sequenzo 0.1.18__cp311-cp311-win_amd64.whl → 0.1.20__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (399) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +154 -154
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp311-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp311-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +108 -6
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp311-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +154 -154
  12. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp311-win_amd64.pyd +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqconc.c +154 -154
  14. sequenzo/dissimilarity_measures/utils/seqconc.cp311-win_amd64.pyd +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdss.c +154 -154
  16. sequenzo/dissimilarity_measures/utils/seqdss.cp311-win_amd64.pyd +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqdur.c +154 -154
  18. sequenzo/dissimilarity_measures/utils/seqdur.cp311-win_amd64.pyd +0 -0
  19. sequenzo/dissimilarity_measures/utils/seqlength.c +154 -154
  20. sequenzo/dissimilarity_measures/utils/seqlength.cp311-win_amd64.pyd +0 -0
  21. sequenzo/multidomain/cat.py +0 -53
  22. sequenzo/multidomain/dat.py +11 -3
  23. sequenzo/multidomain/idcd.py +0 -3
  24. sequenzo/multidomain/linked_polyad.py +0 -1
  25. sequenzo/openmp_setup.py +233 -0
  26. sequenzo/visualization/plot_transition_matrix.py +21 -22
  27. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  28. sequenzo-0.1.20.dist-info/RECORD +272 -0
  29. sequenzo/dissimilarity_measures/setup.py +0 -35
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  172. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  173. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  174. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  175. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  176. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  177. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  178. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  179. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  180. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  181. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  182. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  183. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  184. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  185. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  186. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  187. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  188. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  189. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  190. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  191. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  192. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  197. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  198. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  199. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  200. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  201. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  202. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  203. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  206. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  207. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  208. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  209. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  210. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  211. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  212. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  213. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  214. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  215. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  216. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  217. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  218. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  219. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  220. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  221. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  222. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  223. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  224. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  225. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  226. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  396. sequenzo-0.1.18.dist-info/RECORD +0 -638
  397. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  398. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  399. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,1366 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
5
- // research report written by Ming Gu and Stanley C.Eisenstat
6
- // The code variable names correspond to the names they used in their
7
- // report
8
- //
9
- // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
10
- // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
11
- // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
12
- // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
13
- // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
14
- // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
15
- //
16
- // Source Code Form is subject to the terms of the Mozilla
17
- // Public License v. 2.0. If a copy of the MPL was not distributed
18
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
19
-
20
- #ifndef EIGEN_BDCSVD_H
21
- #define EIGEN_BDCSVD_H
22
- // #define EIGEN_BDCSVD_DEBUG_VERBOSE
23
- // #define EIGEN_BDCSVD_SANITY_CHECKS
24
-
25
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
26
- #undef eigen_internal_assert
27
- #define eigen_internal_assert(X) assert(X);
28
- #endif
29
-
30
- namespace Eigen {
31
-
32
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
33
- IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
34
- #endif
35
-
36
- template<typename _MatrixType> class BDCSVD;
37
-
38
- namespace internal {
39
-
40
- template<typename _MatrixType>
41
- struct traits<BDCSVD<_MatrixType> >
42
- : traits<_MatrixType>
43
- {
44
- typedef _MatrixType MatrixType;
45
- };
46
-
47
- } // end namespace internal
48
-
49
-
50
- /** \ingroup SVD_Module
51
- *
52
- *
53
- * \class BDCSVD
54
- *
55
- * \brief class Bidiagonal Divide and Conquer SVD
56
- *
57
- * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
58
- *
59
- * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
60
- * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
61
- * You can control the switching size with the setSwitchSize() method, default is 16.
62
- * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly
63
- * recommended and can several order of magnitude faster.
64
- *
65
- * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
66
- * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless
67
- * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
68
- * significantly degrade the accuracy.
69
- *
70
- * \sa class JacobiSVD
71
- */
72
- template<typename _MatrixType>
73
- class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
74
- {
75
- typedef SVDBase<BDCSVD> Base;
76
-
77
- public:
78
- using Base::rows;
79
- using Base::cols;
80
- using Base::computeU;
81
- using Base::computeV;
82
-
83
- typedef _MatrixType MatrixType;
84
- typedef typename MatrixType::Scalar Scalar;
85
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
86
- typedef typename NumTraits<RealScalar>::Literal Literal;
87
- enum {
88
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
89
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
90
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
91
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
92
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
93
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
94
- MatrixOptions = MatrixType::Options
95
- };
96
-
97
- typedef typename Base::MatrixUType MatrixUType;
98
- typedef typename Base::MatrixVType MatrixVType;
99
- typedef typename Base::SingularValuesType SingularValuesType;
100
-
101
- typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX;
102
- typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr;
103
- typedef Matrix<RealScalar, Dynamic, 1> VectorType;
104
- typedef Array<RealScalar, Dynamic, 1> ArrayXr;
105
- typedef Array<Index,1,Dynamic> ArrayXi;
106
- typedef Ref<ArrayXr> ArrayRef;
107
- typedef Ref<ArrayXi> IndicesRef;
108
-
109
- /** \brief Default Constructor.
110
- *
111
- * The default constructor is useful in cases in which the user intends to
112
- * perform decompositions via BDCSVD::compute(const MatrixType&).
113
- */
114
- BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0)
115
- {}
116
-
117
-
118
- /** \brief Default Constructor with memory preallocation
119
- *
120
- * Like the default constructor but with preallocation of the internal data
121
- * according to the specified problem size.
122
- * \sa BDCSVD()
123
- */
124
- BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
125
- : m_algoswap(16), m_numIters(0)
126
- {
127
- allocate(rows, cols, computationOptions);
128
- }
129
-
130
- /** \brief Constructor performing the decomposition of given matrix.
131
- *
132
- * \param matrix the matrix to decompose
133
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
134
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
135
- * #ComputeFullV, #ComputeThinV.
136
- *
137
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
138
- * available with the (non - default) FullPivHouseholderQR preconditioner.
139
- */
140
- BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
141
- : m_algoswap(16), m_numIters(0)
142
- {
143
- compute(matrix, computationOptions);
144
- }
145
-
146
- ~BDCSVD()
147
- {
148
- }
149
-
150
- /** \brief Method performing the decomposition of given matrix using custom options.
151
- *
152
- * \param matrix the matrix to decompose
153
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
154
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
155
- * #ComputeFullV, #ComputeThinV.
156
- *
157
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
158
- * available with the (non - default) FullPivHouseholderQR preconditioner.
159
- */
160
- BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
161
-
162
- /** \brief Method performing the decomposition of given matrix using current options.
163
- *
164
- * \param matrix the matrix to decompose
165
- *
166
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
167
- */
168
- BDCSVD& compute(const MatrixType& matrix)
169
- {
170
- return compute(matrix, this->m_computationOptions);
171
- }
172
-
173
- void setSwitchSize(int s)
174
- {
175
- eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
176
- m_algoswap = s;
177
- }
178
-
179
- private:
180
- void allocate(Index rows, Index cols, unsigned int computationOptions);
181
- void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
182
- void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
183
- void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
184
- void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
185
- void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
186
- void deflation43(Index firstCol, Index shift, Index i, Index size);
187
- void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
188
- void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
189
- template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
190
- void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
191
- void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
192
- static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
193
-
194
- protected:
195
- MatrixXr m_naiveU, m_naiveV;
196
- MatrixXr m_computed;
197
- Index m_nRec;
198
- ArrayXr m_workspace;
199
- ArrayXi m_workspaceI;
200
- int m_algoswap;
201
- bool m_isTranspose, m_compU, m_compV;
202
-
203
- using Base::m_singularValues;
204
- using Base::m_diagSize;
205
- using Base::m_computeFullU;
206
- using Base::m_computeFullV;
207
- using Base::m_computeThinU;
208
- using Base::m_computeThinV;
209
- using Base::m_matrixU;
210
- using Base::m_matrixV;
211
- using Base::m_info;
212
- using Base::m_isInitialized;
213
- using Base::m_nonzeroSingularValues;
214
-
215
- public:
216
- int m_numIters;
217
- }; //end class BDCSVD
218
-
219
-
220
- // Method to allocate and initialize matrix and attributes
221
- template<typename MatrixType>
222
- void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
223
- {
224
- m_isTranspose = (cols > rows);
225
-
226
- if (Base::allocate(rows, cols, computationOptions))
227
- return;
228
-
229
- m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
230
- m_compU = computeV();
231
- m_compV = computeU();
232
- if (m_isTranspose)
233
- std::swap(m_compU, m_compV);
234
-
235
- if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
236
- else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
237
-
238
- if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
239
-
240
- m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
241
- m_workspaceI.resize(3*m_diagSize);
242
- }// end allocate
243
-
244
- template<typename MatrixType>
245
- BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
246
- {
247
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
248
- std::cout << "\n\n\n======================================================================================================================\n\n\n";
249
- #endif
250
- allocate(matrix.rows(), matrix.cols(), computationOptions);
251
- using std::abs;
252
-
253
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
254
-
255
- //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
256
- if(matrix.cols() < m_algoswap)
257
- {
258
- // FIXME this line involves temporaries
259
- JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
260
- m_isInitialized = true;
261
- m_info = jsvd.info();
262
- if (m_info == Success || m_info == NoConvergence) {
263
- if(computeU()) m_matrixU = jsvd.matrixU();
264
- if(computeV()) m_matrixV = jsvd.matrixV();
265
- m_singularValues = jsvd.singularValues();
266
- m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
267
- }
268
- return *this;
269
- }
270
-
271
- //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
272
- RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
273
- if (!(numext::isfinite)(scale)) {
274
- m_isInitialized = true;
275
- m_info = InvalidInput;
276
- return *this;
277
- }
278
-
279
- if(scale==Literal(0)) scale = Literal(1);
280
- MatrixX copy;
281
- if (m_isTranspose) copy = matrix.adjoint()/scale;
282
- else copy = matrix/scale;
283
-
284
- //**** step 1 - Bidiagonalization
285
- // FIXME this line involves temporaries
286
- internal::UpperBidiagonalization<MatrixX> bid(copy);
287
-
288
- //**** step 2 - Divide & Conquer
289
- m_naiveU.setZero();
290
- m_naiveV.setZero();
291
- // FIXME this line involves a temporary matrix
292
- m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
293
- m_computed.template bottomRows<1>().setZero();
294
- divide(0, m_diagSize - 1, 0, 0, 0);
295
- if (m_info != Success && m_info != NoConvergence) {
296
- m_isInitialized = true;
297
- return *this;
298
- }
299
-
300
- //**** step 3 - Copy singular values and vectors
301
- for (int i=0; i<m_diagSize; i++)
302
- {
303
- RealScalar a = abs(m_computed.coeff(i, i));
304
- m_singularValues.coeffRef(i) = a * scale;
305
- if (a<considerZero)
306
- {
307
- m_nonzeroSingularValues = i;
308
- m_singularValues.tail(m_diagSize - i - 1).setZero();
309
- break;
310
- }
311
- else if (i == m_diagSize - 1)
312
- {
313
- m_nonzeroSingularValues = i + 1;
314
- break;
315
- }
316
- }
317
-
318
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
319
- // std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
320
- // std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
321
- #endif
322
- if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
323
- else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
324
-
325
- m_isInitialized = true;
326
- return *this;
327
- }// end compute
328
-
329
-
330
- template<typename MatrixType>
331
- template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
332
- void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
333
- {
334
- // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
335
- if (computeU())
336
- {
337
- Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
338
- m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
339
- m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
340
- householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
341
- }
342
- if (computeV())
343
- {
344
- Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
345
- m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
346
- m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
347
- householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
348
- }
349
- }
350
-
351
- /** \internal
352
- * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
353
- * A = [A1]
354
- * [A2]
355
- * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
356
- * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
357
- * enough.
358
- */
359
- template<typename MatrixType>
360
- void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
361
- {
362
- Index n = A.rows();
363
- if(n>100)
364
- {
365
- // If the matrices are large enough, let's exploit the sparse structure of A by
366
- // splitting it in half (wrt n1), and packing the non-zero columns.
367
- Index n2 = n - n1;
368
- Map<MatrixXr> A1(m_workspace.data() , n1, n);
369
- Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
370
- Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
371
- Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
372
- Index k1=0, k2=0;
373
- for(Index j=0; j<n; ++j)
374
- {
375
- if( (A.col(j).head(n1).array()!=Literal(0)).any() )
376
- {
377
- A1.col(k1) = A.col(j).head(n1);
378
- B1.row(k1) = B.row(j);
379
- ++k1;
380
- }
381
- if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
382
- {
383
- A2.col(k2) = A.col(j).tail(n2);
384
- B2.row(k2) = B.row(j);
385
- ++k2;
386
- }
387
- }
388
-
389
- A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
390
- A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
391
- }
392
- else
393
- {
394
- Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
395
- tmp.noalias() = A*B;
396
- A = tmp;
397
- }
398
- }
399
-
400
- // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
401
- // place of the submatrix we are currently working on.
402
-
403
- //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
404
- //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
405
- // lastCol + 1 - firstCol is the size of the submatrix.
406
- //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
407
- //@param firstRowW : Same as firstRowW with the column.
408
- //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
409
- // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
410
- template<typename MatrixType>
411
- void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
412
- {
413
- // requires rows = cols + 1;
414
- using std::pow;
415
- using std::sqrt;
416
- using std::abs;
417
- const Index n = lastCol - firstCol + 1;
418
- const Index k = n/2;
419
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
420
- RealScalar alphaK;
421
- RealScalar betaK;
422
- RealScalar r0;
423
- RealScalar lambda, phi, c0, s0;
424
- VectorType l, f;
425
- // We use the other algorithm which is more efficient for small
426
- // matrices.
427
- if (n < m_algoswap)
428
- {
429
- // FIXME this line involves temporaries
430
- JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
431
- m_info = b.info();
432
- if (m_info != Success && m_info != NoConvergence) return;
433
- if (m_compU)
434
- m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
435
- else
436
- {
437
- m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
438
- m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
439
- }
440
- if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
441
- m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
442
- m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
443
- return;
444
- }
445
- // We use the divide and conquer algorithm
446
- alphaK = m_computed(firstCol + k, firstCol + k);
447
- betaK = m_computed(firstCol + k + 1, firstCol + k);
448
- // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
449
- // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
450
- // right submatrix before the left one.
451
- divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
452
- if (m_info != Success && m_info != NoConvergence) return;
453
- divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
454
- if (m_info != Success && m_info != NoConvergence) return;
455
-
456
- if (m_compU)
457
- {
458
- lambda = m_naiveU(firstCol + k, firstCol + k);
459
- phi = m_naiveU(firstCol + k + 1, lastCol + 1);
460
- }
461
- else
462
- {
463
- lambda = m_naiveU(1, firstCol + k);
464
- phi = m_naiveU(0, lastCol + 1);
465
- }
466
- r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
467
- if (m_compU)
468
- {
469
- l = m_naiveU.row(firstCol + k).segment(firstCol, k);
470
- f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
471
- }
472
- else
473
- {
474
- l = m_naiveU.row(1).segment(firstCol, k);
475
- f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
476
- }
477
- if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
478
- if (r0<considerZero)
479
- {
480
- c0 = Literal(1);
481
- s0 = Literal(0);
482
- }
483
- else
484
- {
485
- c0 = alphaK * lambda / r0;
486
- s0 = betaK * phi / r0;
487
- }
488
-
489
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
490
- assert(m_naiveU.allFinite());
491
- assert(m_naiveV.allFinite());
492
- assert(m_computed.allFinite());
493
- #endif
494
-
495
- if (m_compU)
496
- {
497
- MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
498
- // we shiftW Q1 to the right
499
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
500
- m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
501
- // we shift q1 at the left with a factor c0
502
- m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
503
- // last column = q1 * - s0
504
- m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
505
- // first column = q2 * s0
506
- m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
507
- // q2 *= c0
508
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
509
- }
510
- else
511
- {
512
- RealScalar q1 = m_naiveU(0, firstCol + k);
513
- // we shift Q1 to the right
514
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
515
- m_naiveU(0, i + 1) = m_naiveU(0, i);
516
- // we shift q1 at the left with a factor c0
517
- m_naiveU(0, firstCol) = (q1 * c0);
518
- // last column = q1 * - s0
519
- m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
520
- // first column = q2 * s0
521
- m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
522
- // q2 *= c0
523
- m_naiveU(1, lastCol + 1) *= c0;
524
- m_naiveU.row(1).segment(firstCol + 1, k).setZero();
525
- m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
526
- }
527
-
528
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
529
- assert(m_naiveU.allFinite());
530
- assert(m_naiveV.allFinite());
531
- assert(m_computed.allFinite());
532
- #endif
533
-
534
- m_computed(firstCol + shift, firstCol + shift) = r0;
535
- m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
536
- m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
537
-
538
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
539
- ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
540
- #endif
541
- // Second part: try to deflate singular values in combined matrix
542
- deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
543
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
544
- ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
545
- std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
546
- std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
547
- std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
548
- static int count = 0;
549
- std::cout << "# " << ++count << "\n\n";
550
- assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
551
- // assert(count<681);
552
- // assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
553
- #endif
554
-
555
- // Third part: compute SVD of combined matrix
556
- MatrixXr UofSVD, VofSVD;
557
- VectorType singVals;
558
- computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
559
-
560
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
561
- assert(UofSVD.allFinite());
562
- assert(VofSVD.allFinite());
563
- #endif
564
-
565
- if (m_compU)
566
- structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
567
- else
568
- {
569
- Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
570
- tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
571
- m_naiveU.middleCols(firstCol, n + 1) = tmp;
572
- }
573
-
574
- if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
575
-
576
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
577
- assert(m_naiveU.allFinite());
578
- assert(m_naiveV.allFinite());
579
- assert(m_computed.allFinite());
580
- #endif
581
-
582
- m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
583
- m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
584
- }// end divide
585
-
586
- // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
587
- // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
588
- // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
589
- // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
590
- //
591
- // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
592
- // handling of round-off errors, be consistent in ordering
593
- // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
594
- template <typename MatrixType>
595
- void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
596
- {
597
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
598
- using std::abs;
599
- ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
600
- m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
601
- ArrayRef diag = m_workspace.head(n);
602
- diag(0) = Literal(0);
603
-
604
- // Allocate space for singular values and vectors
605
- singVals.resize(n);
606
- U.resize(n+1, n+1);
607
- if (m_compV) V.resize(n, n);
608
-
609
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
610
- if (col0.hasNaN() || diag.hasNaN())
611
- std::cout << "\n\nHAS NAN\n\n";
612
- #endif
613
-
614
- // Many singular values might have been deflated, the zero ones have been moved to the end,
615
- // but others are interleaved and we must ignore them at this stage.
616
- // To this end, let's compute a permutation skipping them:
617
- Index actual_n = n;
618
- while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); }
619
- Index m = 0; // size of the deflated problem
620
- for(Index k=0;k<actual_n;++k)
621
- if(abs(col0(k))>considerZero)
622
- m_workspaceI(m++) = k;
623
- Map<ArrayXi> perm(m_workspaceI.data(),m);
624
-
625
- Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
626
- Map<ArrayXr> mus(m_workspace.data()+2*n, n);
627
- Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
628
-
629
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
630
- std::cout << "computeSVDofM using:\n";
631
- std::cout << " z: " << col0.transpose() << "\n";
632
- std::cout << " d: " << diag.transpose() << "\n";
633
- #endif
634
-
635
- // Compute singVals, shifts, and mus
636
- computeSingVals(col0, diag, perm, singVals, shifts, mus);
637
-
638
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
639
- std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
640
- std::cout << " sing-val: " << singVals.transpose() << "\n";
641
- std::cout << " mu: " << mus.transpose() << "\n";
642
- std::cout << " shift: " << shifts.transpose() << "\n";
643
-
644
- {
645
- std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
646
- std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
647
- assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all());
648
- std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
649
- assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all());
650
- }
651
- #endif
652
-
653
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
654
- assert(singVals.allFinite());
655
- assert(mus.allFinite());
656
- assert(shifts.allFinite());
657
- #endif
658
-
659
- // Compute zhat
660
- perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
661
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
662
- std::cout << " zhat: " << zhat.transpose() << "\n";
663
- #endif
664
-
665
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
666
- assert(zhat.allFinite());
667
- #endif
668
-
669
- computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
670
-
671
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
672
- std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
673
- std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
674
- #endif
675
-
676
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
677
- assert(m_naiveU.allFinite());
678
- assert(m_naiveV.allFinite());
679
- assert(m_computed.allFinite());
680
- assert(U.allFinite());
681
- assert(V.allFinite());
682
- // assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
683
- // assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
684
- #endif
685
-
686
- // Because of deflation, the singular values might not be completely sorted.
687
- // Fortunately, reordering them is a O(n) problem
688
- for(Index i=0; i<actual_n-1; ++i)
689
- {
690
- if(singVals(i)>singVals(i+1))
691
- {
692
- using std::swap;
693
- swap(singVals(i),singVals(i+1));
694
- U.col(i).swap(U.col(i+1));
695
- if(m_compV) V.col(i).swap(V.col(i+1));
696
- }
697
- }
698
-
699
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
700
- {
701
- bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all();
702
- if(!singular_values_sorted)
703
- std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n";
704
- assert(singular_values_sorted);
705
- }
706
- #endif
707
-
708
- // Reverse order so that singular values in increased order
709
- // Because of deflation, the zeros singular-values are already at the end
710
- singVals.head(actual_n).reverseInPlace();
711
- U.leftCols(actual_n).rowwise().reverseInPlace();
712
- if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
713
-
714
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
715
- JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
716
- std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
717
- std::cout << " * sing-val: " << singVals.transpose() << "\n";
718
- // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
719
- #endif
720
- }
721
-
722
- template <typename MatrixType>
723
- typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
724
- {
725
- Index m = perm.size();
726
- RealScalar res = Literal(1);
727
- for(Index i=0; i<m; ++i)
728
- {
729
- Index j = perm(i);
730
- // The following expression could be rewritten to involve only a single division,
731
- // but this would make the expression more sensitive to overflow.
732
- res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
733
- }
734
- return res;
735
-
736
- }
737
-
738
- template <typename MatrixType>
739
- void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
740
- VectorType& singVals, ArrayRef shifts, ArrayRef mus)
741
- {
742
- using std::abs;
743
- using std::swap;
744
- using std::sqrt;
745
-
746
- Index n = col0.size();
747
- Index actual_n = n;
748
- // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
749
- // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
750
- while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
751
-
752
- for (Index k = 0; k < n; ++k)
753
- {
754
- if (col0(k) == Literal(0) || actual_n==1)
755
- {
756
- // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
757
- // if actual_n==1, then the deflated problem is already diagonalized
758
- singVals(k) = k==0 ? col0(0) : diag(k);
759
- mus(k) = Literal(0);
760
- shifts(k) = k==0 ? col0(0) : diag(k);
761
- continue;
762
- }
763
-
764
- // otherwise, use secular equation to find singular value
765
- RealScalar left = diag(k);
766
- RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
767
- if(k==actual_n-1)
768
- right = (diag(actual_n-1) + col0.matrix().norm());
769
- else
770
- {
771
- // Skip deflated singular values,
772
- // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
773
- // This should be equivalent to using perm[]
774
- Index l = k+1;
775
- while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
776
- right = diag(l);
777
- }
778
-
779
- // first decide whether it's closer to the left end or the right end
780
- RealScalar mid = left + (right-left) / Literal(2);
781
- RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
782
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
783
- std::cout << "right-left = " << right-left << "\n";
784
- // std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left)
785
- // << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n";
786
- std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0)
787
- << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0)
788
- << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0)
789
- << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0)
790
- << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0)
791
- << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0)
792
- << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0)
793
- << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0)
794
- << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0)
795
- << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0)
796
- << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0)
797
- << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0)
798
- << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n";
799
- #endif
800
- RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
801
-
802
- // measure everything relative to shift
803
- Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
804
- diagShifted = diag - shift;
805
-
806
- if(k!=actual_n-1)
807
- {
808
- // check that after the shift, f(mid) is still negative:
809
- RealScalar midShifted = (right - left) / RealScalar(2);
810
- if(shift==right)
811
- midShifted = -midShifted;
812
- RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
813
- if(fMidShifted>0)
814
- {
815
- // fMid was erroneous, fix it:
816
- shift = fMidShifted > Literal(0) ? left : right;
817
- diagShifted = diag - shift;
818
- }
819
- }
820
-
821
- // initial guess
822
- RealScalar muPrev, muCur;
823
- if (shift == left)
824
- {
825
- muPrev = (right - left) * RealScalar(0.1);
826
- if (k == actual_n-1) muCur = right - left;
827
- else muCur = (right - left) * RealScalar(0.5);
828
- }
829
- else
830
- {
831
- muPrev = -(right - left) * RealScalar(0.1);
832
- muCur = -(right - left) * RealScalar(0.5);
833
- }
834
-
835
- RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
836
- RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
837
- if (abs(fPrev) < abs(fCur))
838
- {
839
- swap(fPrev, fCur);
840
- swap(muPrev, muCur);
841
- }
842
-
843
- // rational interpolation: fit a function of the form a / mu + b through the two previous
844
- // iterates and use its zero to compute the next iterate
845
- bool useBisection = fPrev*fCur>Literal(0);
846
- while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
847
- {
848
- ++m_numIters;
849
-
850
- // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
851
- RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
852
- RealScalar b = fCur - a / muCur;
853
- // And find mu such that f(mu)==0:
854
- RealScalar muZero = -a/b;
855
- RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
856
-
857
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
858
- assert((numext::isfinite)(fZero));
859
- #endif
860
-
861
- muPrev = muCur;
862
- fPrev = fCur;
863
- muCur = muZero;
864
- fCur = fZero;
865
-
866
- if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
867
- if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
868
- if (abs(fCur)>abs(fPrev)) useBisection = true;
869
- }
870
-
871
- // fall back on bisection method if rational interpolation did not work
872
- if (useBisection)
873
- {
874
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
875
- std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
876
- #endif
877
- RealScalar leftShifted, rightShifted;
878
- if (shift == left)
879
- {
880
- // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
881
- // the factor 2 is to be more conservative
882
- leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
883
-
884
- // check that we did it right:
885
- eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
886
- // I don't understand why the case k==0 would be special there:
887
- // if (k == 0) rightShifted = right - left; else
888
- rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
889
- }
890
- else
891
- {
892
- leftShifted = -(right - left) * RealScalar(0.51);
893
- if(k+1<n)
894
- rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
895
- else
896
- rightShifted = -(std::numeric_limits<RealScalar>::min)();
897
- }
898
-
899
- RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
900
- eigen_internal_assert(fLeft<Literal(0));
901
-
902
- #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS
903
- RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
904
- #endif
905
-
906
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
907
- if(!(numext::isfinite)(fLeft))
908
- std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n";
909
- assert((numext::isfinite)(fLeft));
910
-
911
- if(!(numext::isfinite)(fRight))
912
- std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n";
913
- // assert((numext::isfinite)(fRight));
914
- #endif
915
-
916
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
917
- if(!(fLeft * fRight<0))
918
- {
919
- std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; "
920
- << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n";
921
- std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; "
922
- << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift
923
- << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift)
924
- << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n";
925
- }
926
- #endif
927
- eigen_internal_assert(fLeft * fRight < Literal(0));
928
-
929
- if(fLeft<Literal(0))
930
- {
931
- while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
932
- {
933
- RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
934
- fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
935
- eigen_internal_assert((numext::isfinite)(fMid));
936
-
937
- if (fLeft * fMid < Literal(0))
938
- {
939
- rightShifted = midShifted;
940
- }
941
- else
942
- {
943
- leftShifted = midShifted;
944
- fLeft = fMid;
945
- }
946
- }
947
- muCur = (leftShifted + rightShifted) / Literal(2);
948
- }
949
- else
950
- {
951
- // We have a problem as shifting on the left or right give either a positive or negative value
952
- // at the middle of [left,right]...
953
- // Instead fo abbording or entering an infinite loop,
954
- // let's just use the middle as the estimated zero-crossing:
955
- muCur = (right - left) * RealScalar(0.5);
956
- if(shift == right)
957
- muCur = -muCur;
958
- }
959
- }
960
-
961
- singVals[k] = shift + muCur;
962
- shifts[k] = shift;
963
- mus[k] = muCur;
964
-
965
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
966
- if(k+1<n)
967
- std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n";
968
- #endif
969
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
970
- assert(k==0 || singVals[k]>=singVals[k-1]);
971
- assert(singVals[k]>=diag(k));
972
- #endif
973
-
974
- // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
975
- // (deflation is supposed to avoid this from happening)
976
- // - this does no seem to be necessary anymore -
977
- // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
978
- // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
979
- }
980
- }
981
-
982
-
983
- // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
984
- template <typename MatrixType>
985
- void BDCSVD<MatrixType>::perturbCol0
986
- (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
987
- const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
988
- {
989
- using std::sqrt;
990
- Index n = col0.size();
991
- Index m = perm.size();
992
- if(m==0)
993
- {
994
- zhat.setZero();
995
- return;
996
- }
997
- Index lastIdx = perm(m-1);
998
- // The offset permits to skip deflated entries while computing zhat
999
- for (Index k = 0; k < n; ++k)
1000
- {
1001
- if (col0(k) == Literal(0)) // deflated
1002
- zhat(k) = Literal(0);
1003
- else
1004
- {
1005
- // see equation (3.6)
1006
- RealScalar dk = diag(k);
1007
- RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk));
1008
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1009
- if(prod<0) {
1010
- std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n";
1011
- std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n";
1012
- std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n";
1013
- }
1014
- assert(prod>=0);
1015
- #endif
1016
-
1017
- for(Index l = 0; l<m; ++l)
1018
- {
1019
- Index i = perm(l);
1020
- if(i!=k)
1021
- {
1022
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1023
- if(i>=k && (l==0 || l-1>=m))
1024
- {
1025
- std::cout << "Error in perturbCol0\n";
1026
- std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n";
1027
- std::cout << " " <<diag(i) << "\n";
1028
- Index j = (i<k /*|| l==0*/) ? i : perm(l-1);
1029
- std::cout << " " << "j=" << j << "\n";
1030
- }
1031
- #endif
1032
- Index j = i<k ? i : perm(l-1);
1033
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1034
- if(!(dk!=Literal(0) || diag(i)!=Literal(0)))
1035
- {
1036
- std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n";
1037
- }
1038
- assert(dk!=Literal(0) || diag(i)!=Literal(0));
1039
- #endif
1040
- prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
1041
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1042
- assert(prod>=0);
1043
- #endif
1044
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1045
- if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
1046
- std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
1047
- << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
1048
- #endif
1049
- }
1050
- }
1051
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1052
- std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n";
1053
- #endif
1054
- RealScalar tmp = sqrt(prod);
1055
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1056
- assert((numext::isfinite)(tmp));
1057
- #endif
1058
- zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp);
1059
- }
1060
- }
1061
- }
1062
-
1063
- // compute singular vectors
1064
- template <typename MatrixType>
1065
- void BDCSVD<MatrixType>::computeSingVecs
1066
- (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
1067
- const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
1068
- {
1069
- Index n = zhat.size();
1070
- Index m = perm.size();
1071
-
1072
- for (Index k = 0; k < n; ++k)
1073
- {
1074
- if (zhat(k) == Literal(0))
1075
- {
1076
- U.col(k) = VectorType::Unit(n+1, k);
1077
- if (m_compV) V.col(k) = VectorType::Unit(n, k);
1078
- }
1079
- else
1080
- {
1081
- U.col(k).setZero();
1082
- for(Index l=0;l<m;++l)
1083
- {
1084
- Index i = perm(l);
1085
- U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1086
- }
1087
- U(n,k) = Literal(0);
1088
- U.col(k).normalize();
1089
-
1090
- if (m_compV)
1091
- {
1092
- V.col(k).setZero();
1093
- for(Index l=1;l<m;++l)
1094
- {
1095
- Index i = perm(l);
1096
- V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1097
- }
1098
- V(0,k) = Literal(-1);
1099
- V.col(k).normalize();
1100
- }
1101
- }
1102
- }
1103
- U.col(n) = VectorType::Unit(n+1, n);
1104
- }
1105
-
1106
-
1107
- // page 12_13
1108
- // i >= 1, di almost null and zi non null.
1109
- // We use a rotation to zero out zi applied to the left of M
1110
- template <typename MatrixType>
1111
- void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size)
1112
- {
1113
- using std::abs;
1114
- using std::sqrt;
1115
- using std::pow;
1116
- Index start = firstCol + shift;
1117
- RealScalar c = m_computed(start, start);
1118
- RealScalar s = m_computed(start+i, start);
1119
- RealScalar r = numext::hypot(c,s);
1120
- if (r == Literal(0))
1121
- {
1122
- m_computed(start+i, start+i) = Literal(0);
1123
- return;
1124
- }
1125
- m_computed(start,start) = r;
1126
- m_computed(start+i, start) = Literal(0);
1127
- m_computed(start+i, start+i) = Literal(0);
1128
-
1129
- JacobiRotation<RealScalar> J(c/r,-s/r);
1130
- if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
1131
- else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
1132
- }// end deflation 43
1133
-
1134
-
1135
- // page 13
1136
- // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
1137
- // We apply two rotations to have zj = 0;
1138
- // TODO deflation44 is still broken and not properly tested
1139
- template <typename MatrixType>
1140
- void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size)
1141
- {
1142
- using std::abs;
1143
- using std::sqrt;
1144
- using std::conj;
1145
- using std::pow;
1146
- RealScalar c = m_computed(firstColm+i, firstColm);
1147
- RealScalar s = m_computed(firstColm+j, firstColm);
1148
- RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
1149
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1150
- std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
1151
- << m_computed(firstColm + i-1, firstColm) << " "
1152
- << m_computed(firstColm + i, firstColm) << " "
1153
- << m_computed(firstColm + i+1, firstColm) << " "
1154
- << m_computed(firstColm + i+2, firstColm) << "\n";
1155
- std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
1156
- << m_computed(firstColm + i, firstColm+i) << " "
1157
- << m_computed(firstColm + i+1, firstColm+i+1) << " "
1158
- << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
1159
- #endif
1160
- if (r==Literal(0))
1161
- {
1162
- m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
1163
- return;
1164
- }
1165
- c/=r;
1166
- s/=r;
1167
- m_computed(firstColm + i, firstColm) = r;
1168
- m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
1169
- m_computed(firstColm + j, firstColm) = Literal(0);
1170
-
1171
- JacobiRotation<RealScalar> J(c,-s);
1172
- if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
1173
- else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
1174
- if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
1175
- }// end deflation 44
1176
-
1177
-
1178
- // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
1179
- template <typename MatrixType>
1180
- void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
1181
- {
1182
- using std::sqrt;
1183
- using std::abs;
1184
- const Index length = lastCol + 1 - firstCol;
1185
-
1186
- Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
1187
- Diagonal<MatrixXr> fulldiag(m_computed);
1188
- VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
1189
-
1190
- const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
1191
- RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
1192
- RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
1193
- RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
1194
-
1195
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1196
- assert(m_naiveU.allFinite());
1197
- assert(m_naiveV.allFinite());
1198
- assert(m_computed.allFinite());
1199
- #endif
1200
-
1201
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1202
- std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
1203
- #endif
1204
-
1205
- //condition 4.1
1206
- if (diag(0) < epsilon_coarse)
1207
- {
1208
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1209
- std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
1210
- #endif
1211
- diag(0) = epsilon_coarse;
1212
- }
1213
-
1214
- //condition 4.2
1215
- for (Index i=1;i<length;++i)
1216
- if (abs(col0(i)) < epsilon_strict)
1217
- {
1218
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1219
- std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
1220
- #endif
1221
- col0(i) = Literal(0);
1222
- }
1223
-
1224
- //condition 4.3
1225
- for (Index i=1;i<length; i++)
1226
- if (diag(i) < epsilon_coarse)
1227
- {
1228
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1229
- std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
1230
- #endif
1231
- deflation43(firstCol, shift, i, length);
1232
- }
1233
-
1234
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1235
- assert(m_naiveU.allFinite());
1236
- assert(m_naiveV.allFinite());
1237
- assert(m_computed.allFinite());
1238
- #endif
1239
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1240
- std::cout << "to be sorted: " << diag.transpose() << "\n\n";
1241
- std::cout << " : " << col0.transpose() << "\n\n";
1242
- #endif
1243
- {
1244
- // Check for total deflation
1245
- // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
1246
- bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
1247
-
1248
- // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
1249
- // First, compute the respective permutation.
1250
- Index *permutation = m_workspaceI.data();
1251
- {
1252
- permutation[0] = 0;
1253
- Index p = 1;
1254
-
1255
- // Move deflated diagonal entries at the end.
1256
- for(Index i=1; i<length; ++i)
1257
- if(abs(diag(i))<considerZero)
1258
- permutation[p++] = i;
1259
-
1260
- Index i=1, j=k+1;
1261
- for( ; p < length; ++p)
1262
- {
1263
- if (i > k) permutation[p] = j++;
1264
- else if (j >= length) permutation[p] = i++;
1265
- else if (diag(i) < diag(j)) permutation[p] = j++;
1266
- else permutation[p] = i++;
1267
- }
1268
- }
1269
-
1270
- // If we have a total deflation, then we have to insert diag(0) at the right place
1271
- if(total_deflation)
1272
- {
1273
- for(Index i=1; i<length; ++i)
1274
- {
1275
- Index pi = permutation[i];
1276
- if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
1277
- permutation[i-1] = permutation[i];
1278
- else
1279
- {
1280
- permutation[i-1] = 0;
1281
- break;
1282
- }
1283
- }
1284
- }
1285
-
1286
- // Current index of each col, and current column of each index
1287
- Index *realInd = m_workspaceI.data()+length;
1288
- Index *realCol = m_workspaceI.data()+2*length;
1289
-
1290
- for(int pos = 0; pos< length; pos++)
1291
- {
1292
- realCol[pos] = pos;
1293
- realInd[pos] = pos;
1294
- }
1295
-
1296
- for(Index i = total_deflation?0:1; i < length; i++)
1297
- {
1298
- const Index pi = permutation[length - (total_deflation ? i+1 : i)];
1299
- const Index J = realCol[pi];
1300
-
1301
- using std::swap;
1302
- // swap diagonal and first column entries:
1303
- swap(diag(i), diag(J));
1304
- if(i!=0 && J!=0) swap(col0(i), col0(J));
1305
-
1306
- // change columns
1307
- if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
1308
- else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
1309
- if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
1310
-
1311
- //update real pos
1312
- const Index realI = realInd[i];
1313
- realCol[realI] = J;
1314
- realCol[pi] = i;
1315
- realInd[J] = realI;
1316
- realInd[i] = pi;
1317
- }
1318
- }
1319
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1320
- std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
1321
- std::cout << " : " << col0.transpose() << "\n\n";
1322
- #endif
1323
-
1324
- //condition 4.4
1325
- {
1326
- Index i = length-1;
1327
- while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
1328
- for(; i>1;--i)
1329
- if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
1330
- {
1331
- #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1332
- std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*/*diag(i)*/maxDiag << "\n";
1333
- #endif
1334
- eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
1335
- deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
1336
- }
1337
- }
1338
-
1339
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1340
- for(Index j=2;j<length;++j)
1341
- assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
1342
- #endif
1343
-
1344
- #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1345
- assert(m_naiveU.allFinite());
1346
- assert(m_naiveV.allFinite());
1347
- assert(m_computed.allFinite());
1348
- #endif
1349
- }//end deflation
1350
-
1351
- /** \svd_module
1352
- *
1353
- * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
1354
- *
1355
- * \sa class BDCSVD
1356
- */
1357
- template<typename Derived>
1358
- BDCSVD<typename MatrixBase<Derived>::PlainObject>
1359
- MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
1360
- {
1361
- return BDCSVD<PlainObject>(*this, computationOptions);
1362
- }
1363
-
1364
- } // end namespace Eigen
1365
-
1366
- #endif