scitex 2.0.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (572) hide show
  1. scitex/__init__.py +73 -0
  2. scitex/__main__.py +89 -0
  3. scitex/__version__.py +14 -0
  4. scitex/_sh.py +59 -0
  5. scitex/ai/_LearningCurveLogger.py +583 -0
  6. scitex/ai/__Classifiers.py +101 -0
  7. scitex/ai/__init__.py +55 -0
  8. scitex/ai/_gen_ai/_Anthropic.py +173 -0
  9. scitex/ai/_gen_ai/_BaseGenAI.py +336 -0
  10. scitex/ai/_gen_ai/_DeepSeek.py +175 -0
  11. scitex/ai/_gen_ai/_Google.py +161 -0
  12. scitex/ai/_gen_ai/_Groq.py +97 -0
  13. scitex/ai/_gen_ai/_Llama.py +142 -0
  14. scitex/ai/_gen_ai/_OpenAI.py +230 -0
  15. scitex/ai/_gen_ai/_PARAMS.py +565 -0
  16. scitex/ai/_gen_ai/_Perplexity.py +191 -0
  17. scitex/ai/_gen_ai/__init__.py +32 -0
  18. scitex/ai/_gen_ai/_calc_cost.py +78 -0
  19. scitex/ai/_gen_ai/_format_output_func.py +183 -0
  20. scitex/ai/_gen_ai/_genai_factory.py +71 -0
  21. scitex/ai/act/__init__.py +8 -0
  22. scitex/ai/act/_define.py +11 -0
  23. scitex/ai/classification/__init__.py +7 -0
  24. scitex/ai/classification/classification_reporter.py +1137 -0
  25. scitex/ai/classification/classifier_server.py +131 -0
  26. scitex/ai/classification/classifiers.py +101 -0
  27. scitex/ai/classification_reporter.py +1161 -0
  28. scitex/ai/classifier_server.py +131 -0
  29. scitex/ai/clustering/__init__.py +11 -0
  30. scitex/ai/clustering/_pca.py +115 -0
  31. scitex/ai/clustering/_umap.py +376 -0
  32. scitex/ai/early_stopping.py +149 -0
  33. scitex/ai/feature_extraction/__init__.py +56 -0
  34. scitex/ai/feature_extraction/vit.py +148 -0
  35. scitex/ai/genai/__init__.py +277 -0
  36. scitex/ai/genai/anthropic.py +177 -0
  37. scitex/ai/genai/anthropic_provider.py +320 -0
  38. scitex/ai/genai/anthropic_refactored.py +109 -0
  39. scitex/ai/genai/auth_manager.py +200 -0
  40. scitex/ai/genai/base_genai.py +336 -0
  41. scitex/ai/genai/base_provider.py +291 -0
  42. scitex/ai/genai/calc_cost.py +78 -0
  43. scitex/ai/genai/chat_history.py +307 -0
  44. scitex/ai/genai/cost_tracker.py +276 -0
  45. scitex/ai/genai/deepseek.py +188 -0
  46. scitex/ai/genai/deepseek_provider.py +251 -0
  47. scitex/ai/genai/format_output_func.py +183 -0
  48. scitex/ai/genai/genai_factory.py +71 -0
  49. scitex/ai/genai/google.py +169 -0
  50. scitex/ai/genai/google_provider.py +228 -0
  51. scitex/ai/genai/groq.py +104 -0
  52. scitex/ai/genai/groq_provider.py +248 -0
  53. scitex/ai/genai/image_processor.py +250 -0
  54. scitex/ai/genai/llama.py +155 -0
  55. scitex/ai/genai/llama_provider.py +214 -0
  56. scitex/ai/genai/mock_provider.py +127 -0
  57. scitex/ai/genai/model_registry.py +304 -0
  58. scitex/ai/genai/openai.py +230 -0
  59. scitex/ai/genai/openai_provider.py +293 -0
  60. scitex/ai/genai/params.py +565 -0
  61. scitex/ai/genai/perplexity.py +202 -0
  62. scitex/ai/genai/perplexity_provider.py +205 -0
  63. scitex/ai/genai/provider_base.py +302 -0
  64. scitex/ai/genai/provider_factory.py +370 -0
  65. scitex/ai/genai/response_handler.py +235 -0
  66. scitex/ai/layer/_Pass.py +21 -0
  67. scitex/ai/layer/__init__.py +10 -0
  68. scitex/ai/layer/_switch.py +8 -0
  69. scitex/ai/loss/_L1L2Losses.py +34 -0
  70. scitex/ai/loss/__init__.py +12 -0
  71. scitex/ai/loss/multi_task_loss.py +47 -0
  72. scitex/ai/metrics/__init__.py +9 -0
  73. scitex/ai/metrics/_bACC.py +51 -0
  74. scitex/ai/metrics/silhoute_score_block.py +496 -0
  75. scitex/ai/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
  76. scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
  77. scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
  78. scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
  79. scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
  80. scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
  81. scitex/ai/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
  82. scitex/ai/optim/__init__.py +13 -0
  83. scitex/ai/optim/_get_set.py +31 -0
  84. scitex/ai/optim/_optimizers.py +71 -0
  85. scitex/ai/plt/__init__.py +21 -0
  86. scitex/ai/plt/_conf_mat.py +592 -0
  87. scitex/ai/plt/_learning_curve.py +194 -0
  88. scitex/ai/plt/_optuna_study.py +111 -0
  89. scitex/ai/plt/aucs/__init__.py +2 -0
  90. scitex/ai/plt/aucs/example.py +60 -0
  91. scitex/ai/plt/aucs/pre_rec_auc.py +223 -0
  92. scitex/ai/plt/aucs/roc_auc.py +246 -0
  93. scitex/ai/sampling/undersample.py +29 -0
  94. scitex/ai/sk/__init__.py +11 -0
  95. scitex/ai/sk/_clf.py +58 -0
  96. scitex/ai/sk/_to_sktime.py +100 -0
  97. scitex/ai/sklearn/__init__.py +26 -0
  98. scitex/ai/sklearn/clf.py +58 -0
  99. scitex/ai/sklearn/to_sktime.py +100 -0
  100. scitex/ai/training/__init__.py +7 -0
  101. scitex/ai/training/early_stopping.py +150 -0
  102. scitex/ai/training/learning_curve_logger.py +555 -0
  103. scitex/ai/utils/__init__.py +22 -0
  104. scitex/ai/utils/_check_params.py +50 -0
  105. scitex/ai/utils/_default_dataset.py +46 -0
  106. scitex/ai/utils/_format_samples_for_sktime.py +26 -0
  107. scitex/ai/utils/_label_encoder.py +134 -0
  108. scitex/ai/utils/_merge_labels.py +22 -0
  109. scitex/ai/utils/_sliding_window_data_augmentation.py +11 -0
  110. scitex/ai/utils/_under_sample.py +51 -0
  111. scitex/ai/utils/_verify_n_gpus.py +16 -0
  112. scitex/ai/utils/grid_search.py +148 -0
  113. scitex/context/__init__.py +9 -0
  114. scitex/context/_suppress_output.py +38 -0
  115. scitex/db/_BaseMixins/_BaseBackupMixin.py +30 -0
  116. scitex/db/_BaseMixins/_BaseBatchMixin.py +31 -0
  117. scitex/db/_BaseMixins/_BaseBlobMixin.py +81 -0
  118. scitex/db/_BaseMixins/_BaseConnectionMixin.py +43 -0
  119. scitex/db/_BaseMixins/_BaseImportExportMixin.py +39 -0
  120. scitex/db/_BaseMixins/_BaseIndexMixin.py +29 -0
  121. scitex/db/_BaseMixins/_BaseMaintenanceMixin.py +33 -0
  122. scitex/db/_BaseMixins/_BaseQueryMixin.py +52 -0
  123. scitex/db/_BaseMixins/_BaseRowMixin.py +32 -0
  124. scitex/db/_BaseMixins/_BaseSchemaMixin.py +44 -0
  125. scitex/db/_BaseMixins/_BaseTableMixin.py +66 -0
  126. scitex/db/_BaseMixins/_BaseTransactionMixin.py +52 -0
  127. scitex/db/_BaseMixins/__init__.py +30 -0
  128. scitex/db/_PostgreSQL.py +126 -0
  129. scitex/db/_PostgreSQLMixins/_BackupMixin.py +166 -0
  130. scitex/db/_PostgreSQLMixins/_BatchMixin.py +82 -0
  131. scitex/db/_PostgreSQLMixins/_BlobMixin.py +231 -0
  132. scitex/db/_PostgreSQLMixins/_ConnectionMixin.py +92 -0
  133. scitex/db/_PostgreSQLMixins/_ImportExportMixin.py +59 -0
  134. scitex/db/_PostgreSQLMixins/_IndexMixin.py +64 -0
  135. scitex/db/_PostgreSQLMixins/_MaintenanceMixin.py +175 -0
  136. scitex/db/_PostgreSQLMixins/_QueryMixin.py +108 -0
  137. scitex/db/_PostgreSQLMixins/_RowMixin.py +75 -0
  138. scitex/db/_PostgreSQLMixins/_SchemaMixin.py +126 -0
  139. scitex/db/_PostgreSQLMixins/_TableMixin.py +176 -0
  140. scitex/db/_PostgreSQLMixins/_TransactionMixin.py +57 -0
  141. scitex/db/_PostgreSQLMixins/__init__.py +34 -0
  142. scitex/db/_SQLite3.py +2136 -0
  143. scitex/db/_SQLite3Mixins/_BatchMixin.py +243 -0
  144. scitex/db/_SQLite3Mixins/_BlobMixin.py +229 -0
  145. scitex/db/_SQLite3Mixins/_ConnectionMixin.py +108 -0
  146. scitex/db/_SQLite3Mixins/_ImportExportMixin.py +80 -0
  147. scitex/db/_SQLite3Mixins/_IndexMixin.py +32 -0
  148. scitex/db/_SQLite3Mixins/_MaintenanceMixin.py +176 -0
  149. scitex/db/_SQLite3Mixins/_QueryMixin.py +83 -0
  150. scitex/db/_SQLite3Mixins/_RowMixin.py +75 -0
  151. scitex/db/_SQLite3Mixins/_TableMixin.py +183 -0
  152. scitex/db/_SQLite3Mixins/_TransactionMixin.py +71 -0
  153. scitex/db/_SQLite3Mixins/__init__.py +30 -0
  154. scitex/db/__init__.py +14 -0
  155. scitex/db/_delete_duplicates.py +397 -0
  156. scitex/db/_inspect.py +163 -0
  157. scitex/decorators/__init__.py +54 -0
  158. scitex/decorators/_auto_order.py +172 -0
  159. scitex/decorators/_batch_fn.py +127 -0
  160. scitex/decorators/_cache_disk.py +32 -0
  161. scitex/decorators/_cache_mem.py +12 -0
  162. scitex/decorators/_combined.py +98 -0
  163. scitex/decorators/_converters.py +282 -0
  164. scitex/decorators/_deprecated.py +26 -0
  165. scitex/decorators/_not_implemented.py +30 -0
  166. scitex/decorators/_numpy_fn.py +86 -0
  167. scitex/decorators/_pandas_fn.py +121 -0
  168. scitex/decorators/_preserve_doc.py +19 -0
  169. scitex/decorators/_signal_fn.py +95 -0
  170. scitex/decorators/_timeout.py +55 -0
  171. scitex/decorators/_torch_fn.py +136 -0
  172. scitex/decorators/_wrap.py +39 -0
  173. scitex/decorators/_xarray_fn.py +88 -0
  174. scitex/dev/__init__.py +15 -0
  175. scitex/dev/_analyze_code_flow.py +284 -0
  176. scitex/dev/_reload.py +59 -0
  177. scitex/dict/_DotDict.py +442 -0
  178. scitex/dict/__init__.py +18 -0
  179. scitex/dict/_listed_dict.py +42 -0
  180. scitex/dict/_pop_keys.py +36 -0
  181. scitex/dict/_replace.py +13 -0
  182. scitex/dict/_safe_merge.py +62 -0
  183. scitex/dict/_to_str.py +32 -0
  184. scitex/dsp/__init__.py +72 -0
  185. scitex/dsp/_crop.py +122 -0
  186. scitex/dsp/_demo_sig.py +331 -0
  187. scitex/dsp/_detect_ripples.py +212 -0
  188. scitex/dsp/_ensure_3d.py +18 -0
  189. scitex/dsp/_hilbert.py +78 -0
  190. scitex/dsp/_listen.py +702 -0
  191. scitex/dsp/_misc.py +30 -0
  192. scitex/dsp/_mne.py +32 -0
  193. scitex/dsp/_modulation_index.py +79 -0
  194. scitex/dsp/_pac.py +319 -0
  195. scitex/dsp/_psd.py +102 -0
  196. scitex/dsp/_resample.py +65 -0
  197. scitex/dsp/_time.py +36 -0
  198. scitex/dsp/_transform.py +68 -0
  199. scitex/dsp/_wavelet.py +212 -0
  200. scitex/dsp/add_noise.py +111 -0
  201. scitex/dsp/example.py +253 -0
  202. scitex/dsp/filt.py +155 -0
  203. scitex/dsp/norm.py +18 -0
  204. scitex/dsp/params.py +51 -0
  205. scitex/dsp/reference.py +43 -0
  206. scitex/dsp/template.py +25 -0
  207. scitex/dsp/utils/__init__.py +15 -0
  208. scitex/dsp/utils/_differential_bandpass_filters.py +120 -0
  209. scitex/dsp/utils/_ensure_3d.py +18 -0
  210. scitex/dsp/utils/_ensure_even_len.py +10 -0
  211. scitex/dsp/utils/_zero_pad.py +48 -0
  212. scitex/dsp/utils/filter.py +408 -0
  213. scitex/dsp/utils/pac.py +177 -0
  214. scitex/dt/__init__.py +8 -0
  215. scitex/dt/_linspace.py +130 -0
  216. scitex/etc/__init__.py +15 -0
  217. scitex/etc/wait_key.py +34 -0
  218. scitex/gen/_DimHandler.py +196 -0
  219. scitex/gen/_TimeStamper.py +244 -0
  220. scitex/gen/__init__.py +95 -0
  221. scitex/gen/_alternate_kwarg.py +13 -0
  222. scitex/gen/_cache.py +11 -0
  223. scitex/gen/_check_host.py +34 -0
  224. scitex/gen/_ci.py +12 -0
  225. scitex/gen/_close.py +222 -0
  226. scitex/gen/_embed.py +78 -0
  227. scitex/gen/_inspect_module.py +257 -0
  228. scitex/gen/_is_ipython.py +12 -0
  229. scitex/gen/_less.py +48 -0
  230. scitex/gen/_list_packages.py +139 -0
  231. scitex/gen/_mat2py.py +88 -0
  232. scitex/gen/_norm.py +170 -0
  233. scitex/gen/_paste.py +18 -0
  234. scitex/gen/_print_config.py +84 -0
  235. scitex/gen/_shell.py +48 -0
  236. scitex/gen/_src.py +111 -0
  237. scitex/gen/_start.py +451 -0
  238. scitex/gen/_symlink.py +55 -0
  239. scitex/gen/_symlog.py +27 -0
  240. scitex/gen/_tee.py +238 -0
  241. scitex/gen/_title2path.py +60 -0
  242. scitex/gen/_title_case.py +88 -0
  243. scitex/gen/_to_even.py +84 -0
  244. scitex/gen/_to_odd.py +34 -0
  245. scitex/gen/_to_rank.py +39 -0
  246. scitex/gen/_transpose.py +37 -0
  247. scitex/gen/_type.py +78 -0
  248. scitex/gen/_var_info.py +73 -0
  249. scitex/gen/_wrap.py +17 -0
  250. scitex/gen/_xml2dict.py +76 -0
  251. scitex/gen/misc.py +730 -0
  252. scitex/gen/path.py +0 -0
  253. scitex/general/__init__.py +5 -0
  254. scitex/gists/_SigMacro_processFigure_S.py +128 -0
  255. scitex/gists/_SigMacro_toBlue.py +172 -0
  256. scitex/gists/__init__.py +12 -0
  257. scitex/io/_H5Explorer.py +292 -0
  258. scitex/io/__init__.py +82 -0
  259. scitex/io/_cache.py +101 -0
  260. scitex/io/_flush.py +24 -0
  261. scitex/io/_glob.py +103 -0
  262. scitex/io/_json2md.py +113 -0
  263. scitex/io/_load.py +168 -0
  264. scitex/io/_load_configs.py +146 -0
  265. scitex/io/_load_modules/__init__.py +38 -0
  266. scitex/io/_load_modules/_catboost.py +66 -0
  267. scitex/io/_load_modules/_con.py +20 -0
  268. scitex/io/_load_modules/_db.py +24 -0
  269. scitex/io/_load_modules/_docx.py +42 -0
  270. scitex/io/_load_modules/_eeg.py +110 -0
  271. scitex/io/_load_modules/_hdf5.py +196 -0
  272. scitex/io/_load_modules/_image.py +19 -0
  273. scitex/io/_load_modules/_joblib.py +19 -0
  274. scitex/io/_load_modules/_json.py +18 -0
  275. scitex/io/_load_modules/_markdown.py +103 -0
  276. scitex/io/_load_modules/_matlab.py +37 -0
  277. scitex/io/_load_modules/_numpy.py +39 -0
  278. scitex/io/_load_modules/_optuna.py +155 -0
  279. scitex/io/_load_modules/_pandas.py +69 -0
  280. scitex/io/_load_modules/_pdf.py +31 -0
  281. scitex/io/_load_modules/_pickle.py +24 -0
  282. scitex/io/_load_modules/_torch.py +16 -0
  283. scitex/io/_load_modules/_txt.py +126 -0
  284. scitex/io/_load_modules/_xml.py +49 -0
  285. scitex/io/_load_modules/_yaml.py +23 -0
  286. scitex/io/_mv_to_tmp.py +19 -0
  287. scitex/io/_path.py +286 -0
  288. scitex/io/_reload.py +78 -0
  289. scitex/io/_save.py +539 -0
  290. scitex/io/_save_modules/__init__.py +66 -0
  291. scitex/io/_save_modules/_catboost.py +22 -0
  292. scitex/io/_save_modules/_csv.py +89 -0
  293. scitex/io/_save_modules/_excel.py +49 -0
  294. scitex/io/_save_modules/_hdf5.py +249 -0
  295. scitex/io/_save_modules/_html.py +48 -0
  296. scitex/io/_save_modules/_image.py +140 -0
  297. scitex/io/_save_modules/_joblib.py +25 -0
  298. scitex/io/_save_modules/_json.py +25 -0
  299. scitex/io/_save_modules/_listed_dfs_as_csv.py +57 -0
  300. scitex/io/_save_modules/_listed_scalars_as_csv.py +42 -0
  301. scitex/io/_save_modules/_matlab.py +24 -0
  302. scitex/io/_save_modules/_mp4.py +29 -0
  303. scitex/io/_save_modules/_numpy.py +57 -0
  304. scitex/io/_save_modules/_optuna_study_as_csv_and_pngs.py +38 -0
  305. scitex/io/_save_modules/_pickle.py +45 -0
  306. scitex/io/_save_modules/_plotly.py +27 -0
  307. scitex/io/_save_modules/_text.py +23 -0
  308. scitex/io/_save_modules/_torch.py +26 -0
  309. scitex/io/_save_modules/_yaml.py +29 -0
  310. scitex/life/__init__.py +10 -0
  311. scitex/life/_monitor_rain.py +49 -0
  312. scitex/linalg/__init__.py +17 -0
  313. scitex/linalg/_distance.py +63 -0
  314. scitex/linalg/_geometric_median.py +64 -0
  315. scitex/linalg/_misc.py +73 -0
  316. scitex/nn/_AxiswiseDropout.py +27 -0
  317. scitex/nn/_BNet.py +126 -0
  318. scitex/nn/_BNet_Res.py +164 -0
  319. scitex/nn/_ChannelGainChanger.py +44 -0
  320. scitex/nn/_DropoutChannels.py +50 -0
  321. scitex/nn/_Filters.py +489 -0
  322. scitex/nn/_FreqGainChanger.py +110 -0
  323. scitex/nn/_GaussianFilter.py +48 -0
  324. scitex/nn/_Hilbert.py +111 -0
  325. scitex/nn/_MNet_1000.py +157 -0
  326. scitex/nn/_ModulationIndex.py +221 -0
  327. scitex/nn/_PAC.py +414 -0
  328. scitex/nn/_PSD.py +40 -0
  329. scitex/nn/_ResNet1D.py +120 -0
  330. scitex/nn/_SpatialAttention.py +25 -0
  331. scitex/nn/_Spectrogram.py +161 -0
  332. scitex/nn/_SwapChannels.py +50 -0
  333. scitex/nn/_TransposeLayer.py +19 -0
  334. scitex/nn/_Wavelet.py +183 -0
  335. scitex/nn/__init__.py +63 -0
  336. scitex/os/__init__.py +8 -0
  337. scitex/os/_mv.py +50 -0
  338. scitex/parallel/__init__.py +8 -0
  339. scitex/parallel/_run.py +151 -0
  340. scitex/path/__init__.py +33 -0
  341. scitex/path/_clean.py +52 -0
  342. scitex/path/_find.py +108 -0
  343. scitex/path/_get_module_path.py +51 -0
  344. scitex/path/_get_spath.py +35 -0
  345. scitex/path/_getsize.py +18 -0
  346. scitex/path/_increment_version.py +87 -0
  347. scitex/path/_mk_spath.py +51 -0
  348. scitex/path/_path.py +19 -0
  349. scitex/path/_split.py +23 -0
  350. scitex/path/_this_path.py +19 -0
  351. scitex/path/_version.py +101 -0
  352. scitex/pd/__init__.py +41 -0
  353. scitex/pd/_find_indi.py +126 -0
  354. scitex/pd/_find_pval.py +113 -0
  355. scitex/pd/_force_df.py +154 -0
  356. scitex/pd/_from_xyz.py +71 -0
  357. scitex/pd/_ignore_SettingWithCopyWarning.py +34 -0
  358. scitex/pd/_melt_cols.py +81 -0
  359. scitex/pd/_merge_columns.py +221 -0
  360. scitex/pd/_mv.py +63 -0
  361. scitex/pd/_replace.py +62 -0
  362. scitex/pd/_round.py +93 -0
  363. scitex/pd/_slice.py +63 -0
  364. scitex/pd/_sort.py +91 -0
  365. scitex/pd/_to_numeric.py +53 -0
  366. scitex/pd/_to_xy.py +59 -0
  367. scitex/pd/_to_xyz.py +110 -0
  368. scitex/plt/__init__.py +36 -0
  369. scitex/plt/_subplots/_AxesWrapper.py +182 -0
  370. scitex/plt/_subplots/_AxisWrapper.py +249 -0
  371. scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +414 -0
  372. scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +896 -0
  373. scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +368 -0
  374. scitex/plt/_subplots/_AxisWrapperMixins/_TrackingMixin.py +185 -0
  375. scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +16 -0
  376. scitex/plt/_subplots/_FigWrapper.py +226 -0
  377. scitex/plt/_subplots/_SubplotsWrapper.py +171 -0
  378. scitex/plt/_subplots/__init__.py +111 -0
  379. scitex/plt/_subplots/_export_as_csv.py +232 -0
  380. scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +61 -0
  381. scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +90 -0
  382. scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +49 -0
  383. scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +46 -0
  384. scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +39 -0
  385. scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +125 -0
  386. scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +72 -0
  387. scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +34 -0
  388. scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +36 -0
  389. scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +79 -0
  390. scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -0
  391. scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +32 -0
  392. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +79 -0
  393. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +75 -0
  394. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +64 -0
  395. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +44 -0
  396. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +70 -0
  397. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +66 -0
  398. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +95 -0
  399. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +67 -0
  400. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +52 -0
  401. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +46 -0
  402. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +46 -0
  403. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +46 -0
  404. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +46 -0
  405. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +44 -0
  406. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +103 -0
  407. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +82 -0
  408. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +58 -0
  409. scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +117 -0
  410. scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +30 -0
  411. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +51 -0
  412. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +93 -0
  413. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +94 -0
  414. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +92 -0
  415. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +65 -0
  416. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +59 -0
  417. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +58 -0
  418. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +45 -0
  419. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +70 -0
  420. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +75 -0
  421. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +75 -0
  422. scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +155 -0
  423. scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +64 -0
  424. scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +77 -0
  425. scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +210 -0
  426. scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +342 -0
  427. scitex/plt/_subplots/_export_as_csv_formatters.py +115 -0
  428. scitex/plt/_tpl.py +28 -0
  429. scitex/plt/ax/__init__.py +114 -0
  430. scitex/plt/ax/_plot/__init__.py +53 -0
  431. scitex/plt/ax/_plot/_plot_circular_hist.py +124 -0
  432. scitex/plt/ax/_plot/_plot_conf_mat.py +136 -0
  433. scitex/plt/ax/_plot/_plot_cube.py +57 -0
  434. scitex/plt/ax/_plot/_plot_ecdf.py +84 -0
  435. scitex/plt/ax/_plot/_plot_fillv.py +55 -0
  436. scitex/plt/ax/_plot/_plot_heatmap.py +266 -0
  437. scitex/plt/ax/_plot/_plot_image.py +94 -0
  438. scitex/plt/ax/_plot/_plot_joyplot.py +76 -0
  439. scitex/plt/ax/_plot/_plot_raster.py +172 -0
  440. scitex/plt/ax/_plot/_plot_rectangle.py +69 -0
  441. scitex/plt/ax/_plot/_plot_scatter_hist.py +133 -0
  442. scitex/plt/ax/_plot/_plot_shaded_line.py +142 -0
  443. scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +221 -0
  444. scitex/plt/ax/_plot/_plot_violin.py +343 -0
  445. scitex/plt/ax/_style/__init__.py +38 -0
  446. scitex/plt/ax/_style/_add_marginal_ax.py +44 -0
  447. scitex/plt/ax/_style/_add_panel.py +92 -0
  448. scitex/plt/ax/_style/_extend.py +64 -0
  449. scitex/plt/ax/_style/_force_aspect.py +37 -0
  450. scitex/plt/ax/_style/_format_label.py +23 -0
  451. scitex/plt/ax/_style/_hide_spines.py +84 -0
  452. scitex/plt/ax/_style/_map_ticks.py +182 -0
  453. scitex/plt/ax/_style/_rotate_labels.py +215 -0
  454. scitex/plt/ax/_style/_sci_note.py +279 -0
  455. scitex/plt/ax/_style/_set_log_scale.py +299 -0
  456. scitex/plt/ax/_style/_set_meta.py +261 -0
  457. scitex/plt/ax/_style/_set_n_ticks.py +37 -0
  458. scitex/plt/ax/_style/_set_size.py +16 -0
  459. scitex/plt/ax/_style/_set_supxyt.py +116 -0
  460. scitex/plt/ax/_style/_set_ticks.py +276 -0
  461. scitex/plt/ax/_style/_set_xyt.py +121 -0
  462. scitex/plt/ax/_style/_share_axes.py +264 -0
  463. scitex/plt/ax/_style/_shift.py +139 -0
  464. scitex/plt/ax/_style/_show_spines.py +333 -0
  465. scitex/plt/color/_PARAMS.py +70 -0
  466. scitex/plt/color/__init__.py +52 -0
  467. scitex/plt/color/_add_hue_col.py +41 -0
  468. scitex/plt/color/_colors.py +205 -0
  469. scitex/plt/color/_get_colors_from_cmap.py +134 -0
  470. scitex/plt/color/_interpolate.py +29 -0
  471. scitex/plt/color/_vizualize_colors.py +54 -0
  472. scitex/plt/utils/__init__.py +44 -0
  473. scitex/plt/utils/_calc_bacc_from_conf_mat.py +46 -0
  474. scitex/plt/utils/_calc_nice_ticks.py +101 -0
  475. scitex/plt/utils/_close.py +68 -0
  476. scitex/plt/utils/_colorbar.py +96 -0
  477. scitex/plt/utils/_configure_mpl.py +295 -0
  478. scitex/plt/utils/_histogram_utils.py +132 -0
  479. scitex/plt/utils/_im2grid.py +70 -0
  480. scitex/plt/utils/_is_valid_axis.py +78 -0
  481. scitex/plt/utils/_mk_colorbar.py +65 -0
  482. scitex/plt/utils/_mk_patches.py +26 -0
  483. scitex/plt/utils/_scientific_captions.py +638 -0
  484. scitex/plt/utils/_scitex_config.py +223 -0
  485. scitex/reproduce/__init__.py +14 -0
  486. scitex/reproduce/_fix_seeds.py +45 -0
  487. scitex/reproduce/_gen_ID.py +55 -0
  488. scitex/reproduce/_gen_timestamp.py +35 -0
  489. scitex/res/__init__.py +5 -0
  490. scitex/resource/__init__.py +13 -0
  491. scitex/resource/_get_processor_usages.py +281 -0
  492. scitex/resource/_get_specs.py +280 -0
  493. scitex/resource/_log_processor_usages.py +190 -0
  494. scitex/resource/_utils/__init__.py +31 -0
  495. scitex/resource/_utils/_get_env_info.py +481 -0
  496. scitex/resource/limit_ram.py +33 -0
  497. scitex/scholar/__init__.py +24 -0
  498. scitex/scholar/_local_search.py +454 -0
  499. scitex/scholar/_paper.py +244 -0
  500. scitex/scholar/_pdf_downloader.py +325 -0
  501. scitex/scholar/_search.py +393 -0
  502. scitex/scholar/_vector_search.py +370 -0
  503. scitex/scholar/_web_sources.py +457 -0
  504. scitex/stats/__init__.py +31 -0
  505. scitex/stats/_calc_partial_corr.py +17 -0
  506. scitex/stats/_corr_test_multi.py +94 -0
  507. scitex/stats/_corr_test_wrapper.py +115 -0
  508. scitex/stats/_describe_wrapper.py +90 -0
  509. scitex/stats/_multiple_corrections.py +63 -0
  510. scitex/stats/_nan_stats.py +93 -0
  511. scitex/stats/_p2stars.py +116 -0
  512. scitex/stats/_p2stars_wrapper.py +56 -0
  513. scitex/stats/_statistical_tests.py +73 -0
  514. scitex/stats/desc/__init__.py +40 -0
  515. scitex/stats/desc/_describe.py +189 -0
  516. scitex/stats/desc/_nan.py +289 -0
  517. scitex/stats/desc/_real.py +94 -0
  518. scitex/stats/multiple/__init__.py +14 -0
  519. scitex/stats/multiple/_bonferroni_correction.py +72 -0
  520. scitex/stats/multiple/_fdr_correction.py +400 -0
  521. scitex/stats/multiple/_multicompair.py +28 -0
  522. scitex/stats/tests/__corr_test.py +277 -0
  523. scitex/stats/tests/__corr_test_multi.py +343 -0
  524. scitex/stats/tests/__corr_test_single.py +277 -0
  525. scitex/stats/tests/__init__.py +22 -0
  526. scitex/stats/tests/_brunner_munzel_test.py +192 -0
  527. scitex/stats/tests/_nocorrelation_test.py +28 -0
  528. scitex/stats/tests/_smirnov_grubbs.py +98 -0
  529. scitex/str/__init__.py +113 -0
  530. scitex/str/_clean_path.py +75 -0
  531. scitex/str/_color_text.py +52 -0
  532. scitex/str/_decapitalize.py +58 -0
  533. scitex/str/_factor_out_digits.py +281 -0
  534. scitex/str/_format_plot_text.py +498 -0
  535. scitex/str/_grep.py +48 -0
  536. scitex/str/_latex.py +155 -0
  537. scitex/str/_latex_fallback.py +471 -0
  538. scitex/str/_mask_api.py +39 -0
  539. scitex/str/_mask_api_key.py +8 -0
  540. scitex/str/_parse.py +158 -0
  541. scitex/str/_print_block.py +47 -0
  542. scitex/str/_print_debug.py +68 -0
  543. scitex/str/_printc.py +62 -0
  544. scitex/str/_readable_bytes.py +38 -0
  545. scitex/str/_remove_ansi.py +23 -0
  546. scitex/str/_replace.py +134 -0
  547. scitex/str/_search.py +125 -0
  548. scitex/str/_squeeze_space.py +36 -0
  549. scitex/tex/__init__.py +10 -0
  550. scitex/tex/_preview.py +103 -0
  551. scitex/tex/_to_vec.py +116 -0
  552. scitex/torch/__init__.py +18 -0
  553. scitex/torch/_apply_to.py +34 -0
  554. scitex/torch/_nan_funcs.py +77 -0
  555. scitex/types/_ArrayLike.py +44 -0
  556. scitex/types/_ColorLike.py +21 -0
  557. scitex/types/__init__.py +14 -0
  558. scitex/types/_is_listed_X.py +70 -0
  559. scitex/utils/__init__.py +22 -0
  560. scitex/utils/_compress_hdf5.py +116 -0
  561. scitex/utils/_email.py +120 -0
  562. scitex/utils/_grid.py +148 -0
  563. scitex/utils/_notify.py +247 -0
  564. scitex/utils/_search.py +121 -0
  565. scitex/web/__init__.py +38 -0
  566. scitex/web/_search_pubmed.py +438 -0
  567. scitex/web/_summarize_url.py +158 -0
  568. scitex-2.0.0.dist-info/METADATA +307 -0
  569. scitex-2.0.0.dist-info/RECORD +572 -0
  570. scitex-2.0.0.dist-info/WHEEL +6 -0
  571. scitex-2.0.0.dist-info/licenses/LICENSE +7 -0
  572. scitex-2.0.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,194 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Time-stamp: "2024-03-12 19:52:48 (ywatanabe)"
4
+
5
+ import re
6
+
7
+ import matplotlib
8
+ import matplotlib.pyplot as plt
9
+ import scitex
10
+ import numpy as np
11
+ import pandas as pd
12
+
13
+
14
+ def process_i_global(metrics_df):
15
+ if metrics_df.index.name != "i_global":
16
+ try:
17
+ metrics_df = metrics_df.set_index("i_global")
18
+ except KeyError:
19
+ print(
20
+ "Error: The DataFrame does not contain a column named 'i_global'. Please check the column names."
21
+ )
22
+ except Exception as e:
23
+ print(f"An unexpected error occurred: {e}")
24
+ else:
25
+ print("The index is already set to 'i_global'.")
26
+ metrics_df["i_global"] = metrics_df.index # alias
27
+ return metrics_df
28
+
29
+
30
+ def set_yaxis_for_acc(ax, key_plt):
31
+ if re.search("[aA][cC][cC]", key_plt): # acc, ylim, yticks
32
+ ax.set_ylim(0, 1)
33
+ ax.set_yticks([0, 0.5, 1.0])
34
+ return ax
35
+
36
+
37
+ def plot_tra(ax, metrics_df, key_plt, lw=1, color="blue"):
38
+ indi_step = scitex.gen.search("^[Tt]rain(ing)?", metrics_df.step, as_bool=True)[0]
39
+ step_df = metrics_df[indi_step]
40
+
41
+ if len(step_df) != 0:
42
+ ax.plot(
43
+ step_df.index, # i_global
44
+ step_df[key_plt],
45
+ label="Training",
46
+ color=color,
47
+ linewidth=lw,
48
+ )
49
+ ax.legend()
50
+
51
+ return ax
52
+
53
+
54
+ def scatter_val(ax, metrics_df, key_plt, s=3, color="green"):
55
+ indi_step = scitex.gen.search("^[Vv]alid(ation)?", metrics_df.step, as_bool=True)[0]
56
+ step_df = metrics_df[indi_step]
57
+ if len(step_df) != 0:
58
+ ax.scatter(
59
+ step_df.index,
60
+ step_df[key_plt],
61
+ label="Validation",
62
+ color=color,
63
+ s=s,
64
+ alpha=0.9,
65
+ )
66
+ ax.legend()
67
+ return ax
68
+
69
+
70
+ def scatter_tes(ax, metrics_df, key_plt, s=3, color="red"):
71
+ indi_step = scitex.gen.search("^[Tt]est", metrics_df.step, as_bool=True)[0]
72
+ step_df = metrics_df[indi_step]
73
+ if len(step_df) != 0:
74
+ ax.scatter(
75
+ step_df.index,
76
+ step_df[key_plt],
77
+ label="Test",
78
+ color=color,
79
+ s=s,
80
+ alpha=0.9,
81
+ )
82
+ ax.legend()
83
+ return ax
84
+
85
+
86
+ def vline_at_epochs(ax, metrics_df, color="grey"):
87
+ # Determine the global iteration values where new epochs start
88
+ epoch_starts = metrics_df[metrics_df["i_batch"] == 0].index.values
89
+ epoch_labels = metrics_df[metrics_df["i_batch"] == 0].index.values
90
+ ax.vlines(
91
+ x=epoch_starts,
92
+ ymin=-1e4, # ax.get_ylim()[0],
93
+ ymax=1e4, # ax.get_ylim()[1],
94
+ linestyle="--",
95
+ color=color,
96
+ )
97
+ return ax
98
+
99
+
100
+ def select_ticks(metrics_df, max_n_ticks=4):
101
+ # Calculate epoch starts and their corresponding labels for ticks
102
+ unique_epochs = metrics_df["i_epoch"].drop_duplicates().values
103
+ epoch_starts = (
104
+ metrics_df[metrics_df["i_batch"] == 0]["i_global"].drop_duplicates().values
105
+ )
106
+
107
+ # Given the performance issue, let's just select a few epoch starts for labeling
108
+ # We use MaxNLocator to pick ticks; however, it's used here to choose a reasonable number of epoch markers
109
+ if len(epoch_starts) > max_n_ticks:
110
+ selected_ticks = np.linspace(
111
+ epoch_starts[0], epoch_starts[-1], max_n_ticks, dtype=int
112
+ )
113
+ # Ensure selected ticks are within the epoch starts for accurate labeling
114
+ selected_labels = [
115
+ metrics_df[metrics_df["i_global"] == tick]["i_epoch"].iloc[0]
116
+ for tick in selected_ticks
117
+ ]
118
+ else:
119
+ selected_ticks = epoch_starts
120
+ selected_labels = unique_epochs
121
+ return selected_ticks, selected_labels
122
+
123
+
124
+ def learning_curve(
125
+ metrics_df,
126
+ keys,
127
+ title="Title",
128
+ max_n_ticks=4,
129
+ scattersize=3,
130
+ linewidth=1,
131
+ yscale="linear",
132
+ spath=None,
133
+ ):
134
+ _plt, cc = scitex.plt.configure_mpl(plt, show=False)
135
+ """
136
+ Example:
137
+ print(metrics_df)
138
+ # step i_global i_epoch i_batch loss
139
+ # 0 Training 0 0 0 0.717023
140
+ # 1 Training 1 0 1 0.703844
141
+ # 2 Training 2 0 2 0.696279
142
+ # 3 Training 3 0 3 0.685384
143
+ # 4 Training 4 0 4 0.670675
144
+ # ... ... ... ... ... ...
145
+ # 123266 Test 66900 299 866 0.000067
146
+ # 123267 Test 66900 299 867 0.000067
147
+ # 123268 Test 66900 299 868 0.000067
148
+ # 123269 Test 66900 299 869 0.000067
149
+ # 123270 Test 66900 299 870 0.000068
150
+
151
+ # [123271 rows x 5 columns]
152
+ """
153
+ metrics_df = process_i_global(metrics_df)
154
+ selected_ticks, selected_labels = select_ticks(metrics_df)
155
+
156
+ # fig, axes = plt.subplots(len(keys), 1, sharex=True, sharey=False)
157
+ fig, axes = scitex.plt.subplots(len(keys), 1, sharex=True, sharey=False)
158
+ axes = axes if len(keys) != 1 else [axes]
159
+
160
+ axes[-1].set_xlabel("Iteration #")
161
+ fig.text(0.5, 0.95, title, ha="center")
162
+
163
+ for i_plt, key_plt in enumerate(keys):
164
+ ax = axes[i_plt]
165
+ ax.set_yscale(yscale)
166
+ ax.set_ylabel(key_plt)
167
+
168
+ ax = set_yaxis_for_acc(ax, key_plt)
169
+ ax = plot_tra(ax, metrics_df, key_plt, lw=linewidth, color=cc["blue"])
170
+ ax = scatter_val(ax, metrics_df, key_plt, s=scattersize, color=cc["green"])
171
+ ax = scatter_tes(ax, metrics_df, key_plt, s=scattersize, color=cc["red"])
172
+
173
+ # # Custom tick marks
174
+ # ax = scitex.plt.ax.map_ticks(
175
+ # ax, selected_ticks, selected_labels, axis="x"
176
+ # )
177
+
178
+ if spath is not None:
179
+ scitex.io.save(fig, spath)
180
+
181
+ return fig
182
+
183
+
184
+ if __name__ == "__main__":
185
+
186
+ plt, cc = scitex.plt.configure_mpl(plt)
187
+ # lpath = "./scripts/ml/.old/pretrain_EEGPT_old/2024-01-29-12-04_eDflsnWv_v8/metrics.csv"
188
+ lpath = "./scripts/ml/pretrain_EEGPT/[DEBUG] 2024-02-11-06-45_4uUpdfpb/metrics.csv"
189
+
190
+ sdir, _, _ = scitex.gen.split_fpath(lpath)
191
+ metrics_df = scitex.io.load(lpath)
192
+ fig = learning_curve(metrics_df, title="Pretraining on db_v8", yscale="log")
193
+ # plt.show()
194
+ scitex.io.save(fig, sdir + "learning_curve.png")
@@ -0,0 +1,111 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Time-stamp: "2024-03-30 08:24:55 (ywatanabe)"
4
+ import os
5
+
6
+
7
+ def optuna_study(lpath, value_str, sort=False):
8
+ """
9
+ Loads an Optuna study and generates various visualizations for each target metric.
10
+
11
+ Parameters:
12
+ - lpath (str): Path to the Optuna study database.
13
+ - value_str (str): The name of the column to be used as the optimization target.
14
+
15
+ Returns:
16
+ - None
17
+ """
18
+ import matplotlib
19
+
20
+ matplotlib.use("Agg")
21
+ import matplotlib.pyplot as plt
22
+ import scitex
23
+ import optuna
24
+ import pandas as pd
25
+
26
+ plt, CC = scitex.plt.configure_mpl(plt, fig_scale=3)
27
+
28
+ lpath = lpath.replace("./", "/")
29
+
30
+ study = optuna.load_study(study_name=None, storage=lpath)
31
+
32
+ sdir = lpath.replace("sqlite:///", "./").replace(".db", "/")
33
+
34
+ # To get the best trial:
35
+ best_trial = study.best_trial
36
+ print(f"Best trial number: {best_trial.number}")
37
+ print(f"Best trial value: {best_trial.value}")
38
+ print(f"Best trial parameters: {best_trial.params}")
39
+ print(f"Best trial user attributes: {best_trial.user_attrs}")
40
+
41
+ # Merge the user attributes into the study history DataFrame
42
+ study_history = study.trials_dataframe().rename(columns={"value": value_str})
43
+
44
+ if sort:
45
+ ascending = "MINIMIZE" in str(study.directions[0]) # [REVISED]
46
+ study_history = study_history.sort_values([value_str], ascending=ascending)
47
+
48
+ # Add user attributes to the study history DataFrame
49
+ attrs_df = []
50
+ for trial in study.trials:
51
+ user_attrs = trial.user_attrs
52
+ user_attrs = {k: v for k, v in user_attrs.items()}
53
+ attrs_df.append({"number": trial.number, **user_attrs})
54
+ attrs_df = pd.DataFrame(attrs_df).set_index("number")
55
+
56
+ # Updates study history
57
+ study_history = study_history.merge(
58
+ attrs_df, left_index=True, right_index=True, how="left"
59
+ ).set_index("number")
60
+ try:
61
+ study_history = scitex.gen.mv_col(study_history, "SDIR", 1)
62
+ study_history["SDIR"] = study_history["SDIR"].apply(
63
+ lambda x: str(x).replace("RUNNING", "FINISHED")
64
+ )
65
+ best_trial_dir = study_history["SDIR"].iloc[0]
66
+ scitex.gen.symlink(best_trial_dir, sdir + "best_trial", force=True)
67
+ except Exception as e:
68
+ print(e)
69
+ scitex.io.save(study_history, sdir + "study_history.csv")
70
+ print(study_history)
71
+
72
+ # To visualize the optimization history:
73
+ fig = optuna.visualization.plot_optimization_history(study, target_name=value_str)
74
+ scitex.io.save(fig, sdir + "optimization_history.png")
75
+ scitex.io.save(fig, sdir + "optimization_history.html")
76
+ plt.close()
77
+
78
+ # To visualize the parameter importances:
79
+ fig = optuna.visualization.plot_param_importances(study, target_name=value_str)
80
+ scitex.io.save(fig, sdir + "param_importances.png")
81
+ scitex.io.save(fig, sdir + "param_importances.html")
82
+ plt.close()
83
+
84
+ # To visualize the slice of the study:
85
+ fig = optuna.visualization.plot_slice(study, target_name=value_str)
86
+ scitex.io.save(fig, sdir + "slice.png")
87
+ scitex.io.save(fig, sdir + "slice.html")
88
+ plt.close()
89
+
90
+ # To visualize the contour plot of the study:
91
+ fig = optuna.visualization.plot_contour(study, target_name=value_str)
92
+ scitex.io.save(fig, sdir + "contour.png")
93
+ scitex.io.save(fig, sdir + "contour.html")
94
+ plt.close()
95
+
96
+ # To visualize the parallel coordinate plot of the study:
97
+ fig = optuna.visualization.plot_parallel_coordinate(study, target_name=value_str)
98
+ scitex.io.save(fig, sdir + "parallel_coordinate.png")
99
+ scitex.io.save(fig, sdir + "parallel_coordinate.html")
100
+ plt.close()
101
+
102
+
103
+ if __name__ == "__main__":
104
+ scitex.plt.configure_mpl(plt, fig_scale=3)
105
+ lpath = "sqlite:///scripts/ml/clf/sub_conv_transformer_optuna/optuna_studies/optuna_study_v001.db"
106
+ lpath = "sqlite:///scripts/ml/clf/rocket_optuna/optuna_studies/optuna_study_v001.db"
107
+ optuna_study(lpath, "Validation bACC")
108
+ # scripts/ml/clf/sub_conv_transformer/optuna_studies/optuna_study_v032
109
+
110
+ lpath = "sqlite:///scripts/ml/clf/sub_conv_transformer_optuna/optuna_studies/optuna_study_v020.db"
111
+ scitex.ml.plt.optuna_study(lpath, "val_loss", sort=True)
@@ -0,0 +1,2 @@
1
+ #!/usr/bin/env python3
2
+ # Time-stamp: "2021-09-16 01:25:35 (ywatanabe)"
@@ -0,0 +1,60 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ # Time-stamp: "2024-11-07 18:56:57 (ywatanabe)"
4
+ # File: ./scitex_repo/src/scitex/ai/plt/aucs/example.py
5
+
6
+ import matplotlib.pyplot as plt
7
+ import scitex
8
+ import numpy as np
9
+ from sklearn import datasets, svm
10
+ from sklearn.model_selection import train_test_split
11
+ from .roc_auc import roc_auc
12
+ from .pre_rec_auc import pre_rec_auc
13
+
14
+ ################################################################################
15
+ ## MNIST
16
+ ################################################################################
17
+
18
+ digits = datasets.load_digits()
19
+
20
+ # flatten the images
21
+ n_samples = len(digits.images)
22
+ data = digits.images.reshape((n_samples, -1))
23
+
24
+ # Create a classifier: a support vector classifier
25
+ clf = svm.SVC(gamma=0.001, probability=True)
26
+
27
+ # Split data into 50% train and 50% test subsets
28
+ X_train, X_test, y_train, y_test = train_test_split(
29
+ data, digits.target, test_size=0.5, shuffle=False
30
+ )
31
+
32
+ # Learn the digits on the train subset
33
+ clf.fit(X_train, y_train)
34
+
35
+ # Predict the value of the digit on the test subset
36
+ predicted_proba = clf.predict_proba(X_test)
37
+ predicted = clf.predict(X_test)
38
+
39
+ n_classes = len(np.unique(digits.target))
40
+ labels = ["Class {}".format(i) for i in range(n_classes)]
41
+
42
+ ## Configures matplotlib
43
+ plt.rcParams["font.size"] = 20
44
+ plt.rcParams["legend.fontsize"] = "xx-small"
45
+ scale = 0.75
46
+ plt.rcParams["figure.figsize"] = (16 * scale, 9 * scale)
47
+
48
+ ################################################################################
49
+ ## Main
50
+ ################################################################################
51
+ ## ROC Curve
52
+ fig_roc, metrics_roc = roc_auc(plt, y_test, predicted_proba, labels)
53
+ fig_roc.show()
54
+ ## Precision-Recall Curve
55
+ fig_pre_rec, metrics_pre_rec = pre_rec_auc(plt, y_test, predicted_proba, labels)
56
+ fig_pre_rec.show()
57
+
58
+ #
59
+
60
+ # EOF
@@ -0,0 +1,223 @@
1
+ #!/usr/bin/env python3
2
+
3
+ import warnings
4
+ from itertools import cycle
5
+
6
+ import numpy as np
7
+ from sklearn.metrics import average_precision_score, precision_recall_curve
8
+
9
+
10
+ def solve_the_intersection_of_a_line_and_iso_f1_curve(f1, a, b):
11
+ """
12
+ Determines the intersection of the following lines:
13
+ 1) a line: y = a * x + b
14
+ 2) the iso-f1 curve: y = f1 * x / (2 * x - f1)
15
+ , where a, b, and f1 are the constant values.
16
+ """
17
+ _a = 2 * a
18
+ _b = -a * f1 + 2 * b - f1
19
+ _c = -b * f1
20
+
21
+ x_f = (-_b + np.sqrt(_b**2 - 4 * _a * _c)) / (2 * _a)
22
+ y_f = a * x_f + b
23
+
24
+ return (x_f, y_f)
25
+
26
+
27
+ def to_onehot(labels, n_classes):
28
+ eye = np.eye(n_classes, dtype=int)
29
+ return eye[labels]
30
+
31
+
32
+ def pre_rec_auc(plt, true_class, pred_proba, labels):
33
+ """
34
+ Calculates the precision recall curve.
35
+ """
36
+
37
+ # Use label_binarize to be multi-label like settings
38
+ n_classes = len(labels)
39
+ true_class_onehot = to_onehot(true_class, n_classes)
40
+
41
+ # For each class
42
+ precision = dict()
43
+ recall = dict()
44
+ threshold = dict()
45
+ pre_rec_auc = dict()
46
+ for i in range(n_classes):
47
+ true_class_i_onehot = true_class_onehot[:, i]
48
+ pred_proba_i = pred_proba[:, i]
49
+
50
+ try:
51
+ precision[i], recall[i], threshold[i] = precision_recall_curve(
52
+ true_class_i_onehot,
53
+ pred_proba_i,
54
+ )
55
+ pre_rec_auc[i] = average_precision_score(true_class_i_onehot, pred_proba_i)
56
+ except Exception as e:
57
+ print(e)
58
+ precision[i], recall[i], threshold[i], pre_rec_auc[i] = (
59
+ np.nan,
60
+ np.nan,
61
+ np.nan,
62
+ np.nan,
63
+ )
64
+
65
+ ## Average precision: micro and macro
66
+
67
+ # A "micro-average": quantifying score on all classes jointly
68
+ precision["micro"], recall["micro"], threshold["micro"] = precision_recall_curve(
69
+ true_class_onehot.ravel(), pred_proba.ravel()
70
+ )
71
+ pre_rec_auc["micro"] = average_precision_score(
72
+ true_class_onehot, pred_proba, average="micro"
73
+ )
74
+
75
+ # macro
76
+ _pre_rec_aucs = []
77
+ for i in range(n_classes):
78
+ try:
79
+ _pre_rec_aucs.append(
80
+ average_precision_score(
81
+ true_class_onehot[:, i], pred_proba[:, i], average="macro"
82
+ )
83
+ )
84
+ except Exception as e:
85
+ print(
86
+ f'\nPRE-REC-AUC for "{labels[i]}" was not defined and NaN-filled '
87
+ "for a calculation purpose (for the macro avg.)\n"
88
+ )
89
+ _pre_rec_aucs.append(np.nan)
90
+ pre_rec_auc["macro"] = np.nanmean(_pre_rec_aucs)
91
+
92
+ # pre_rec_auc["macro"] = average_precision_score(
93
+ # true_class_onehot, pred_proba, average="macro"
94
+ # )
95
+
96
+ # Plot Precision-Recall curve for each class and iso-f1 curves
97
+ colors = cycle(["navy", "turquoise", "darkorange", "cornflowerblue", "teal"])
98
+ fig, ax = plt.subplots()
99
+ ax.set_box_aspect(1)
100
+ lines = []
101
+ legends = []
102
+
103
+ # iso-F1: By definition, an iso-F1 curve contains all points
104
+ # in the precision/recall space whose F1 scores are the same.
105
+ f_scores = np.linspace(0.2, 0.8, num=4)
106
+ # for f_score in f_scores:
107
+ for i_f, f_score in enumerate(f_scores):
108
+ x = np.linspace(0.01, 1) # num=50
109
+ y = f_score * x / (2 * x - f_score)
110
+ (l,) = ax.plot(x[y >= 0], y[y >= 0], color="gray", alpha=0.2)
111
+
112
+ # ax.annotate("f1={0:0.1f}".format(f_score), xy=(0.9, y[45] + 0.02))
113
+ x_f, y_f = solve_the_intersection_of_a_line_and_iso_f1_curve(f_score, 0.5, 0.5)
114
+ ax.annotate("f1={0:0.1f}".format(f_score), xy=(x_f - 0.1, y_f - 0.1 * 0.5))
115
+ # ax.annotate("f1={0:0.1f}".format(f_score), xy=(y[35] - 0.02 * (3 - i_f), 0.85))
116
+
117
+ lines.append(l)
118
+ legends.append("iso-f1 curves")
119
+
120
+ """
121
+ ## In this project, average precision-recall curve is not drawn.
122
+ (l,) = ax.plot(recall["micro"], precision["micro"], color="gold", lw=2)
123
+ lines.append(l)
124
+ legends.append("micro-average\n(AUC = {0:0.2f})" "".format(pre_rec_auc["micro"]))
125
+ """
126
+
127
+ ## Each Class
128
+ for i, color in zip(range(n_classes), colors):
129
+ (l,) = ax.plot(recall[i], precision[i], color=color, lw=2)
130
+ lines.append(l)
131
+ legends.append("{0} (AUC = {1:0.2f})" "".format(labels[i], pre_rec_auc[i]))
132
+
133
+ # fig = plt.gcf()
134
+ fig.subplots_adjust(bottom=0.25)
135
+ ax.set_xlim([-0.01, 1.01])
136
+ ax.set_ylim([-0.01, 1.01])
137
+ ax.set_xticks([0.0, 0.5, 1.0])
138
+ ax.set_yticks([0.0, 0.5, 1.0])
139
+ ax.set_xlabel("Recall")
140
+ ax.set_ylabel("Precision")
141
+ ax.set_title("Precision-Recall Curve")
142
+ ax.legend(lines, legends, loc="lower left")
143
+
144
+ metrics = dict(
145
+ pre_rec_auc=pre_rec_auc,
146
+ precision=precision,
147
+ recall=recall,
148
+ threshold=threshold,
149
+ )
150
+
151
+ return fig, metrics
152
+
153
+
154
+ if __name__ == "__main__":
155
+ import matplotlib.pyplot as plt
156
+ import numpy as np
157
+ from scipy.special import softmax
158
+ from sklearn import datasets, svm
159
+ from sklearn.model_selection import train_test_split
160
+
161
+ def mk_demo_data(n_classes=2, batch_size=16):
162
+ labels = ["cls{}".format(i_cls) for i_cls in range(n_classes)]
163
+ true_class = np.random.randint(0, n_classes, size=(batch_size,))
164
+ pred_proba = softmax(np.random.rand(batch_size, n_classes), axis=-1)
165
+ pred_class = np.argmax(pred_proba, axis=-1)
166
+ return labels, true_class, pred_proba, pred_class
167
+
168
+ ## Fix seed
169
+ np.random.seed(42)
170
+
171
+ """
172
+ ################################################################################
173
+ ## A Minimal Example
174
+ ################################################################################
175
+ labels, true_class, pred_proba, pred_class = \
176
+ mk_demo_data(n_classes=10, batch_size=256)
177
+
178
+ pre_rec_auc, precision, recall, threshold = \
179
+ calc_pre_rec_auc(true_class, pred_proba, labels, plot=False)
180
+ """
181
+
182
+ ################################################################################
183
+ ## MNIST
184
+ ################################################################################
185
+ from sklearn import datasets, metrics, svm
186
+ from sklearn.model_selection import train_test_split
187
+
188
+ digits = datasets.load_digits()
189
+
190
+ # flatten the images
191
+ n_samples = len(digits.images)
192
+ data = digits.images.reshape((n_samples, -1))
193
+
194
+ # Create a classifier: a support vector classifier
195
+ clf = svm.SVC(gamma=0.001, probability=True)
196
+
197
+ # Split data into 50% train and 50% test subsets
198
+ X_train, X_test, y_train, y_test = train_test_split(
199
+ data, digits.target, test_size=0.5, shuffle=False
200
+ )
201
+
202
+ # Learn the digits on the train subset
203
+ clf.fit(X_train, y_train)
204
+
205
+ # Predict the value of the digit on the test subset
206
+ predicted_proba = clf.predict_proba(X_test)
207
+ predicted = clf.predict(X_test)
208
+
209
+ n_classes = len(np.unique(digits.target))
210
+ labels = ["Class {}".format(i) for i in range(n_classes)]
211
+
212
+ ## Configures matplotlib
213
+ plt.rcParams["font.size"] = 20
214
+ plt.rcParams["legend.fontsize"] = "xx-small"
215
+ plt.rcParams["figure.figsize"] = (16 * 1.2, 9 * 1.2)
216
+
217
+ ## Main
218
+ fig, metrics_dict = pre_rec_auc(plt, y_test, predicted_proba, labels)
219
+
220
+ fig.show()
221
+
222
+ print(metrics_dict.keys())
223
+ # dict_keys(['pre_rec_auc', 'precision', 'recall', 'threshold'])