sequenzo 0.1.18__cp311-cp311-win_amd64.whl → 0.1.20__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (399) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp311-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp311-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +108 -6
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp311-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  12. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp311-win_amd64.pyd +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  14. sequenzo/dissimilarity_measures/utils/seqconc.cp311-win_amd64.pyd +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  16. sequenzo/dissimilarity_measures/utils/seqdss.cp311-win_amd64.pyd +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  18. sequenzo/dissimilarity_measures/utils/seqdur.cp311-win_amd64.pyd +0 -0
  19. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  20. sequenzo/dissimilarity_measures/utils/seqlength.cp311-win_amd64.pyd +0 -0
  21. sequenzo/multidomain/cat.py +0 -53
  22. sequenzo/multidomain/dat.py +11 -3
  23. sequenzo/multidomain/idcd.py +0 -3
  24. sequenzo/multidomain/linked_polyad.py +0 -1
  25. sequenzo/openmp_setup.py +233 -0
  26. sequenzo/visualization/plot_transition_matrix.py +21 -22
  27. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  28. sequenzo-0.1.20.dist-info/RECORD +272 -0
  29. sequenzo/dissimilarity_measures/setup.py +0 -35
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  172. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  173. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  174. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  175. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  176. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  177. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  178. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  179. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  180. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  181. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  182. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  183. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  184. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  185. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  186. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  187. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  188. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  189. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  190. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  191. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  192. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  197. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  198. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  199. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  200. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  201. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  202. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  203. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  206. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  207. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  208. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  209. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  210. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  211. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  212. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  213. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  214. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  215. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  216. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  217. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  218. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  219. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  220. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  221. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  222. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  223. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  224. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  225. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  226. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  396. sequenzo-0.1.18.dist-info/RECORD +0 -638
  397. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  398. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  399. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,923 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
- // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
-
12
- #ifndef EIGEN_SPARSE_LU_H
13
- #define EIGEN_SPARSE_LU_H
14
-
15
- namespace Eigen {
16
-
17
- template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18
- template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19
- template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
-
21
- template <bool Conjugate,class SparseLUType>
22
- class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> >
23
- {
24
- protected:
25
- typedef SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> > APIBase;
26
- using APIBase::m_isInitialized;
27
- public:
28
- typedef typename SparseLUType::Scalar Scalar;
29
- typedef typename SparseLUType::StorageIndex StorageIndex;
30
- typedef typename SparseLUType::MatrixType MatrixType;
31
- typedef typename SparseLUType::OrderingType OrderingType;
32
-
33
- enum {
34
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
35
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
36
- };
37
-
38
- SparseLUTransposeView() : m_sparseLU(NULL) {}
39
- SparseLUTransposeView(const SparseLUTransposeView& view) {
40
- this->m_sparseLU = view.m_sparseLU;
41
- }
42
- void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;}
43
- void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;}
44
- using APIBase::_solve_impl;
45
- template<typename Rhs, typename Dest>
46
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
47
- {
48
- Dest& X(X_base.derived());
49
- eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first");
50
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
51
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
52
-
53
-
54
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
55
- for(Index j = 0; j < B.cols(); ++j){
56
- X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
57
- }
58
- //Forward substitution with transposed or adjoint of U
59
- m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
60
-
61
- //Backward substitution with transposed or adjoint of L
62
- m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
63
-
64
- // Permute back the solution
65
- for (Index j = 0; j < B.cols(); ++j)
66
- X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
67
- return true;
68
- }
69
- inline Index rows() const { return m_sparseLU->rows(); }
70
- inline Index cols() const { return m_sparseLU->cols(); }
71
-
72
- private:
73
- SparseLUType *m_sparseLU;
74
- SparseLUTransposeView& operator=(const SparseLUTransposeView&);
75
- };
76
-
77
-
78
- /** \ingroup SparseLU_Module
79
- * \class SparseLU
80
- *
81
- * \brief Sparse supernodal LU factorization for general matrices
82
- *
83
- * This class implements the supernodal LU factorization for general matrices.
84
- * It uses the main techniques from the sequential SuperLU package
85
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
86
- * and complex arithmetic with single and double precision, depending on the
87
- * scalar type of your input matrix.
88
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
89
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
90
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
91
- * enable a better optimization from the compiler. For best performance,
92
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
93
- *
94
- * An important parameter of this class is the ordering method. It is used to reorder the columns
95
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
96
- * numerical factorization. The cheapest method available is COLAMD.
97
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
98
- * built-in and external ordering methods.
99
- *
100
- * Simple example with key steps
101
- * \code
102
- * VectorXd x(n), b(n);
103
- * SparseMatrix<double> A;
104
- * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;
105
- * // fill A and b;
106
- * // Compute the ordering permutation vector from the structural pattern of A
107
- * solver.analyzePattern(A);
108
- * // Compute the numerical factorization
109
- * solver.factorize(A);
110
- * //Use the factors to solve the linear system
111
- * x = solver.solve(b);
112
- * \endcode
113
- *
114
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
115
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
116
- *
117
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
118
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
119
- * If this is the case for your matrices, you can try the basic scaling method at
120
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
121
- *
122
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
123
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
124
- *
125
- * \implsparsesolverconcept
126
- *
127
- * \sa \ref TutorialSparseSolverConcept
128
- * \sa \ref OrderingMethods_Module
129
- */
130
- template <typename _MatrixType, typename _OrderingType>
131
- class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
132
- {
133
- protected:
134
- typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
135
- using APIBase::m_isInitialized;
136
- public:
137
- using APIBase::_solve_impl;
138
-
139
- typedef _MatrixType MatrixType;
140
- typedef _OrderingType OrderingType;
141
- typedef typename MatrixType::Scalar Scalar;
142
- typedef typename MatrixType::RealScalar RealScalar;
143
- typedef typename MatrixType::StorageIndex StorageIndex;
144
- typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
145
- typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
146
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
147
- typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
148
- typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
149
- typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
150
-
151
- enum {
152
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
153
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
154
- };
155
-
156
- public:
157
-
158
- SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
159
- {
160
- initperfvalues();
161
- }
162
- explicit SparseLU(const MatrixType& matrix)
163
- : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
164
- {
165
- initperfvalues();
166
- compute(matrix);
167
- }
168
-
169
- ~SparseLU()
170
- {
171
- // Free all explicit dynamic pointers
172
- }
173
-
174
- void analyzePattern (const MatrixType& matrix);
175
- void factorize (const MatrixType& matrix);
176
- void simplicialfactorize(const MatrixType& matrix);
177
-
178
- /**
179
- * Compute the symbolic and numeric factorization of the input sparse matrix.
180
- * The input matrix should be in column-major storage.
181
- */
182
- void compute (const MatrixType& matrix)
183
- {
184
- // Analyze
185
- analyzePattern(matrix);
186
- //Factorize
187
- factorize(matrix);
188
- }
189
-
190
- /** \returns an expression of the transposed of the factored matrix.
191
- *
192
- * A typical usage is to solve for the transposed problem A^T x = b:
193
- * \code
194
- * solver.compute(A);
195
- * x = solver.transpose().solve(b);
196
- * \endcode
197
- *
198
- * \sa adjoint(), solve()
199
- */
200
- const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
201
- {
202
- SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
203
- transposeView.setSparseLU(this);
204
- transposeView.setIsInitialized(this->m_isInitialized);
205
- return transposeView;
206
- }
207
-
208
-
209
- /** \returns an expression of the adjoint of the factored matrix
210
- *
211
- * A typical usage is to solve for the adjoint problem A' x = b:
212
- * \code
213
- * solver.compute(A);
214
- * x = solver.adjoint().solve(b);
215
- * \endcode
216
- *
217
- * For real scalar types, this function is equivalent to transpose().
218
- *
219
- * \sa transpose(), solve()
220
- */
221
- const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
222
- {
223
- SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
224
- adjointView.setSparseLU(this);
225
- adjointView.setIsInitialized(this->m_isInitialized);
226
- return adjointView;
227
- }
228
-
229
- inline Index rows() const { return m_mat.rows(); }
230
- inline Index cols() const { return m_mat.cols(); }
231
- /** Indicate that the pattern of the input matrix is symmetric */
232
- void isSymmetric(bool sym)
233
- {
234
- m_symmetricmode = sym;
235
- }
236
-
237
- /** \returns an expression of the matrix L, internally stored as supernodes
238
- * The only operation available with this expression is the triangular solve
239
- * \code
240
- * y = b; matrixL().solveInPlace(y);
241
- * \endcode
242
- */
243
- SparseLUMatrixLReturnType<SCMatrix> matrixL() const
244
- {
245
- return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
246
- }
247
- /** \returns an expression of the matrix U,
248
- * The only operation available with this expression is the triangular solve
249
- * \code
250
- * y = b; matrixU().solveInPlace(y);
251
- * \endcode
252
- */
253
- SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
254
- {
255
- return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
256
- }
257
-
258
- /**
259
- * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
260
- * \sa colsPermutation()
261
- */
262
- inline const PermutationType& rowsPermutation() const
263
- {
264
- return m_perm_r;
265
- }
266
- /**
267
- * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
268
- * \sa rowsPermutation()
269
- */
270
- inline const PermutationType& colsPermutation() const
271
- {
272
- return m_perm_c;
273
- }
274
- /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
275
- void setPivotThreshold(const RealScalar& thresh)
276
- {
277
- m_diagpivotthresh = thresh;
278
- }
279
-
280
- #ifdef EIGEN_PARSED_BY_DOXYGEN
281
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
282
- *
283
- * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
284
- *
285
- * \sa compute()
286
- */
287
- template<typename Rhs>
288
- inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
289
- #endif // EIGEN_PARSED_BY_DOXYGEN
290
-
291
- /** \brief Reports whether previous computation was successful.
292
- *
293
- * \returns \c Success if computation was successful,
294
- * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
295
- * \c InvalidInput if the input matrix is invalid
296
- *
297
- * \sa iparm()
298
- */
299
- ComputationInfo info() const
300
- {
301
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
302
- return m_info;
303
- }
304
-
305
- /**
306
- * \returns A string describing the type of error
307
- */
308
- std::string lastErrorMessage() const
309
- {
310
- return m_lastError;
311
- }
312
-
313
- template<typename Rhs, typename Dest>
314
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
315
- {
316
- Dest& X(X_base.derived());
317
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
318
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
319
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
320
-
321
- // Permute the right hand side to form X = Pr*B
322
- // on return, X is overwritten by the computed solution
323
- X.resize(B.rows(),B.cols());
324
-
325
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
326
- for(Index j = 0; j < B.cols(); ++j)
327
- X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
328
-
329
- //Forward substitution with L
330
- this->matrixL().solveInPlace(X);
331
- this->matrixU().solveInPlace(X);
332
-
333
- // Permute back the solution
334
- for (Index j = 0; j < B.cols(); ++j)
335
- X.col(j) = colsPermutation().inverse() * X.col(j);
336
-
337
- return true;
338
- }
339
-
340
- /**
341
- * \returns the absolute value of the determinant of the matrix of which
342
- * *this is the QR decomposition.
343
- *
344
- * \warning a determinant can be very big or small, so for matrices
345
- * of large enough dimension, there is a risk of overflow/underflow.
346
- * One way to work around that is to use logAbsDeterminant() instead.
347
- *
348
- * \sa logAbsDeterminant(), signDeterminant()
349
- */
350
- Scalar absDeterminant()
351
- {
352
- using std::abs;
353
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
354
- // Initialize with the determinant of the row matrix
355
- Scalar det = Scalar(1.);
356
- // Note that the diagonal blocks of U are stored in supernodes,
357
- // which are available in the L part :)
358
- for (Index j = 0; j < this->cols(); ++j)
359
- {
360
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
361
- {
362
- if(it.index() == j)
363
- {
364
- det *= abs(it.value());
365
- break;
366
- }
367
- }
368
- }
369
- return det;
370
- }
371
-
372
- /** \returns the natural log of the absolute value of the determinant of the matrix
373
- * of which **this is the QR decomposition
374
- *
375
- * \note This method is useful to work around the risk of overflow/underflow that's
376
- * inherent to the determinant computation.
377
- *
378
- * \sa absDeterminant(), signDeterminant()
379
- */
380
- Scalar logAbsDeterminant() const
381
- {
382
- using std::log;
383
- using std::abs;
384
-
385
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
386
- Scalar det = Scalar(0.);
387
- for (Index j = 0; j < this->cols(); ++j)
388
- {
389
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
390
- {
391
- if(it.row() < j) continue;
392
- if(it.row() == j)
393
- {
394
- det += log(abs(it.value()));
395
- break;
396
- }
397
- }
398
- }
399
- return det;
400
- }
401
-
402
- /** \returns A number representing the sign of the determinant
403
- *
404
- * \sa absDeterminant(), logAbsDeterminant()
405
- */
406
- Scalar signDeterminant()
407
- {
408
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
409
- // Initialize with the determinant of the row matrix
410
- Index det = 1;
411
- // Note that the diagonal blocks of U are stored in supernodes,
412
- // which are available in the L part :)
413
- for (Index j = 0; j < this->cols(); ++j)
414
- {
415
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
416
- {
417
- if(it.index() == j)
418
- {
419
- if(it.value()<0)
420
- det = -det;
421
- else if(it.value()==0)
422
- return 0;
423
- break;
424
- }
425
- }
426
- }
427
- return det * m_detPermR * m_detPermC;
428
- }
429
-
430
- /** \returns The determinant of the matrix.
431
- *
432
- * \sa absDeterminant(), logAbsDeterminant()
433
- */
434
- Scalar determinant()
435
- {
436
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
437
- // Initialize with the determinant of the row matrix
438
- Scalar det = Scalar(1.);
439
- // Note that the diagonal blocks of U are stored in supernodes,
440
- // which are available in the L part :)
441
- for (Index j = 0; j < this->cols(); ++j)
442
- {
443
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
444
- {
445
- if(it.index() == j)
446
- {
447
- det *= it.value();
448
- break;
449
- }
450
- }
451
- }
452
- return (m_detPermR * m_detPermC) > 0 ? det : -det;
453
- }
454
-
455
- Index nnzL() const { return m_nnzL; };
456
- Index nnzU() const { return m_nnzU; };
457
-
458
- protected:
459
- // Functions
460
- void initperfvalues()
461
- {
462
- m_perfv.panel_size = 16;
463
- m_perfv.relax = 1;
464
- m_perfv.maxsuper = 128;
465
- m_perfv.rowblk = 16;
466
- m_perfv.colblk = 8;
467
- m_perfv.fillfactor = 20;
468
- }
469
-
470
- // Variables
471
- mutable ComputationInfo m_info;
472
- bool m_factorizationIsOk;
473
- bool m_analysisIsOk;
474
- std::string m_lastError;
475
- NCMatrix m_mat; // The input (permuted ) matrix
476
- SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
477
- MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
478
- PermutationType m_perm_c; // Column permutation
479
- PermutationType m_perm_r ; // Row permutation
480
- IndexVector m_etree; // Column elimination tree
481
-
482
- typename Base::GlobalLU_t m_glu;
483
-
484
- // SparseLU options
485
- bool m_symmetricmode;
486
- // values for performance
487
- internal::perfvalues m_perfv;
488
- RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
489
- Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
490
- Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
491
- private:
492
- // Disable copy constructor
493
- SparseLU (const SparseLU& );
494
- }; // End class SparseLU
495
-
496
-
497
-
498
- // Functions needed by the anaysis phase
499
- /**
500
- * Compute the column permutation to minimize the fill-in
501
- *
502
- * - Apply this permutation to the input matrix -
503
- *
504
- * - Compute the column elimination tree on the permuted matrix
505
- *
506
- * - Postorder the elimination tree and the column permutation
507
- *
508
- */
509
- template <typename MatrixType, typename OrderingType>
510
- void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
511
- {
512
-
513
- //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
514
-
515
- // Firstly, copy the whole input matrix.
516
- m_mat = mat;
517
-
518
- // Compute fill-in ordering
519
- OrderingType ord;
520
- ord(m_mat,m_perm_c);
521
-
522
- // Apply the permutation to the column of the input matrix
523
- if (m_perm_c.size())
524
- {
525
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
526
- // Then, permute only the column pointers
527
- ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
528
-
529
- // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
530
- if(!mat.isCompressed())
531
- IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
532
-
533
- // Apply the permutation and compute the nnz per column.
534
- for (Index i = 0; i < mat.cols(); i++)
535
- {
536
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
537
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
538
- }
539
- }
540
-
541
- // Compute the column elimination tree of the permuted matrix
542
- IndexVector firstRowElt;
543
- internal::coletree(m_mat, m_etree,firstRowElt);
544
-
545
- // In symmetric mode, do not do postorder here
546
- if (!m_symmetricmode) {
547
- IndexVector post, iwork;
548
- // Post order etree
549
- internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
550
-
551
-
552
- // Renumber etree in postorder
553
- Index m = m_mat.cols();
554
- iwork.resize(m+1);
555
- for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
556
- m_etree = iwork;
557
-
558
- // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
559
- PermutationType post_perm(m);
560
- for (Index i = 0; i < m; i++)
561
- post_perm.indices()(i) = post(i);
562
-
563
- // Combine the two permutations : postorder the permutation for future use
564
- if(m_perm_c.size()) {
565
- m_perm_c = post_perm * m_perm_c;
566
- }
567
-
568
- } // end postordering
569
-
570
- m_analysisIsOk = true;
571
- }
572
-
573
- // Functions needed by the numerical factorization phase
574
-
575
-
576
- /**
577
- * - Numerical factorization
578
- * - Interleaved with the symbolic factorization
579
- * On exit, info is
580
- *
581
- * = 0: successful factorization
582
- *
583
- * > 0: if info = i, and i is
584
- *
585
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
586
- * been completed, but the factor U is exactly singular,
587
- * and division by zero will occur if it is used to solve a
588
- * system of equations.
589
- *
590
- * > A->ncol: number of bytes allocated when memory allocation
591
- * failure occurred, plus A->ncol. If lwork = -1, it is
592
- * the estimated amount of space needed, plus A->ncol.
593
- */
594
- template <typename MatrixType, typename OrderingType>
595
- void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
596
- {
597
- using internal::emptyIdxLU;
598
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
599
- eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
600
-
601
- m_isInitialized = true;
602
-
603
- // Apply the column permutation computed in analyzepattern()
604
- // m_mat = matrix * m_perm_c.inverse();
605
- m_mat = matrix;
606
- if (m_perm_c.size())
607
- {
608
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
609
- //Then, permute only the column pointers
610
- const StorageIndex * outerIndexPtr;
611
- if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
612
- else
613
- {
614
- StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
615
- for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
616
- outerIndexPtr = outerIndexPtr_t;
617
- }
618
- for (Index i = 0; i < matrix.cols(); i++)
619
- {
620
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
621
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
622
- }
623
- if(!matrix.isCompressed()) delete[] outerIndexPtr;
624
- }
625
- else
626
- { //FIXME This should not be needed if the empty permutation is handled transparently
627
- m_perm_c.resize(matrix.cols());
628
- for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
629
- }
630
-
631
- Index m = m_mat.rows();
632
- Index n = m_mat.cols();
633
- Index nnz = m_mat.nonZeros();
634
- Index maxpanel = m_perfv.panel_size * m;
635
- // Allocate working storage common to the factor routines
636
- Index lwork = 0;
637
- Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
638
- if (info)
639
- {
640
- m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
641
- m_factorizationIsOk = false;
642
- return ;
643
- }
644
-
645
- // Set up pointers for integer working arrays
646
- IndexVector segrep(m); segrep.setZero();
647
- IndexVector parent(m); parent.setZero();
648
- IndexVector xplore(m); xplore.setZero();
649
- IndexVector repfnz(maxpanel);
650
- IndexVector panel_lsub(maxpanel);
651
- IndexVector xprune(n); xprune.setZero();
652
- IndexVector marker(m*internal::LUNoMarker); marker.setZero();
653
-
654
- repfnz.setConstant(-1);
655
- panel_lsub.setConstant(-1);
656
-
657
- // Set up pointers for scalar working arrays
658
- ScalarVector dense;
659
- dense.setZero(maxpanel);
660
- ScalarVector tempv;
661
- tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
662
-
663
- // Compute the inverse of perm_c
664
- PermutationType iperm_c(m_perm_c.inverse());
665
-
666
- // Identify initial relaxed snodes
667
- IndexVector relax_end(n);
668
- if ( m_symmetricmode == true )
669
- Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
670
- else
671
- Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
672
-
673
-
674
- m_perm_r.resize(m);
675
- m_perm_r.indices().setConstant(-1);
676
- marker.setConstant(-1);
677
- m_detPermR = 1; // Record the determinant of the row permutation
678
-
679
- m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
680
- m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
681
-
682
- // Work on one 'panel' at a time. A panel is one of the following :
683
- // (a) a relaxed supernode at the bottom of the etree, or
684
- // (b) panel_size contiguous columns, <panel_size> defined by the user
685
- Index jcol;
686
- Index pivrow; // Pivotal row number in the original row matrix
687
- Index nseg1; // Number of segments in U-column above panel row jcol
688
- Index nseg; // Number of segments in each U-column
689
- Index irep;
690
- Index i, k, jj;
691
- for (jcol = 0; jcol < n; )
692
- {
693
- // Adjust panel size so that a panel won't overlap with the next relaxed snode.
694
- Index panel_size = m_perfv.panel_size; // upper bound on panel width
695
- for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
696
- {
697
- if (relax_end(k) != emptyIdxLU)
698
- {
699
- panel_size = k - jcol;
700
- break;
701
- }
702
- }
703
- if (k == n)
704
- panel_size = n - jcol;
705
-
706
- // Symbolic outer factorization on a panel of columns
707
- Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
708
-
709
- // Numeric sup-panel updates in topological order
710
- Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
711
-
712
- // Sparse LU within the panel, and below the panel diagonal
713
- for ( jj = jcol; jj< jcol + panel_size; jj++)
714
- {
715
- k = (jj - jcol) * m; // Column index for w-wide arrays
716
-
717
- nseg = nseg1; // begin after all the panel segments
718
- //Depth-first-search for the current column
719
- VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
720
- VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
721
- info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
722
- if ( info )
723
- {
724
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
725
- m_info = NumericalIssue;
726
- m_factorizationIsOk = false;
727
- return;
728
- }
729
- // Numeric updates to this column
730
- VectorBlock<ScalarVector> dense_k(dense, k, m);
731
- VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
732
- info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
733
- if ( info )
734
- {
735
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
736
- m_info = NumericalIssue;
737
- m_factorizationIsOk = false;
738
- return;
739
- }
740
-
741
- // Copy the U-segments to ucol(*)
742
- info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
743
- if ( info )
744
- {
745
- m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
746
- m_info = NumericalIssue;
747
- m_factorizationIsOk = false;
748
- return;
749
- }
750
-
751
- // Form the L-segment
752
- info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
753
- if ( info )
754
- {
755
- m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
756
- std::ostringstream returnInfo;
757
- returnInfo << info;
758
- m_lastError += returnInfo.str();
759
- m_info = NumericalIssue;
760
- m_factorizationIsOk = false;
761
- return;
762
- }
763
-
764
- // Update the determinant of the row permutation matrix
765
- // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
766
- if (pivrow != jj) m_detPermR = -m_detPermR;
767
-
768
- // Prune columns (0:jj-1) using column jj
769
- Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
770
-
771
- // Reset repfnz for this column
772
- for (i = 0; i < nseg; i++)
773
- {
774
- irep = segrep(i);
775
- repfnz_k(irep) = emptyIdxLU;
776
- }
777
- } // end SparseLU within the panel
778
- jcol += panel_size; // Move to the next panel
779
- } // end for -- end elimination
780
-
781
- m_detPermR = m_perm_r.determinant();
782
- m_detPermC = m_perm_c.determinant();
783
-
784
- // Count the number of nonzeros in factors
785
- Base::countnz(n, m_nnzL, m_nnzU, m_glu);
786
- // Apply permutation to the L subscripts
787
- Base::fixupL(n, m_perm_r.indices(), m_glu);
788
-
789
- // Create supernode matrix L
790
- m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
791
- // Create the column major upper sparse matrix U;
792
- new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
793
-
794
- m_info = Success;
795
- m_factorizationIsOk = true;
796
- }
797
-
798
- template<typename MappedSupernodalType>
799
- struct SparseLUMatrixLReturnType : internal::no_assignment_operator
800
- {
801
- typedef typename MappedSupernodalType::Scalar Scalar;
802
- explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
803
- { }
804
- Index rows() const { return m_mapL.rows(); }
805
- Index cols() const { return m_mapL.cols(); }
806
- template<typename Dest>
807
- void solveInPlace( MatrixBase<Dest> &X) const
808
- {
809
- m_mapL.solveInPlace(X);
810
- }
811
- template<bool Conjugate, typename Dest>
812
- void solveTransposedInPlace( MatrixBase<Dest> &X) const
813
- {
814
- m_mapL.template solveTransposedInPlace<Conjugate>(X);
815
- }
816
-
817
- const MappedSupernodalType& m_mapL;
818
- };
819
-
820
- template<typename MatrixLType, typename MatrixUType>
821
- struct SparseLUMatrixUReturnType : internal::no_assignment_operator
822
- {
823
- typedef typename MatrixLType::Scalar Scalar;
824
- SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
825
- : m_mapL(mapL),m_mapU(mapU)
826
- { }
827
- Index rows() const { return m_mapL.rows(); }
828
- Index cols() const { return m_mapL.cols(); }
829
-
830
- template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
831
- {
832
- Index nrhs = X.cols();
833
- Index n = X.rows();
834
- // Backward solve with U
835
- for (Index k = m_mapL.nsuper(); k >= 0; k--)
836
- {
837
- Index fsupc = m_mapL.supToCol()[k];
838
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
839
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
840
- Index luptr = m_mapL.colIndexPtr()[fsupc];
841
-
842
- if (nsupc == 1)
843
- {
844
- for (Index j = 0; j < nrhs; j++)
845
- {
846
- X(fsupc, j) /= m_mapL.valuePtr()[luptr];
847
- }
848
- }
849
- else
850
- {
851
- // FIXME: the following lines should use Block expressions and not Map!
852
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
853
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X.coeffRef(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
854
- U = A.template triangularView<Upper>().solve(U);
855
- }
856
-
857
- for (Index j = 0; j < nrhs; ++j)
858
- {
859
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
860
- {
861
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
862
- for ( ; it; ++it)
863
- {
864
- Index irow = it.index();
865
- X(irow, j) -= X(jcol, j) * it.value();
866
- }
867
- }
868
- }
869
- } // End For U-solve
870
- }
871
-
872
- template<bool Conjugate, typename Dest> void solveTransposedInPlace(MatrixBase<Dest> &X) const
873
- {
874
- using numext::conj;
875
- Index nrhs = X.cols();
876
- Index n = X.rows();
877
- // Forward solve with U
878
- for (Index k = 0; k <= m_mapL.nsuper(); k++)
879
- {
880
- Index fsupc = m_mapL.supToCol()[k];
881
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
882
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
883
- Index luptr = m_mapL.colIndexPtr()[fsupc];
884
-
885
- for (Index j = 0; j < nrhs; ++j)
886
- {
887
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
888
- {
889
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
890
- for ( ; it; ++it)
891
- {
892
- Index irow = it.index();
893
- X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value());
894
- }
895
- }
896
- }
897
- if (nsupc == 1)
898
- {
899
- for (Index j = 0; j < nrhs; j++)
900
- {
901
- X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
902
- }
903
- }
904
- else
905
- {
906
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
907
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
908
- if(Conjugate)
909
- U = A.adjoint().template triangularView<Lower>().solve(U);
910
- else
911
- U = A.transpose().template triangularView<Lower>().solve(U);
912
- }
913
- }// End For U-solve
914
- }
915
-
916
-
917
- const MatrixLType& m_mapL;
918
- const MatrixUType& m_mapU;
919
- };
920
-
921
- } // End namespace Eigen
922
-
923
- #endif