scitex 2.0.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +73 -0
- scitex/__main__.py +89 -0
- scitex/__version__.py +14 -0
- scitex/_sh.py +59 -0
- scitex/ai/_LearningCurveLogger.py +583 -0
- scitex/ai/__Classifiers.py +101 -0
- scitex/ai/__init__.py +55 -0
- scitex/ai/_gen_ai/_Anthropic.py +173 -0
- scitex/ai/_gen_ai/_BaseGenAI.py +336 -0
- scitex/ai/_gen_ai/_DeepSeek.py +175 -0
- scitex/ai/_gen_ai/_Google.py +161 -0
- scitex/ai/_gen_ai/_Groq.py +97 -0
- scitex/ai/_gen_ai/_Llama.py +142 -0
- scitex/ai/_gen_ai/_OpenAI.py +230 -0
- scitex/ai/_gen_ai/_PARAMS.py +565 -0
- scitex/ai/_gen_ai/_Perplexity.py +191 -0
- scitex/ai/_gen_ai/__init__.py +32 -0
- scitex/ai/_gen_ai/_calc_cost.py +78 -0
- scitex/ai/_gen_ai/_format_output_func.py +183 -0
- scitex/ai/_gen_ai/_genai_factory.py +71 -0
- scitex/ai/act/__init__.py +8 -0
- scitex/ai/act/_define.py +11 -0
- scitex/ai/classification/__init__.py +7 -0
- scitex/ai/classification/classification_reporter.py +1137 -0
- scitex/ai/classification/classifier_server.py +131 -0
- scitex/ai/classification/classifiers.py +101 -0
- scitex/ai/classification_reporter.py +1161 -0
- scitex/ai/classifier_server.py +131 -0
- scitex/ai/clustering/__init__.py +11 -0
- scitex/ai/clustering/_pca.py +115 -0
- scitex/ai/clustering/_umap.py +376 -0
- scitex/ai/early_stopping.py +149 -0
- scitex/ai/feature_extraction/__init__.py +56 -0
- scitex/ai/feature_extraction/vit.py +148 -0
- scitex/ai/genai/__init__.py +277 -0
- scitex/ai/genai/anthropic.py +177 -0
- scitex/ai/genai/anthropic_provider.py +320 -0
- scitex/ai/genai/anthropic_refactored.py +109 -0
- scitex/ai/genai/auth_manager.py +200 -0
- scitex/ai/genai/base_genai.py +336 -0
- scitex/ai/genai/base_provider.py +291 -0
- scitex/ai/genai/calc_cost.py +78 -0
- scitex/ai/genai/chat_history.py +307 -0
- scitex/ai/genai/cost_tracker.py +276 -0
- scitex/ai/genai/deepseek.py +188 -0
- scitex/ai/genai/deepseek_provider.py +251 -0
- scitex/ai/genai/format_output_func.py +183 -0
- scitex/ai/genai/genai_factory.py +71 -0
- scitex/ai/genai/google.py +169 -0
- scitex/ai/genai/google_provider.py +228 -0
- scitex/ai/genai/groq.py +104 -0
- scitex/ai/genai/groq_provider.py +248 -0
- scitex/ai/genai/image_processor.py +250 -0
- scitex/ai/genai/llama.py +155 -0
- scitex/ai/genai/llama_provider.py +214 -0
- scitex/ai/genai/mock_provider.py +127 -0
- scitex/ai/genai/model_registry.py +304 -0
- scitex/ai/genai/openai.py +230 -0
- scitex/ai/genai/openai_provider.py +293 -0
- scitex/ai/genai/params.py +565 -0
- scitex/ai/genai/perplexity.py +202 -0
- scitex/ai/genai/perplexity_provider.py +205 -0
- scitex/ai/genai/provider_base.py +302 -0
- scitex/ai/genai/provider_factory.py +370 -0
- scitex/ai/genai/response_handler.py +235 -0
- scitex/ai/layer/_Pass.py +21 -0
- scitex/ai/layer/__init__.py +10 -0
- scitex/ai/layer/_switch.py +8 -0
- scitex/ai/loss/_L1L2Losses.py +34 -0
- scitex/ai/loss/__init__.py +12 -0
- scitex/ai/loss/multi_task_loss.py +47 -0
- scitex/ai/metrics/__init__.py +9 -0
- scitex/ai/metrics/_bACC.py +51 -0
- scitex/ai/metrics/silhoute_score_block.py +496 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
- scitex/ai/optim/__init__.py +13 -0
- scitex/ai/optim/_get_set.py +31 -0
- scitex/ai/optim/_optimizers.py +71 -0
- scitex/ai/plt/__init__.py +21 -0
- scitex/ai/plt/_conf_mat.py +592 -0
- scitex/ai/plt/_learning_curve.py +194 -0
- scitex/ai/plt/_optuna_study.py +111 -0
- scitex/ai/plt/aucs/__init__.py +2 -0
- scitex/ai/plt/aucs/example.py +60 -0
- scitex/ai/plt/aucs/pre_rec_auc.py +223 -0
- scitex/ai/plt/aucs/roc_auc.py +246 -0
- scitex/ai/sampling/undersample.py +29 -0
- scitex/ai/sk/__init__.py +11 -0
- scitex/ai/sk/_clf.py +58 -0
- scitex/ai/sk/_to_sktime.py +100 -0
- scitex/ai/sklearn/__init__.py +26 -0
- scitex/ai/sklearn/clf.py +58 -0
- scitex/ai/sklearn/to_sktime.py +100 -0
- scitex/ai/training/__init__.py +7 -0
- scitex/ai/training/early_stopping.py +150 -0
- scitex/ai/training/learning_curve_logger.py +555 -0
- scitex/ai/utils/__init__.py +22 -0
- scitex/ai/utils/_check_params.py +50 -0
- scitex/ai/utils/_default_dataset.py +46 -0
- scitex/ai/utils/_format_samples_for_sktime.py +26 -0
- scitex/ai/utils/_label_encoder.py +134 -0
- scitex/ai/utils/_merge_labels.py +22 -0
- scitex/ai/utils/_sliding_window_data_augmentation.py +11 -0
- scitex/ai/utils/_under_sample.py +51 -0
- scitex/ai/utils/_verify_n_gpus.py +16 -0
- scitex/ai/utils/grid_search.py +148 -0
- scitex/context/__init__.py +9 -0
- scitex/context/_suppress_output.py +38 -0
- scitex/db/_BaseMixins/_BaseBackupMixin.py +30 -0
- scitex/db/_BaseMixins/_BaseBatchMixin.py +31 -0
- scitex/db/_BaseMixins/_BaseBlobMixin.py +81 -0
- scitex/db/_BaseMixins/_BaseConnectionMixin.py +43 -0
- scitex/db/_BaseMixins/_BaseImportExportMixin.py +39 -0
- scitex/db/_BaseMixins/_BaseIndexMixin.py +29 -0
- scitex/db/_BaseMixins/_BaseMaintenanceMixin.py +33 -0
- scitex/db/_BaseMixins/_BaseQueryMixin.py +52 -0
- scitex/db/_BaseMixins/_BaseRowMixin.py +32 -0
- scitex/db/_BaseMixins/_BaseSchemaMixin.py +44 -0
- scitex/db/_BaseMixins/_BaseTableMixin.py +66 -0
- scitex/db/_BaseMixins/_BaseTransactionMixin.py +52 -0
- scitex/db/_BaseMixins/__init__.py +30 -0
- scitex/db/_PostgreSQL.py +126 -0
- scitex/db/_PostgreSQLMixins/_BackupMixin.py +166 -0
- scitex/db/_PostgreSQLMixins/_BatchMixin.py +82 -0
- scitex/db/_PostgreSQLMixins/_BlobMixin.py +231 -0
- scitex/db/_PostgreSQLMixins/_ConnectionMixin.py +92 -0
- scitex/db/_PostgreSQLMixins/_ImportExportMixin.py +59 -0
- scitex/db/_PostgreSQLMixins/_IndexMixin.py +64 -0
- scitex/db/_PostgreSQLMixins/_MaintenanceMixin.py +175 -0
- scitex/db/_PostgreSQLMixins/_QueryMixin.py +108 -0
- scitex/db/_PostgreSQLMixins/_RowMixin.py +75 -0
- scitex/db/_PostgreSQLMixins/_SchemaMixin.py +126 -0
- scitex/db/_PostgreSQLMixins/_TableMixin.py +176 -0
- scitex/db/_PostgreSQLMixins/_TransactionMixin.py +57 -0
- scitex/db/_PostgreSQLMixins/__init__.py +34 -0
- scitex/db/_SQLite3.py +2136 -0
- scitex/db/_SQLite3Mixins/_BatchMixin.py +243 -0
- scitex/db/_SQLite3Mixins/_BlobMixin.py +229 -0
- scitex/db/_SQLite3Mixins/_ConnectionMixin.py +108 -0
- scitex/db/_SQLite3Mixins/_ImportExportMixin.py +80 -0
- scitex/db/_SQLite3Mixins/_IndexMixin.py +32 -0
- scitex/db/_SQLite3Mixins/_MaintenanceMixin.py +176 -0
- scitex/db/_SQLite3Mixins/_QueryMixin.py +83 -0
- scitex/db/_SQLite3Mixins/_RowMixin.py +75 -0
- scitex/db/_SQLite3Mixins/_TableMixin.py +183 -0
- scitex/db/_SQLite3Mixins/_TransactionMixin.py +71 -0
- scitex/db/_SQLite3Mixins/__init__.py +30 -0
- scitex/db/__init__.py +14 -0
- scitex/db/_delete_duplicates.py +397 -0
- scitex/db/_inspect.py +163 -0
- scitex/decorators/__init__.py +54 -0
- scitex/decorators/_auto_order.py +172 -0
- scitex/decorators/_batch_fn.py +127 -0
- scitex/decorators/_cache_disk.py +32 -0
- scitex/decorators/_cache_mem.py +12 -0
- scitex/decorators/_combined.py +98 -0
- scitex/decorators/_converters.py +282 -0
- scitex/decorators/_deprecated.py +26 -0
- scitex/decorators/_not_implemented.py +30 -0
- scitex/decorators/_numpy_fn.py +86 -0
- scitex/decorators/_pandas_fn.py +121 -0
- scitex/decorators/_preserve_doc.py +19 -0
- scitex/decorators/_signal_fn.py +95 -0
- scitex/decorators/_timeout.py +55 -0
- scitex/decorators/_torch_fn.py +136 -0
- scitex/decorators/_wrap.py +39 -0
- scitex/decorators/_xarray_fn.py +88 -0
- scitex/dev/__init__.py +15 -0
- scitex/dev/_analyze_code_flow.py +284 -0
- scitex/dev/_reload.py +59 -0
- scitex/dict/_DotDict.py +442 -0
- scitex/dict/__init__.py +18 -0
- scitex/dict/_listed_dict.py +42 -0
- scitex/dict/_pop_keys.py +36 -0
- scitex/dict/_replace.py +13 -0
- scitex/dict/_safe_merge.py +62 -0
- scitex/dict/_to_str.py +32 -0
- scitex/dsp/__init__.py +72 -0
- scitex/dsp/_crop.py +122 -0
- scitex/dsp/_demo_sig.py +331 -0
- scitex/dsp/_detect_ripples.py +212 -0
- scitex/dsp/_ensure_3d.py +18 -0
- scitex/dsp/_hilbert.py +78 -0
- scitex/dsp/_listen.py +702 -0
- scitex/dsp/_misc.py +30 -0
- scitex/dsp/_mne.py +32 -0
- scitex/dsp/_modulation_index.py +79 -0
- scitex/dsp/_pac.py +319 -0
- scitex/dsp/_psd.py +102 -0
- scitex/dsp/_resample.py +65 -0
- scitex/dsp/_time.py +36 -0
- scitex/dsp/_transform.py +68 -0
- scitex/dsp/_wavelet.py +212 -0
- scitex/dsp/add_noise.py +111 -0
- scitex/dsp/example.py +253 -0
- scitex/dsp/filt.py +155 -0
- scitex/dsp/norm.py +18 -0
- scitex/dsp/params.py +51 -0
- scitex/dsp/reference.py +43 -0
- scitex/dsp/template.py +25 -0
- scitex/dsp/utils/__init__.py +15 -0
- scitex/dsp/utils/_differential_bandpass_filters.py +120 -0
- scitex/dsp/utils/_ensure_3d.py +18 -0
- scitex/dsp/utils/_ensure_even_len.py +10 -0
- scitex/dsp/utils/_zero_pad.py +48 -0
- scitex/dsp/utils/filter.py +408 -0
- scitex/dsp/utils/pac.py +177 -0
- scitex/dt/__init__.py +8 -0
- scitex/dt/_linspace.py +130 -0
- scitex/etc/__init__.py +15 -0
- scitex/etc/wait_key.py +34 -0
- scitex/gen/_DimHandler.py +196 -0
- scitex/gen/_TimeStamper.py +244 -0
- scitex/gen/__init__.py +95 -0
- scitex/gen/_alternate_kwarg.py +13 -0
- scitex/gen/_cache.py +11 -0
- scitex/gen/_check_host.py +34 -0
- scitex/gen/_ci.py +12 -0
- scitex/gen/_close.py +222 -0
- scitex/gen/_embed.py +78 -0
- scitex/gen/_inspect_module.py +257 -0
- scitex/gen/_is_ipython.py +12 -0
- scitex/gen/_less.py +48 -0
- scitex/gen/_list_packages.py +139 -0
- scitex/gen/_mat2py.py +88 -0
- scitex/gen/_norm.py +170 -0
- scitex/gen/_paste.py +18 -0
- scitex/gen/_print_config.py +84 -0
- scitex/gen/_shell.py +48 -0
- scitex/gen/_src.py +111 -0
- scitex/gen/_start.py +451 -0
- scitex/gen/_symlink.py +55 -0
- scitex/gen/_symlog.py +27 -0
- scitex/gen/_tee.py +238 -0
- scitex/gen/_title2path.py +60 -0
- scitex/gen/_title_case.py +88 -0
- scitex/gen/_to_even.py +84 -0
- scitex/gen/_to_odd.py +34 -0
- scitex/gen/_to_rank.py +39 -0
- scitex/gen/_transpose.py +37 -0
- scitex/gen/_type.py +78 -0
- scitex/gen/_var_info.py +73 -0
- scitex/gen/_wrap.py +17 -0
- scitex/gen/_xml2dict.py +76 -0
- scitex/gen/misc.py +730 -0
- scitex/gen/path.py +0 -0
- scitex/general/__init__.py +5 -0
- scitex/gists/_SigMacro_processFigure_S.py +128 -0
- scitex/gists/_SigMacro_toBlue.py +172 -0
- scitex/gists/__init__.py +12 -0
- scitex/io/_H5Explorer.py +292 -0
- scitex/io/__init__.py +82 -0
- scitex/io/_cache.py +101 -0
- scitex/io/_flush.py +24 -0
- scitex/io/_glob.py +103 -0
- scitex/io/_json2md.py +113 -0
- scitex/io/_load.py +168 -0
- scitex/io/_load_configs.py +146 -0
- scitex/io/_load_modules/__init__.py +38 -0
- scitex/io/_load_modules/_catboost.py +66 -0
- scitex/io/_load_modules/_con.py +20 -0
- scitex/io/_load_modules/_db.py +24 -0
- scitex/io/_load_modules/_docx.py +42 -0
- scitex/io/_load_modules/_eeg.py +110 -0
- scitex/io/_load_modules/_hdf5.py +196 -0
- scitex/io/_load_modules/_image.py +19 -0
- scitex/io/_load_modules/_joblib.py +19 -0
- scitex/io/_load_modules/_json.py +18 -0
- scitex/io/_load_modules/_markdown.py +103 -0
- scitex/io/_load_modules/_matlab.py +37 -0
- scitex/io/_load_modules/_numpy.py +39 -0
- scitex/io/_load_modules/_optuna.py +155 -0
- scitex/io/_load_modules/_pandas.py +69 -0
- scitex/io/_load_modules/_pdf.py +31 -0
- scitex/io/_load_modules/_pickle.py +24 -0
- scitex/io/_load_modules/_torch.py +16 -0
- scitex/io/_load_modules/_txt.py +126 -0
- scitex/io/_load_modules/_xml.py +49 -0
- scitex/io/_load_modules/_yaml.py +23 -0
- scitex/io/_mv_to_tmp.py +19 -0
- scitex/io/_path.py +286 -0
- scitex/io/_reload.py +78 -0
- scitex/io/_save.py +539 -0
- scitex/io/_save_modules/__init__.py +66 -0
- scitex/io/_save_modules/_catboost.py +22 -0
- scitex/io/_save_modules/_csv.py +89 -0
- scitex/io/_save_modules/_excel.py +49 -0
- scitex/io/_save_modules/_hdf5.py +249 -0
- scitex/io/_save_modules/_html.py +48 -0
- scitex/io/_save_modules/_image.py +140 -0
- scitex/io/_save_modules/_joblib.py +25 -0
- scitex/io/_save_modules/_json.py +25 -0
- scitex/io/_save_modules/_listed_dfs_as_csv.py +57 -0
- scitex/io/_save_modules/_listed_scalars_as_csv.py +42 -0
- scitex/io/_save_modules/_matlab.py +24 -0
- scitex/io/_save_modules/_mp4.py +29 -0
- scitex/io/_save_modules/_numpy.py +57 -0
- scitex/io/_save_modules/_optuna_study_as_csv_and_pngs.py +38 -0
- scitex/io/_save_modules/_pickle.py +45 -0
- scitex/io/_save_modules/_plotly.py +27 -0
- scitex/io/_save_modules/_text.py +23 -0
- scitex/io/_save_modules/_torch.py +26 -0
- scitex/io/_save_modules/_yaml.py +29 -0
- scitex/life/__init__.py +10 -0
- scitex/life/_monitor_rain.py +49 -0
- scitex/linalg/__init__.py +17 -0
- scitex/linalg/_distance.py +63 -0
- scitex/linalg/_geometric_median.py +64 -0
- scitex/linalg/_misc.py +73 -0
- scitex/nn/_AxiswiseDropout.py +27 -0
- scitex/nn/_BNet.py +126 -0
- scitex/nn/_BNet_Res.py +164 -0
- scitex/nn/_ChannelGainChanger.py +44 -0
- scitex/nn/_DropoutChannels.py +50 -0
- scitex/nn/_Filters.py +489 -0
- scitex/nn/_FreqGainChanger.py +110 -0
- scitex/nn/_GaussianFilter.py +48 -0
- scitex/nn/_Hilbert.py +111 -0
- scitex/nn/_MNet_1000.py +157 -0
- scitex/nn/_ModulationIndex.py +221 -0
- scitex/nn/_PAC.py +414 -0
- scitex/nn/_PSD.py +40 -0
- scitex/nn/_ResNet1D.py +120 -0
- scitex/nn/_SpatialAttention.py +25 -0
- scitex/nn/_Spectrogram.py +161 -0
- scitex/nn/_SwapChannels.py +50 -0
- scitex/nn/_TransposeLayer.py +19 -0
- scitex/nn/_Wavelet.py +183 -0
- scitex/nn/__init__.py +63 -0
- scitex/os/__init__.py +8 -0
- scitex/os/_mv.py +50 -0
- scitex/parallel/__init__.py +8 -0
- scitex/parallel/_run.py +151 -0
- scitex/path/__init__.py +33 -0
- scitex/path/_clean.py +52 -0
- scitex/path/_find.py +108 -0
- scitex/path/_get_module_path.py +51 -0
- scitex/path/_get_spath.py +35 -0
- scitex/path/_getsize.py +18 -0
- scitex/path/_increment_version.py +87 -0
- scitex/path/_mk_spath.py +51 -0
- scitex/path/_path.py +19 -0
- scitex/path/_split.py +23 -0
- scitex/path/_this_path.py +19 -0
- scitex/path/_version.py +101 -0
- scitex/pd/__init__.py +41 -0
- scitex/pd/_find_indi.py +126 -0
- scitex/pd/_find_pval.py +113 -0
- scitex/pd/_force_df.py +154 -0
- scitex/pd/_from_xyz.py +71 -0
- scitex/pd/_ignore_SettingWithCopyWarning.py +34 -0
- scitex/pd/_melt_cols.py +81 -0
- scitex/pd/_merge_columns.py +221 -0
- scitex/pd/_mv.py +63 -0
- scitex/pd/_replace.py +62 -0
- scitex/pd/_round.py +93 -0
- scitex/pd/_slice.py +63 -0
- scitex/pd/_sort.py +91 -0
- scitex/pd/_to_numeric.py +53 -0
- scitex/pd/_to_xy.py +59 -0
- scitex/pd/_to_xyz.py +110 -0
- scitex/plt/__init__.py +36 -0
- scitex/plt/_subplots/_AxesWrapper.py +182 -0
- scitex/plt/_subplots/_AxisWrapper.py +249 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +414 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +896 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +368 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_TrackingMixin.py +185 -0
- scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +16 -0
- scitex/plt/_subplots/_FigWrapper.py +226 -0
- scitex/plt/_subplots/_SubplotsWrapper.py +171 -0
- scitex/plt/_subplots/__init__.py +111 -0
- scitex/plt/_subplots/_export_as_csv.py +232 -0
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +61 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +90 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +49 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +39 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +125 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +72 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +34 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +36 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +32 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +66 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +95 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +67 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +52 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +103 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +82 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +117 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +30 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +51 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +93 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +94 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +92 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +65 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +45 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +155 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +77 -0
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +210 -0
- scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +342 -0
- scitex/plt/_subplots/_export_as_csv_formatters.py +115 -0
- scitex/plt/_tpl.py +28 -0
- scitex/plt/ax/__init__.py +114 -0
- scitex/plt/ax/_plot/__init__.py +53 -0
- scitex/plt/ax/_plot/_plot_circular_hist.py +124 -0
- scitex/plt/ax/_plot/_plot_conf_mat.py +136 -0
- scitex/plt/ax/_plot/_plot_cube.py +57 -0
- scitex/plt/ax/_plot/_plot_ecdf.py +84 -0
- scitex/plt/ax/_plot/_plot_fillv.py +55 -0
- scitex/plt/ax/_plot/_plot_heatmap.py +266 -0
- scitex/plt/ax/_plot/_plot_image.py +94 -0
- scitex/plt/ax/_plot/_plot_joyplot.py +76 -0
- scitex/plt/ax/_plot/_plot_raster.py +172 -0
- scitex/plt/ax/_plot/_plot_rectangle.py +69 -0
- scitex/plt/ax/_plot/_plot_scatter_hist.py +133 -0
- scitex/plt/ax/_plot/_plot_shaded_line.py +142 -0
- scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +221 -0
- scitex/plt/ax/_plot/_plot_violin.py +343 -0
- scitex/plt/ax/_style/__init__.py +38 -0
- scitex/plt/ax/_style/_add_marginal_ax.py +44 -0
- scitex/plt/ax/_style/_add_panel.py +92 -0
- scitex/plt/ax/_style/_extend.py +64 -0
- scitex/plt/ax/_style/_force_aspect.py +37 -0
- scitex/plt/ax/_style/_format_label.py +23 -0
- scitex/plt/ax/_style/_hide_spines.py +84 -0
- scitex/plt/ax/_style/_map_ticks.py +182 -0
- scitex/plt/ax/_style/_rotate_labels.py +215 -0
- scitex/plt/ax/_style/_sci_note.py +279 -0
- scitex/plt/ax/_style/_set_log_scale.py +299 -0
- scitex/plt/ax/_style/_set_meta.py +261 -0
- scitex/plt/ax/_style/_set_n_ticks.py +37 -0
- scitex/plt/ax/_style/_set_size.py +16 -0
- scitex/plt/ax/_style/_set_supxyt.py +116 -0
- scitex/plt/ax/_style/_set_ticks.py +276 -0
- scitex/plt/ax/_style/_set_xyt.py +121 -0
- scitex/plt/ax/_style/_share_axes.py +264 -0
- scitex/plt/ax/_style/_shift.py +139 -0
- scitex/plt/ax/_style/_show_spines.py +333 -0
- scitex/plt/color/_PARAMS.py +70 -0
- scitex/plt/color/__init__.py +52 -0
- scitex/plt/color/_add_hue_col.py +41 -0
- scitex/plt/color/_colors.py +205 -0
- scitex/plt/color/_get_colors_from_cmap.py +134 -0
- scitex/plt/color/_interpolate.py +29 -0
- scitex/plt/color/_vizualize_colors.py +54 -0
- scitex/plt/utils/__init__.py +44 -0
- scitex/plt/utils/_calc_bacc_from_conf_mat.py +46 -0
- scitex/plt/utils/_calc_nice_ticks.py +101 -0
- scitex/plt/utils/_close.py +68 -0
- scitex/plt/utils/_colorbar.py +96 -0
- scitex/plt/utils/_configure_mpl.py +295 -0
- scitex/plt/utils/_histogram_utils.py +132 -0
- scitex/plt/utils/_im2grid.py +70 -0
- scitex/plt/utils/_is_valid_axis.py +78 -0
- scitex/plt/utils/_mk_colorbar.py +65 -0
- scitex/plt/utils/_mk_patches.py +26 -0
- scitex/plt/utils/_scientific_captions.py +638 -0
- scitex/plt/utils/_scitex_config.py +223 -0
- scitex/reproduce/__init__.py +14 -0
- scitex/reproduce/_fix_seeds.py +45 -0
- scitex/reproduce/_gen_ID.py +55 -0
- scitex/reproduce/_gen_timestamp.py +35 -0
- scitex/res/__init__.py +5 -0
- scitex/resource/__init__.py +13 -0
- scitex/resource/_get_processor_usages.py +281 -0
- scitex/resource/_get_specs.py +280 -0
- scitex/resource/_log_processor_usages.py +190 -0
- scitex/resource/_utils/__init__.py +31 -0
- scitex/resource/_utils/_get_env_info.py +481 -0
- scitex/resource/limit_ram.py +33 -0
- scitex/scholar/__init__.py +24 -0
- scitex/scholar/_local_search.py +454 -0
- scitex/scholar/_paper.py +244 -0
- scitex/scholar/_pdf_downloader.py +325 -0
- scitex/scholar/_search.py +393 -0
- scitex/scholar/_vector_search.py +370 -0
- scitex/scholar/_web_sources.py +457 -0
- scitex/stats/__init__.py +31 -0
- scitex/stats/_calc_partial_corr.py +17 -0
- scitex/stats/_corr_test_multi.py +94 -0
- scitex/stats/_corr_test_wrapper.py +115 -0
- scitex/stats/_describe_wrapper.py +90 -0
- scitex/stats/_multiple_corrections.py +63 -0
- scitex/stats/_nan_stats.py +93 -0
- scitex/stats/_p2stars.py +116 -0
- scitex/stats/_p2stars_wrapper.py +56 -0
- scitex/stats/_statistical_tests.py +73 -0
- scitex/stats/desc/__init__.py +40 -0
- scitex/stats/desc/_describe.py +189 -0
- scitex/stats/desc/_nan.py +289 -0
- scitex/stats/desc/_real.py +94 -0
- scitex/stats/multiple/__init__.py +14 -0
- scitex/stats/multiple/_bonferroni_correction.py +72 -0
- scitex/stats/multiple/_fdr_correction.py +400 -0
- scitex/stats/multiple/_multicompair.py +28 -0
- scitex/stats/tests/__corr_test.py +277 -0
- scitex/stats/tests/__corr_test_multi.py +343 -0
- scitex/stats/tests/__corr_test_single.py +277 -0
- scitex/stats/tests/__init__.py +22 -0
- scitex/stats/tests/_brunner_munzel_test.py +192 -0
- scitex/stats/tests/_nocorrelation_test.py +28 -0
- scitex/stats/tests/_smirnov_grubbs.py +98 -0
- scitex/str/__init__.py +113 -0
- scitex/str/_clean_path.py +75 -0
- scitex/str/_color_text.py +52 -0
- scitex/str/_decapitalize.py +58 -0
- scitex/str/_factor_out_digits.py +281 -0
- scitex/str/_format_plot_text.py +498 -0
- scitex/str/_grep.py +48 -0
- scitex/str/_latex.py +155 -0
- scitex/str/_latex_fallback.py +471 -0
- scitex/str/_mask_api.py +39 -0
- scitex/str/_mask_api_key.py +8 -0
- scitex/str/_parse.py +158 -0
- scitex/str/_print_block.py +47 -0
- scitex/str/_print_debug.py +68 -0
- scitex/str/_printc.py +62 -0
- scitex/str/_readable_bytes.py +38 -0
- scitex/str/_remove_ansi.py +23 -0
- scitex/str/_replace.py +134 -0
- scitex/str/_search.py +125 -0
- scitex/str/_squeeze_space.py +36 -0
- scitex/tex/__init__.py +10 -0
- scitex/tex/_preview.py +103 -0
- scitex/tex/_to_vec.py +116 -0
- scitex/torch/__init__.py +18 -0
- scitex/torch/_apply_to.py +34 -0
- scitex/torch/_nan_funcs.py +77 -0
- scitex/types/_ArrayLike.py +44 -0
- scitex/types/_ColorLike.py +21 -0
- scitex/types/__init__.py +14 -0
- scitex/types/_is_listed_X.py +70 -0
- scitex/utils/__init__.py +22 -0
- scitex/utils/_compress_hdf5.py +116 -0
- scitex/utils/_email.py +120 -0
- scitex/utils/_grid.py +148 -0
- scitex/utils/_notify.py +247 -0
- scitex/utils/_search.py +121 -0
- scitex/web/__init__.py +38 -0
- scitex/web/_search_pubmed.py +438 -0
- scitex/web/_summarize_url.py +158 -0
- scitex-2.0.0.dist-info/METADATA +307 -0
- scitex-2.0.0.dist-info/RECORD +572 -0
- scitex-2.0.0.dist-info/WHEEL +6 -0
- scitex-2.0.0.dist-info/licenses/LICENSE +7 -0
- scitex-2.0.0.dist-info/top_level.txt +1 -0
scitex/nn/_Filters.py
ADDED
|
@@ -0,0 +1,489 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Timestamp: "2025-05-28 17:05:26 (ywatanabe)"
|
|
4
|
+
# File: /ssh:sp:/home/ywatanabe/proj/scitex_repo/src/scitex/nn/_Filters.py
|
|
5
|
+
# ----------------------------------------
|
|
6
|
+
import os
|
|
7
|
+
|
|
8
|
+
__FILE__ = "./src/scitex/nn/_Filters.py"
|
|
9
|
+
__DIR__ = os.path.dirname(__FILE__)
|
|
10
|
+
# ----------------------------------------
|
|
11
|
+
|
|
12
|
+
# Time-stamp: "2024-11-26 22:23:40 (ywatanabe)"
|
|
13
|
+
|
|
14
|
+
import numpy as np
|
|
15
|
+
|
|
16
|
+
THIS_FILE = "/home/ywatanabe/proj/scitex_repo/src/scitex/nn/_Filters.py"
|
|
17
|
+
|
|
18
|
+
"""
|
|
19
|
+
Implements various neural network filter layers:
|
|
20
|
+
- BaseFilter1D: Abstract base class for 1D filters
|
|
21
|
+
- BandPassFilter: Implements bandpass filtering
|
|
22
|
+
- BandStopFilter: Implements bandstop filtering
|
|
23
|
+
- LowPassFilter: Implements lowpass filtering
|
|
24
|
+
- HighPassFilter: Implements highpass filtering
|
|
25
|
+
- GaussianFilter: Implements Gaussian smoothing
|
|
26
|
+
- DifferentiableBandPassFilter: Implements learnable bandpass filtering
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
# Imports
|
|
30
|
+
import sys
|
|
31
|
+
from abc import abstractmethod
|
|
32
|
+
|
|
33
|
+
import matplotlib.pyplot as plt
|
|
34
|
+
import numpy as np
|
|
35
|
+
import torch
|
|
36
|
+
import torch.nn as nn
|
|
37
|
+
import torch.nn.functional as F
|
|
38
|
+
|
|
39
|
+
from ..dsp.utils import build_bandpass_filters, init_bandpass_filters
|
|
40
|
+
from ..dsp.utils._ensure_3d import ensure_3d
|
|
41
|
+
from ..dsp.utils._ensure_even_len import ensure_even_len
|
|
42
|
+
from ..dsp.utils._zero_pad import zero_pad
|
|
43
|
+
from ..dsp.utils.filter import design_filter
|
|
44
|
+
from ..gen._to_even import to_even
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class BaseFilter1D(nn.Module):
|
|
48
|
+
def __init__(self, fp16=False, in_place=False):
|
|
49
|
+
super().__init__()
|
|
50
|
+
self.fp16 = fp16
|
|
51
|
+
self.in_place = in_place
|
|
52
|
+
# self.kernels = None
|
|
53
|
+
|
|
54
|
+
@abstractmethod
|
|
55
|
+
def init_kernels(
|
|
56
|
+
self,
|
|
57
|
+
):
|
|
58
|
+
"""
|
|
59
|
+
Abstract method to initialize filter kernels.
|
|
60
|
+
Must be implemented by subclasses.
|
|
61
|
+
"""
|
|
62
|
+
pass
|
|
63
|
+
|
|
64
|
+
def forward(self, x, t=None, edge_len=0):
|
|
65
|
+
"""Apply the filter to input signal x with shape: (batch_size, n_chs, seq_len)"""
|
|
66
|
+
|
|
67
|
+
# Shape check
|
|
68
|
+
if self.fp16:
|
|
69
|
+
x = x.half()
|
|
70
|
+
|
|
71
|
+
x = ensure_3d(x)
|
|
72
|
+
batch_size, n_chs, seq_len = x.shape
|
|
73
|
+
|
|
74
|
+
# Kernel Check
|
|
75
|
+
if self.kernels is None:
|
|
76
|
+
raise ValueError("Filter kernels has not been initialized.")
|
|
77
|
+
|
|
78
|
+
# Filtering
|
|
79
|
+
x = self.flip_extend(x, self.kernel_size // 2)
|
|
80
|
+
x = self.batch_conv(x, self.kernels, padding=0)
|
|
81
|
+
x = x[..., :seq_len]
|
|
82
|
+
|
|
83
|
+
assert x.shape == (
|
|
84
|
+
batch_size,
|
|
85
|
+
n_chs,
|
|
86
|
+
len(self.kernels),
|
|
87
|
+
seq_len,
|
|
88
|
+
), f"The shape of the filtered signal ({x.shape}) does not match the expected shape: ({batch_size}, {n_chs}, {len(self.kernels)}, {seq_len})."
|
|
89
|
+
|
|
90
|
+
# Edge remove
|
|
91
|
+
x = self.remove_edges(x, edge_len)
|
|
92
|
+
|
|
93
|
+
if t is None:
|
|
94
|
+
return x
|
|
95
|
+
else:
|
|
96
|
+
t = self.remove_edges(t, edge_len)
|
|
97
|
+
return x, t
|
|
98
|
+
|
|
99
|
+
@property
|
|
100
|
+
def kernel_size(
|
|
101
|
+
self,
|
|
102
|
+
):
|
|
103
|
+
ks = self.kernels.shape[-1]
|
|
104
|
+
# if not ks % 2 == 0:
|
|
105
|
+
# raise ValueError("Kernel size should be an even number.")
|
|
106
|
+
return ks
|
|
107
|
+
|
|
108
|
+
@staticmethod
|
|
109
|
+
def flip_extend(x, extension_length):
|
|
110
|
+
first_segment = x[:, :, :extension_length].flip(dims=[-1])
|
|
111
|
+
last_segment = x[:, :, -extension_length:].flip(dims=[-1])
|
|
112
|
+
return torch.cat([first_segment, x, last_segment], dim=-1)
|
|
113
|
+
|
|
114
|
+
@staticmethod
|
|
115
|
+
def batch_conv(x, kernels, padding="same"):
|
|
116
|
+
"""
|
|
117
|
+
x: (batch_size, n_chs, seq_len)
|
|
118
|
+
kernels: (n_kernels, seq_len_filt)
|
|
119
|
+
"""
|
|
120
|
+
assert x.ndim == 3
|
|
121
|
+
assert kernels.ndim == 2
|
|
122
|
+
batch_size, n_chs, n_time = x.shape
|
|
123
|
+
x = x.reshape(-1, x.shape[-1]).unsqueeze(1)
|
|
124
|
+
kernels = kernels.unsqueeze(1) # add the channel dimension
|
|
125
|
+
n_kernels = len(kernels)
|
|
126
|
+
filted = F.conv1d(x, kernels.type_as(x), padding=padding)
|
|
127
|
+
return filted.reshape(batch_size, n_chs, n_kernels, -1)
|
|
128
|
+
|
|
129
|
+
@staticmethod
|
|
130
|
+
def remove_edges(x, edge_len):
|
|
131
|
+
edge_len = x.shape[-1] // 8 if edge_len == "auto" else edge_len
|
|
132
|
+
|
|
133
|
+
if 0 < edge_len:
|
|
134
|
+
return x[..., edge_len:-edge_len]
|
|
135
|
+
else:
|
|
136
|
+
return x
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
class BandPassFilter(BaseFilter1D):
|
|
140
|
+
def __init__(self, bands, fs, seq_len, fp16=False):
|
|
141
|
+
super().__init__(fp16=fp16)
|
|
142
|
+
|
|
143
|
+
self.fp16 = fp16
|
|
144
|
+
|
|
145
|
+
# Ensures bands shape
|
|
146
|
+
assert bands.ndim == 2
|
|
147
|
+
|
|
148
|
+
# Check bands definitions
|
|
149
|
+
nyq = fs / 2.0
|
|
150
|
+
# Convert bands to tensor if it's a numpy array
|
|
151
|
+
if isinstance(bands, np.ndarray):
|
|
152
|
+
bands = torch.tensor(bands)
|
|
153
|
+
bands = torch.clip(bands, 0.1, nyq - 1)
|
|
154
|
+
for ll, hh in bands:
|
|
155
|
+
assert 0 < ll
|
|
156
|
+
assert ll < hh
|
|
157
|
+
assert hh < nyq
|
|
158
|
+
|
|
159
|
+
# Prepare kernels
|
|
160
|
+
kernels = self.init_kernels(seq_len, fs, bands)
|
|
161
|
+
if fp16:
|
|
162
|
+
kernels = kernels.half()
|
|
163
|
+
self.register_buffer(
|
|
164
|
+
"kernels",
|
|
165
|
+
kernels,
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
@staticmethod
|
|
169
|
+
def init_kernels(seq_len, fs, bands):
|
|
170
|
+
# Convert seq_len and fs to numpy arrays for design_filter (expects numpy_fn)
|
|
171
|
+
seq_len_array = np.array([seq_len])
|
|
172
|
+
fs_array = np.array([fs])
|
|
173
|
+
filters = [
|
|
174
|
+
design_filter(
|
|
175
|
+
seq_len_array,
|
|
176
|
+
fs_array,
|
|
177
|
+
low_hz=ll,
|
|
178
|
+
high_hz=hh,
|
|
179
|
+
is_bandstop=False,
|
|
180
|
+
)
|
|
181
|
+
for ll, hh in bands
|
|
182
|
+
]
|
|
183
|
+
|
|
184
|
+
# Convert filters list to tensors for zero_pad
|
|
185
|
+
filters_tensors = [
|
|
186
|
+
torch.tensor(f) if not isinstance(f, torch.Tensor) else f for f in filters
|
|
187
|
+
]
|
|
188
|
+
|
|
189
|
+
kernels = zero_pad(filters_tensors)
|
|
190
|
+
kernels = ensure_even_len(kernels)
|
|
191
|
+
if not isinstance(kernels, torch.Tensor):
|
|
192
|
+
kernels = torch.tensor(kernels)
|
|
193
|
+
kernels = kernels.clone().detach()
|
|
194
|
+
# kernels = kernels.clone().detach().requires_grad_(True)
|
|
195
|
+
return kernels
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
# /home/ywatanabe/proj/scitex/src/scitex/nn/_Filters.py:155: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
|
|
199
|
+
# kernels = torch.tensor(kernels).clone().detach()
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
class BandStopFilter(BaseFilter1D):
|
|
203
|
+
def __init__(self, bands, fs, seq_len):
|
|
204
|
+
super().__init__()
|
|
205
|
+
|
|
206
|
+
# Ensures bands shape
|
|
207
|
+
assert bands.ndim == 2
|
|
208
|
+
|
|
209
|
+
# Check bands definitions
|
|
210
|
+
nyq = fs / 2.0
|
|
211
|
+
bands = np.clip(bands, 0.1, nyq - 1)
|
|
212
|
+
for ll, hh in bands:
|
|
213
|
+
assert 0 < ll
|
|
214
|
+
assert ll < hh
|
|
215
|
+
assert hh < nyq
|
|
216
|
+
|
|
217
|
+
self.register_buffer("kernels", self.init_kernels(seq_len, fs, bands))
|
|
218
|
+
|
|
219
|
+
@staticmethod
|
|
220
|
+
def init_kernels(seq_len, fs, bands):
|
|
221
|
+
# Convert to numpy arrays for design_filter
|
|
222
|
+
seq_len_array = np.array([seq_len])
|
|
223
|
+
fs_array = np.array([fs])
|
|
224
|
+
filters = [
|
|
225
|
+
design_filter(
|
|
226
|
+
seq_len_array, fs_array, low_hz=ll, high_hz=hh, is_bandstop=True
|
|
227
|
+
)
|
|
228
|
+
for ll, hh in bands
|
|
229
|
+
]
|
|
230
|
+
# Convert filters list to tensors for zero_pad
|
|
231
|
+
filters_tensors = [
|
|
232
|
+
torch.tensor(f) if not isinstance(f, torch.Tensor) else f for f in filters
|
|
233
|
+
]
|
|
234
|
+
kernels = zero_pad(filters_tensors)
|
|
235
|
+
kernels = ensure_even_len(kernels)
|
|
236
|
+
if not isinstance(kernels, torch.Tensor):
|
|
237
|
+
kernels = torch.tensor(kernels)
|
|
238
|
+
return kernels
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
class LowPassFilter(BaseFilter1D):
|
|
242
|
+
def __init__(self, cutoffs_hz, fs, seq_len):
|
|
243
|
+
super().__init__()
|
|
244
|
+
|
|
245
|
+
# Ensures bands shape
|
|
246
|
+
assert cutoffs_hz.ndim == 1
|
|
247
|
+
|
|
248
|
+
# Check bands definitions
|
|
249
|
+
nyq = fs / 2.0
|
|
250
|
+
bands = np.clip(cutoffs_hz, 0.1, nyq - 1)
|
|
251
|
+
for cc in cutoffs_hz:
|
|
252
|
+
assert 0 < cc
|
|
253
|
+
assert cc < nyq
|
|
254
|
+
|
|
255
|
+
self.register_buffer("kernels", self.init_kernels(seq_len, fs, cutoffs_hz))
|
|
256
|
+
|
|
257
|
+
@staticmethod
|
|
258
|
+
def init_kernels(seq_len, fs, cutoffs_hz):
|
|
259
|
+
# Convert to numpy arrays for design_filter
|
|
260
|
+
seq_len_array = np.array([seq_len])
|
|
261
|
+
fs_array = np.array([fs])
|
|
262
|
+
filters = [
|
|
263
|
+
design_filter(
|
|
264
|
+
seq_len_array, fs_array, low_hz=None, high_hz=cc, is_bandstop=False
|
|
265
|
+
)
|
|
266
|
+
for cc in cutoffs_hz
|
|
267
|
+
]
|
|
268
|
+
# Convert filters list to tensors for zero_pad
|
|
269
|
+
filters_tensors = [
|
|
270
|
+
torch.tensor(f) if not isinstance(f, torch.Tensor) else f for f in filters
|
|
271
|
+
]
|
|
272
|
+
kernels = zero_pad(filters_tensors)
|
|
273
|
+
kernels = ensure_even_len(kernels)
|
|
274
|
+
if not isinstance(kernels, torch.Tensor):
|
|
275
|
+
kernels = torch.tensor(kernels)
|
|
276
|
+
return kernels
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
class HighPassFilter(BaseFilter1D):
|
|
280
|
+
def __init__(self, cutoffs_hz, fs, seq_len):
|
|
281
|
+
super().__init__()
|
|
282
|
+
|
|
283
|
+
# Ensures bands shape
|
|
284
|
+
assert cutoffs_hz.ndim == 1
|
|
285
|
+
|
|
286
|
+
# Check bands definitions
|
|
287
|
+
nyq = fs / 2.0
|
|
288
|
+
bands = np.clip(cutoffs_hz, 0.1, nyq - 1)
|
|
289
|
+
for cc in cutoffs_hz:
|
|
290
|
+
assert 0 < cc
|
|
291
|
+
assert cc < nyq
|
|
292
|
+
|
|
293
|
+
self.register_buffer("kernels", self.init_kernels(seq_len, fs, cutoffs_hz))
|
|
294
|
+
|
|
295
|
+
@staticmethod
|
|
296
|
+
def init_kernels(seq_len, fs, cutoffs_hz):
|
|
297
|
+
# Convert to numpy arrays for design_filter
|
|
298
|
+
seq_len_array = np.array([seq_len])
|
|
299
|
+
fs_array = np.array([fs])
|
|
300
|
+
filters = [
|
|
301
|
+
design_filter(
|
|
302
|
+
seq_len_array, fs_array, low_hz=cc, high_hz=None, is_bandstop=False
|
|
303
|
+
)
|
|
304
|
+
for cc in cutoffs_hz
|
|
305
|
+
]
|
|
306
|
+
# Convert filters list to tensors for zero_pad
|
|
307
|
+
filters_tensors = [
|
|
308
|
+
torch.tensor(f) if not isinstance(f, torch.Tensor) else f for f in filters
|
|
309
|
+
]
|
|
310
|
+
kernels = zero_pad(filters_tensors)
|
|
311
|
+
kernels = ensure_even_len(kernels)
|
|
312
|
+
if not isinstance(kernels, torch.Tensor):
|
|
313
|
+
kernels = torch.tensor(kernels)
|
|
314
|
+
return kernels
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
class GaussianFilter(BaseFilter1D):
|
|
318
|
+
def __init__(self, sigma):
|
|
319
|
+
super().__init__()
|
|
320
|
+
self.sigma = to_even(sigma)
|
|
321
|
+
self.register_buffer("kernels", self.init_kernels(sigma))
|
|
322
|
+
|
|
323
|
+
@staticmethod
|
|
324
|
+
def init_kernels(sigma):
|
|
325
|
+
kernel_size = sigma * 6 # +/- 3SD
|
|
326
|
+
kernel_range = torch.arange(0, kernel_size) - kernel_size // 2
|
|
327
|
+
kernel = torch.exp(-0.5 * (kernel_range / sigma) ** 2)
|
|
328
|
+
kernel /= kernel.sum()
|
|
329
|
+
kernels = kernel.unsqueeze(0) # n_filters = 1
|
|
330
|
+
kernels = ensure_even_len(kernels)
|
|
331
|
+
return torch.tensor(kernels)
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
class DifferentiableBandPassFilter(BaseFilter1D):
|
|
335
|
+
def __init__(
|
|
336
|
+
self,
|
|
337
|
+
sig_len,
|
|
338
|
+
fs,
|
|
339
|
+
pha_low_hz=2,
|
|
340
|
+
pha_high_hz=20,
|
|
341
|
+
pha_n_bands=30,
|
|
342
|
+
amp_low_hz=80,
|
|
343
|
+
amp_high_hz=160,
|
|
344
|
+
amp_n_bands=50,
|
|
345
|
+
cycle=3,
|
|
346
|
+
fp16=False,
|
|
347
|
+
):
|
|
348
|
+
super().__init__(fp16=fp16)
|
|
349
|
+
|
|
350
|
+
# Attributes
|
|
351
|
+
self.pha_low_hz = pha_low_hz
|
|
352
|
+
self.pha_high_hz = pha_high_hz
|
|
353
|
+
self.amp_low_hz = amp_low_hz
|
|
354
|
+
self.amp_high_hz = amp_high_hz
|
|
355
|
+
self.sig_len = sig_len
|
|
356
|
+
self.fs = fs
|
|
357
|
+
self.cycle = cycle
|
|
358
|
+
self.fp16 = fp16
|
|
359
|
+
|
|
360
|
+
# Check bands definitions
|
|
361
|
+
nyq = fs / 2.0
|
|
362
|
+
pha_high_hz = torch.tensor(pha_high_hz).clip(0.1, nyq - 1)
|
|
363
|
+
pha_low_hz = torch.tensor(pha_low_hz).clip(0.1, pha_high_hz - 1)
|
|
364
|
+
amp_high_hz = torch.tensor(amp_high_hz).clip(0.1, nyq - 1)
|
|
365
|
+
amp_low_hz = torch.tensor(amp_low_hz).clip(0.1, amp_high_hz - 1)
|
|
366
|
+
|
|
367
|
+
assert pha_low_hz < pha_high_hz < nyq
|
|
368
|
+
assert amp_low_hz < amp_high_hz < nyq
|
|
369
|
+
|
|
370
|
+
# Prepare kernels
|
|
371
|
+
self.init_kernels = init_bandpass_filters
|
|
372
|
+
self.build_bandpass_filters = build_bandpass_filters
|
|
373
|
+
kernels, self.pha_mids, self.amp_mids = self.init_kernels(
|
|
374
|
+
sig_len=sig_len,
|
|
375
|
+
fs=fs,
|
|
376
|
+
pha_low_hz=pha_low_hz,
|
|
377
|
+
pha_high_hz=pha_high_hz,
|
|
378
|
+
pha_n_bands=pha_n_bands,
|
|
379
|
+
amp_low_hz=amp_low_hz,
|
|
380
|
+
amp_high_hz=amp_high_hz,
|
|
381
|
+
amp_n_bands=amp_n_bands,
|
|
382
|
+
cycle=cycle,
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
self.register_buffer(
|
|
386
|
+
"kernels",
|
|
387
|
+
kernels,
|
|
388
|
+
)
|
|
389
|
+
# self.register_buffer("pha_mids", pha_mids)
|
|
390
|
+
# self.register_buffer("amp_mids", amp_mids)
|
|
391
|
+
# self.pha_mids = nn.Parameter(pha_mids.detach())
|
|
392
|
+
# self.amp_mids = nn.Parameter(amp_mids.detach())
|
|
393
|
+
|
|
394
|
+
if fp16:
|
|
395
|
+
self.kernels = self.kernels.half()
|
|
396
|
+
# self.pha_mids = self.pha_mids.half()
|
|
397
|
+
# self.amp_mids = self.amp_mids.half()
|
|
398
|
+
|
|
399
|
+
def forward(self, x, t=None, edge_len=0):
|
|
400
|
+
# Constrains the parameter spaces
|
|
401
|
+
torch.clip(self.pha_mids, self.pha_low_hz, self.pha_high_hz)
|
|
402
|
+
torch.clip(self.amp_mids, self.amp_low_hz, self.amp_high_hz)
|
|
403
|
+
|
|
404
|
+
self.kernels = self.build_bandpass_filters(
|
|
405
|
+
self.sig_len, self.fs, self.pha_mids, self.amp_mids, self.cycle
|
|
406
|
+
)
|
|
407
|
+
return super().forward(x=x, t=t, edge_len=edge_len)
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
if __name__ == "__main__":
|
|
411
|
+
import scitex
|
|
412
|
+
|
|
413
|
+
# Start
|
|
414
|
+
CONFIG, sys.stdout, sys.stderr, plt, CC = scitex.gen.start(sys, plt, fig_scale=5)
|
|
415
|
+
|
|
416
|
+
xx, tt, fs = scitex.dsp.demo_sig(sig_type="chirp", fs=1024)
|
|
417
|
+
xx = torch.tensor(xx).cuda()
|
|
418
|
+
# bands = np.array([[2, 3], [3, 4]])
|
|
419
|
+
# BandPassFilter(bands, fs, xx.shape)
|
|
420
|
+
m = DifferentiableBandPassFilter(xx.shape[-1], fs).cuda()
|
|
421
|
+
|
|
422
|
+
scitex.ml.utils.check_params(m)
|
|
423
|
+
# {'pha_mids': (torch.Size([30]), 'Learnable'),
|
|
424
|
+
# 'amp_mids': (torch.Size([50]), 'Learnable')}
|
|
425
|
+
|
|
426
|
+
xf = m(xx) # (8, 19, 80, 2048)
|
|
427
|
+
|
|
428
|
+
xf.sum().backward() # OK, differentiable
|
|
429
|
+
|
|
430
|
+
m.pha_mids
|
|
431
|
+
# Parameter containing:
|
|
432
|
+
# tensor([ 2.0000, 2.6207, 3.2414, 3.8621, 4.4828, 5.1034, 5.7241, 6.3448,
|
|
433
|
+
# 6.9655, 7.5862, 8.2069, 8.8276, 9.4483, 10.0690, 10.6897, 11.3103,
|
|
434
|
+
# 11.9310, 12.5517, 13.1724, 13.7931, 14.4138, 15.0345, 15.6552, 16.2759,
|
|
435
|
+
# 16.8966, 17.5172, 18.1379, 18.7586, 19.3793, 20.0000],
|
|
436
|
+
# requires_grad=True)
|
|
437
|
+
m.amp_mids
|
|
438
|
+
# Parameter containing:
|
|
439
|
+
# tensor([ 80.0000, 81.6327, 83.2653, 84.8980, 86.5306, 88.1633, 89.7959,
|
|
440
|
+
# 91.4286, 93.0612, 94.6939, 96.3265, 97.9592, 99.5918, 101.2245,
|
|
441
|
+
# 102.8571, 104.4898, 106.1225, 107.7551, 109.3878, 111.0204, 112.6531,
|
|
442
|
+
# 114.2857, 115.9184, 117.5510, 119.1837, 120.8163, 122.4490, 124.0816,
|
|
443
|
+
# 125.7143, 127.3469, 128.9796, 130.6122, 132.2449, 133.8775, 135.5102,
|
|
444
|
+
# 137.1429, 138.7755, 140.4082, 142.0408, 143.6735, 145.3061, 146.9388,
|
|
445
|
+
# 148.5714, 150.2041, 151.8367, 153.4694, 155.1020, 156.7347, 158.3673,
|
|
446
|
+
# 160.0000], requires_grad=True)
|
|
447
|
+
|
|
448
|
+
# PSD
|
|
449
|
+
bands = torch.hstack([m.pha_mids, m.amp_mids])
|
|
450
|
+
|
|
451
|
+
# Plots PSD
|
|
452
|
+
# matplotlib.use("TkAgg")
|
|
453
|
+
fig, axes = scitex.plt.subplots(nrows=1 + len(bands), ncols=2)
|
|
454
|
+
|
|
455
|
+
psd, ff = scitex.dsp.psd(xx, fs) # Orig
|
|
456
|
+
axes[0, 0].plot(tt, xx[0, 0].detach().cpu().numpy(), label="orig")
|
|
457
|
+
axes[0, 1].plot(
|
|
458
|
+
ff.detach().cpu().numpy(),
|
|
459
|
+
psd[0, 0].detach().cpu().numpy(),
|
|
460
|
+
label="orig",
|
|
461
|
+
)
|
|
462
|
+
|
|
463
|
+
for i_filt in range(len(bands)):
|
|
464
|
+
mid_hz = int(bands[i_filt].item())
|
|
465
|
+
psd_f, ff_f = scitex.dsp.psd(xf[:, :, i_filt, :], fs)
|
|
466
|
+
axes[i_filt + 1, 0].plot(
|
|
467
|
+
tt,
|
|
468
|
+
xf[0, 0, i_filt].detach().cpu().numpy(),
|
|
469
|
+
label=f"filted at {mid_hz} Hz",
|
|
470
|
+
)
|
|
471
|
+
axes[i_filt + 1, 1].plot(
|
|
472
|
+
ff_f.detach().cpu().numpy(),
|
|
473
|
+
psd_f[0, 0].detach().cpu().numpy(),
|
|
474
|
+
label=f"filted at {mid_hz} Hz",
|
|
475
|
+
)
|
|
476
|
+
for ax in axes.ravel():
|
|
477
|
+
ax.legend(loc="upper left")
|
|
478
|
+
|
|
479
|
+
scitex.io.save(fig, "traces.png")
|
|
480
|
+
# plt.show()
|
|
481
|
+
|
|
482
|
+
# Close
|
|
483
|
+
scitex.gen.close(CONFIG)
|
|
484
|
+
|
|
485
|
+
"""
|
|
486
|
+
/home/ywatanabe/proj/entrance/scitex/dsp/nn/_Filters.py
|
|
487
|
+
"""
|
|
488
|
+
|
|
489
|
+
# EOF
|
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2023-04-23 11:02:34 (ywatanabe)"
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import torch.nn as nn
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
from torchsummary import summary
|
|
9
|
+
import scitex
|
|
10
|
+
import numpy as np
|
|
11
|
+
import julius
|
|
12
|
+
|
|
13
|
+
# BANDS_LIM_HZ_DICT = {
|
|
14
|
+
# "delta": [0.5, 4],
|
|
15
|
+
# "theta": [4, 8],
|
|
16
|
+
# "lalpha": [8, 10],
|
|
17
|
+
# "halpha": [10, 13],
|
|
18
|
+
# "beta": [13, 32],
|
|
19
|
+
# "gamma": [32, 75],
|
|
20
|
+
# }
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
# class FreqDropout(nn.Module):
|
|
24
|
+
# def __init__(self, n_bands, samp_rate, dropout_ratio=0.5):
|
|
25
|
+
# super().__init__()
|
|
26
|
+
# self.dropout = nn.Dropout(p=0.5)
|
|
27
|
+
# self.n_bands = n_bands
|
|
28
|
+
# self.samp_rate = samp_rate
|
|
29
|
+
# # self.
|
|
30
|
+
# self.register_buffer("ones", torch.ones(self.n_bands))
|
|
31
|
+
|
|
32
|
+
# def forward(self, x):
|
|
33
|
+
# """x: [batch_size, n_chs, seq_len]"""
|
|
34
|
+
# x = julius.bands.split_bands(x, self.samp_rate, n_bands=self.n_bands)
|
|
35
|
+
|
|
36
|
+
# gains_orig = x.reshape(len(x), -1).abs().sum(axis=-1)
|
|
37
|
+
# sum_gains_orig = gains_orig.sum()
|
|
38
|
+
|
|
39
|
+
# # use_freqs = self.dropout(torch.ones(self.n_bands)).bool().long()
|
|
40
|
+
# use_freqs = self.dropout(self.ones) / 2 # .bool().long()
|
|
41
|
+
|
|
42
|
+
# gains = gains_orig * use_freqs
|
|
43
|
+
# sum_gains = gains.sum()
|
|
44
|
+
# gain_ratio = sum_gains / sum_gains_orig
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
# x *= use_freqs.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
|
|
48
|
+
# x /= gain_ratio
|
|
49
|
+
# x = x.sum(axis=0)
|
|
50
|
+
|
|
51
|
+
# return x
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class FreqGainChanger(nn.Module):
|
|
55
|
+
def __init__(self, n_bands, samp_rate, dropout_ratio=0.5):
|
|
56
|
+
super().__init__()
|
|
57
|
+
self.dropout = nn.Dropout(p=0.5)
|
|
58
|
+
self.n_bands = n_bands
|
|
59
|
+
self.samp_rate = samp_rate
|
|
60
|
+
# self.register_buffer("ones", torch.ones(self.n_bands))
|
|
61
|
+
|
|
62
|
+
def forward(self, x):
|
|
63
|
+
"""x: [batch_size, n_chs, seq_len]"""
|
|
64
|
+
if self.training:
|
|
65
|
+
x = julius.bands.split_bands(x, self.samp_rate, n_bands=self.n_bands)
|
|
66
|
+
freq_gains = (
|
|
67
|
+
torch.rand(self.n_bands)
|
|
68
|
+
.unsqueeze(-1)
|
|
69
|
+
.unsqueeze(-1)
|
|
70
|
+
.unsqueeze(-1)
|
|
71
|
+
.to(x.device)
|
|
72
|
+
+ 0.5
|
|
73
|
+
)
|
|
74
|
+
freq_gains = F.softmax(freq_gains, dim=0)
|
|
75
|
+
x = (x * freq_gains).sum(axis=0)
|
|
76
|
+
|
|
77
|
+
return x
|
|
78
|
+
# import ipdb; ipdb.set_trace()
|
|
79
|
+
|
|
80
|
+
# gains_orig = x.reshape(len(x), -1).abs().sum(axis=-1)
|
|
81
|
+
# sum_gains_orig = gains_orig.sum()
|
|
82
|
+
|
|
83
|
+
# # use_freqs = self.dropout(torch.ones(self.n_bands)).bool().long()
|
|
84
|
+
# use_freqs = self.dropout(self.ones) / 2 # .bool().long()
|
|
85
|
+
|
|
86
|
+
# gains = gains_orig * use_freqs
|
|
87
|
+
# sum_gains = gains.sum()
|
|
88
|
+
# gain_ratio = sum_gains / sum_gains_orig
|
|
89
|
+
|
|
90
|
+
# x *= use_freqs.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
|
|
91
|
+
# x /= gain_ratio
|
|
92
|
+
# x = x.sum(axis=0)
|
|
93
|
+
|
|
94
|
+
# return x
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
if __name__ == "__main__":
|
|
98
|
+
# Parameters
|
|
99
|
+
N_BANDS = 10
|
|
100
|
+
SAMP_RATE = 1000
|
|
101
|
+
BS, N_CHS, SEQ_LEN = 16, 360, 1000
|
|
102
|
+
|
|
103
|
+
# Demo data
|
|
104
|
+
x = torch.rand(BS, N_CHS, SEQ_LEN).cuda()
|
|
105
|
+
|
|
106
|
+
# Feedforward
|
|
107
|
+
fgc = FreqGainChanger(N_BANDS, SAMP_RATE).cuda()
|
|
108
|
+
# fd.eval()
|
|
109
|
+
y = fgc(x)
|
|
110
|
+
y.sum().backward()
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-04-01 18:14:44 (ywatanabe)"
|
|
4
|
+
|
|
5
|
+
import math
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn as nn
|
|
9
|
+
import torch.nn.functional as F
|
|
10
|
+
import torchaudio.transforms as T
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class GaussianFilter(nn.Module):
|
|
14
|
+
def __init__(self, radius, sigma=None):
|
|
15
|
+
super().__init__()
|
|
16
|
+
if sigma is None:
|
|
17
|
+
sigma = radius / 2
|
|
18
|
+
self.radius = radius
|
|
19
|
+
self.register_buffer("kernel", self.gen_kernel_1d(radius, sigma=sigma))
|
|
20
|
+
|
|
21
|
+
@staticmethod
|
|
22
|
+
def gen_kernel_1d(radius, sigma=None):
|
|
23
|
+
if sigma is None:
|
|
24
|
+
sigma = radius / 2
|
|
25
|
+
|
|
26
|
+
kernel_size = 2 * radius + 1
|
|
27
|
+
x = torch.arange(kernel_size).float() - radius
|
|
28
|
+
|
|
29
|
+
kernel = torch.exp(-0.5 * (x / sigma) ** 2)
|
|
30
|
+
kernel = kernel / (sigma * math.sqrt(2 * math.pi))
|
|
31
|
+
kernel = kernel / torch.sum(kernel)
|
|
32
|
+
|
|
33
|
+
return kernel.unsqueeze(0).unsqueeze(0)
|
|
34
|
+
|
|
35
|
+
def forward(self, x):
|
|
36
|
+
"""x.shape: (batch_size, n_chs, seq_len)"""
|
|
37
|
+
|
|
38
|
+
if x.ndim == 1:
|
|
39
|
+
x = x.unsqueeze(0).unsqueeze(0)
|
|
40
|
+
elif x.ndim == 2:
|
|
41
|
+
x = x.unsqueeze(1)
|
|
42
|
+
|
|
43
|
+
channels = x.size(1)
|
|
44
|
+
kernel = self.kernel.expand(channels, 1, -1).to(x.device).to(x.dtype)
|
|
45
|
+
|
|
46
|
+
return torch.nn.functional.conv1d(
|
|
47
|
+
x, kernel, padding=self.radius, groups=channels
|
|
48
|
+
)
|