scitex 2.0.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +73 -0
- scitex/__main__.py +89 -0
- scitex/__version__.py +14 -0
- scitex/_sh.py +59 -0
- scitex/ai/_LearningCurveLogger.py +583 -0
- scitex/ai/__Classifiers.py +101 -0
- scitex/ai/__init__.py +55 -0
- scitex/ai/_gen_ai/_Anthropic.py +173 -0
- scitex/ai/_gen_ai/_BaseGenAI.py +336 -0
- scitex/ai/_gen_ai/_DeepSeek.py +175 -0
- scitex/ai/_gen_ai/_Google.py +161 -0
- scitex/ai/_gen_ai/_Groq.py +97 -0
- scitex/ai/_gen_ai/_Llama.py +142 -0
- scitex/ai/_gen_ai/_OpenAI.py +230 -0
- scitex/ai/_gen_ai/_PARAMS.py +565 -0
- scitex/ai/_gen_ai/_Perplexity.py +191 -0
- scitex/ai/_gen_ai/__init__.py +32 -0
- scitex/ai/_gen_ai/_calc_cost.py +78 -0
- scitex/ai/_gen_ai/_format_output_func.py +183 -0
- scitex/ai/_gen_ai/_genai_factory.py +71 -0
- scitex/ai/act/__init__.py +8 -0
- scitex/ai/act/_define.py +11 -0
- scitex/ai/classification/__init__.py +7 -0
- scitex/ai/classification/classification_reporter.py +1137 -0
- scitex/ai/classification/classifier_server.py +131 -0
- scitex/ai/classification/classifiers.py +101 -0
- scitex/ai/classification_reporter.py +1161 -0
- scitex/ai/classifier_server.py +131 -0
- scitex/ai/clustering/__init__.py +11 -0
- scitex/ai/clustering/_pca.py +115 -0
- scitex/ai/clustering/_umap.py +376 -0
- scitex/ai/early_stopping.py +149 -0
- scitex/ai/feature_extraction/__init__.py +56 -0
- scitex/ai/feature_extraction/vit.py +148 -0
- scitex/ai/genai/__init__.py +277 -0
- scitex/ai/genai/anthropic.py +177 -0
- scitex/ai/genai/anthropic_provider.py +320 -0
- scitex/ai/genai/anthropic_refactored.py +109 -0
- scitex/ai/genai/auth_manager.py +200 -0
- scitex/ai/genai/base_genai.py +336 -0
- scitex/ai/genai/base_provider.py +291 -0
- scitex/ai/genai/calc_cost.py +78 -0
- scitex/ai/genai/chat_history.py +307 -0
- scitex/ai/genai/cost_tracker.py +276 -0
- scitex/ai/genai/deepseek.py +188 -0
- scitex/ai/genai/deepseek_provider.py +251 -0
- scitex/ai/genai/format_output_func.py +183 -0
- scitex/ai/genai/genai_factory.py +71 -0
- scitex/ai/genai/google.py +169 -0
- scitex/ai/genai/google_provider.py +228 -0
- scitex/ai/genai/groq.py +104 -0
- scitex/ai/genai/groq_provider.py +248 -0
- scitex/ai/genai/image_processor.py +250 -0
- scitex/ai/genai/llama.py +155 -0
- scitex/ai/genai/llama_provider.py +214 -0
- scitex/ai/genai/mock_provider.py +127 -0
- scitex/ai/genai/model_registry.py +304 -0
- scitex/ai/genai/openai.py +230 -0
- scitex/ai/genai/openai_provider.py +293 -0
- scitex/ai/genai/params.py +565 -0
- scitex/ai/genai/perplexity.py +202 -0
- scitex/ai/genai/perplexity_provider.py +205 -0
- scitex/ai/genai/provider_base.py +302 -0
- scitex/ai/genai/provider_factory.py +370 -0
- scitex/ai/genai/response_handler.py +235 -0
- scitex/ai/layer/_Pass.py +21 -0
- scitex/ai/layer/__init__.py +10 -0
- scitex/ai/layer/_switch.py +8 -0
- scitex/ai/loss/_L1L2Losses.py +34 -0
- scitex/ai/loss/__init__.py +12 -0
- scitex/ai/loss/multi_task_loss.py +47 -0
- scitex/ai/metrics/__init__.py +9 -0
- scitex/ai/metrics/_bACC.py +51 -0
- scitex/ai/metrics/silhoute_score_block.py +496 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
- scitex/ai/optim/__init__.py +13 -0
- scitex/ai/optim/_get_set.py +31 -0
- scitex/ai/optim/_optimizers.py +71 -0
- scitex/ai/plt/__init__.py +21 -0
- scitex/ai/plt/_conf_mat.py +592 -0
- scitex/ai/plt/_learning_curve.py +194 -0
- scitex/ai/plt/_optuna_study.py +111 -0
- scitex/ai/plt/aucs/__init__.py +2 -0
- scitex/ai/plt/aucs/example.py +60 -0
- scitex/ai/plt/aucs/pre_rec_auc.py +223 -0
- scitex/ai/plt/aucs/roc_auc.py +246 -0
- scitex/ai/sampling/undersample.py +29 -0
- scitex/ai/sk/__init__.py +11 -0
- scitex/ai/sk/_clf.py +58 -0
- scitex/ai/sk/_to_sktime.py +100 -0
- scitex/ai/sklearn/__init__.py +26 -0
- scitex/ai/sklearn/clf.py +58 -0
- scitex/ai/sklearn/to_sktime.py +100 -0
- scitex/ai/training/__init__.py +7 -0
- scitex/ai/training/early_stopping.py +150 -0
- scitex/ai/training/learning_curve_logger.py +555 -0
- scitex/ai/utils/__init__.py +22 -0
- scitex/ai/utils/_check_params.py +50 -0
- scitex/ai/utils/_default_dataset.py +46 -0
- scitex/ai/utils/_format_samples_for_sktime.py +26 -0
- scitex/ai/utils/_label_encoder.py +134 -0
- scitex/ai/utils/_merge_labels.py +22 -0
- scitex/ai/utils/_sliding_window_data_augmentation.py +11 -0
- scitex/ai/utils/_under_sample.py +51 -0
- scitex/ai/utils/_verify_n_gpus.py +16 -0
- scitex/ai/utils/grid_search.py +148 -0
- scitex/context/__init__.py +9 -0
- scitex/context/_suppress_output.py +38 -0
- scitex/db/_BaseMixins/_BaseBackupMixin.py +30 -0
- scitex/db/_BaseMixins/_BaseBatchMixin.py +31 -0
- scitex/db/_BaseMixins/_BaseBlobMixin.py +81 -0
- scitex/db/_BaseMixins/_BaseConnectionMixin.py +43 -0
- scitex/db/_BaseMixins/_BaseImportExportMixin.py +39 -0
- scitex/db/_BaseMixins/_BaseIndexMixin.py +29 -0
- scitex/db/_BaseMixins/_BaseMaintenanceMixin.py +33 -0
- scitex/db/_BaseMixins/_BaseQueryMixin.py +52 -0
- scitex/db/_BaseMixins/_BaseRowMixin.py +32 -0
- scitex/db/_BaseMixins/_BaseSchemaMixin.py +44 -0
- scitex/db/_BaseMixins/_BaseTableMixin.py +66 -0
- scitex/db/_BaseMixins/_BaseTransactionMixin.py +52 -0
- scitex/db/_BaseMixins/__init__.py +30 -0
- scitex/db/_PostgreSQL.py +126 -0
- scitex/db/_PostgreSQLMixins/_BackupMixin.py +166 -0
- scitex/db/_PostgreSQLMixins/_BatchMixin.py +82 -0
- scitex/db/_PostgreSQLMixins/_BlobMixin.py +231 -0
- scitex/db/_PostgreSQLMixins/_ConnectionMixin.py +92 -0
- scitex/db/_PostgreSQLMixins/_ImportExportMixin.py +59 -0
- scitex/db/_PostgreSQLMixins/_IndexMixin.py +64 -0
- scitex/db/_PostgreSQLMixins/_MaintenanceMixin.py +175 -0
- scitex/db/_PostgreSQLMixins/_QueryMixin.py +108 -0
- scitex/db/_PostgreSQLMixins/_RowMixin.py +75 -0
- scitex/db/_PostgreSQLMixins/_SchemaMixin.py +126 -0
- scitex/db/_PostgreSQLMixins/_TableMixin.py +176 -0
- scitex/db/_PostgreSQLMixins/_TransactionMixin.py +57 -0
- scitex/db/_PostgreSQLMixins/__init__.py +34 -0
- scitex/db/_SQLite3.py +2136 -0
- scitex/db/_SQLite3Mixins/_BatchMixin.py +243 -0
- scitex/db/_SQLite3Mixins/_BlobMixin.py +229 -0
- scitex/db/_SQLite3Mixins/_ConnectionMixin.py +108 -0
- scitex/db/_SQLite3Mixins/_ImportExportMixin.py +80 -0
- scitex/db/_SQLite3Mixins/_IndexMixin.py +32 -0
- scitex/db/_SQLite3Mixins/_MaintenanceMixin.py +176 -0
- scitex/db/_SQLite3Mixins/_QueryMixin.py +83 -0
- scitex/db/_SQLite3Mixins/_RowMixin.py +75 -0
- scitex/db/_SQLite3Mixins/_TableMixin.py +183 -0
- scitex/db/_SQLite3Mixins/_TransactionMixin.py +71 -0
- scitex/db/_SQLite3Mixins/__init__.py +30 -0
- scitex/db/__init__.py +14 -0
- scitex/db/_delete_duplicates.py +397 -0
- scitex/db/_inspect.py +163 -0
- scitex/decorators/__init__.py +54 -0
- scitex/decorators/_auto_order.py +172 -0
- scitex/decorators/_batch_fn.py +127 -0
- scitex/decorators/_cache_disk.py +32 -0
- scitex/decorators/_cache_mem.py +12 -0
- scitex/decorators/_combined.py +98 -0
- scitex/decorators/_converters.py +282 -0
- scitex/decorators/_deprecated.py +26 -0
- scitex/decorators/_not_implemented.py +30 -0
- scitex/decorators/_numpy_fn.py +86 -0
- scitex/decorators/_pandas_fn.py +121 -0
- scitex/decorators/_preserve_doc.py +19 -0
- scitex/decorators/_signal_fn.py +95 -0
- scitex/decorators/_timeout.py +55 -0
- scitex/decorators/_torch_fn.py +136 -0
- scitex/decorators/_wrap.py +39 -0
- scitex/decorators/_xarray_fn.py +88 -0
- scitex/dev/__init__.py +15 -0
- scitex/dev/_analyze_code_flow.py +284 -0
- scitex/dev/_reload.py +59 -0
- scitex/dict/_DotDict.py +442 -0
- scitex/dict/__init__.py +18 -0
- scitex/dict/_listed_dict.py +42 -0
- scitex/dict/_pop_keys.py +36 -0
- scitex/dict/_replace.py +13 -0
- scitex/dict/_safe_merge.py +62 -0
- scitex/dict/_to_str.py +32 -0
- scitex/dsp/__init__.py +72 -0
- scitex/dsp/_crop.py +122 -0
- scitex/dsp/_demo_sig.py +331 -0
- scitex/dsp/_detect_ripples.py +212 -0
- scitex/dsp/_ensure_3d.py +18 -0
- scitex/dsp/_hilbert.py +78 -0
- scitex/dsp/_listen.py +702 -0
- scitex/dsp/_misc.py +30 -0
- scitex/dsp/_mne.py +32 -0
- scitex/dsp/_modulation_index.py +79 -0
- scitex/dsp/_pac.py +319 -0
- scitex/dsp/_psd.py +102 -0
- scitex/dsp/_resample.py +65 -0
- scitex/dsp/_time.py +36 -0
- scitex/dsp/_transform.py +68 -0
- scitex/dsp/_wavelet.py +212 -0
- scitex/dsp/add_noise.py +111 -0
- scitex/dsp/example.py +253 -0
- scitex/dsp/filt.py +155 -0
- scitex/dsp/norm.py +18 -0
- scitex/dsp/params.py +51 -0
- scitex/dsp/reference.py +43 -0
- scitex/dsp/template.py +25 -0
- scitex/dsp/utils/__init__.py +15 -0
- scitex/dsp/utils/_differential_bandpass_filters.py +120 -0
- scitex/dsp/utils/_ensure_3d.py +18 -0
- scitex/dsp/utils/_ensure_even_len.py +10 -0
- scitex/dsp/utils/_zero_pad.py +48 -0
- scitex/dsp/utils/filter.py +408 -0
- scitex/dsp/utils/pac.py +177 -0
- scitex/dt/__init__.py +8 -0
- scitex/dt/_linspace.py +130 -0
- scitex/etc/__init__.py +15 -0
- scitex/etc/wait_key.py +34 -0
- scitex/gen/_DimHandler.py +196 -0
- scitex/gen/_TimeStamper.py +244 -0
- scitex/gen/__init__.py +95 -0
- scitex/gen/_alternate_kwarg.py +13 -0
- scitex/gen/_cache.py +11 -0
- scitex/gen/_check_host.py +34 -0
- scitex/gen/_ci.py +12 -0
- scitex/gen/_close.py +222 -0
- scitex/gen/_embed.py +78 -0
- scitex/gen/_inspect_module.py +257 -0
- scitex/gen/_is_ipython.py +12 -0
- scitex/gen/_less.py +48 -0
- scitex/gen/_list_packages.py +139 -0
- scitex/gen/_mat2py.py +88 -0
- scitex/gen/_norm.py +170 -0
- scitex/gen/_paste.py +18 -0
- scitex/gen/_print_config.py +84 -0
- scitex/gen/_shell.py +48 -0
- scitex/gen/_src.py +111 -0
- scitex/gen/_start.py +451 -0
- scitex/gen/_symlink.py +55 -0
- scitex/gen/_symlog.py +27 -0
- scitex/gen/_tee.py +238 -0
- scitex/gen/_title2path.py +60 -0
- scitex/gen/_title_case.py +88 -0
- scitex/gen/_to_even.py +84 -0
- scitex/gen/_to_odd.py +34 -0
- scitex/gen/_to_rank.py +39 -0
- scitex/gen/_transpose.py +37 -0
- scitex/gen/_type.py +78 -0
- scitex/gen/_var_info.py +73 -0
- scitex/gen/_wrap.py +17 -0
- scitex/gen/_xml2dict.py +76 -0
- scitex/gen/misc.py +730 -0
- scitex/gen/path.py +0 -0
- scitex/general/__init__.py +5 -0
- scitex/gists/_SigMacro_processFigure_S.py +128 -0
- scitex/gists/_SigMacro_toBlue.py +172 -0
- scitex/gists/__init__.py +12 -0
- scitex/io/_H5Explorer.py +292 -0
- scitex/io/__init__.py +82 -0
- scitex/io/_cache.py +101 -0
- scitex/io/_flush.py +24 -0
- scitex/io/_glob.py +103 -0
- scitex/io/_json2md.py +113 -0
- scitex/io/_load.py +168 -0
- scitex/io/_load_configs.py +146 -0
- scitex/io/_load_modules/__init__.py +38 -0
- scitex/io/_load_modules/_catboost.py +66 -0
- scitex/io/_load_modules/_con.py +20 -0
- scitex/io/_load_modules/_db.py +24 -0
- scitex/io/_load_modules/_docx.py +42 -0
- scitex/io/_load_modules/_eeg.py +110 -0
- scitex/io/_load_modules/_hdf5.py +196 -0
- scitex/io/_load_modules/_image.py +19 -0
- scitex/io/_load_modules/_joblib.py +19 -0
- scitex/io/_load_modules/_json.py +18 -0
- scitex/io/_load_modules/_markdown.py +103 -0
- scitex/io/_load_modules/_matlab.py +37 -0
- scitex/io/_load_modules/_numpy.py +39 -0
- scitex/io/_load_modules/_optuna.py +155 -0
- scitex/io/_load_modules/_pandas.py +69 -0
- scitex/io/_load_modules/_pdf.py +31 -0
- scitex/io/_load_modules/_pickle.py +24 -0
- scitex/io/_load_modules/_torch.py +16 -0
- scitex/io/_load_modules/_txt.py +126 -0
- scitex/io/_load_modules/_xml.py +49 -0
- scitex/io/_load_modules/_yaml.py +23 -0
- scitex/io/_mv_to_tmp.py +19 -0
- scitex/io/_path.py +286 -0
- scitex/io/_reload.py +78 -0
- scitex/io/_save.py +539 -0
- scitex/io/_save_modules/__init__.py +66 -0
- scitex/io/_save_modules/_catboost.py +22 -0
- scitex/io/_save_modules/_csv.py +89 -0
- scitex/io/_save_modules/_excel.py +49 -0
- scitex/io/_save_modules/_hdf5.py +249 -0
- scitex/io/_save_modules/_html.py +48 -0
- scitex/io/_save_modules/_image.py +140 -0
- scitex/io/_save_modules/_joblib.py +25 -0
- scitex/io/_save_modules/_json.py +25 -0
- scitex/io/_save_modules/_listed_dfs_as_csv.py +57 -0
- scitex/io/_save_modules/_listed_scalars_as_csv.py +42 -0
- scitex/io/_save_modules/_matlab.py +24 -0
- scitex/io/_save_modules/_mp4.py +29 -0
- scitex/io/_save_modules/_numpy.py +57 -0
- scitex/io/_save_modules/_optuna_study_as_csv_and_pngs.py +38 -0
- scitex/io/_save_modules/_pickle.py +45 -0
- scitex/io/_save_modules/_plotly.py +27 -0
- scitex/io/_save_modules/_text.py +23 -0
- scitex/io/_save_modules/_torch.py +26 -0
- scitex/io/_save_modules/_yaml.py +29 -0
- scitex/life/__init__.py +10 -0
- scitex/life/_monitor_rain.py +49 -0
- scitex/linalg/__init__.py +17 -0
- scitex/linalg/_distance.py +63 -0
- scitex/linalg/_geometric_median.py +64 -0
- scitex/linalg/_misc.py +73 -0
- scitex/nn/_AxiswiseDropout.py +27 -0
- scitex/nn/_BNet.py +126 -0
- scitex/nn/_BNet_Res.py +164 -0
- scitex/nn/_ChannelGainChanger.py +44 -0
- scitex/nn/_DropoutChannels.py +50 -0
- scitex/nn/_Filters.py +489 -0
- scitex/nn/_FreqGainChanger.py +110 -0
- scitex/nn/_GaussianFilter.py +48 -0
- scitex/nn/_Hilbert.py +111 -0
- scitex/nn/_MNet_1000.py +157 -0
- scitex/nn/_ModulationIndex.py +221 -0
- scitex/nn/_PAC.py +414 -0
- scitex/nn/_PSD.py +40 -0
- scitex/nn/_ResNet1D.py +120 -0
- scitex/nn/_SpatialAttention.py +25 -0
- scitex/nn/_Spectrogram.py +161 -0
- scitex/nn/_SwapChannels.py +50 -0
- scitex/nn/_TransposeLayer.py +19 -0
- scitex/nn/_Wavelet.py +183 -0
- scitex/nn/__init__.py +63 -0
- scitex/os/__init__.py +8 -0
- scitex/os/_mv.py +50 -0
- scitex/parallel/__init__.py +8 -0
- scitex/parallel/_run.py +151 -0
- scitex/path/__init__.py +33 -0
- scitex/path/_clean.py +52 -0
- scitex/path/_find.py +108 -0
- scitex/path/_get_module_path.py +51 -0
- scitex/path/_get_spath.py +35 -0
- scitex/path/_getsize.py +18 -0
- scitex/path/_increment_version.py +87 -0
- scitex/path/_mk_spath.py +51 -0
- scitex/path/_path.py +19 -0
- scitex/path/_split.py +23 -0
- scitex/path/_this_path.py +19 -0
- scitex/path/_version.py +101 -0
- scitex/pd/__init__.py +41 -0
- scitex/pd/_find_indi.py +126 -0
- scitex/pd/_find_pval.py +113 -0
- scitex/pd/_force_df.py +154 -0
- scitex/pd/_from_xyz.py +71 -0
- scitex/pd/_ignore_SettingWithCopyWarning.py +34 -0
- scitex/pd/_melt_cols.py +81 -0
- scitex/pd/_merge_columns.py +221 -0
- scitex/pd/_mv.py +63 -0
- scitex/pd/_replace.py +62 -0
- scitex/pd/_round.py +93 -0
- scitex/pd/_slice.py +63 -0
- scitex/pd/_sort.py +91 -0
- scitex/pd/_to_numeric.py +53 -0
- scitex/pd/_to_xy.py +59 -0
- scitex/pd/_to_xyz.py +110 -0
- scitex/plt/__init__.py +36 -0
- scitex/plt/_subplots/_AxesWrapper.py +182 -0
- scitex/plt/_subplots/_AxisWrapper.py +249 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +414 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +896 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +368 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_TrackingMixin.py +185 -0
- scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +16 -0
- scitex/plt/_subplots/_FigWrapper.py +226 -0
- scitex/plt/_subplots/_SubplotsWrapper.py +171 -0
- scitex/plt/_subplots/__init__.py +111 -0
- scitex/plt/_subplots/_export_as_csv.py +232 -0
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +61 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +90 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +49 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +39 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +125 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +72 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +34 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +36 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +32 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +66 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +95 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +67 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +52 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +103 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +82 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +117 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +30 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +51 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +93 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +94 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +92 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +65 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +45 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +155 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +77 -0
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +210 -0
- scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +342 -0
- scitex/plt/_subplots/_export_as_csv_formatters.py +115 -0
- scitex/plt/_tpl.py +28 -0
- scitex/plt/ax/__init__.py +114 -0
- scitex/plt/ax/_plot/__init__.py +53 -0
- scitex/plt/ax/_plot/_plot_circular_hist.py +124 -0
- scitex/plt/ax/_plot/_plot_conf_mat.py +136 -0
- scitex/plt/ax/_plot/_plot_cube.py +57 -0
- scitex/plt/ax/_plot/_plot_ecdf.py +84 -0
- scitex/plt/ax/_plot/_plot_fillv.py +55 -0
- scitex/plt/ax/_plot/_plot_heatmap.py +266 -0
- scitex/plt/ax/_plot/_plot_image.py +94 -0
- scitex/plt/ax/_plot/_plot_joyplot.py +76 -0
- scitex/plt/ax/_plot/_plot_raster.py +172 -0
- scitex/plt/ax/_plot/_plot_rectangle.py +69 -0
- scitex/plt/ax/_plot/_plot_scatter_hist.py +133 -0
- scitex/plt/ax/_plot/_plot_shaded_line.py +142 -0
- scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +221 -0
- scitex/plt/ax/_plot/_plot_violin.py +343 -0
- scitex/plt/ax/_style/__init__.py +38 -0
- scitex/plt/ax/_style/_add_marginal_ax.py +44 -0
- scitex/plt/ax/_style/_add_panel.py +92 -0
- scitex/plt/ax/_style/_extend.py +64 -0
- scitex/plt/ax/_style/_force_aspect.py +37 -0
- scitex/plt/ax/_style/_format_label.py +23 -0
- scitex/plt/ax/_style/_hide_spines.py +84 -0
- scitex/plt/ax/_style/_map_ticks.py +182 -0
- scitex/plt/ax/_style/_rotate_labels.py +215 -0
- scitex/plt/ax/_style/_sci_note.py +279 -0
- scitex/plt/ax/_style/_set_log_scale.py +299 -0
- scitex/plt/ax/_style/_set_meta.py +261 -0
- scitex/plt/ax/_style/_set_n_ticks.py +37 -0
- scitex/plt/ax/_style/_set_size.py +16 -0
- scitex/plt/ax/_style/_set_supxyt.py +116 -0
- scitex/plt/ax/_style/_set_ticks.py +276 -0
- scitex/plt/ax/_style/_set_xyt.py +121 -0
- scitex/plt/ax/_style/_share_axes.py +264 -0
- scitex/plt/ax/_style/_shift.py +139 -0
- scitex/plt/ax/_style/_show_spines.py +333 -0
- scitex/plt/color/_PARAMS.py +70 -0
- scitex/plt/color/__init__.py +52 -0
- scitex/plt/color/_add_hue_col.py +41 -0
- scitex/plt/color/_colors.py +205 -0
- scitex/plt/color/_get_colors_from_cmap.py +134 -0
- scitex/plt/color/_interpolate.py +29 -0
- scitex/plt/color/_vizualize_colors.py +54 -0
- scitex/plt/utils/__init__.py +44 -0
- scitex/plt/utils/_calc_bacc_from_conf_mat.py +46 -0
- scitex/plt/utils/_calc_nice_ticks.py +101 -0
- scitex/plt/utils/_close.py +68 -0
- scitex/plt/utils/_colorbar.py +96 -0
- scitex/plt/utils/_configure_mpl.py +295 -0
- scitex/plt/utils/_histogram_utils.py +132 -0
- scitex/plt/utils/_im2grid.py +70 -0
- scitex/plt/utils/_is_valid_axis.py +78 -0
- scitex/plt/utils/_mk_colorbar.py +65 -0
- scitex/plt/utils/_mk_patches.py +26 -0
- scitex/plt/utils/_scientific_captions.py +638 -0
- scitex/plt/utils/_scitex_config.py +223 -0
- scitex/reproduce/__init__.py +14 -0
- scitex/reproduce/_fix_seeds.py +45 -0
- scitex/reproduce/_gen_ID.py +55 -0
- scitex/reproduce/_gen_timestamp.py +35 -0
- scitex/res/__init__.py +5 -0
- scitex/resource/__init__.py +13 -0
- scitex/resource/_get_processor_usages.py +281 -0
- scitex/resource/_get_specs.py +280 -0
- scitex/resource/_log_processor_usages.py +190 -0
- scitex/resource/_utils/__init__.py +31 -0
- scitex/resource/_utils/_get_env_info.py +481 -0
- scitex/resource/limit_ram.py +33 -0
- scitex/scholar/__init__.py +24 -0
- scitex/scholar/_local_search.py +454 -0
- scitex/scholar/_paper.py +244 -0
- scitex/scholar/_pdf_downloader.py +325 -0
- scitex/scholar/_search.py +393 -0
- scitex/scholar/_vector_search.py +370 -0
- scitex/scholar/_web_sources.py +457 -0
- scitex/stats/__init__.py +31 -0
- scitex/stats/_calc_partial_corr.py +17 -0
- scitex/stats/_corr_test_multi.py +94 -0
- scitex/stats/_corr_test_wrapper.py +115 -0
- scitex/stats/_describe_wrapper.py +90 -0
- scitex/stats/_multiple_corrections.py +63 -0
- scitex/stats/_nan_stats.py +93 -0
- scitex/stats/_p2stars.py +116 -0
- scitex/stats/_p2stars_wrapper.py +56 -0
- scitex/stats/_statistical_tests.py +73 -0
- scitex/stats/desc/__init__.py +40 -0
- scitex/stats/desc/_describe.py +189 -0
- scitex/stats/desc/_nan.py +289 -0
- scitex/stats/desc/_real.py +94 -0
- scitex/stats/multiple/__init__.py +14 -0
- scitex/stats/multiple/_bonferroni_correction.py +72 -0
- scitex/stats/multiple/_fdr_correction.py +400 -0
- scitex/stats/multiple/_multicompair.py +28 -0
- scitex/stats/tests/__corr_test.py +277 -0
- scitex/stats/tests/__corr_test_multi.py +343 -0
- scitex/stats/tests/__corr_test_single.py +277 -0
- scitex/stats/tests/__init__.py +22 -0
- scitex/stats/tests/_brunner_munzel_test.py +192 -0
- scitex/stats/tests/_nocorrelation_test.py +28 -0
- scitex/stats/tests/_smirnov_grubbs.py +98 -0
- scitex/str/__init__.py +113 -0
- scitex/str/_clean_path.py +75 -0
- scitex/str/_color_text.py +52 -0
- scitex/str/_decapitalize.py +58 -0
- scitex/str/_factor_out_digits.py +281 -0
- scitex/str/_format_plot_text.py +498 -0
- scitex/str/_grep.py +48 -0
- scitex/str/_latex.py +155 -0
- scitex/str/_latex_fallback.py +471 -0
- scitex/str/_mask_api.py +39 -0
- scitex/str/_mask_api_key.py +8 -0
- scitex/str/_parse.py +158 -0
- scitex/str/_print_block.py +47 -0
- scitex/str/_print_debug.py +68 -0
- scitex/str/_printc.py +62 -0
- scitex/str/_readable_bytes.py +38 -0
- scitex/str/_remove_ansi.py +23 -0
- scitex/str/_replace.py +134 -0
- scitex/str/_search.py +125 -0
- scitex/str/_squeeze_space.py +36 -0
- scitex/tex/__init__.py +10 -0
- scitex/tex/_preview.py +103 -0
- scitex/tex/_to_vec.py +116 -0
- scitex/torch/__init__.py +18 -0
- scitex/torch/_apply_to.py +34 -0
- scitex/torch/_nan_funcs.py +77 -0
- scitex/types/_ArrayLike.py +44 -0
- scitex/types/_ColorLike.py +21 -0
- scitex/types/__init__.py +14 -0
- scitex/types/_is_listed_X.py +70 -0
- scitex/utils/__init__.py +22 -0
- scitex/utils/_compress_hdf5.py +116 -0
- scitex/utils/_email.py +120 -0
- scitex/utils/_grid.py +148 -0
- scitex/utils/_notify.py +247 -0
- scitex/utils/_search.py +121 -0
- scitex/web/__init__.py +38 -0
- scitex/web/_search_pubmed.py +438 -0
- scitex/web/_summarize_url.py +158 -0
- scitex-2.0.0.dist-info/METADATA +307 -0
- scitex-2.0.0.dist-info/RECORD +572 -0
- scitex-2.0.0.dist-info/WHEEL +6 -0
- scitex-2.0.0.dist-info/licenses/LICENSE +7 -0
- scitex-2.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,194 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-03-12 19:52:48 (ywatanabe)"
|
|
4
|
+
|
|
5
|
+
import re
|
|
6
|
+
|
|
7
|
+
import matplotlib
|
|
8
|
+
import matplotlib.pyplot as plt
|
|
9
|
+
import scitex
|
|
10
|
+
import numpy as np
|
|
11
|
+
import pandas as pd
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def process_i_global(metrics_df):
|
|
15
|
+
if metrics_df.index.name != "i_global":
|
|
16
|
+
try:
|
|
17
|
+
metrics_df = metrics_df.set_index("i_global")
|
|
18
|
+
except KeyError:
|
|
19
|
+
print(
|
|
20
|
+
"Error: The DataFrame does not contain a column named 'i_global'. Please check the column names."
|
|
21
|
+
)
|
|
22
|
+
except Exception as e:
|
|
23
|
+
print(f"An unexpected error occurred: {e}")
|
|
24
|
+
else:
|
|
25
|
+
print("The index is already set to 'i_global'.")
|
|
26
|
+
metrics_df["i_global"] = metrics_df.index # alias
|
|
27
|
+
return metrics_df
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def set_yaxis_for_acc(ax, key_plt):
|
|
31
|
+
if re.search("[aA][cC][cC]", key_plt): # acc, ylim, yticks
|
|
32
|
+
ax.set_ylim(0, 1)
|
|
33
|
+
ax.set_yticks([0, 0.5, 1.0])
|
|
34
|
+
return ax
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def plot_tra(ax, metrics_df, key_plt, lw=1, color="blue"):
|
|
38
|
+
indi_step = scitex.gen.search("^[Tt]rain(ing)?", metrics_df.step, as_bool=True)[0]
|
|
39
|
+
step_df = metrics_df[indi_step]
|
|
40
|
+
|
|
41
|
+
if len(step_df) != 0:
|
|
42
|
+
ax.plot(
|
|
43
|
+
step_df.index, # i_global
|
|
44
|
+
step_df[key_plt],
|
|
45
|
+
label="Training",
|
|
46
|
+
color=color,
|
|
47
|
+
linewidth=lw,
|
|
48
|
+
)
|
|
49
|
+
ax.legend()
|
|
50
|
+
|
|
51
|
+
return ax
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def scatter_val(ax, metrics_df, key_plt, s=3, color="green"):
|
|
55
|
+
indi_step = scitex.gen.search("^[Vv]alid(ation)?", metrics_df.step, as_bool=True)[0]
|
|
56
|
+
step_df = metrics_df[indi_step]
|
|
57
|
+
if len(step_df) != 0:
|
|
58
|
+
ax.scatter(
|
|
59
|
+
step_df.index,
|
|
60
|
+
step_df[key_plt],
|
|
61
|
+
label="Validation",
|
|
62
|
+
color=color,
|
|
63
|
+
s=s,
|
|
64
|
+
alpha=0.9,
|
|
65
|
+
)
|
|
66
|
+
ax.legend()
|
|
67
|
+
return ax
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def scatter_tes(ax, metrics_df, key_plt, s=3, color="red"):
|
|
71
|
+
indi_step = scitex.gen.search("^[Tt]est", metrics_df.step, as_bool=True)[0]
|
|
72
|
+
step_df = metrics_df[indi_step]
|
|
73
|
+
if len(step_df) != 0:
|
|
74
|
+
ax.scatter(
|
|
75
|
+
step_df.index,
|
|
76
|
+
step_df[key_plt],
|
|
77
|
+
label="Test",
|
|
78
|
+
color=color,
|
|
79
|
+
s=s,
|
|
80
|
+
alpha=0.9,
|
|
81
|
+
)
|
|
82
|
+
ax.legend()
|
|
83
|
+
return ax
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def vline_at_epochs(ax, metrics_df, color="grey"):
|
|
87
|
+
# Determine the global iteration values where new epochs start
|
|
88
|
+
epoch_starts = metrics_df[metrics_df["i_batch"] == 0].index.values
|
|
89
|
+
epoch_labels = metrics_df[metrics_df["i_batch"] == 0].index.values
|
|
90
|
+
ax.vlines(
|
|
91
|
+
x=epoch_starts,
|
|
92
|
+
ymin=-1e4, # ax.get_ylim()[0],
|
|
93
|
+
ymax=1e4, # ax.get_ylim()[1],
|
|
94
|
+
linestyle="--",
|
|
95
|
+
color=color,
|
|
96
|
+
)
|
|
97
|
+
return ax
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def select_ticks(metrics_df, max_n_ticks=4):
|
|
101
|
+
# Calculate epoch starts and their corresponding labels for ticks
|
|
102
|
+
unique_epochs = metrics_df["i_epoch"].drop_duplicates().values
|
|
103
|
+
epoch_starts = (
|
|
104
|
+
metrics_df[metrics_df["i_batch"] == 0]["i_global"].drop_duplicates().values
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
# Given the performance issue, let's just select a few epoch starts for labeling
|
|
108
|
+
# We use MaxNLocator to pick ticks; however, it's used here to choose a reasonable number of epoch markers
|
|
109
|
+
if len(epoch_starts) > max_n_ticks:
|
|
110
|
+
selected_ticks = np.linspace(
|
|
111
|
+
epoch_starts[0], epoch_starts[-1], max_n_ticks, dtype=int
|
|
112
|
+
)
|
|
113
|
+
# Ensure selected ticks are within the epoch starts for accurate labeling
|
|
114
|
+
selected_labels = [
|
|
115
|
+
metrics_df[metrics_df["i_global"] == tick]["i_epoch"].iloc[0]
|
|
116
|
+
for tick in selected_ticks
|
|
117
|
+
]
|
|
118
|
+
else:
|
|
119
|
+
selected_ticks = epoch_starts
|
|
120
|
+
selected_labels = unique_epochs
|
|
121
|
+
return selected_ticks, selected_labels
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def learning_curve(
|
|
125
|
+
metrics_df,
|
|
126
|
+
keys,
|
|
127
|
+
title="Title",
|
|
128
|
+
max_n_ticks=4,
|
|
129
|
+
scattersize=3,
|
|
130
|
+
linewidth=1,
|
|
131
|
+
yscale="linear",
|
|
132
|
+
spath=None,
|
|
133
|
+
):
|
|
134
|
+
_plt, cc = scitex.plt.configure_mpl(plt, show=False)
|
|
135
|
+
"""
|
|
136
|
+
Example:
|
|
137
|
+
print(metrics_df)
|
|
138
|
+
# step i_global i_epoch i_batch loss
|
|
139
|
+
# 0 Training 0 0 0 0.717023
|
|
140
|
+
# 1 Training 1 0 1 0.703844
|
|
141
|
+
# 2 Training 2 0 2 0.696279
|
|
142
|
+
# 3 Training 3 0 3 0.685384
|
|
143
|
+
# 4 Training 4 0 4 0.670675
|
|
144
|
+
# ... ... ... ... ... ...
|
|
145
|
+
# 123266 Test 66900 299 866 0.000067
|
|
146
|
+
# 123267 Test 66900 299 867 0.000067
|
|
147
|
+
# 123268 Test 66900 299 868 0.000067
|
|
148
|
+
# 123269 Test 66900 299 869 0.000067
|
|
149
|
+
# 123270 Test 66900 299 870 0.000068
|
|
150
|
+
|
|
151
|
+
# [123271 rows x 5 columns]
|
|
152
|
+
"""
|
|
153
|
+
metrics_df = process_i_global(metrics_df)
|
|
154
|
+
selected_ticks, selected_labels = select_ticks(metrics_df)
|
|
155
|
+
|
|
156
|
+
# fig, axes = plt.subplots(len(keys), 1, sharex=True, sharey=False)
|
|
157
|
+
fig, axes = scitex.plt.subplots(len(keys), 1, sharex=True, sharey=False)
|
|
158
|
+
axes = axes if len(keys) != 1 else [axes]
|
|
159
|
+
|
|
160
|
+
axes[-1].set_xlabel("Iteration #")
|
|
161
|
+
fig.text(0.5, 0.95, title, ha="center")
|
|
162
|
+
|
|
163
|
+
for i_plt, key_plt in enumerate(keys):
|
|
164
|
+
ax = axes[i_plt]
|
|
165
|
+
ax.set_yscale(yscale)
|
|
166
|
+
ax.set_ylabel(key_plt)
|
|
167
|
+
|
|
168
|
+
ax = set_yaxis_for_acc(ax, key_plt)
|
|
169
|
+
ax = plot_tra(ax, metrics_df, key_plt, lw=linewidth, color=cc["blue"])
|
|
170
|
+
ax = scatter_val(ax, metrics_df, key_plt, s=scattersize, color=cc["green"])
|
|
171
|
+
ax = scatter_tes(ax, metrics_df, key_plt, s=scattersize, color=cc["red"])
|
|
172
|
+
|
|
173
|
+
# # Custom tick marks
|
|
174
|
+
# ax = scitex.plt.ax.map_ticks(
|
|
175
|
+
# ax, selected_ticks, selected_labels, axis="x"
|
|
176
|
+
# )
|
|
177
|
+
|
|
178
|
+
if spath is not None:
|
|
179
|
+
scitex.io.save(fig, spath)
|
|
180
|
+
|
|
181
|
+
return fig
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
if __name__ == "__main__":
|
|
185
|
+
|
|
186
|
+
plt, cc = scitex.plt.configure_mpl(plt)
|
|
187
|
+
# lpath = "./scripts/ml/.old/pretrain_EEGPT_old/2024-01-29-12-04_eDflsnWv_v8/metrics.csv"
|
|
188
|
+
lpath = "./scripts/ml/pretrain_EEGPT/[DEBUG] 2024-02-11-06-45_4uUpdfpb/metrics.csv"
|
|
189
|
+
|
|
190
|
+
sdir, _, _ = scitex.gen.split_fpath(lpath)
|
|
191
|
+
metrics_df = scitex.io.load(lpath)
|
|
192
|
+
fig = learning_curve(metrics_df, title="Pretraining on db_v8", yscale="log")
|
|
193
|
+
# plt.show()
|
|
194
|
+
scitex.io.save(fig, sdir + "learning_curve.png")
|
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-03-30 08:24:55 (ywatanabe)"
|
|
4
|
+
import os
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def optuna_study(lpath, value_str, sort=False):
|
|
8
|
+
"""
|
|
9
|
+
Loads an Optuna study and generates various visualizations for each target metric.
|
|
10
|
+
|
|
11
|
+
Parameters:
|
|
12
|
+
- lpath (str): Path to the Optuna study database.
|
|
13
|
+
- value_str (str): The name of the column to be used as the optimization target.
|
|
14
|
+
|
|
15
|
+
Returns:
|
|
16
|
+
- None
|
|
17
|
+
"""
|
|
18
|
+
import matplotlib
|
|
19
|
+
|
|
20
|
+
matplotlib.use("Agg")
|
|
21
|
+
import matplotlib.pyplot as plt
|
|
22
|
+
import scitex
|
|
23
|
+
import optuna
|
|
24
|
+
import pandas as pd
|
|
25
|
+
|
|
26
|
+
plt, CC = scitex.plt.configure_mpl(plt, fig_scale=3)
|
|
27
|
+
|
|
28
|
+
lpath = lpath.replace("./", "/")
|
|
29
|
+
|
|
30
|
+
study = optuna.load_study(study_name=None, storage=lpath)
|
|
31
|
+
|
|
32
|
+
sdir = lpath.replace("sqlite:///", "./").replace(".db", "/")
|
|
33
|
+
|
|
34
|
+
# To get the best trial:
|
|
35
|
+
best_trial = study.best_trial
|
|
36
|
+
print(f"Best trial number: {best_trial.number}")
|
|
37
|
+
print(f"Best trial value: {best_trial.value}")
|
|
38
|
+
print(f"Best trial parameters: {best_trial.params}")
|
|
39
|
+
print(f"Best trial user attributes: {best_trial.user_attrs}")
|
|
40
|
+
|
|
41
|
+
# Merge the user attributes into the study history DataFrame
|
|
42
|
+
study_history = study.trials_dataframe().rename(columns={"value": value_str})
|
|
43
|
+
|
|
44
|
+
if sort:
|
|
45
|
+
ascending = "MINIMIZE" in str(study.directions[0]) # [REVISED]
|
|
46
|
+
study_history = study_history.sort_values([value_str], ascending=ascending)
|
|
47
|
+
|
|
48
|
+
# Add user attributes to the study history DataFrame
|
|
49
|
+
attrs_df = []
|
|
50
|
+
for trial in study.trials:
|
|
51
|
+
user_attrs = trial.user_attrs
|
|
52
|
+
user_attrs = {k: v for k, v in user_attrs.items()}
|
|
53
|
+
attrs_df.append({"number": trial.number, **user_attrs})
|
|
54
|
+
attrs_df = pd.DataFrame(attrs_df).set_index("number")
|
|
55
|
+
|
|
56
|
+
# Updates study history
|
|
57
|
+
study_history = study_history.merge(
|
|
58
|
+
attrs_df, left_index=True, right_index=True, how="left"
|
|
59
|
+
).set_index("number")
|
|
60
|
+
try:
|
|
61
|
+
study_history = scitex.gen.mv_col(study_history, "SDIR", 1)
|
|
62
|
+
study_history["SDIR"] = study_history["SDIR"].apply(
|
|
63
|
+
lambda x: str(x).replace("RUNNING", "FINISHED")
|
|
64
|
+
)
|
|
65
|
+
best_trial_dir = study_history["SDIR"].iloc[0]
|
|
66
|
+
scitex.gen.symlink(best_trial_dir, sdir + "best_trial", force=True)
|
|
67
|
+
except Exception as e:
|
|
68
|
+
print(e)
|
|
69
|
+
scitex.io.save(study_history, sdir + "study_history.csv")
|
|
70
|
+
print(study_history)
|
|
71
|
+
|
|
72
|
+
# To visualize the optimization history:
|
|
73
|
+
fig = optuna.visualization.plot_optimization_history(study, target_name=value_str)
|
|
74
|
+
scitex.io.save(fig, sdir + "optimization_history.png")
|
|
75
|
+
scitex.io.save(fig, sdir + "optimization_history.html")
|
|
76
|
+
plt.close()
|
|
77
|
+
|
|
78
|
+
# To visualize the parameter importances:
|
|
79
|
+
fig = optuna.visualization.plot_param_importances(study, target_name=value_str)
|
|
80
|
+
scitex.io.save(fig, sdir + "param_importances.png")
|
|
81
|
+
scitex.io.save(fig, sdir + "param_importances.html")
|
|
82
|
+
plt.close()
|
|
83
|
+
|
|
84
|
+
# To visualize the slice of the study:
|
|
85
|
+
fig = optuna.visualization.plot_slice(study, target_name=value_str)
|
|
86
|
+
scitex.io.save(fig, sdir + "slice.png")
|
|
87
|
+
scitex.io.save(fig, sdir + "slice.html")
|
|
88
|
+
plt.close()
|
|
89
|
+
|
|
90
|
+
# To visualize the contour plot of the study:
|
|
91
|
+
fig = optuna.visualization.plot_contour(study, target_name=value_str)
|
|
92
|
+
scitex.io.save(fig, sdir + "contour.png")
|
|
93
|
+
scitex.io.save(fig, sdir + "contour.html")
|
|
94
|
+
plt.close()
|
|
95
|
+
|
|
96
|
+
# To visualize the parallel coordinate plot of the study:
|
|
97
|
+
fig = optuna.visualization.plot_parallel_coordinate(study, target_name=value_str)
|
|
98
|
+
scitex.io.save(fig, sdir + "parallel_coordinate.png")
|
|
99
|
+
scitex.io.save(fig, sdir + "parallel_coordinate.html")
|
|
100
|
+
plt.close()
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
if __name__ == "__main__":
|
|
104
|
+
scitex.plt.configure_mpl(plt, fig_scale=3)
|
|
105
|
+
lpath = "sqlite:///scripts/ml/clf/sub_conv_transformer_optuna/optuna_studies/optuna_study_v001.db"
|
|
106
|
+
lpath = "sqlite:///scripts/ml/clf/rocket_optuna/optuna_studies/optuna_study_v001.db"
|
|
107
|
+
optuna_study(lpath, "Validation bACC")
|
|
108
|
+
# scripts/ml/clf/sub_conv_transformer/optuna_studies/optuna_study_v032
|
|
109
|
+
|
|
110
|
+
lpath = "sqlite:///scripts/ml/clf/sub_conv_transformer_optuna/optuna_studies/optuna_study_v020.db"
|
|
111
|
+
scitex.ml.plt.optuna_study(lpath, "val_loss", sort=True)
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-11-07 18:56:57 (ywatanabe)"
|
|
4
|
+
# File: ./scitex_repo/src/scitex/ai/plt/aucs/example.py
|
|
5
|
+
|
|
6
|
+
import matplotlib.pyplot as plt
|
|
7
|
+
import scitex
|
|
8
|
+
import numpy as np
|
|
9
|
+
from sklearn import datasets, svm
|
|
10
|
+
from sklearn.model_selection import train_test_split
|
|
11
|
+
from .roc_auc import roc_auc
|
|
12
|
+
from .pre_rec_auc import pre_rec_auc
|
|
13
|
+
|
|
14
|
+
################################################################################
|
|
15
|
+
## MNIST
|
|
16
|
+
################################################################################
|
|
17
|
+
|
|
18
|
+
digits = datasets.load_digits()
|
|
19
|
+
|
|
20
|
+
# flatten the images
|
|
21
|
+
n_samples = len(digits.images)
|
|
22
|
+
data = digits.images.reshape((n_samples, -1))
|
|
23
|
+
|
|
24
|
+
# Create a classifier: a support vector classifier
|
|
25
|
+
clf = svm.SVC(gamma=0.001, probability=True)
|
|
26
|
+
|
|
27
|
+
# Split data into 50% train and 50% test subsets
|
|
28
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
29
|
+
data, digits.target, test_size=0.5, shuffle=False
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
# Learn the digits on the train subset
|
|
33
|
+
clf.fit(X_train, y_train)
|
|
34
|
+
|
|
35
|
+
# Predict the value of the digit on the test subset
|
|
36
|
+
predicted_proba = clf.predict_proba(X_test)
|
|
37
|
+
predicted = clf.predict(X_test)
|
|
38
|
+
|
|
39
|
+
n_classes = len(np.unique(digits.target))
|
|
40
|
+
labels = ["Class {}".format(i) for i in range(n_classes)]
|
|
41
|
+
|
|
42
|
+
## Configures matplotlib
|
|
43
|
+
plt.rcParams["font.size"] = 20
|
|
44
|
+
plt.rcParams["legend.fontsize"] = "xx-small"
|
|
45
|
+
scale = 0.75
|
|
46
|
+
plt.rcParams["figure.figsize"] = (16 * scale, 9 * scale)
|
|
47
|
+
|
|
48
|
+
################################################################################
|
|
49
|
+
## Main
|
|
50
|
+
################################################################################
|
|
51
|
+
## ROC Curve
|
|
52
|
+
fig_roc, metrics_roc = roc_auc(plt, y_test, predicted_proba, labels)
|
|
53
|
+
fig_roc.show()
|
|
54
|
+
## Precision-Recall Curve
|
|
55
|
+
fig_pre_rec, metrics_pre_rec = pre_rec_auc(plt, y_test, predicted_proba, labels)
|
|
56
|
+
fig_pre_rec.show()
|
|
57
|
+
|
|
58
|
+
#
|
|
59
|
+
|
|
60
|
+
# EOF
|
|
@@ -0,0 +1,223 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
import warnings
|
|
4
|
+
from itertools import cycle
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
from sklearn.metrics import average_precision_score, precision_recall_curve
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def solve_the_intersection_of_a_line_and_iso_f1_curve(f1, a, b):
|
|
11
|
+
"""
|
|
12
|
+
Determines the intersection of the following lines:
|
|
13
|
+
1) a line: y = a * x + b
|
|
14
|
+
2) the iso-f1 curve: y = f1 * x / (2 * x - f1)
|
|
15
|
+
, where a, b, and f1 are the constant values.
|
|
16
|
+
"""
|
|
17
|
+
_a = 2 * a
|
|
18
|
+
_b = -a * f1 + 2 * b - f1
|
|
19
|
+
_c = -b * f1
|
|
20
|
+
|
|
21
|
+
x_f = (-_b + np.sqrt(_b**2 - 4 * _a * _c)) / (2 * _a)
|
|
22
|
+
y_f = a * x_f + b
|
|
23
|
+
|
|
24
|
+
return (x_f, y_f)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def to_onehot(labels, n_classes):
|
|
28
|
+
eye = np.eye(n_classes, dtype=int)
|
|
29
|
+
return eye[labels]
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def pre_rec_auc(plt, true_class, pred_proba, labels):
|
|
33
|
+
"""
|
|
34
|
+
Calculates the precision recall curve.
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
# Use label_binarize to be multi-label like settings
|
|
38
|
+
n_classes = len(labels)
|
|
39
|
+
true_class_onehot = to_onehot(true_class, n_classes)
|
|
40
|
+
|
|
41
|
+
# For each class
|
|
42
|
+
precision = dict()
|
|
43
|
+
recall = dict()
|
|
44
|
+
threshold = dict()
|
|
45
|
+
pre_rec_auc = dict()
|
|
46
|
+
for i in range(n_classes):
|
|
47
|
+
true_class_i_onehot = true_class_onehot[:, i]
|
|
48
|
+
pred_proba_i = pred_proba[:, i]
|
|
49
|
+
|
|
50
|
+
try:
|
|
51
|
+
precision[i], recall[i], threshold[i] = precision_recall_curve(
|
|
52
|
+
true_class_i_onehot,
|
|
53
|
+
pred_proba_i,
|
|
54
|
+
)
|
|
55
|
+
pre_rec_auc[i] = average_precision_score(true_class_i_onehot, pred_proba_i)
|
|
56
|
+
except Exception as e:
|
|
57
|
+
print(e)
|
|
58
|
+
precision[i], recall[i], threshold[i], pre_rec_auc[i] = (
|
|
59
|
+
np.nan,
|
|
60
|
+
np.nan,
|
|
61
|
+
np.nan,
|
|
62
|
+
np.nan,
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
## Average precision: micro and macro
|
|
66
|
+
|
|
67
|
+
# A "micro-average": quantifying score on all classes jointly
|
|
68
|
+
precision["micro"], recall["micro"], threshold["micro"] = precision_recall_curve(
|
|
69
|
+
true_class_onehot.ravel(), pred_proba.ravel()
|
|
70
|
+
)
|
|
71
|
+
pre_rec_auc["micro"] = average_precision_score(
|
|
72
|
+
true_class_onehot, pred_proba, average="micro"
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
# macro
|
|
76
|
+
_pre_rec_aucs = []
|
|
77
|
+
for i in range(n_classes):
|
|
78
|
+
try:
|
|
79
|
+
_pre_rec_aucs.append(
|
|
80
|
+
average_precision_score(
|
|
81
|
+
true_class_onehot[:, i], pred_proba[:, i], average="macro"
|
|
82
|
+
)
|
|
83
|
+
)
|
|
84
|
+
except Exception as e:
|
|
85
|
+
print(
|
|
86
|
+
f'\nPRE-REC-AUC for "{labels[i]}" was not defined and NaN-filled '
|
|
87
|
+
"for a calculation purpose (for the macro avg.)\n"
|
|
88
|
+
)
|
|
89
|
+
_pre_rec_aucs.append(np.nan)
|
|
90
|
+
pre_rec_auc["macro"] = np.nanmean(_pre_rec_aucs)
|
|
91
|
+
|
|
92
|
+
# pre_rec_auc["macro"] = average_precision_score(
|
|
93
|
+
# true_class_onehot, pred_proba, average="macro"
|
|
94
|
+
# )
|
|
95
|
+
|
|
96
|
+
# Plot Precision-Recall curve for each class and iso-f1 curves
|
|
97
|
+
colors = cycle(["navy", "turquoise", "darkorange", "cornflowerblue", "teal"])
|
|
98
|
+
fig, ax = plt.subplots()
|
|
99
|
+
ax.set_box_aspect(1)
|
|
100
|
+
lines = []
|
|
101
|
+
legends = []
|
|
102
|
+
|
|
103
|
+
# iso-F1: By definition, an iso-F1 curve contains all points
|
|
104
|
+
# in the precision/recall space whose F1 scores are the same.
|
|
105
|
+
f_scores = np.linspace(0.2, 0.8, num=4)
|
|
106
|
+
# for f_score in f_scores:
|
|
107
|
+
for i_f, f_score in enumerate(f_scores):
|
|
108
|
+
x = np.linspace(0.01, 1) # num=50
|
|
109
|
+
y = f_score * x / (2 * x - f_score)
|
|
110
|
+
(l,) = ax.plot(x[y >= 0], y[y >= 0], color="gray", alpha=0.2)
|
|
111
|
+
|
|
112
|
+
# ax.annotate("f1={0:0.1f}".format(f_score), xy=(0.9, y[45] + 0.02))
|
|
113
|
+
x_f, y_f = solve_the_intersection_of_a_line_and_iso_f1_curve(f_score, 0.5, 0.5)
|
|
114
|
+
ax.annotate("f1={0:0.1f}".format(f_score), xy=(x_f - 0.1, y_f - 0.1 * 0.5))
|
|
115
|
+
# ax.annotate("f1={0:0.1f}".format(f_score), xy=(y[35] - 0.02 * (3 - i_f), 0.85))
|
|
116
|
+
|
|
117
|
+
lines.append(l)
|
|
118
|
+
legends.append("iso-f1 curves")
|
|
119
|
+
|
|
120
|
+
"""
|
|
121
|
+
## In this project, average precision-recall curve is not drawn.
|
|
122
|
+
(l,) = ax.plot(recall["micro"], precision["micro"], color="gold", lw=2)
|
|
123
|
+
lines.append(l)
|
|
124
|
+
legends.append("micro-average\n(AUC = {0:0.2f})" "".format(pre_rec_auc["micro"]))
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
## Each Class
|
|
128
|
+
for i, color in zip(range(n_classes), colors):
|
|
129
|
+
(l,) = ax.plot(recall[i], precision[i], color=color, lw=2)
|
|
130
|
+
lines.append(l)
|
|
131
|
+
legends.append("{0} (AUC = {1:0.2f})" "".format(labels[i], pre_rec_auc[i]))
|
|
132
|
+
|
|
133
|
+
# fig = plt.gcf()
|
|
134
|
+
fig.subplots_adjust(bottom=0.25)
|
|
135
|
+
ax.set_xlim([-0.01, 1.01])
|
|
136
|
+
ax.set_ylim([-0.01, 1.01])
|
|
137
|
+
ax.set_xticks([0.0, 0.5, 1.0])
|
|
138
|
+
ax.set_yticks([0.0, 0.5, 1.0])
|
|
139
|
+
ax.set_xlabel("Recall")
|
|
140
|
+
ax.set_ylabel("Precision")
|
|
141
|
+
ax.set_title("Precision-Recall Curve")
|
|
142
|
+
ax.legend(lines, legends, loc="lower left")
|
|
143
|
+
|
|
144
|
+
metrics = dict(
|
|
145
|
+
pre_rec_auc=pre_rec_auc,
|
|
146
|
+
precision=precision,
|
|
147
|
+
recall=recall,
|
|
148
|
+
threshold=threshold,
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
return fig, metrics
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
if __name__ == "__main__":
|
|
155
|
+
import matplotlib.pyplot as plt
|
|
156
|
+
import numpy as np
|
|
157
|
+
from scipy.special import softmax
|
|
158
|
+
from sklearn import datasets, svm
|
|
159
|
+
from sklearn.model_selection import train_test_split
|
|
160
|
+
|
|
161
|
+
def mk_demo_data(n_classes=2, batch_size=16):
|
|
162
|
+
labels = ["cls{}".format(i_cls) for i_cls in range(n_classes)]
|
|
163
|
+
true_class = np.random.randint(0, n_classes, size=(batch_size,))
|
|
164
|
+
pred_proba = softmax(np.random.rand(batch_size, n_classes), axis=-1)
|
|
165
|
+
pred_class = np.argmax(pred_proba, axis=-1)
|
|
166
|
+
return labels, true_class, pred_proba, pred_class
|
|
167
|
+
|
|
168
|
+
## Fix seed
|
|
169
|
+
np.random.seed(42)
|
|
170
|
+
|
|
171
|
+
"""
|
|
172
|
+
################################################################################
|
|
173
|
+
## A Minimal Example
|
|
174
|
+
################################################################################
|
|
175
|
+
labels, true_class, pred_proba, pred_class = \
|
|
176
|
+
mk_demo_data(n_classes=10, batch_size=256)
|
|
177
|
+
|
|
178
|
+
pre_rec_auc, precision, recall, threshold = \
|
|
179
|
+
calc_pre_rec_auc(true_class, pred_proba, labels, plot=False)
|
|
180
|
+
"""
|
|
181
|
+
|
|
182
|
+
################################################################################
|
|
183
|
+
## MNIST
|
|
184
|
+
################################################################################
|
|
185
|
+
from sklearn import datasets, metrics, svm
|
|
186
|
+
from sklearn.model_selection import train_test_split
|
|
187
|
+
|
|
188
|
+
digits = datasets.load_digits()
|
|
189
|
+
|
|
190
|
+
# flatten the images
|
|
191
|
+
n_samples = len(digits.images)
|
|
192
|
+
data = digits.images.reshape((n_samples, -1))
|
|
193
|
+
|
|
194
|
+
# Create a classifier: a support vector classifier
|
|
195
|
+
clf = svm.SVC(gamma=0.001, probability=True)
|
|
196
|
+
|
|
197
|
+
# Split data into 50% train and 50% test subsets
|
|
198
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
199
|
+
data, digits.target, test_size=0.5, shuffle=False
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
# Learn the digits on the train subset
|
|
203
|
+
clf.fit(X_train, y_train)
|
|
204
|
+
|
|
205
|
+
# Predict the value of the digit on the test subset
|
|
206
|
+
predicted_proba = clf.predict_proba(X_test)
|
|
207
|
+
predicted = clf.predict(X_test)
|
|
208
|
+
|
|
209
|
+
n_classes = len(np.unique(digits.target))
|
|
210
|
+
labels = ["Class {}".format(i) for i in range(n_classes)]
|
|
211
|
+
|
|
212
|
+
## Configures matplotlib
|
|
213
|
+
plt.rcParams["font.size"] = 20
|
|
214
|
+
plt.rcParams["legend.fontsize"] = "xx-small"
|
|
215
|
+
plt.rcParams["figure.figsize"] = (16 * 1.2, 9 * 1.2)
|
|
216
|
+
|
|
217
|
+
## Main
|
|
218
|
+
fig, metrics_dict = pre_rec_auc(plt, y_test, predicted_proba, labels)
|
|
219
|
+
|
|
220
|
+
fig.show()
|
|
221
|
+
|
|
222
|
+
print(metrics_dict.keys())
|
|
223
|
+
# dict_keys(['pre_rec_auc', 'precision', 'recall', 'threshold'])
|