for_logprob_per_batch
|
1016
601
|
|
602
|
+
def prepare_for_extend(self, batch: ScheduleBatch):
|
1017
603
|
|
1018
|
-
|
1019
|
-
|
1020
|
-
seq_lens: torch.Tensor,
|
1021
|
-
out_cache_loc: torch.Tensor,
|
1022
|
-
accept_index: torch.Tensor,
|
1023
|
-
accept_length: torch.Tensor,
|
1024
|
-
draft_token_num: int,
|
1025
|
-
page_size: int,
|
1026
|
-
):
|
1027
|
-
src_cache_loc = out_cache_loc[accept_index]
|
1028
|
-
tgt_cache_loc = torch.empty_like(src_cache_loc)
|
1029
|
-
extended_len = seq_lens + draft_token_num
|
1030
|
-
keep_len = torch.minimum(
|
1031
|
-
(seq_lens + accept_length + 1 + page_size - 1) // page_size * page_size,
|
1032
|
-
extended_len,
|
1033
|
-
)
|
1034
|
-
to_free_num_slots = extended_len - keep_len
|
1035
|
-
return src_cache_loc, tgt_cache_loc, to_free_num_slots
|
1036
|
-
|
1037
|
-
|
1038
|
-
@triton.jit
|
1039
|
-
def filter_finished_cache_loc_kernel(
|
1040
|
-
out_cache_loc,
|
1041
|
-
tgt_cache_loc,
|
1042
|
-
accept_length,
|
1043
|
-
accept_length_filter,
|
1044
|
-
bs_upper: tl.constexpr,
|
1045
|
-
num_verify_tokens_upper: tl.constexpr,
|
1046
|
-
):
|
1047
|
-
bid = tl.program_id(0)
|
1048
|
-
bs_offset = tl.arange(0, bs_upper)
|
1049
|
-
|
1050
|
-
accept_length_all = tl.load(accept_length + bs_offset, mask=bs_offset < bid)
|
1051
|
-
old_start = tl.sum(accept_length_all) + bid
|
1052
|
-
|
1053
|
-
accept_length_filter_all = tl.load(
|
1054
|
-
accept_length_filter + bs_offset, mask=bs_offset < bid
|
1055
|
-
)
|
1056
|
-
new_start = tl.sum(accept_length_filter_all)
|
604
|
+
if batch.forward_mode.is_idle():
|
605
|
+
return
|
1057
606
|
|
1058
|
-
|
1059
|
-
|
1060
|
-
value = tl.load(
|
1061
|
-
tgt_cache_loc + old_start + copy_offset, mask=copy_offset < copy_len
|
1062
|
-
)
|
1063
|
-
tl.store(
|
1064
|
-
out_cache_loc + new_start + copy_offset, value, mask=copy_offset < copy_len
|
1065
|
-
)
|
607
|
+
# Prefill only generate 1 token.
|
608
|
+
assert len(self.verified_id) == len(batch.seq_lens)
|
1066
609
|
|
610
|
+
pt = 0
|
611
|
+
for i, extend_len in enumerate(batch.extend_lens):
|
612
|
+
input_ids = batch.input_ids[pt : pt + extend_len]
|
613
|
+
batch.input_ids[pt : pt + extend_len] = torch.cat(
|
614
|
+
(input_ids[1:], self.verified_id[i].reshape(1))
|
615
|
+
)
|
616
|
+
pt += extend_len
|
1067
617
|
|
1068
|
-
@
|
1069
|
-
def
|
1070
|
-
|
1071
|
-
|
1072
|
-
|
1073
|
-
|
1074
|
-
|
1075
|
-
|
1076
|
-
|
1077
|
-
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1081
|
-
|
1082
|
-
|
1083
|
-
|
1084
|
-
|
1085
|
-
topk_p: torch.Tensor,
|
1086
|
-
topk_index: torch.Tensor,
|
1087
|
-
hidden_states: torch.Tensor,
|
1088
|
-
scores: torch.Tensor,
|
1089
|
-
topk: int,
|
1090
|
-
):
|
1091
|
-
if i == 0:
|
1092
|
-
# The first step after extend
|
1093
|
-
input_ids = topk_index.flatten()
|
1094
|
-
hidden_states = hidden_states.repeat_interleave(topk, dim=0)
|
1095
|
-
scores = topk_p # shape: (b, topk)
|
1096
|
-
|
1097
|
-
tree_info = (
|
1098
|
-
topk_p.unsqueeze(1), # shape: (b, 1, topk)
|
1099
|
-
topk_index, # shape: (b, topk)
|
1100
|
-
torch.arange(-1, topk, dtype=torch.long, device="cuda")
|
1101
|
-
.unsqueeze(0)
|
1102
|
-
.repeat(topk_p.shape[0], 1), # shape: (b, topk + 1)
|
1103
|
-
)
|
1104
|
-
else:
|
1105
|
-
# The later decode steps
|
1106
|
-
expand_scores = torch.mul(
|
1107
|
-
scores.unsqueeze(2), topk_p.reshape(-1, topk, topk)
|
1108
|
-
) # (b, topk, 1) x (b, topk ,topk) -> (b, topk, topk)
|
1109
|
-
topk_cs_p, topk_cs_index = fast_topk(
|
1110
|
-
expand_scores.flatten(start_dim=1), topk, dim=-1
|
1111
|
-
) # (b, topk)
|
1112
|
-
scores = topk_cs_p # shape: (b, topk)
|
1113
|
-
|
1114
|
-
topk_index = topk_index.reshape(-1, topk**2)
|
1115
|
-
input_ids = torch.gather(topk_index, index=topk_cs_index, dim=1).flatten()
|
1116
|
-
|
1117
|
-
if hidden_states.shape[0] > 0:
|
1118
|
-
selected_input_index = topk_cs_index.flatten() // topk + torch.arange(
|
1119
|
-
0, hidden_states.shape[0], step=topk, device="cuda"
|
1120
|
-
).repeat_interleave(topk)
|
1121
|
-
hidden_states = hidden_states[selected_input_index, :]
|
1122
|
-
|
1123
|
-
tree_info = (
|
1124
|
-
expand_scores, # shape: (b, topk, topk)
|
1125
|
-
topk_index, # shape: (b, topk * topk)
|
1126
|
-
topk_cs_index + (topk**2 * (i - 1) + topk), # shape: (b, topk)
|
618
|
+
@classmethod
|
619
|
+
def create_idle_input(
|
620
|
+
cls,
|
621
|
+
device: torch.device,
|
622
|
+
hidden_size: int,
|
623
|
+
dtype: torch.dtype,
|
624
|
+
topk: int,
|
625
|
+
capture_hidden_mode: CaptureHiddenMode,
|
626
|
+
):
|
627
|
+
return cls(
|
628
|
+
verified_id=torch.empty((0,), device=device, dtype=torch.int32),
|
629
|
+
hidden_states=torch.empty((0, hidden_size), device=device, dtype=dtype),
|
630
|
+
topk_p=torch.empty((0, topk), device=device, dtype=torch.float32),
|
631
|
+
topk_index=torch.empty((0, topk), device=device, dtype=torch.int64),
|
632
|
+
capture_hidden_mode=capture_hidden_mode,
|
633
|
+
accept_length=torch.empty((0,), device=device, dtype=torch.int32),
|
634
|
+
accept_length_cpu=[],
|
1127
635
|
)
|
1128
636
|
|
1129
|
-
|
1130
|
-
|
1131
|
-
|
1132
|
-
|
1133
|
-
|
1134
|
-
|
1135
|
-
|
1136
|
-
|
1137
|
-
bs,
|
1138
|
-
spec_steps,
|
1139
|
-
):
|
1140
|
-
simulate_acc_len_float = float(simulate_acc_len)
|
1141
|
-
if SIMULATE_ACC_METHOD == "multinomial":
|
1142
|
-
simulated_values = torch.normal(
|
1143
|
-
mean=simulate_acc_len_float,
|
1144
|
-
std=1.0,
|
1145
|
-
size=(1,),
|
1146
|
-
device="cpu",
|
1147
|
-
)
|
1148
|
-
# clamp simulated values to be between 1 and self.spec_steps
|
1149
|
-
simulated_values = torch.clamp(simulated_values, min=1.0, max=spec_steps + 1)
|
1150
|
-
simulate_acc_len = int(simulated_values.round().item())
|
1151
|
-
elif SIMULATE_ACC_METHOD == "match-expected":
|
1152
|
-
# multinomial sampling does not match the expected length
|
1153
|
-
# we keep it for the sake of compatibility of existing tests
|
1154
|
-
# but it's better to use "match-expected" for the cases that need to
|
1155
|
-
# match the expected length, One caveat is that this will only sample
|
1156
|
-
# either round down or round up of the expected length
|
1157
|
-
simulate_acc_len_float = max(1.0, min(spec_steps + 1, simulate_acc_len_float))
|
1158
|
-
lower = int(simulate_acc_len_float // 1)
|
1159
|
-
upper = lower + 1 if lower < spec_steps + 1 else lower
|
1160
|
-
if lower == upper:
|
1161
|
-
simulate_acc_len = lower
|
1162
|
-
else:
|
1163
|
-
weight_upper = simulate_acc_len_float - lower
|
1164
|
-
weight_lower = 1.0 - weight_upper
|
1165
|
-
probs = torch.tensor([weight_lower, weight_upper], device="cpu")
|
1166
|
-
sampled_index = torch.multinomial(probs, num_samples=1)
|
1167
|
-
simulate_acc_len = lower if sampled_index == 0 else upper
|
1168
|
-
else:
|
1169
|
-
raise ValueError(f"Invalid simulate_acc_method: {SIMULATE_ACC_METHOD}")
|
1170
|
-
|
1171
|
-
accept_indx_first_col = accept_index[:, 0].view(-1, 1)
|
1172
|
-
sim_accept_index = torch.full(
|
1173
|
-
(bs, spec_steps + 1), -1, dtype=torch.int32, device="cuda"
|
1174
|
-
)
|
1175
|
-
sim_accept_index[:, :simulate_acc_len] = accept_indx_first_col + torch.arange(
|
1176
|
-
simulate_acc_len, device=accept_index.device
|
1177
|
-
)
|
1178
|
-
accept_length.fill_(simulate_acc_len - 1)
|
1179
|
-
predict.fill_(100) # some legit token id
|
1180
|
-
return sim_accept_index
|
1181
|
-
|
1182
|
-
|
1183
|
-
def traverse_tree(
|
1184
|
-
retrieve_next_token: torch.Tensor,
|
1185
|
-
retrieve_next_sibling: torch.Tensor,
|
1186
|
-
draft_tokens: torch.Tensor,
|
1187
|
-
grammar: BaseGrammarObject,
|
1188
|
-
allocate_token_bitmask: torch.Tensor,
|
1189
|
-
):
|
1190
|
-
"""
|
1191
|
-
Traverse the tree constructed by the draft model to generate the logits mask.
|
1192
|
-
"""
|
1193
|
-
assert (
|
1194
|
-
retrieve_next_token.shape == retrieve_next_sibling.shape == draft_tokens.shape
|
1195
|
-
)
|
637
|
+
def prepare_extend_after_decode(
|
638
|
+
self,
|
639
|
+
batch: ScheduleBatch,
|
640
|
+
speculative_num_steps: int,
|
641
|
+
):
|
642
|
+
|
643
|
+
if batch.forward_mode.is_idle():
|
644
|
+
return
|
1196
645
|
|
1197
|
-
|
646
|
+
batch.input_ids = self.verified_id
|
647
|
+
batch.extend_lens = [x + 1 for x in batch.spec_info.accept_length_cpu]
|
648
|
+
batch.extend_num_tokens = sum(batch.extend_lens)
|
649
|
+
batch.seq_lens = batch.spec_info.seq_lens_for_draft_extend
|
650
|
+
batch.seq_lens_cpu = batch.spec_info.seq_lens_for_draft_extend_cpu
|
651
|
+
batch.req_pool_indices = batch.spec_info.req_pool_indices_for_draft_extend
|
652
|
+
batch.return_logprob = False
|
653
|
+
batch.return_hidden_states = False
|
1198
654
|
|
1199
|
-
|
1200
|
-
|
1201
|
-
|
1202
|
-
|
1203
|
-
|
655
|
+
self.capture_hidden_mode = CaptureHiddenMode.LAST
|
656
|
+
self.accept_length.add_(1)
|
657
|
+
self.positions = torch.empty_like(batch.input_ids, dtype=torch.long)
|
658
|
+
self.verified_id = torch.empty_like(self.accept_length, dtype=torch.int32)
|
659
|
+
|
660
|
+
create_extend_after_decode_spec_info[(len(batch.seq_lens),)](
|
661
|
+
batch.input_ids,
|
662
|
+
batch.seq_lens,
|
663
|
+
self.accept_length,
|
664
|
+
self.positions,
|
665
|
+
self.verified_id,
|
666
|
+
next_power_of_2(max(speculative_num_steps + 1, len(batch.seq_lens))),
|
667
|
+
)
|
668
|
+
|
669
|
+
def generate_attn_arg_prefill(
|
670
|
+
self,
|
671
|
+
req_pool_indices: torch.Tensor,
|
672
|
+
paged_kernel_lens: torch.Tensor,
|
673
|
+
paged_kernel_lens_sum: int,
|
674
|
+
req_to_token: torch.Tensor,
|
1204
675
|
):
|
1205
|
-
|
1206
|
-
|
1207
|
-
|
1208
|
-
|
1209
|
-
|
1210
|
-
parent_bitmask = allocate_token_bitmask[parent_pos]
|
1211
|
-
curr_token_id = draft_tokens[curr]
|
1212
|
-
# 32 boolean bitmask values are packed into 32-bit integers
|
1213
|
-
accepted = (
|
1214
|
-
parent_bitmask[curr_token_id // 32] & (1 << (curr_token_id % 32))
|
1215
|
-
) != 0
|
1216
|
-
|
1217
|
-
if accepted:
|
1218
|
-
if curr != 0:
|
1219
|
-
# Accept the current token
|
1220
|
-
grammar.accept_token(draft_tokens[curr])
|
1221
|
-
if not grammar.is_terminated():
|
1222
|
-
# Generate the bitmask for the current token
|
1223
|
-
grammar.fill_vocab_mask(allocate_token_bitmask, curr)
|
1224
|
-
if retrieve_next_token[curr] != -1:
|
1225
|
-
# Visit the child node
|
1226
|
-
dfs(
|
1227
|
-
retrieve_next_token[curr],
|
1228
|
-
retrieve_next_token,
|
1229
|
-
retrieve_next_sibling,
|
1230
|
-
curr,
|
1231
|
-
)
|
676
|
+
bs = self.accept_length.numel()
|
677
|
+
qo_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
678
|
+
qo_indptr[1:] = torch.cumsum(self.accept_length, dim=0)
|
679
|
+
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
680
|
+
cum_kv_seq_len[1:] = torch.cumsum(paged_kernel_lens, dim=0)
|
1232
681
|
|
1233
|
-
|
1234
|
-
|
1235
|
-
grammar.rollback(1)
|
1236
|
-
|
1237
|
-
if retrieve_next_sibling[curr] != -1:
|
1238
|
-
# Visit the sibling node
|
1239
|
-
dfs(
|
1240
|
-
retrieve_next_sibling[curr],
|
1241
|
-
retrieve_next_token,
|
1242
|
-
retrieve_next_sibling,
|
1243
|
-
parent_pos,
|
1244
|
-
)
|
682
|
+
if paged_kernel_lens_sum is None:
|
683
|
+
paged_kernel_lens_sum = cum_kv_seq_len[-1]
|
1245
684
|
|
1246
|
-
|
1247
|
-
|
1248
|
-
|
1249
|
-
|
1250
|
-
|
1251
|
-
|
1252
|
-
|
1253
|
-
|
1254
|
-
|
1255
|
-
|
1256
|
-
|
1257
|
-
|
1258
|
-
|
1259
|
-
|
1260
|
-
|
1261
|
-
|
1262
|
-
|
1263
|
-
|
1264
|
-
|
1265
|
-
|
1266
|
-
|
1267
|
-
allocate_token_bitmask = None
|
1268
|
-
assert len(reqs) == retrieve_next_token_cpu.shape[0]
|
1269
|
-
grammar = None
|
1270
|
-
for i, req in enumerate(reqs):
|
1271
|
-
if req.grammar is not None:
|
1272
|
-
if allocate_token_bitmask is None:
|
1273
|
-
allocate_token_bitmask = req.grammar.allocate_vocab_mask(
|
1274
|
-
vocab_size=vocab_size,
|
1275
|
-
batch_size=draft_tokens_cpu.numel(),
|
1276
|
-
device="cpu",
|
1277
|
-
)
|
1278
|
-
grammar = req.grammar
|
1279
|
-
s = time.perf_counter()
|
1280
|
-
traverse_tree(
|
1281
|
-
retrieve_next_token_cpu[i],
|
1282
|
-
retrieve_next_sibling_cpu[i],
|
1283
|
-
draft_tokens_cpu[i],
|
1284
|
-
req.grammar,
|
1285
|
-
allocate_token_bitmask[
|
1286
|
-
i * num_draft_tokens : (i + 1) * num_draft_tokens
|
1287
|
-
],
|
1288
|
-
)
|
1289
|
-
tree_traverse_time = time.perf_counter() - s
|
1290
|
-
if tree_traverse_time > TREE_TRAVERSE_TIME_THRESHOLD:
|
685
|
+
kv_indices = torch.empty(
|
686
|
+
paged_kernel_lens_sum, dtype=torch.int32, device="cuda"
|
687
|
+
)
|
688
|
+
|
689
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
690
|
+
req_to_token,
|
691
|
+
req_pool_indices,
|
692
|
+
paged_kernel_lens,
|
693
|
+
cum_kv_seq_len,
|
694
|
+
None,
|
695
|
+
kv_indices,
|
696
|
+
req_to_token.size(1),
|
697
|
+
)
|
698
|
+
return kv_indices, cum_kv_seq_len, qo_indptr, None
|
699
|
+
|
700
|
+
def filter_batch(self, new_indices: torch.Tensor, has_been_filtered: bool = True):
|
701
|
+
if has_been_filtered:
|
702
|
+
# in eagle_utils.py:verify, we have already filtered the batch by `unfinished_index`
|
703
|
+
# therefore, we don't need to filter the batch again in scheduler
|
704
|
+
if len(new_indices) != len(self.topk_p):
|
1291
705
|
logger.warning(
|
1292
|
-
f"
|
1293
|
-
f"grammar: {req.grammar}"
|
706
|
+
f"length of new_indices: {len(new_indices)} != length of topk_p: {len(self.topk_p)}, this should not happen"
|
1294
707
|
)
|
708
|
+
self.topk_p = self.topk_p[: len(new_indices)]
|
709
|
+
self.topk_index = self.topk_index[: len(new_indices)]
|
710
|
+
self.hidden_states = self.hidden_states[: len(new_indices)]
|
711
|
+
self.verified_id = self.verified_id[: len(new_indices)]
|
712
|
+
else:
|
713
|
+
# in some cases(e.g draft_extend), we have not filtered the batch by `unfinished_index`
|
714
|
+
self.topk_p = self.topk_p[new_indices]
|
715
|
+
self.topk_index = self.topk_index[new_indices]
|
716
|
+
self.hidden_states = self.hidden_states[new_indices]
|
717
|
+
self.verified_id = self.verified_id[new_indices]
|
718
|
+
|
719
|
+
def merge_batch(self, spec_info: "EagleDraftInput"):
|
720
|
+
if self.hidden_states is None:
|
721
|
+
self.hidden_states = spec_info.hidden_states
|
722
|
+
self.verified_id = spec_info.verified_id
|
723
|
+
self.topk_p = spec_info.topk_p
|
724
|
+
self.topk_index = spec_info.topk_index
|
725
|
+
return
|
726
|
+
if spec_info.hidden_states is None:
|
727
|
+
return
|
728
|
+
self.hidden_states = torch.cat(
|
729
|
+
[self.hidden_states, spec_info.hidden_states], axis=0
|
730
|
+
)
|
731
|
+
self.verified_id = torch.cat([self.verified_id, spec_info.verified_id], axis=0)
|
732
|
+
self.topk_p = torch.cat([self.topk_p, spec_info.topk_p])
|
733
|
+
self.topk_index = torch.cat([self.topk_index, spec_info.topk_index])
|
734
|
+
|
1295
735
|
|
1296
|
-
|
1297
|
-
|
736
|
+
@dataclass
|
737
|
+
class EagleVerifyOutput:
|
738
|
+
# Draft input batch
|
739
|
+
draft_input: EagleDraftInput
|
740
|
+
# Logit outputs from target worker
|
741
|
+
logits_output: LogitsProcessorOutput
|
742
|
+
# Accepted token ids including the bonus token
|
743
|
+
verified_id: torch.Tensor
|
744
|
+
# Accepted token length per sequence in a batch in CPU.
|
745
|
+
accept_length_per_req_cpu: List[int]
|
746
|
+
# Accepted indices from logits_output.next_token_logits
|
747
|
+
accepted_indices: torch.Tensor
|