sglang 0.5.2rc2__py3-none-any.whl → 0.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +7 -9
- sglang/bench_one_batch_server.py +330 -31
- sglang/bench_serving.py +267 -32
- sglang/global_config.py +2 -2
- sglang/lang/backend/runtime_endpoint.py +1 -1
- sglang/launch_server.py +14 -0
- sglang/profiler.py +2 -2
- sglang/srt/batch_invariant_ops/__init__.py +27 -0
- sglang/srt/batch_invariant_ops/batch_invariant_ops.py +549 -0
- sglang/srt/configs/__init__.py +8 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_ocr.py +64 -0
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/falcon_h1.py +360 -0
- sglang/srt/configs/load_config.py +9 -0
- sglang/srt/configs/model_config.py +181 -82
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/configs/qwen3_vl.py +586 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +49 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/outlines_jump_forward.py +1 -1
- sglang/srt/constrained/xgrammar_backend.py +30 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +21 -6
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/ascend/conn.py +2 -2
- sglang/srt/disaggregation/ascend/transfer_engine.py +47 -9
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +279 -108
- sglang/srt/disaggregation/decode.py +71 -19
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +185 -0
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +29 -17
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +55 -537
- sglang/srt/disaggregation/nixl/conn.py +326 -53
- sglang/srt/disaggregation/prefill.py +36 -17
- sglang/srt/disaggregation/utils.py +40 -54
- sglang/srt/distributed/device_communicators/all_reduce_utils.py +16 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +4 -2
- sglang/srt/distributed/device_communicators/symm_mem.py +164 -0
- sglang/srt/distributed/parallel_state.py +156 -80
- sglang/srt/entrypoints/engine.py +59 -18
- sglang/srt/entrypoints/grpc_request_manager.py +855 -0
- sglang/srt/entrypoints/grpc_server.py +810 -0
- sglang/srt/entrypoints/http_server.py +130 -59
- sglang/srt/entrypoints/openai/protocol.py +112 -4
- sglang/srt/entrypoints/openai/serving_base.py +65 -3
- sglang/srt/entrypoints/openai/serving_chat.py +204 -55
- sglang/srt/entrypoints/openai/serving_completions.py +14 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +9 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +48 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/environ.py +285 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +38 -8
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +9 -2
- sglang/srt/function_call/glm4_moe_detector.py +4 -4
- sglang/srt/function_call/gpt_oss_detector.py +23 -0
- sglang/srt/function_call/json_array_parser.py +63 -0
- sglang/srt/function_call/kimik2_detector.py +17 -4
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/function_call/utils.py +96 -5
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/compile_proto.py +245 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +111 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +434 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +239 -0
- sglang/srt/layers/activation.py +143 -9
- sglang/srt/layers/attention/aiter_backend.py +14 -15
- sglang/srt/layers/attention/ascend_backend.py +115 -9
- sglang/srt/layers/attention/attention_registry.py +206 -0
- sglang/srt/layers/attention/base_attn_backend.py +12 -3
- sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1 -1
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashattention_backend.py +41 -8
- sglang/srt/layers/attention/flashinfer_backend.py +118 -198
- sglang/srt/layers/attention/flashinfer_mla_backend.py +27 -27
- sglang/srt/layers/attention/flashmla_backend.py +7 -5
- sglang/srt/layers/attention/hybrid_attn_backend.py +68 -53
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +129 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +969 -0
- sglang/srt/layers/attention/mamba/mamba.py +629 -0
- sglang/srt/layers/attention/mamba/mamba_utils.py +81 -0
- sglang/srt/layers/attention/mamba/ops/__init__.py +2 -0
- sglang/srt/layers/attention/mamba/ops/layernorm_gated.py +172 -0
- sglang/srt/layers/attention/mamba/ops/mamba_ssm.py +442 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +264 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +622 -0
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +757 -0
- sglang/srt/layers/attention/mamba/ops/ssd_combined.py +262 -0
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +275 -0
- sglang/srt/layers/attention/npu_ops/mla_preprocess.py +393 -0
- sglang/srt/layers/attention/nsa/dequant_k_cache.py +163 -0
- sglang/srt/layers/attention/nsa/index_buf_accessor.py +354 -0
- sglang/srt/layers/attention/nsa/nsa_indexer.py +761 -0
- sglang/srt/layers/attention/nsa/quant_k_cache.py +255 -0
- sglang/srt/layers/attention/nsa/tilelang_kernel.py +785 -0
- sglang/srt/layers/attention/nsa/transform_index.py +144 -0
- sglang/srt/layers/attention/nsa/utils.py +24 -0
- sglang/srt/layers/attention/nsa_backend.py +887 -0
- sglang/srt/layers/attention/tbo_backend.py +6 -6
- sglang/srt/layers/attention/torch_flex_backend.py +325 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +57 -7
- sglang/srt/layers/attention/trtllm_mha_backend.py +5 -7
- sglang/srt/layers/attention/trtllm_mla_backend.py +276 -39
- sglang/srt/layers/attention/vision.py +58 -0
- sglang/srt/layers/attention/wave_backend.py +4 -4
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/communicator.py +8 -0
- sglang/srt/layers/dp_attention.py +41 -2
- sglang/srt/layers/elementwise.py +3 -1
- sglang/srt/layers/layernorm.py +34 -15
- sglang/srt/layers/linear.py +55 -7
- sglang/srt/layers/logits_processor.py +44 -12
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +2 -2
- sglang/srt/layers/moe/ep_moe/layer.py +256 -63
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +183 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=256,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H800,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +7 -3
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +71 -70
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +118 -56
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +22 -6
- sglang/srt/layers/parameter.py +23 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +1 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +173 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +2 -10
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +78 -49
- sglang/srt/layers/quantization/fp8_utils.py +51 -32
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +190 -55
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +74 -42
- sglang/srt/layers/quantization/quark/quark_moe.py +48 -30
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +26 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +91 -41
- sglang/srt/layers/rotary_embedding.py +78 -31
- sglang/srt/layers/sampler.py +213 -21
- sglang/srt/layers/utils.py +23 -0
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/chunked_backend.py +348 -0
- sglang/srt/lora/backend/triton_backend.py +99 -5
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +8 -3
- sglang/srt/lora/lora_manager.py +52 -118
- sglang/srt/lora/mem_pool.py +25 -11
- sglang/srt/lora/triton_ops/__init__.py +4 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_expand.py +214 -0
- sglang/srt/lora/triton_ops/chunked_sgmv_shrink.py +174 -0
- sglang/srt/lora/utils.py +22 -11
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +199 -301
- sglang/srt/managers/data_parallel_controller.py +115 -80
- sglang/srt/managers/detokenizer_manager.py +19 -15
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +340 -109
- sglang/srt/managers/mm_utils.py +44 -6
- sglang/srt/managers/multi_tokenizer_mixin.py +357 -407
- sglang/srt/managers/multimodal_processor.py +1 -2
- sglang/srt/managers/overlap_utils.py +53 -0
- sglang/srt/managers/schedule_batch.py +240 -138
- sglang/srt/managers/schedule_policy.py +144 -17
- sglang/srt/managers/scheduler.py +502 -209
- sglang/srt/managers/scheduler_input_blocker.py +1 -1
- sglang/srt/managers/scheduler_metrics_mixin.py +99 -126
- sglang/srt/managers/scheduler_output_processor_mixin.py +75 -22
- sglang/srt/managers/scheduler_profiler_mixin.py +6 -6
- sglang/srt/managers/scheduler_update_weights_mixin.py +7 -0
- sglang/srt/managers/tokenizer_communicator_mixin.py +675 -0
- sglang/srt/managers/tokenizer_manager.py +320 -632
- sglang/srt/managers/tp_worker.py +81 -22
- sglang/srt/managers/tp_worker_overlap_thread.py +71 -56
- sglang/srt/managers/utils.py +1 -45
- sglang/srt/mem_cache/allocator.py +14 -20
- sglang/srt/mem_cache/allocator_ascend.py +41 -27
- sglang/srt/mem_cache/base_prefix_cache.py +1 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -1
- sglang/srt/mem_cache/evict_policy.py +23 -0
- sglang/srt/mem_cache/hicache_storage.py +43 -24
- sglang/srt/mem_cache/hiradix_cache.py +222 -75
- sglang/srt/mem_cache/memory_pool.py +535 -58
- sglang/srt/mem_cache/memory_pool_host.py +239 -228
- sglang/srt/mem_cache/radix_cache.py +222 -73
- sglang/srt/mem_cache/radix_cache_cpp.py +11 -8
- sglang/srt/mem_cache/storage/__init__.py +10 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/aibrix_kvcache_storage.py +151 -0
- sglang/srt/mem_cache/storage/aibrix_kvcache/unit_test.py +109 -0
- sglang/srt/mem_cache/storage/backend_factory.py +223 -0
- sglang/srt/mem_cache/storage/eic/eic_storage.py +778 -0
- sglang/srt/mem_cache/storage/eic/test_unit.py +115 -0
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +259 -62
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +284 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +166 -17
- sglang/srt/mem_cache/swa_radix_cache.py +25 -36
- sglang/srt/metrics/collector.py +511 -132
- sglang/srt/metrics/func_timer.py +2 -7
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/metrics/utils.py +8 -1
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +52 -37
- sglang/srt/model_executor/forward_batch_info.py +82 -40
- sglang/srt/model_executor/model_runner.py +432 -157
- sglang/srt/model_executor/npu_graph_runner.py +12 -5
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +133 -5
- sglang/srt/model_loader/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/model_loader/weight_utils.py +158 -3
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +820 -217
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_nextn.py +6 -1
- sglang/srt/models/deepseek_v2.py +607 -130
- sglang/srt/models/dots_ocr.py +173 -0
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/falcon_h1.py +576 -0
- sglang/srt/models/gemma3_causal.py +0 -2
- sglang/srt/models/gemma3_mm.py +1 -1
- sglang/srt/models/gemma3n_mm.py +2 -2
- sglang/srt/models/glm4_moe.py +4 -4
- sglang/srt/models/glm4_moe_nextn.py +2 -2
- sglang/srt/models/glm4v.py +5 -3
- sglang/srt/models/glm4v_moe.py +4 -1
- sglang/srt/models/gpt_oss.py +8 -31
- sglang/srt/models/kimi_vl_moonvit.py +2 -2
- sglang/srt/models/llama.py +4 -0
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +3 -3
- sglang/srt/models/longcat_flash_nextn.py +1 -1
- sglang/srt/models/mllama4.py +40 -4
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2_5_vl.py +29 -5
- sglang/srt/models/qwen2_audio.py +1 -1
- sglang/srt/models/qwen2_moe.py +120 -13
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/models/qwen3.py +18 -3
- sglang/srt/models/qwen3_moe.py +32 -4
- sglang/srt/models/qwen3_next.py +1069 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/qwen3_vl.py +787 -0
- sglang/srt/models/qwen3_vl_moe.py +471 -0
- sglang/srt/models/registry.py +15 -3
- sglang/srt/models/sarashina2_vision.py +269 -0
- sglang/srt/models/solar.py +505 -0
- sglang/srt/models/starcoder2.py +357 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/models/torch_native_llama.py +9 -2
- sglang/srt/models/utils.py +51 -0
- sglang/srt/multimodal/processors/base_processor.py +15 -7
- sglang/srt/multimodal/processors/dots_vlm.py +98 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +153 -129
- sglang/srt/multimodal/processors/qwen_vl.py +23 -6
- sglang/srt/multimodal/processors/sarashina2_vision.py +81 -0
- sglang/srt/offloader.py +27 -3
- sglang/srt/parser/jinja_template_utils.py +6 -0
- sglang/srt/sampling/sampling_batch_info.py +38 -17
- sglang/srt/sampling/sampling_params.py +7 -0
- sglang/srt/server_args.py +966 -267
- sglang/srt/server_args_config_parser.py +146 -0
- sglang/srt/single_batch_overlap.py +151 -0
- sglang/srt/speculative/cpp_ngram/ngram.cpp +374 -0
- sglang/srt/speculative/cpp_ngram/ngram.h +110 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache.py +138 -0
- sglang/srt/speculative/cpp_ngram/ngram_cache_binding.cpp +43 -0
- sglang/srt/speculative/cpp_ngram/param.h +125 -0
- sglang/srt/speculative/cpp_ngram/queue.h +71 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +7 -1
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +13 -2
- sglang/srt/speculative/{eagle_utils.py → eagle_info.py} +207 -757
- sglang/srt/speculative/eagle_worker.py +99 -28
- sglang/srt/speculative/ngram_utils.py +428 -0
- sglang/srt/speculative/ngram_worker.py +245 -0
- sglang/srt/speculative/spec_info.py +52 -0
- sglang/srt/speculative/spec_utils.py +606 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/torch_memory_saver_adapter.py +5 -7
- sglang/srt/tracing/trace.py +578 -0
- sglang/srt/two_batch_overlap.py +8 -5
- sglang/srt/utils/__init__.py +2 -0
- sglang/srt/{utils.py → utils/common.py} +433 -77
- sglang/srt/{hf_transformers_utils.py → utils/hf_transformers_utils.py} +53 -5
- sglang/srt/{patch_torch.py → utils/patch_torch.py} +8 -0
- sglang/srt/utils/rpd_utils.py +452 -0
- sglang/srt/utils/slow_rank_detector.py +71 -0
- sglang/srt/warmup.py +8 -4
- sglang/srt/weight_sync/utils.py +2 -2
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/get_logits_ut.py +57 -0
- sglang/test/run_eval.py +79 -11
- sglang/test/runners.py +5 -1
- sglang/test/simple_eval_common.py +5 -2
- sglang/test/simple_eval_mmmu_vlm.py +441 -0
- sglang/test/test_block_fp8.py +2 -2
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_deterministic.py +297 -0
- sglang/test/test_disaggregation_utils.py +77 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_programs.py +1 -1
- sglang/test/test_utils.py +383 -5
- sglang/utils.py +21 -1
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/METADATA +69 -124
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/RECORD +375 -245
- sglang/srt/disaggregation/launch_lb.py +0 -118
- sglang/srt/mem_cache/lora_radix_cache.py +0 -421
- /sglang/srt/{poll_based_barrier.py → utils/poll_based_barrier.py} +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,629 @@
|
|
1
|
+
from typing import Callable, List, Optional, Tuple, Union
|
2
|
+
|
3
|
+
import torch
|
4
|
+
import torch.nn as nn
|
5
|
+
|
6
|
+
from sglang.srt.configs.model_config import ModelConfig
|
7
|
+
from sglang.srt.custom_op import CustomOp
|
8
|
+
from sglang.srt.distributed import (
|
9
|
+
get_tensor_model_parallel_rank,
|
10
|
+
get_tensor_model_parallel_world_size,
|
11
|
+
tensor_model_parallel_all_gather,
|
12
|
+
tensor_model_parallel_all_reduce,
|
13
|
+
)
|
14
|
+
from sglang.srt.distributed.utils import divide
|
15
|
+
from sglang.srt.layers.attention.fla.layernorm_gated import layernorm_fn
|
16
|
+
from sglang.srt.layers.attention.mamba.causal_conv1d import (
|
17
|
+
causal_conv1d_fn,
|
18
|
+
causal_conv1d_update,
|
19
|
+
)
|
20
|
+
from sglang.srt.layers.attention.mamba.mamba_utils import MambaStateShapeCalculator
|
21
|
+
from sglang.srt.layers.attention.mamba.ops import (
|
22
|
+
mamba_chunk_scan_combined,
|
23
|
+
selective_state_update,
|
24
|
+
)
|
25
|
+
from sglang.srt.layers.linear import (
|
26
|
+
ColumnParallelLinear,
|
27
|
+
MergedColumnParallelLinear,
|
28
|
+
RowParallelLinear,
|
29
|
+
)
|
30
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
31
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
32
|
+
from sglang.srt.model_loader.weight_utils import (
|
33
|
+
composed_weight_loader,
|
34
|
+
sharded_weight_loader,
|
35
|
+
)
|
36
|
+
from sglang.srt.utils import set_weight_attrs
|
37
|
+
|
38
|
+
LoaderFunction = Callable[[torch.Tensor, torch.Tensor], None]
|
39
|
+
|
40
|
+
|
41
|
+
def mamba_v2_sharded_weight_loader(
|
42
|
+
shard_spec: List[Tuple[int, int, float]],
|
43
|
+
tp_size: int,
|
44
|
+
tp_rank: int,
|
45
|
+
) -> LoaderFunction:
|
46
|
+
"""Create a weight loader for mamba v2. This ensures that the projections
|
47
|
+
are correctly sharded so that they can be split into x, B, C. It also
|
48
|
+
ensures the the all the groups corresponding to a head shard is placed
|
49
|
+
together with it.
|
50
|
+
"""
|
51
|
+
|
52
|
+
def loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
|
53
|
+
|
54
|
+
# - track boundary of (sharded) param, and loaded_weight, respectively
|
55
|
+
boundary, loaded_boundary = 0, 0
|
56
|
+
|
57
|
+
# - iterate over the shard specs
|
58
|
+
for full_dim, extra, duplicate_groups in shard_spec:
|
59
|
+
# - full dim is the model dim (before TP).
|
60
|
+
# - extra > 0, means there is expected overall increase
|
61
|
+
# of dimensions. This is so because of replication.
|
62
|
+
# - ratio is used map the tp_rank to the actual shard
|
63
|
+
# rank. This is useful when there is replication of
|
64
|
+
# groups to accompany head shards.
|
65
|
+
|
66
|
+
# - size of the loaded shard
|
67
|
+
shard_size = full_dim // tp_size
|
68
|
+
|
69
|
+
# - compute the rank into the loaded shard.
|
70
|
+
# - if there is replication, different TP shards will
|
71
|
+
# take from the same rank.
|
72
|
+
# NOTE: currently we only support duplication
|
73
|
+
# in the case where num_groups == 1
|
74
|
+
rank = 0 if duplicate_groups else tp_rank
|
75
|
+
|
76
|
+
# - leftmost boundary index into loaded weight.
|
77
|
+
loaded_skip = rank * shard_size
|
78
|
+
loaded_start_idx = loaded_boundary + loaded_skip
|
79
|
+
|
80
|
+
# - take these many dims from the loaded weight.
|
81
|
+
take = min(shard_size, full_dim - extra - loaded_skip)
|
82
|
+
|
83
|
+
# - always shard on dim 0
|
84
|
+
# - the ignore is for a mundane mypy error as it does not
|
85
|
+
# seem to handle slices well.
|
86
|
+
# https://github.com/python/mypy/issues/2410
|
87
|
+
param.data[
|
88
|
+
boundary : (boundary + take), ... # type: ignore[misc]
|
89
|
+
] = loaded_weight[
|
90
|
+
loaded_start_idx : (loaded_start_idx + take) # type: ignore[misc]
|
91
|
+
] # type: ignore[misc]
|
92
|
+
|
93
|
+
# move indexing boundaries
|
94
|
+
boundary += shard_size
|
95
|
+
loaded_boundary += full_dim - extra
|
96
|
+
|
97
|
+
return loader
|
98
|
+
|
99
|
+
|
100
|
+
class Mixer2RMSNormGated(CustomOp):
|
101
|
+
|
102
|
+
def __init__(
|
103
|
+
self,
|
104
|
+
full_hidden_size: int,
|
105
|
+
full_n_groups: int,
|
106
|
+
use_rms_norm: bool = True,
|
107
|
+
eps: float = 1e-6,
|
108
|
+
):
|
109
|
+
super().__init__()
|
110
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
111
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
112
|
+
self.full_hidden_size = full_hidden_size
|
113
|
+
self.group_size = full_hidden_size // full_n_groups
|
114
|
+
self.per_rank_hidden_size = full_hidden_size // self.tp_size
|
115
|
+
self.n_groups = full_hidden_size // self.group_size
|
116
|
+
|
117
|
+
self.variance_epsilon = eps
|
118
|
+
self.use_rms_norm = use_rms_norm
|
119
|
+
if self.use_rms_norm:
|
120
|
+
# Register norm weight only if we're actually applying RMSNorm
|
121
|
+
self.weight = nn.Parameter(torch.ones(self.per_rank_hidden_size))
|
122
|
+
set_weight_attrs(self.weight, {"weight_loader": sharded_weight_loader(0)})
|
123
|
+
else:
|
124
|
+
# Avoid checkpoint mismatch by skipping unused parameter
|
125
|
+
self.register_parameter("weight", None)
|
126
|
+
assert (
|
127
|
+
self.full_hidden_size % self.tp_size == 0
|
128
|
+
), "Tensor parallel world size must divide hidden size."
|
129
|
+
|
130
|
+
def forward_native(
|
131
|
+
self,
|
132
|
+
x: torch.Tensor,
|
133
|
+
gate: torch.Tensor,
|
134
|
+
):
|
135
|
+
# Three tensor-parallel cases:
|
136
|
+
# 1. n_groups is 1
|
137
|
+
# In this case we parallelize along the reduction dim.
|
138
|
+
# Each rank computes a local sum of squares followed by AllReduce
|
139
|
+
# 2. tp_size divides n_groups
|
140
|
+
# Each rank only reduces within its local group(s).
|
141
|
+
# No collective ops necessary.
|
142
|
+
# 3. The general case can be pretty complicated so we AllGather
|
143
|
+
# the input and then redundantly compute the RMSNorm.
|
144
|
+
input_dtype = x.dtype
|
145
|
+
x = x * nn.functional.silu(gate.to(torch.float32))
|
146
|
+
if not self.use_rms_norm:
|
147
|
+
return x.to(input_dtype)
|
148
|
+
|
149
|
+
if self.n_groups == 1:
|
150
|
+
if self.tp_size > 1:
|
151
|
+
# Compute local sum and then reduce to obtain global sum
|
152
|
+
local_sums = x.pow(2).sum(dim=-1, keepdim=True)
|
153
|
+
global_sums = tensor_model_parallel_all_reduce(local_sums)
|
154
|
+
# Calculate the variance
|
155
|
+
count = self.tp_size * x.shape[-1]
|
156
|
+
variance = global_sums / count
|
157
|
+
|
158
|
+
else:
|
159
|
+
variance = x.pow(2).mean(-1, keepdim=True)
|
160
|
+
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
161
|
+
else:
|
162
|
+
redundant_tp: bool = self.n_groups % self.tp_size != 0
|
163
|
+
if redundant_tp:
|
164
|
+
# To handle the general case, redundantly apply the variance
|
165
|
+
x = tensor_model_parallel_all_gather(x, -1)
|
166
|
+
|
167
|
+
*prefix_dims, hidden_dim = x.shape
|
168
|
+
group_count = hidden_dim // self.group_size
|
169
|
+
x_grouped = x.view(*prefix_dims, group_count, self.group_size)
|
170
|
+
variance = x_grouped.pow(2).mean(-1, keepdim=True)
|
171
|
+
x_grouped = x_grouped * torch.rsqrt(variance + self.variance_epsilon)
|
172
|
+
x = x_grouped.view(*prefix_dims, hidden_dim)
|
173
|
+
|
174
|
+
if redundant_tp:
|
175
|
+
start = self.per_rank_hidden_size * self.tp_rank
|
176
|
+
end = start + self.per_rank_hidden_size
|
177
|
+
x = x[..., start:end]
|
178
|
+
|
179
|
+
return self.weight * x.to(input_dtype)
|
180
|
+
|
181
|
+
def forward_cuda(
|
182
|
+
self,
|
183
|
+
x: torch.Tensor,
|
184
|
+
gate: torch.Tensor,
|
185
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
186
|
+
input_dtype = x.dtype
|
187
|
+
if not self.use_rms_norm:
|
188
|
+
# Keep gate in float32 for numerical stability during silu
|
189
|
+
return x * nn.functional.silu(gate.to(torch.float32)).to(input_dtype)
|
190
|
+
|
191
|
+
if ((self.n_groups % self.tp_size) != 0) or self.n_groups != 1:
|
192
|
+
return self.forward_native(x, gate)
|
193
|
+
|
194
|
+
return layernorm_fn(
|
195
|
+
x,
|
196
|
+
self.weight.data,
|
197
|
+
bias=None,
|
198
|
+
z=gate,
|
199
|
+
eps=self.variance_epsilon,
|
200
|
+
norm_before_gate=False,
|
201
|
+
)
|
202
|
+
|
203
|
+
|
204
|
+
class MambaMixer2(torch.nn.Module):
|
205
|
+
"""
|
206
|
+
Compute ∆, A, B, C, and D the state space parameters and compute
|
207
|
+
the `contextualized_states`. A, D are input independent
|
208
|
+
(see Mamba paper [1] Section 3.5.2 "Interpretation of A"
|
209
|
+
for why A isn't selective) ∆, B, C are input-dependent
|
210
|
+
(this is a key difference between Mamba and the linear time
|
211
|
+
invariant S4, and is why Mamba is called
|
212
|
+
**selective** state spaces)
|
213
|
+
"""
|
214
|
+
|
215
|
+
def __init__(
|
216
|
+
self,
|
217
|
+
hidden_size: int,
|
218
|
+
ssm_state_size: int,
|
219
|
+
conv_kernel_size: int,
|
220
|
+
intermediate_size: int,
|
221
|
+
use_conv_bias: bool,
|
222
|
+
use_bias: bool,
|
223
|
+
chunk_size: int,
|
224
|
+
layer_id: int,
|
225
|
+
n_groups: int = 1,
|
226
|
+
num_heads: int = 128,
|
227
|
+
head_dim: int = 64,
|
228
|
+
rms_norm_eps: float = 1e-5,
|
229
|
+
activation: str = "silu",
|
230
|
+
use_rms_norm: bool = True,
|
231
|
+
model_config: Optional[ModelConfig] = None,
|
232
|
+
# cache_config: Optional[CacheConfig] = None,
|
233
|
+
quant_config: Optional[QuantizationConfig] = None,
|
234
|
+
prefix: str = "",
|
235
|
+
):
|
236
|
+
super().__init__()
|
237
|
+
|
238
|
+
# For TP, the sharding plan is as follows:
|
239
|
+
# - for the conv modules, since
|
240
|
+
# conv_dim = intermediate_size * 2 * n_groups * ssm_state_size,
|
241
|
+
# we shard intermediate_size and n_groups
|
242
|
+
# - since intermediate_size = n_heads * head_dim, sharding on
|
243
|
+
# intermediate_size is achieved by sharding on n_heads.
|
244
|
+
# - IF, world_size divides groups, then sharding
|
245
|
+
# (n_groups / world_size, n_heads / world_size)
|
246
|
+
# also maintains the invariant n_heads % n_groups == 0
|
247
|
+
# - HOWEVER IF, world_size DOES NOT divide groups, then we need
|
248
|
+
# to allocate extra space in the shard, such that groups
|
249
|
+
# may be replicated to follow the head shard.
|
250
|
+
# - NOTE: currently for the world size DOES NOT divide groups
|
251
|
+
# case, we only support the case when n_groups == 1
|
252
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
253
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
254
|
+
|
255
|
+
assert (
|
256
|
+
num_heads % self.tp_size == 0
|
257
|
+
), "Tensor parallel world size must divide num heads."
|
258
|
+
|
259
|
+
assert (n_groups % self.tp_size) == 0 or n_groups == 1, (
|
260
|
+
"If tensor parallel world size does not divide num_groups, "
|
261
|
+
"then num_groups must equal 1."
|
262
|
+
)
|
263
|
+
|
264
|
+
self.ssm_state_size = ssm_state_size
|
265
|
+
self.conv_kernel_size = conv_kernel_size
|
266
|
+
self.activation = activation
|
267
|
+
self.layer_id = layer_id
|
268
|
+
|
269
|
+
self.intermediate_size = intermediate_size
|
270
|
+
self.head_dim = head_dim
|
271
|
+
self.num_heads = num_heads
|
272
|
+
self.chunk_size = chunk_size
|
273
|
+
|
274
|
+
self.n_groups = n_groups
|
275
|
+
if n_groups % self.tp_size != 0:
|
276
|
+
# - for TP we shard conv_dim by sharding on n_groups,
|
277
|
+
# - but if n_groups cannot divide tp_size, we need to
|
278
|
+
# extend some extra groups
|
279
|
+
groups = MambaStateShapeCalculator.extra_groups_for_head_shards(
|
280
|
+
n_groups, self.tp_size
|
281
|
+
)
|
282
|
+
self.n_groups = n_groups + groups
|
283
|
+
|
284
|
+
self.groups_ssm_state_size = self.n_groups * self.ssm_state_size
|
285
|
+
self.conv_dim = intermediate_size + 2 * self.groups_ssm_state_size
|
286
|
+
|
287
|
+
self.conv1d = MergedColumnParallelLinear(
|
288
|
+
input_size=conv_kernel_size,
|
289
|
+
output_sizes=[
|
290
|
+
intermediate_size,
|
291
|
+
self.groups_ssm_state_size,
|
292
|
+
self.groups_ssm_state_size,
|
293
|
+
],
|
294
|
+
bias=use_conv_bias,
|
295
|
+
quant_config=None,
|
296
|
+
prefix=f"{prefix}.conv1d",
|
297
|
+
)
|
298
|
+
|
299
|
+
self.in_proj = MergedColumnParallelLinear(
|
300
|
+
input_size=hidden_size,
|
301
|
+
output_sizes=[
|
302
|
+
intermediate_size,
|
303
|
+
intermediate_size,
|
304
|
+
self.groups_ssm_state_size,
|
305
|
+
self.groups_ssm_state_size,
|
306
|
+
self.num_heads,
|
307
|
+
],
|
308
|
+
bias=use_bias,
|
309
|
+
prefix=f"{prefix}.in_proj",
|
310
|
+
)
|
311
|
+
if n_groups % self.tp_size != 0:
|
312
|
+
# This is the n_groups == 1 case,
|
313
|
+
# where we need to duplicate groups if TP>1.
|
314
|
+
|
315
|
+
# - because in_proj is a concatenation of 3 weights, we
|
316
|
+
# need to interleave them before sharding
|
317
|
+
# - use the custom weight loader mamba_v2_sharded_weight_loader
|
318
|
+
# for conv1d.bias, covn1d.weight and in_proj.weight
|
319
|
+
# - need to set these settings, to assign the groups
|
320
|
+
# to the head shards
|
321
|
+
group_shard_settings = (
|
322
|
+
self.groups_ssm_state_size, # expected model size
|
323
|
+
(self.n_groups - n_groups) * self.ssm_state_size, # extra dims assigned
|
324
|
+
n_groups == 1, # if there was only one group
|
325
|
+
)
|
326
|
+
intermediate_settings = (intermediate_size, 0, False)
|
327
|
+
head_settings = (self.num_heads, 0, False)
|
328
|
+
|
329
|
+
# - the weight already has a "weight_loader" attribute
|
330
|
+
# which set_weight_attrs will raise if we do not
|
331
|
+
# delete before trying to override it
|
332
|
+
# - ditto for the other two weights below
|
333
|
+
delattr(self.conv1d.bias, "weight_loader")
|
334
|
+
set_weight_attrs(
|
335
|
+
self.conv1d.bias,
|
336
|
+
{
|
337
|
+
"weight_loader": mamba_v2_sharded_weight_loader(
|
338
|
+
[
|
339
|
+
intermediate_settings,
|
340
|
+
group_shard_settings,
|
341
|
+
group_shard_settings,
|
342
|
+
],
|
343
|
+
self.tp_size,
|
344
|
+
self.tp_rank,
|
345
|
+
)
|
346
|
+
},
|
347
|
+
)
|
348
|
+
|
349
|
+
delattr(self.conv1d.weight, "weight_loader")
|
350
|
+
set_weight_attrs(
|
351
|
+
self.conv1d.weight,
|
352
|
+
{
|
353
|
+
"weight_loader": mamba_v2_sharded_weight_loader(
|
354
|
+
[
|
355
|
+
intermediate_settings,
|
356
|
+
group_shard_settings,
|
357
|
+
group_shard_settings,
|
358
|
+
],
|
359
|
+
self.tp_size,
|
360
|
+
self.tp_rank,
|
361
|
+
)
|
362
|
+
},
|
363
|
+
)
|
364
|
+
|
365
|
+
if quant_config is None:
|
366
|
+
# - quant layers do not have a weight loader
|
367
|
+
delattr(self.in_proj.weight, "weight_loader")
|
368
|
+
set_weight_attrs(
|
369
|
+
self.in_proj.weight,
|
370
|
+
{
|
371
|
+
"weight_loader": mamba_v2_sharded_weight_loader(
|
372
|
+
[
|
373
|
+
intermediate_settings, # for gate
|
374
|
+
intermediate_settings,
|
375
|
+
group_shard_settings,
|
376
|
+
group_shard_settings,
|
377
|
+
head_settings, # for dt
|
378
|
+
],
|
379
|
+
self.tp_size,
|
380
|
+
self.tp_rank,
|
381
|
+
)
|
382
|
+
},
|
383
|
+
)
|
384
|
+
|
385
|
+
# unsqueeze to fit conv1d weights shape into the linear weights shape.
|
386
|
+
# Can't do this in `weight_loader` since it already exists in
|
387
|
+
# `ColumnParallelLinear` and `MergedColumnParallelLinear`,
|
388
|
+
# and `set_weight_attrs` doesn't allow to override it
|
389
|
+
self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)
|
390
|
+
|
391
|
+
# - these are TPed by heads to reduce the size of the
|
392
|
+
# temporal shape
|
393
|
+
self.A = nn.Parameter(
|
394
|
+
torch.empty(
|
395
|
+
divide(num_heads, self.tp_size),
|
396
|
+
dtype=torch.float32,
|
397
|
+
)
|
398
|
+
)
|
399
|
+
self.D = nn.Parameter(torch.ones(num_heads // self.tp_size))
|
400
|
+
self.dt_bias = nn.Parameter(torch.ones(num_heads // self.tp_size))
|
401
|
+
self.use_rms_norm = use_rms_norm
|
402
|
+
|
403
|
+
set_weight_attrs(self.D, {"weight_loader": sharded_weight_loader(0)})
|
404
|
+
a_weight_loader = composed_weight_loader(
|
405
|
+
sharded_weight_loader(0), lambda x: -torch.exp(x.float())
|
406
|
+
)
|
407
|
+
set_weight_attrs(self.A, {"weight_loader": a_weight_loader})
|
408
|
+
set_weight_attrs(self.dt_bias, {"weight_loader": sharded_weight_loader(0)})
|
409
|
+
|
410
|
+
self.out_proj = RowParallelLinear(
|
411
|
+
intermediate_size,
|
412
|
+
hidden_size,
|
413
|
+
bias=use_bias,
|
414
|
+
input_is_parallel=True,
|
415
|
+
quant_config=quant_config,
|
416
|
+
prefix=f"{prefix}.out_proj",
|
417
|
+
reduce_results=False,
|
418
|
+
)
|
419
|
+
|
420
|
+
self.norm = Mixer2RMSNormGated(
|
421
|
+
intermediate_size, n_groups, self.use_rms_norm, eps=rms_norm_eps
|
422
|
+
)
|
423
|
+
|
424
|
+
# The tuple is (conv_state, ssm_state)
|
425
|
+
self.kv_cache = (torch.tensor([]), torch.tensor([]))
|
426
|
+
|
427
|
+
self.model_config = model_config
|
428
|
+
self.prefix = prefix
|
429
|
+
|
430
|
+
def forward_native(
|
431
|
+
self,
|
432
|
+
hidden_states: torch.Tensor,
|
433
|
+
output: torch.Tensor,
|
434
|
+
mup_vector: Optional[torch.Tensor] = None,
|
435
|
+
):
|
436
|
+
pass
|
437
|
+
|
438
|
+
def forward(
|
439
|
+
self,
|
440
|
+
hidden_states: torch.Tensor,
|
441
|
+
output: torch.Tensor,
|
442
|
+
forward_batch: ForwardBatch,
|
443
|
+
mup_vector: Optional[torch.Tensor] = None,
|
444
|
+
):
|
445
|
+
# attn_backend_list[-1] gives access to MambaAttnBackend
|
446
|
+
mamba_backend = forward_batch.attn_backend.attn_backend_list[-1]
|
447
|
+
attn_metadata = mamba_backend.forward_metadata
|
448
|
+
state_indices_tensor = attn_metadata.mamba_cache_indices
|
449
|
+
chunk_size = self.chunk_size
|
450
|
+
|
451
|
+
conv_state, ssm_state, *rest = mamba_backend.req_to_token_pool.get_mamba_params(
|
452
|
+
self.layer_id
|
453
|
+
)
|
454
|
+
|
455
|
+
assert (
|
456
|
+
ssm_state.size(1) == self.ssm_state_size
|
457
|
+
), f"dstate must be {self.ssm_state_size}, got {ssm_state.size(1)}"
|
458
|
+
|
459
|
+
query_start_loc = attn_metadata.query_start_loc
|
460
|
+
|
461
|
+
chunk_size = self.chunk_size
|
462
|
+
|
463
|
+
# TODO: properly support this
|
464
|
+
prep_initial_states = False
|
465
|
+
|
466
|
+
# 1. Gated MLP's linear projection
|
467
|
+
projected_states, _ = self.in_proj(hidden_states)
|
468
|
+
|
469
|
+
if mup_vector is not None:
|
470
|
+
projected_states = projected_states * mup_vector
|
471
|
+
|
472
|
+
gate, hidden_states_B_C, dt = torch.split(
|
473
|
+
projected_states,
|
474
|
+
[
|
475
|
+
self.intermediate_size // self.tp_size,
|
476
|
+
self.conv_dim // self.tp_size,
|
477
|
+
self.num_heads // self.tp_size,
|
478
|
+
],
|
479
|
+
dim=-1,
|
480
|
+
)
|
481
|
+
conv_weights = self.conv1d.weight.view(
|
482
|
+
self.conv1d.weight.size(0), self.conv1d.weight.size(2)
|
483
|
+
)
|
484
|
+
|
485
|
+
# - get hidden_states, B and C after depthwise convolution.
|
486
|
+
split_hidden_states_B_C_fn = lambda hidden_states_B_C: torch.split(
|
487
|
+
hidden_states_B_C,
|
488
|
+
[
|
489
|
+
self.intermediate_size // self.tp_size,
|
490
|
+
self.groups_ssm_state_size // self.tp_size,
|
491
|
+
self.groups_ssm_state_size // self.tp_size,
|
492
|
+
],
|
493
|
+
dim=-1,
|
494
|
+
)
|
495
|
+
|
496
|
+
preallocated_ssm_out = torch.empty(
|
497
|
+
[
|
498
|
+
projected_states.shape[0],
|
499
|
+
(self.num_heads * self.head_dim) // self.tp_size,
|
500
|
+
],
|
501
|
+
dtype=hidden_states.dtype,
|
502
|
+
device=hidden_states.device,
|
503
|
+
)
|
504
|
+
|
505
|
+
# Process prefill requests
|
506
|
+
if forward_batch.forward_mode.is_extend():
|
507
|
+
# 2. Convolution sequence transformation
|
508
|
+
# - "cache_indices" updates the conv_state cache in positions
|
509
|
+
# pointed to by "state_indices_tensor"
|
510
|
+
num_prefill_tokens = forward_batch.extend_num_tokens or 0
|
511
|
+
has_initial_states = forward_batch.extend_prefix_lens > 0
|
512
|
+
cache_indices = attn_metadata.mamba_cache_indices
|
513
|
+
|
514
|
+
x = hidden_states_B_C.transpose(
|
515
|
+
0, 1
|
516
|
+
) # this is the form that causal-conv see
|
517
|
+
hidden_states_B_C = causal_conv1d_fn(
|
518
|
+
x,
|
519
|
+
conv_weights,
|
520
|
+
self.conv1d.bias,
|
521
|
+
activation=self.activation,
|
522
|
+
conv_states=conv_state,
|
523
|
+
has_initial_state=has_initial_states,
|
524
|
+
cache_indices=cache_indices,
|
525
|
+
query_start_loc=query_start_loc,
|
526
|
+
seq_lens_cpu=forward_batch.extend_seq_lens_cpu,
|
527
|
+
).transpose(0, 1)
|
528
|
+
|
529
|
+
hidden_states, B, C = split_hidden_states_B_C_fn(hidden_states_B_C)
|
530
|
+
|
531
|
+
# 3. State Space Model sequence transformation
|
532
|
+
initial_states = None
|
533
|
+
|
534
|
+
if has_initial_states is not None and prep_initial_states:
|
535
|
+
initial_states = torch.where(
|
536
|
+
has_initial_states[:, None, None, None],
|
537
|
+
ssm_state[state_indices_tensor],
|
538
|
+
0,
|
539
|
+
)
|
540
|
+
|
541
|
+
# NOTE: final output is an in-place update of out tensor
|
542
|
+
varlen_state = mamba_chunk_scan_combined(
|
543
|
+
hidden_states.view(
|
544
|
+
1, num_prefill_tokens, self.num_heads // self.tp_size, self.head_dim
|
545
|
+
),
|
546
|
+
dt.unsqueeze(0),
|
547
|
+
self.A,
|
548
|
+
B.view(1, num_prefill_tokens, self.n_groups // self.tp_size, -1),
|
549
|
+
C.view(1, num_prefill_tokens, self.n_groups // self.tp_size, -1),
|
550
|
+
chunk_size=chunk_size,
|
551
|
+
D=self.D,
|
552
|
+
z=None,
|
553
|
+
dt_bias=self.dt_bias,
|
554
|
+
cu_seqlens=query_start_loc,
|
555
|
+
initial_states=initial_states,
|
556
|
+
return_varlen_states=True,
|
557
|
+
return_final_states=False,
|
558
|
+
dt_softplus=True,
|
559
|
+
dt_limit=(0.0, float("inf")),
|
560
|
+
out=preallocated_ssm_out.view(1, num_prefill_tokens, -1, self.head_dim),
|
561
|
+
state_dtype=ssm_state.dtype,
|
562
|
+
)
|
563
|
+
|
564
|
+
# update ssm states
|
565
|
+
# - varlen state is a (num_prefills, nheads, headdim, dstate) tensor
|
566
|
+
ssm_state[state_indices_tensor] = varlen_state.permute(0, 3, 2, 1)
|
567
|
+
elif forward_batch.forward_mode.is_decode():
|
568
|
+
num_decodes = len(query_start_loc) - 1
|
569
|
+
# 2. Convolution sequence transformation
|
570
|
+
hidden_states_B_C = causal_conv1d_update(
|
571
|
+
hidden_states_B_C,
|
572
|
+
conv_state,
|
573
|
+
conv_weights,
|
574
|
+
self.conv1d.bias,
|
575
|
+
self.activation,
|
576
|
+
conv_state_indices=state_indices_tensor,
|
577
|
+
)
|
578
|
+
|
579
|
+
hidden_states, B, C = split_hidden_states_B_C_fn(hidden_states_B_C)
|
580
|
+
|
581
|
+
# 3. State Space Model sequence transformation
|
582
|
+
n_groups = self.n_groups // self.tp_size
|
583
|
+
A = (
|
584
|
+
self.A[:, None, ...][:, :, None]
|
585
|
+
.expand(-1, self.head_dim, self.ssm_state_size)
|
586
|
+
.to(dtype=torch.float32)
|
587
|
+
)
|
588
|
+
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
|
589
|
+
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
|
590
|
+
D = self.D[:, None, ...].expand(-1, self.head_dim)
|
591
|
+
B = B.view(-1, n_groups, B.shape[1] // n_groups)
|
592
|
+
C = C.view(-1, n_groups, C.shape[1] // n_groups)
|
593
|
+
hidden_states = hidden_states.view(
|
594
|
+
-1, self.num_heads // self.tp_size, self.head_dim
|
595
|
+
)
|
596
|
+
|
597
|
+
# - the hidden is reshaped into (bs, num_heads, head_dim)
|
598
|
+
# - mamba_cache_params.ssm_state's slots will be selected
|
599
|
+
# using state_indices_tensor_d
|
600
|
+
# NOTE: final output is an in-place update of out tensor
|
601
|
+
selective_state_update(
|
602
|
+
ssm_state.permute(0, 3, 2, 1),
|
603
|
+
hidden_states,
|
604
|
+
dt,
|
605
|
+
A,
|
606
|
+
B,
|
607
|
+
C,
|
608
|
+
D,
|
609
|
+
z=None,
|
610
|
+
dt_bias=dt_bias,
|
611
|
+
dt_softplus=True,
|
612
|
+
state_batch_indices=state_indices_tensor,
|
613
|
+
out=preallocated_ssm_out.view(num_decodes, -1, self.head_dim),
|
614
|
+
)
|
615
|
+
elif forward_batch.forward_mode.is_idle():
|
616
|
+
preallocated_ssm_out = preallocated_ssm_out
|
617
|
+
|
618
|
+
# 4. gated MLP
|
619
|
+
# GatedRMSNorm internally applying SiLU to the gate
|
620
|
+
# SiLU is applied internally before normalization, unlike standard
|
621
|
+
# norm usage
|
622
|
+
hidden_states = self.norm(preallocated_ssm_out, gate)
|
623
|
+
|
624
|
+
# 5. Final linear projection
|
625
|
+
output[:], _ = self.out_proj(hidden_states)
|
626
|
+
|
627
|
+
@property
|
628
|
+
def mamba_type(self) -> str:
|
629
|
+
return "mamba2"
|