scitex 2.0.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +73 -0
- scitex/__main__.py +89 -0
- scitex/__version__.py +14 -0
- scitex/_sh.py +59 -0
- scitex/ai/_LearningCurveLogger.py +583 -0
- scitex/ai/__Classifiers.py +101 -0
- scitex/ai/__init__.py +55 -0
- scitex/ai/_gen_ai/_Anthropic.py +173 -0
- scitex/ai/_gen_ai/_BaseGenAI.py +336 -0
- scitex/ai/_gen_ai/_DeepSeek.py +175 -0
- scitex/ai/_gen_ai/_Google.py +161 -0
- scitex/ai/_gen_ai/_Groq.py +97 -0
- scitex/ai/_gen_ai/_Llama.py +142 -0
- scitex/ai/_gen_ai/_OpenAI.py +230 -0
- scitex/ai/_gen_ai/_PARAMS.py +565 -0
- scitex/ai/_gen_ai/_Perplexity.py +191 -0
- scitex/ai/_gen_ai/__init__.py +32 -0
- scitex/ai/_gen_ai/_calc_cost.py +78 -0
- scitex/ai/_gen_ai/_format_output_func.py +183 -0
- scitex/ai/_gen_ai/_genai_factory.py +71 -0
- scitex/ai/act/__init__.py +8 -0
- scitex/ai/act/_define.py +11 -0
- scitex/ai/classification/__init__.py +7 -0
- scitex/ai/classification/classification_reporter.py +1137 -0
- scitex/ai/classification/classifier_server.py +131 -0
- scitex/ai/classification/classifiers.py +101 -0
- scitex/ai/classification_reporter.py +1161 -0
- scitex/ai/classifier_server.py +131 -0
- scitex/ai/clustering/__init__.py +11 -0
- scitex/ai/clustering/_pca.py +115 -0
- scitex/ai/clustering/_umap.py +376 -0
- scitex/ai/early_stopping.py +149 -0
- scitex/ai/feature_extraction/__init__.py +56 -0
- scitex/ai/feature_extraction/vit.py +148 -0
- scitex/ai/genai/__init__.py +277 -0
- scitex/ai/genai/anthropic.py +177 -0
- scitex/ai/genai/anthropic_provider.py +320 -0
- scitex/ai/genai/anthropic_refactored.py +109 -0
- scitex/ai/genai/auth_manager.py +200 -0
- scitex/ai/genai/base_genai.py +336 -0
- scitex/ai/genai/base_provider.py +291 -0
- scitex/ai/genai/calc_cost.py +78 -0
- scitex/ai/genai/chat_history.py +307 -0
- scitex/ai/genai/cost_tracker.py +276 -0
- scitex/ai/genai/deepseek.py +188 -0
- scitex/ai/genai/deepseek_provider.py +251 -0
- scitex/ai/genai/format_output_func.py +183 -0
- scitex/ai/genai/genai_factory.py +71 -0
- scitex/ai/genai/google.py +169 -0
- scitex/ai/genai/google_provider.py +228 -0
- scitex/ai/genai/groq.py +104 -0
- scitex/ai/genai/groq_provider.py +248 -0
- scitex/ai/genai/image_processor.py +250 -0
- scitex/ai/genai/llama.py +155 -0
- scitex/ai/genai/llama_provider.py +214 -0
- scitex/ai/genai/mock_provider.py +127 -0
- scitex/ai/genai/model_registry.py +304 -0
- scitex/ai/genai/openai.py +230 -0
- scitex/ai/genai/openai_provider.py +293 -0
- scitex/ai/genai/params.py +565 -0
- scitex/ai/genai/perplexity.py +202 -0
- scitex/ai/genai/perplexity_provider.py +205 -0
- scitex/ai/genai/provider_base.py +302 -0
- scitex/ai/genai/provider_factory.py +370 -0
- scitex/ai/genai/response_handler.py +235 -0
- scitex/ai/layer/_Pass.py +21 -0
- scitex/ai/layer/__init__.py +10 -0
- scitex/ai/layer/_switch.py +8 -0
- scitex/ai/loss/_L1L2Losses.py +34 -0
- scitex/ai/loss/__init__.py +12 -0
- scitex/ai/loss/multi_task_loss.py +47 -0
- scitex/ai/metrics/__init__.py +9 -0
- scitex/ai/metrics/_bACC.py +51 -0
- scitex/ai/metrics/silhoute_score_block.py +496 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
- scitex/ai/optim/__init__.py +13 -0
- scitex/ai/optim/_get_set.py +31 -0
- scitex/ai/optim/_optimizers.py +71 -0
- scitex/ai/plt/__init__.py +21 -0
- scitex/ai/plt/_conf_mat.py +592 -0
- scitex/ai/plt/_learning_curve.py +194 -0
- scitex/ai/plt/_optuna_study.py +111 -0
- scitex/ai/plt/aucs/__init__.py +2 -0
- scitex/ai/plt/aucs/example.py +60 -0
- scitex/ai/plt/aucs/pre_rec_auc.py +223 -0
- scitex/ai/plt/aucs/roc_auc.py +246 -0
- scitex/ai/sampling/undersample.py +29 -0
- scitex/ai/sk/__init__.py +11 -0
- scitex/ai/sk/_clf.py +58 -0
- scitex/ai/sk/_to_sktime.py +100 -0
- scitex/ai/sklearn/__init__.py +26 -0
- scitex/ai/sklearn/clf.py +58 -0
- scitex/ai/sklearn/to_sktime.py +100 -0
- scitex/ai/training/__init__.py +7 -0
- scitex/ai/training/early_stopping.py +150 -0
- scitex/ai/training/learning_curve_logger.py +555 -0
- scitex/ai/utils/__init__.py +22 -0
- scitex/ai/utils/_check_params.py +50 -0
- scitex/ai/utils/_default_dataset.py +46 -0
- scitex/ai/utils/_format_samples_for_sktime.py +26 -0
- scitex/ai/utils/_label_encoder.py +134 -0
- scitex/ai/utils/_merge_labels.py +22 -0
- scitex/ai/utils/_sliding_window_data_augmentation.py +11 -0
- scitex/ai/utils/_under_sample.py +51 -0
- scitex/ai/utils/_verify_n_gpus.py +16 -0
- scitex/ai/utils/grid_search.py +148 -0
- scitex/context/__init__.py +9 -0
- scitex/context/_suppress_output.py +38 -0
- scitex/db/_BaseMixins/_BaseBackupMixin.py +30 -0
- scitex/db/_BaseMixins/_BaseBatchMixin.py +31 -0
- scitex/db/_BaseMixins/_BaseBlobMixin.py +81 -0
- scitex/db/_BaseMixins/_BaseConnectionMixin.py +43 -0
- scitex/db/_BaseMixins/_BaseImportExportMixin.py +39 -0
- scitex/db/_BaseMixins/_BaseIndexMixin.py +29 -0
- scitex/db/_BaseMixins/_BaseMaintenanceMixin.py +33 -0
- scitex/db/_BaseMixins/_BaseQueryMixin.py +52 -0
- scitex/db/_BaseMixins/_BaseRowMixin.py +32 -0
- scitex/db/_BaseMixins/_BaseSchemaMixin.py +44 -0
- scitex/db/_BaseMixins/_BaseTableMixin.py +66 -0
- scitex/db/_BaseMixins/_BaseTransactionMixin.py +52 -0
- scitex/db/_BaseMixins/__init__.py +30 -0
- scitex/db/_PostgreSQL.py +126 -0
- scitex/db/_PostgreSQLMixins/_BackupMixin.py +166 -0
- scitex/db/_PostgreSQLMixins/_BatchMixin.py +82 -0
- scitex/db/_PostgreSQLMixins/_BlobMixin.py +231 -0
- scitex/db/_PostgreSQLMixins/_ConnectionMixin.py +92 -0
- scitex/db/_PostgreSQLMixins/_ImportExportMixin.py +59 -0
- scitex/db/_PostgreSQLMixins/_IndexMixin.py +64 -0
- scitex/db/_PostgreSQLMixins/_MaintenanceMixin.py +175 -0
- scitex/db/_PostgreSQLMixins/_QueryMixin.py +108 -0
- scitex/db/_PostgreSQLMixins/_RowMixin.py +75 -0
- scitex/db/_PostgreSQLMixins/_SchemaMixin.py +126 -0
- scitex/db/_PostgreSQLMixins/_TableMixin.py +176 -0
- scitex/db/_PostgreSQLMixins/_TransactionMixin.py +57 -0
- scitex/db/_PostgreSQLMixins/__init__.py +34 -0
- scitex/db/_SQLite3.py +2136 -0
- scitex/db/_SQLite3Mixins/_BatchMixin.py +243 -0
- scitex/db/_SQLite3Mixins/_BlobMixin.py +229 -0
- scitex/db/_SQLite3Mixins/_ConnectionMixin.py +108 -0
- scitex/db/_SQLite3Mixins/_ImportExportMixin.py +80 -0
- scitex/db/_SQLite3Mixins/_IndexMixin.py +32 -0
- scitex/db/_SQLite3Mixins/_MaintenanceMixin.py +176 -0
- scitex/db/_SQLite3Mixins/_QueryMixin.py +83 -0
- scitex/db/_SQLite3Mixins/_RowMixin.py +75 -0
- scitex/db/_SQLite3Mixins/_TableMixin.py +183 -0
- scitex/db/_SQLite3Mixins/_TransactionMixin.py +71 -0
- scitex/db/_SQLite3Mixins/__init__.py +30 -0
- scitex/db/__init__.py +14 -0
- scitex/db/_delete_duplicates.py +397 -0
- scitex/db/_inspect.py +163 -0
- scitex/decorators/__init__.py +54 -0
- scitex/decorators/_auto_order.py +172 -0
- scitex/decorators/_batch_fn.py +127 -0
- scitex/decorators/_cache_disk.py +32 -0
- scitex/decorators/_cache_mem.py +12 -0
- scitex/decorators/_combined.py +98 -0
- scitex/decorators/_converters.py +282 -0
- scitex/decorators/_deprecated.py +26 -0
- scitex/decorators/_not_implemented.py +30 -0
- scitex/decorators/_numpy_fn.py +86 -0
- scitex/decorators/_pandas_fn.py +121 -0
- scitex/decorators/_preserve_doc.py +19 -0
- scitex/decorators/_signal_fn.py +95 -0
- scitex/decorators/_timeout.py +55 -0
- scitex/decorators/_torch_fn.py +136 -0
- scitex/decorators/_wrap.py +39 -0
- scitex/decorators/_xarray_fn.py +88 -0
- scitex/dev/__init__.py +15 -0
- scitex/dev/_analyze_code_flow.py +284 -0
- scitex/dev/_reload.py +59 -0
- scitex/dict/_DotDict.py +442 -0
- scitex/dict/__init__.py +18 -0
- scitex/dict/_listed_dict.py +42 -0
- scitex/dict/_pop_keys.py +36 -0
- scitex/dict/_replace.py +13 -0
- scitex/dict/_safe_merge.py +62 -0
- scitex/dict/_to_str.py +32 -0
- scitex/dsp/__init__.py +72 -0
- scitex/dsp/_crop.py +122 -0
- scitex/dsp/_demo_sig.py +331 -0
- scitex/dsp/_detect_ripples.py +212 -0
- scitex/dsp/_ensure_3d.py +18 -0
- scitex/dsp/_hilbert.py +78 -0
- scitex/dsp/_listen.py +702 -0
- scitex/dsp/_misc.py +30 -0
- scitex/dsp/_mne.py +32 -0
- scitex/dsp/_modulation_index.py +79 -0
- scitex/dsp/_pac.py +319 -0
- scitex/dsp/_psd.py +102 -0
- scitex/dsp/_resample.py +65 -0
- scitex/dsp/_time.py +36 -0
- scitex/dsp/_transform.py +68 -0
- scitex/dsp/_wavelet.py +212 -0
- scitex/dsp/add_noise.py +111 -0
- scitex/dsp/example.py +253 -0
- scitex/dsp/filt.py +155 -0
- scitex/dsp/norm.py +18 -0
- scitex/dsp/params.py +51 -0
- scitex/dsp/reference.py +43 -0
- scitex/dsp/template.py +25 -0
- scitex/dsp/utils/__init__.py +15 -0
- scitex/dsp/utils/_differential_bandpass_filters.py +120 -0
- scitex/dsp/utils/_ensure_3d.py +18 -0
- scitex/dsp/utils/_ensure_even_len.py +10 -0
- scitex/dsp/utils/_zero_pad.py +48 -0
- scitex/dsp/utils/filter.py +408 -0
- scitex/dsp/utils/pac.py +177 -0
- scitex/dt/__init__.py +8 -0
- scitex/dt/_linspace.py +130 -0
- scitex/etc/__init__.py +15 -0
- scitex/etc/wait_key.py +34 -0
- scitex/gen/_DimHandler.py +196 -0
- scitex/gen/_TimeStamper.py +244 -0
- scitex/gen/__init__.py +95 -0
- scitex/gen/_alternate_kwarg.py +13 -0
- scitex/gen/_cache.py +11 -0
- scitex/gen/_check_host.py +34 -0
- scitex/gen/_ci.py +12 -0
- scitex/gen/_close.py +222 -0
- scitex/gen/_embed.py +78 -0
- scitex/gen/_inspect_module.py +257 -0
- scitex/gen/_is_ipython.py +12 -0
- scitex/gen/_less.py +48 -0
- scitex/gen/_list_packages.py +139 -0
- scitex/gen/_mat2py.py +88 -0
- scitex/gen/_norm.py +170 -0
- scitex/gen/_paste.py +18 -0
- scitex/gen/_print_config.py +84 -0
- scitex/gen/_shell.py +48 -0
- scitex/gen/_src.py +111 -0
- scitex/gen/_start.py +451 -0
- scitex/gen/_symlink.py +55 -0
- scitex/gen/_symlog.py +27 -0
- scitex/gen/_tee.py +238 -0
- scitex/gen/_title2path.py +60 -0
- scitex/gen/_title_case.py +88 -0
- scitex/gen/_to_even.py +84 -0
- scitex/gen/_to_odd.py +34 -0
- scitex/gen/_to_rank.py +39 -0
- scitex/gen/_transpose.py +37 -0
- scitex/gen/_type.py +78 -0
- scitex/gen/_var_info.py +73 -0
- scitex/gen/_wrap.py +17 -0
- scitex/gen/_xml2dict.py +76 -0
- scitex/gen/misc.py +730 -0
- scitex/gen/path.py +0 -0
- scitex/general/__init__.py +5 -0
- scitex/gists/_SigMacro_processFigure_S.py +128 -0
- scitex/gists/_SigMacro_toBlue.py +172 -0
- scitex/gists/__init__.py +12 -0
- scitex/io/_H5Explorer.py +292 -0
- scitex/io/__init__.py +82 -0
- scitex/io/_cache.py +101 -0
- scitex/io/_flush.py +24 -0
- scitex/io/_glob.py +103 -0
- scitex/io/_json2md.py +113 -0
- scitex/io/_load.py +168 -0
- scitex/io/_load_configs.py +146 -0
- scitex/io/_load_modules/__init__.py +38 -0
- scitex/io/_load_modules/_catboost.py +66 -0
- scitex/io/_load_modules/_con.py +20 -0
- scitex/io/_load_modules/_db.py +24 -0
- scitex/io/_load_modules/_docx.py +42 -0
- scitex/io/_load_modules/_eeg.py +110 -0
- scitex/io/_load_modules/_hdf5.py +196 -0
- scitex/io/_load_modules/_image.py +19 -0
- scitex/io/_load_modules/_joblib.py +19 -0
- scitex/io/_load_modules/_json.py +18 -0
- scitex/io/_load_modules/_markdown.py +103 -0
- scitex/io/_load_modules/_matlab.py +37 -0
- scitex/io/_load_modules/_numpy.py +39 -0
- scitex/io/_load_modules/_optuna.py +155 -0
- scitex/io/_load_modules/_pandas.py +69 -0
- scitex/io/_load_modules/_pdf.py +31 -0
- scitex/io/_load_modules/_pickle.py +24 -0
- scitex/io/_load_modules/_torch.py +16 -0
- scitex/io/_load_modules/_txt.py +126 -0
- scitex/io/_load_modules/_xml.py +49 -0
- scitex/io/_load_modules/_yaml.py +23 -0
- scitex/io/_mv_to_tmp.py +19 -0
- scitex/io/_path.py +286 -0
- scitex/io/_reload.py +78 -0
- scitex/io/_save.py +539 -0
- scitex/io/_save_modules/__init__.py +66 -0
- scitex/io/_save_modules/_catboost.py +22 -0
- scitex/io/_save_modules/_csv.py +89 -0
- scitex/io/_save_modules/_excel.py +49 -0
- scitex/io/_save_modules/_hdf5.py +249 -0
- scitex/io/_save_modules/_html.py +48 -0
- scitex/io/_save_modules/_image.py +140 -0
- scitex/io/_save_modules/_joblib.py +25 -0
- scitex/io/_save_modules/_json.py +25 -0
- scitex/io/_save_modules/_listed_dfs_as_csv.py +57 -0
- scitex/io/_save_modules/_listed_scalars_as_csv.py +42 -0
- scitex/io/_save_modules/_matlab.py +24 -0
- scitex/io/_save_modules/_mp4.py +29 -0
- scitex/io/_save_modules/_numpy.py +57 -0
- scitex/io/_save_modules/_optuna_study_as_csv_and_pngs.py +38 -0
- scitex/io/_save_modules/_pickle.py +45 -0
- scitex/io/_save_modules/_plotly.py +27 -0
- scitex/io/_save_modules/_text.py +23 -0
- scitex/io/_save_modules/_torch.py +26 -0
- scitex/io/_save_modules/_yaml.py +29 -0
- scitex/life/__init__.py +10 -0
- scitex/life/_monitor_rain.py +49 -0
- scitex/linalg/__init__.py +17 -0
- scitex/linalg/_distance.py +63 -0
- scitex/linalg/_geometric_median.py +64 -0
- scitex/linalg/_misc.py +73 -0
- scitex/nn/_AxiswiseDropout.py +27 -0
- scitex/nn/_BNet.py +126 -0
- scitex/nn/_BNet_Res.py +164 -0
- scitex/nn/_ChannelGainChanger.py +44 -0
- scitex/nn/_DropoutChannels.py +50 -0
- scitex/nn/_Filters.py +489 -0
- scitex/nn/_FreqGainChanger.py +110 -0
- scitex/nn/_GaussianFilter.py +48 -0
- scitex/nn/_Hilbert.py +111 -0
- scitex/nn/_MNet_1000.py +157 -0
- scitex/nn/_ModulationIndex.py +221 -0
- scitex/nn/_PAC.py +414 -0
- scitex/nn/_PSD.py +40 -0
- scitex/nn/_ResNet1D.py +120 -0
- scitex/nn/_SpatialAttention.py +25 -0
- scitex/nn/_Spectrogram.py +161 -0
- scitex/nn/_SwapChannels.py +50 -0
- scitex/nn/_TransposeLayer.py +19 -0
- scitex/nn/_Wavelet.py +183 -0
- scitex/nn/__init__.py +63 -0
- scitex/os/__init__.py +8 -0
- scitex/os/_mv.py +50 -0
- scitex/parallel/__init__.py +8 -0
- scitex/parallel/_run.py +151 -0
- scitex/path/__init__.py +33 -0
- scitex/path/_clean.py +52 -0
- scitex/path/_find.py +108 -0
- scitex/path/_get_module_path.py +51 -0
- scitex/path/_get_spath.py +35 -0
- scitex/path/_getsize.py +18 -0
- scitex/path/_increment_version.py +87 -0
- scitex/path/_mk_spath.py +51 -0
- scitex/path/_path.py +19 -0
- scitex/path/_split.py +23 -0
- scitex/path/_this_path.py +19 -0
- scitex/path/_version.py +101 -0
- scitex/pd/__init__.py +41 -0
- scitex/pd/_find_indi.py +126 -0
- scitex/pd/_find_pval.py +113 -0
- scitex/pd/_force_df.py +154 -0
- scitex/pd/_from_xyz.py +71 -0
- scitex/pd/_ignore_SettingWithCopyWarning.py +34 -0
- scitex/pd/_melt_cols.py +81 -0
- scitex/pd/_merge_columns.py +221 -0
- scitex/pd/_mv.py +63 -0
- scitex/pd/_replace.py +62 -0
- scitex/pd/_round.py +93 -0
- scitex/pd/_slice.py +63 -0
- scitex/pd/_sort.py +91 -0
- scitex/pd/_to_numeric.py +53 -0
- scitex/pd/_to_xy.py +59 -0
- scitex/pd/_to_xyz.py +110 -0
- scitex/plt/__init__.py +36 -0
- scitex/plt/_subplots/_AxesWrapper.py +182 -0
- scitex/plt/_subplots/_AxisWrapper.py +249 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +414 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +896 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +368 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_TrackingMixin.py +185 -0
- scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +16 -0
- scitex/plt/_subplots/_FigWrapper.py +226 -0
- scitex/plt/_subplots/_SubplotsWrapper.py +171 -0
- scitex/plt/_subplots/__init__.py +111 -0
- scitex/plt/_subplots/_export_as_csv.py +232 -0
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +61 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +90 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +49 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +39 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +125 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +72 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +34 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +36 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +32 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +66 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +95 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +67 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +52 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +103 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +82 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +117 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +30 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +51 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +93 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +94 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +92 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +65 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +45 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +155 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +77 -0
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +210 -0
- scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +342 -0
- scitex/plt/_subplots/_export_as_csv_formatters.py +115 -0
- scitex/plt/_tpl.py +28 -0
- scitex/plt/ax/__init__.py +114 -0
- scitex/plt/ax/_plot/__init__.py +53 -0
- scitex/plt/ax/_plot/_plot_circular_hist.py +124 -0
- scitex/plt/ax/_plot/_plot_conf_mat.py +136 -0
- scitex/plt/ax/_plot/_plot_cube.py +57 -0
- scitex/plt/ax/_plot/_plot_ecdf.py +84 -0
- scitex/plt/ax/_plot/_plot_fillv.py +55 -0
- scitex/plt/ax/_plot/_plot_heatmap.py +266 -0
- scitex/plt/ax/_plot/_plot_image.py +94 -0
- scitex/plt/ax/_plot/_plot_joyplot.py +76 -0
- scitex/plt/ax/_plot/_plot_raster.py +172 -0
- scitex/plt/ax/_plot/_plot_rectangle.py +69 -0
- scitex/plt/ax/_plot/_plot_scatter_hist.py +133 -0
- scitex/plt/ax/_plot/_plot_shaded_line.py +142 -0
- scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +221 -0
- scitex/plt/ax/_plot/_plot_violin.py +343 -0
- scitex/plt/ax/_style/__init__.py +38 -0
- scitex/plt/ax/_style/_add_marginal_ax.py +44 -0
- scitex/plt/ax/_style/_add_panel.py +92 -0
- scitex/plt/ax/_style/_extend.py +64 -0
- scitex/plt/ax/_style/_force_aspect.py +37 -0
- scitex/plt/ax/_style/_format_label.py +23 -0
- scitex/plt/ax/_style/_hide_spines.py +84 -0
- scitex/plt/ax/_style/_map_ticks.py +182 -0
- scitex/plt/ax/_style/_rotate_labels.py +215 -0
- scitex/plt/ax/_style/_sci_note.py +279 -0
- scitex/plt/ax/_style/_set_log_scale.py +299 -0
- scitex/plt/ax/_style/_set_meta.py +261 -0
- scitex/plt/ax/_style/_set_n_ticks.py +37 -0
- scitex/plt/ax/_style/_set_size.py +16 -0
- scitex/plt/ax/_style/_set_supxyt.py +116 -0
- scitex/plt/ax/_style/_set_ticks.py +276 -0
- scitex/plt/ax/_style/_set_xyt.py +121 -0
- scitex/plt/ax/_style/_share_axes.py +264 -0
- scitex/plt/ax/_style/_shift.py +139 -0
- scitex/plt/ax/_style/_show_spines.py +333 -0
- scitex/plt/color/_PARAMS.py +70 -0
- scitex/plt/color/__init__.py +52 -0
- scitex/plt/color/_add_hue_col.py +41 -0
- scitex/plt/color/_colors.py +205 -0
- scitex/plt/color/_get_colors_from_cmap.py +134 -0
- scitex/plt/color/_interpolate.py +29 -0
- scitex/plt/color/_vizualize_colors.py +54 -0
- scitex/plt/utils/__init__.py +44 -0
- scitex/plt/utils/_calc_bacc_from_conf_mat.py +46 -0
- scitex/plt/utils/_calc_nice_ticks.py +101 -0
- scitex/plt/utils/_close.py +68 -0
- scitex/plt/utils/_colorbar.py +96 -0
- scitex/plt/utils/_configure_mpl.py +295 -0
- scitex/plt/utils/_histogram_utils.py +132 -0
- scitex/plt/utils/_im2grid.py +70 -0
- scitex/plt/utils/_is_valid_axis.py +78 -0
- scitex/plt/utils/_mk_colorbar.py +65 -0
- scitex/plt/utils/_mk_patches.py +26 -0
- scitex/plt/utils/_scientific_captions.py +638 -0
- scitex/plt/utils/_scitex_config.py +223 -0
- scitex/reproduce/__init__.py +14 -0
- scitex/reproduce/_fix_seeds.py +45 -0
- scitex/reproduce/_gen_ID.py +55 -0
- scitex/reproduce/_gen_timestamp.py +35 -0
- scitex/res/__init__.py +5 -0
- scitex/resource/__init__.py +13 -0
- scitex/resource/_get_processor_usages.py +281 -0
- scitex/resource/_get_specs.py +280 -0
- scitex/resource/_log_processor_usages.py +190 -0
- scitex/resource/_utils/__init__.py +31 -0
- scitex/resource/_utils/_get_env_info.py +481 -0
- scitex/resource/limit_ram.py +33 -0
- scitex/scholar/__init__.py +24 -0
- scitex/scholar/_local_search.py +454 -0
- scitex/scholar/_paper.py +244 -0
- scitex/scholar/_pdf_downloader.py +325 -0
- scitex/scholar/_search.py +393 -0
- scitex/scholar/_vector_search.py +370 -0
- scitex/scholar/_web_sources.py +457 -0
- scitex/stats/__init__.py +31 -0
- scitex/stats/_calc_partial_corr.py +17 -0
- scitex/stats/_corr_test_multi.py +94 -0
- scitex/stats/_corr_test_wrapper.py +115 -0
- scitex/stats/_describe_wrapper.py +90 -0
- scitex/stats/_multiple_corrections.py +63 -0
- scitex/stats/_nan_stats.py +93 -0
- scitex/stats/_p2stars.py +116 -0
- scitex/stats/_p2stars_wrapper.py +56 -0
- scitex/stats/_statistical_tests.py +73 -0
- scitex/stats/desc/__init__.py +40 -0
- scitex/stats/desc/_describe.py +189 -0
- scitex/stats/desc/_nan.py +289 -0
- scitex/stats/desc/_real.py +94 -0
- scitex/stats/multiple/__init__.py +14 -0
- scitex/stats/multiple/_bonferroni_correction.py +72 -0
- scitex/stats/multiple/_fdr_correction.py +400 -0
- scitex/stats/multiple/_multicompair.py +28 -0
- scitex/stats/tests/__corr_test.py +277 -0
- scitex/stats/tests/__corr_test_multi.py +343 -0
- scitex/stats/tests/__corr_test_single.py +277 -0
- scitex/stats/tests/__init__.py +22 -0
- scitex/stats/tests/_brunner_munzel_test.py +192 -0
- scitex/stats/tests/_nocorrelation_test.py +28 -0
- scitex/stats/tests/_smirnov_grubbs.py +98 -0
- scitex/str/__init__.py +113 -0
- scitex/str/_clean_path.py +75 -0
- scitex/str/_color_text.py +52 -0
- scitex/str/_decapitalize.py +58 -0
- scitex/str/_factor_out_digits.py +281 -0
- scitex/str/_format_plot_text.py +498 -0
- scitex/str/_grep.py +48 -0
- scitex/str/_latex.py +155 -0
- scitex/str/_latex_fallback.py +471 -0
- scitex/str/_mask_api.py +39 -0
- scitex/str/_mask_api_key.py +8 -0
- scitex/str/_parse.py +158 -0
- scitex/str/_print_block.py +47 -0
- scitex/str/_print_debug.py +68 -0
- scitex/str/_printc.py +62 -0
- scitex/str/_readable_bytes.py +38 -0
- scitex/str/_remove_ansi.py +23 -0
- scitex/str/_replace.py +134 -0
- scitex/str/_search.py +125 -0
- scitex/str/_squeeze_space.py +36 -0
- scitex/tex/__init__.py +10 -0
- scitex/tex/_preview.py +103 -0
- scitex/tex/_to_vec.py +116 -0
- scitex/torch/__init__.py +18 -0
- scitex/torch/_apply_to.py +34 -0
- scitex/torch/_nan_funcs.py +77 -0
- scitex/types/_ArrayLike.py +44 -0
- scitex/types/_ColorLike.py +21 -0
- scitex/types/__init__.py +14 -0
- scitex/types/_is_listed_X.py +70 -0
- scitex/utils/__init__.py +22 -0
- scitex/utils/_compress_hdf5.py +116 -0
- scitex/utils/_email.py +120 -0
- scitex/utils/_grid.py +148 -0
- scitex/utils/_notify.py +247 -0
- scitex/utils/_search.py +121 -0
- scitex/web/__init__.py +38 -0
- scitex/web/_search_pubmed.py +438 -0
- scitex/web/_summarize_url.py +158 -0
- scitex-2.0.0.dist-info/METADATA +307 -0
- scitex-2.0.0.dist-info/RECORD +572 -0
- scitex-2.0.0.dist-info/WHEEL +6 -0
- scitex-2.0.0.dist-info/licenses/LICENSE +7 -0
- scitex-2.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,150 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# Time-stamp: "2024-09-07 01:09:38 (ywatanabe)"
|
|
3
|
+
|
|
4
|
+
import os
|
|
5
|
+
|
|
6
|
+
import scitex
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class EarlyStopping:
|
|
11
|
+
"""
|
|
12
|
+
Early stops the training if the validation score doesn't improve after a given patience period.
|
|
13
|
+
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
def __init__(self, patience=7, verbose=False, delta=1e-5, direction="minimize"):
|
|
17
|
+
"""
|
|
18
|
+
Args:
|
|
19
|
+
patience (int): How long to wait after last time validation score improved.
|
|
20
|
+
Default: 7
|
|
21
|
+
verbose (bool): If True, prints a message for each validation score improvement.
|
|
22
|
+
Default: False
|
|
23
|
+
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
|
|
24
|
+
Default: 0
|
|
25
|
+
"""
|
|
26
|
+
self.patience = patience
|
|
27
|
+
self.verbose = verbose
|
|
28
|
+
self.direction = direction
|
|
29
|
+
|
|
30
|
+
self.delta = delta
|
|
31
|
+
|
|
32
|
+
# default
|
|
33
|
+
self.counter = 0
|
|
34
|
+
self.best_score = np.inf if direction == "minimize" else -np.inf
|
|
35
|
+
self.best_i_global = None
|
|
36
|
+
self.models_spaths_dict = {}
|
|
37
|
+
|
|
38
|
+
def is_best(self, val_score):
|
|
39
|
+
is_smaller = val_score < self.best_score - abs(self.delta)
|
|
40
|
+
is_larger = self.best_score + abs(self.delta) < val_score
|
|
41
|
+
return is_smaller if self.direction == "minimize" else is_larger
|
|
42
|
+
|
|
43
|
+
def __call__(self, current_score, models_spaths_dict, i_global):
|
|
44
|
+
# The 1st call
|
|
45
|
+
if self.best_score is None:
|
|
46
|
+
self.save(current_score, models_spaths_dict, i_global)
|
|
47
|
+
return False
|
|
48
|
+
|
|
49
|
+
# After the 2nd call
|
|
50
|
+
if self.is_best(current_score):
|
|
51
|
+
self.save(current_score, models_spaths_dict, i_global)
|
|
52
|
+
self.counter = 0
|
|
53
|
+
return False
|
|
54
|
+
|
|
55
|
+
else:
|
|
56
|
+
self.counter += 1
|
|
57
|
+
if self.verbose:
|
|
58
|
+
print(
|
|
59
|
+
f"\nEarlyStopping counter: {self.counter} out of {self.patience}\n"
|
|
60
|
+
)
|
|
61
|
+
if self.counter >= self.patience:
|
|
62
|
+
if self.verbose:
|
|
63
|
+
scitex.str.printc("Early-stopped.", c="yellow")
|
|
64
|
+
return True
|
|
65
|
+
return False
|
|
66
|
+
|
|
67
|
+
def save(self, current_score, models_spaths_dict, i_global):
|
|
68
|
+
"""Saves model when validation score decrease."""
|
|
69
|
+
|
|
70
|
+
if self.verbose:
|
|
71
|
+
print(
|
|
72
|
+
f"\nUpdate the best score: ({self.best_score:.6f} --> {current_score:.6f})"
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
self.best_score = current_score
|
|
76
|
+
self.best_i_global = i_global
|
|
77
|
+
|
|
78
|
+
for model, spath in models_spaths_dict.items():
|
|
79
|
+
scitex.io.save(model.state_dict(), spath)
|
|
80
|
+
|
|
81
|
+
self.models_spaths_dict = models_spaths_dict
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
if __name__ == "__main__":
|
|
85
|
+
pass
|
|
86
|
+
# # starts the current fold's loop
|
|
87
|
+
# i_global = 0
|
|
88
|
+
# lc_logger = scitex.ml.LearningCurveLogger()
|
|
89
|
+
# early_stopping = utils.EarlyStopping(patience=50, verbose=True)
|
|
90
|
+
# for i_epoch, epoch in enumerate(tqdm(range(merged_conf["MAX_EPOCHS"]))):
|
|
91
|
+
|
|
92
|
+
# dlf.fill(i_fold, reset_fill_counter=False)
|
|
93
|
+
|
|
94
|
+
# step_str = "Validation"
|
|
95
|
+
# for i_batch, batch in enumerate(dlf.dl_val):
|
|
96
|
+
# _, loss_diag_val = utils.base_step(
|
|
97
|
+
# step_str,
|
|
98
|
+
# model,
|
|
99
|
+
# mtl,
|
|
100
|
+
# batch,
|
|
101
|
+
# device,
|
|
102
|
+
# i_fold,
|
|
103
|
+
# i_epoch,
|
|
104
|
+
# i_batch,
|
|
105
|
+
# i_global,
|
|
106
|
+
# lc_logger,
|
|
107
|
+
# no_mtl=args.no_mtl,
|
|
108
|
+
# print_batch_interval=False,
|
|
109
|
+
# )
|
|
110
|
+
# lc_logger.print(step_str)
|
|
111
|
+
|
|
112
|
+
# step_str = "Training"
|
|
113
|
+
# for i_batch, batch in enumerate(dlf.dl_tra):
|
|
114
|
+
# optimizer.zero_grad()
|
|
115
|
+
# loss, _ = utils.base_step(
|
|
116
|
+
# step_str,
|
|
117
|
+
# model,
|
|
118
|
+
# mtl,
|
|
119
|
+
# batch,
|
|
120
|
+
# device,
|
|
121
|
+
# i_fold,
|
|
122
|
+
# i_epoch,
|
|
123
|
+
# i_batch,
|
|
124
|
+
# i_global,
|
|
125
|
+
# lc_logger,
|
|
126
|
+
# no_mtl=args.no_mtl,
|
|
127
|
+
# print_batch_interval=False,
|
|
128
|
+
# )
|
|
129
|
+
# loss.backward()
|
|
130
|
+
# optimizer.step()
|
|
131
|
+
# i_global += 1
|
|
132
|
+
# lc_logger.print(step_str)
|
|
133
|
+
|
|
134
|
+
# bACC_val = np.array(lc_logger.logged_dict["Validation"]["bACC_diag_plot"])[
|
|
135
|
+
# np.array(lc_logger.logged_dict["Validation"]["i_epoch"]) == i_epoch
|
|
136
|
+
# ].mean()
|
|
137
|
+
|
|
138
|
+
# model_spath = (
|
|
139
|
+
# merged_conf["sdir"]
|
|
140
|
+
# + f"checkpoints/model_fold#{i_fold}_epoch#{i_epoch:03d}.pth"
|
|
141
|
+
# )
|
|
142
|
+
# mtl_spath = model_spath.replace("model_fold", "mtl_fold")
|
|
143
|
+
# models_spaths_dict = {model_spath: model, mtl_spath: mtl}
|
|
144
|
+
|
|
145
|
+
# early_stopping(loss_diag_val, models_spaths_dict, i_epoch, i_global)
|
|
146
|
+
# # early_stopping(-bACC_val, models_spaths_dict, i_epoch, i_global)
|
|
147
|
+
|
|
148
|
+
# if early_stopping.early_stop:
|
|
149
|
+
# print("Early stopping")
|
|
150
|
+
# break
|
|
@@ -0,0 +1,555 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-11-20 08:49:50 (ywatanabe)"
|
|
4
|
+
# File: ./scitex_repo/src/scitex/ai/_LearningCurveLogger.py
|
|
5
|
+
|
|
6
|
+
THIS_FILE = "/home/ywatanabe/proj/scitex_repo/src/scitex/ai/_LearningCurveLogger.py"
|
|
7
|
+
|
|
8
|
+
"""
|
|
9
|
+
Functionality:
|
|
10
|
+
- Records and visualizes learning curves during model training
|
|
11
|
+
- Supports tracking of multiple metrics across training/validation/test phases
|
|
12
|
+
- Generates plots showing training progress over iterations and epochs
|
|
13
|
+
|
|
14
|
+
Input:
|
|
15
|
+
- Training metrics dictionary containing loss, accuracy, predictions etc.
|
|
16
|
+
- Step information (Training/Validation/Test)
|
|
17
|
+
|
|
18
|
+
Output:
|
|
19
|
+
- Learning curve plots
|
|
20
|
+
- Dataframes with recorded metrics
|
|
21
|
+
- Training progress prints
|
|
22
|
+
|
|
23
|
+
Prerequisites:
|
|
24
|
+
- PyTorch
|
|
25
|
+
- scikit-learn
|
|
26
|
+
- matplotlib
|
|
27
|
+
- pandas
|
|
28
|
+
- numpy
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
import re as _re
|
|
32
|
+
from collections import defaultdict as _defaultdict
|
|
33
|
+
from pprint import pprint as _pprint
|
|
34
|
+
from typing import Dict as _Dict
|
|
35
|
+
from typing import List as _List
|
|
36
|
+
from typing import Union as _Union
|
|
37
|
+
from typing import Optional as _Optional
|
|
38
|
+
from typing import Any as _Any
|
|
39
|
+
|
|
40
|
+
import matplotlib as _matplotlib
|
|
41
|
+
import pandas as _pd
|
|
42
|
+
import numpy as _np
|
|
43
|
+
import warnings as _warnings
|
|
44
|
+
import torch as _torch
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class LearningCurveLogger:
|
|
48
|
+
"""Records and visualizes learning metrics during model training.
|
|
49
|
+
|
|
50
|
+
Example
|
|
51
|
+
-------
|
|
52
|
+
>>> logger = LearningCurveLogger()
|
|
53
|
+
>>> metrics = {
|
|
54
|
+
... "loss_plot": 0.5,
|
|
55
|
+
... "balanced_ACC_plot": 0.8,
|
|
56
|
+
... "pred_proba": pred_proba,
|
|
57
|
+
... "true_class": labels,
|
|
58
|
+
... "i_fold": 0,
|
|
59
|
+
... "i_epoch": 1,
|
|
60
|
+
... "i_global": 100
|
|
61
|
+
... }
|
|
62
|
+
>>> logger(metrics, "Training")
|
|
63
|
+
>>> fig = logger.plot_learning_curves(plt)
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
def __init__(self) -> None:
|
|
67
|
+
self.logged_dict: _Dict[str, _Dict] = _defaultdict(dict)
|
|
68
|
+
|
|
69
|
+
_warnings.warn(
|
|
70
|
+
'\n"gt_label" will be removed in the future. Please use "true_class" instead.\n',
|
|
71
|
+
DeprecationWarning,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
def __call__(self, dict_to_log: _Dict[str, _Any], step: str) -> None:
|
|
75
|
+
"""Logs metrics for a training step.
|
|
76
|
+
|
|
77
|
+
Parameters
|
|
78
|
+
----------
|
|
79
|
+
dict_to_log : _Dict[str, _Any]
|
|
80
|
+
_Dictionary containing metrics to log
|
|
81
|
+
step : str
|
|
82
|
+
Phase of training ('Training', 'Validation', or 'Test')
|
|
83
|
+
"""
|
|
84
|
+
if "gt_label" in dict_to_log:
|
|
85
|
+
dict_to_log["true_class"] = dict_to_log.pop("gt_label")
|
|
86
|
+
|
|
87
|
+
for k_to_log in dict_to_log:
|
|
88
|
+
try:
|
|
89
|
+
self.logged_dict[step][k_to_log].append(dict_to_log[k_to_log])
|
|
90
|
+
except:
|
|
91
|
+
self.logged_dict[step][k_to_log] = [dict_to_log[k_to_log]]
|
|
92
|
+
|
|
93
|
+
@property
|
|
94
|
+
def dfs(self) -> _Dict[str, _pd.DataFrame]:
|
|
95
|
+
"""Returns DataFrames of logged metrics.
|
|
96
|
+
|
|
97
|
+
Returns
|
|
98
|
+
-------
|
|
99
|
+
_Dict[str, _pd.DataFrame]
|
|
100
|
+
_Dictionary of DataFrames for each step
|
|
101
|
+
"""
|
|
102
|
+
return self._to_dfs_pivot(
|
|
103
|
+
self.logged_dict,
|
|
104
|
+
pivot_column=None,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
def get_x_of_i_epoch(self, x: str, step: str, i_epoch: int) -> _np.ndarray:
|
|
108
|
+
"""Gets metric values for a specific epoch.
|
|
109
|
+
|
|
110
|
+
Parameters
|
|
111
|
+
----------
|
|
112
|
+
x : str
|
|
113
|
+
Name of metric to retrieve
|
|
114
|
+
step : str
|
|
115
|
+
Training phase
|
|
116
|
+
i_epoch : int
|
|
117
|
+
Epoch number
|
|
118
|
+
|
|
119
|
+
Returns
|
|
120
|
+
-------
|
|
121
|
+
_np.ndarray
|
|
122
|
+
Array of metric values for specified epoch
|
|
123
|
+
"""
|
|
124
|
+
indi = _np.array(self.logged_dict[step]["i_epoch"]) == i_epoch
|
|
125
|
+
x_all_arr = _np.array(self.logged_dict[step][x])
|
|
126
|
+
assert len(indi) == len(x_all_arr)
|
|
127
|
+
return x_all_arr[indi]
|
|
128
|
+
|
|
129
|
+
def plot_learning_curves(
|
|
130
|
+
self,
|
|
131
|
+
plt: _Any,
|
|
132
|
+
plt_config_dict: _Optional[_Dict] = None,
|
|
133
|
+
title: _Optional[str] = None,
|
|
134
|
+
max_n_ticks: int = 4,
|
|
135
|
+
linewidth: float = 1,
|
|
136
|
+
scattersize: float = 50,
|
|
137
|
+
) -> _matplotlib.figure.Figure:
|
|
138
|
+
"""Plots learning curves from logged metrics.
|
|
139
|
+
|
|
140
|
+
Parameters
|
|
141
|
+
----------
|
|
142
|
+
plt : _matplotlib.pyplot
|
|
143
|
+
_Matplotlib pyplot object
|
|
144
|
+
plt_config_dict : _Dict, optional
|
|
145
|
+
Plot configuration parameters
|
|
146
|
+
title : str, optional
|
|
147
|
+
Plot title
|
|
148
|
+
max_n_ticks : int
|
|
149
|
+
Maximum number of ticks on axes
|
|
150
|
+
linewidth : float
|
|
151
|
+
Width of plot lines
|
|
152
|
+
scattersize : float
|
|
153
|
+
Size of scatter points
|
|
154
|
+
|
|
155
|
+
Returns
|
|
156
|
+
-------
|
|
157
|
+
_matplotlib.figure.Figure
|
|
158
|
+
Figure containing learning curves
|
|
159
|
+
"""
|
|
160
|
+
|
|
161
|
+
if plt_config_dict is not None:
|
|
162
|
+
# Skip configure_mpl for now - would need to import plt module
|
|
163
|
+
pass
|
|
164
|
+
|
|
165
|
+
self.dfs_pivot_i_global = self._to_dfs_pivot(
|
|
166
|
+
self.logged_dict, pivot_column="i_global"
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
COLOR_DICT = {
|
|
170
|
+
"Training": "blue",
|
|
171
|
+
"Validation": "green",
|
|
172
|
+
"Test": "red",
|
|
173
|
+
}
|
|
174
|
+
|
|
175
|
+
keys_to_plot = self._find_keys_to_plot(self.logged_dict)
|
|
176
|
+
|
|
177
|
+
if len(keys_to_plot) == 0:
|
|
178
|
+
# No keys to plot, return empty figure
|
|
179
|
+
fig, ax = plt.subplots(1, 1)
|
|
180
|
+
ax.text(0.5, 0.5, 'No data to plot', ha='center', va='center')
|
|
181
|
+
return fig
|
|
182
|
+
|
|
183
|
+
fig, axes = plt.subplots(len(keys_to_plot), 1, sharex=True, sharey=False)
|
|
184
|
+
if len(keys_to_plot) == 1:
|
|
185
|
+
axes = [axes] # Make it a list for consistency
|
|
186
|
+
axes[-1].set_xlabel("Iteration#")
|
|
187
|
+
fig.text(0.5, 0.95, title, ha="center")
|
|
188
|
+
|
|
189
|
+
for i_plt, plt_k in enumerate(keys_to_plot):
|
|
190
|
+
ax = axes[i_plt]
|
|
191
|
+
ax.set_ylabel(self._rename_if_key_to_plot(plt_k))
|
|
192
|
+
ax.xaxis.set_major_locator(_matplotlib.ticker.MaxNLocator(max_n_ticks))
|
|
193
|
+
ax.yaxis.set_major_locator(_matplotlib.ticker.MaxNLocator(max_n_ticks))
|
|
194
|
+
|
|
195
|
+
if _re.search("[aA][cC][cC]", plt_k):
|
|
196
|
+
ax.set_ylim(0, 1)
|
|
197
|
+
ax.set_yticks([0, 0.5, 1.0])
|
|
198
|
+
|
|
199
|
+
for step_k in self.dfs_pivot_i_global.keys():
|
|
200
|
+
if step_k == _re.search("^[Tt]rain", step_k):
|
|
201
|
+
ax.plot(
|
|
202
|
+
self.dfs_pivot_i_global[step_k].index,
|
|
203
|
+
self.dfs_pivot_i_global[step_k][plt_k],
|
|
204
|
+
label=step_k,
|
|
205
|
+
color=COLOR_DICT[step_k],
|
|
206
|
+
linewidth=linewidth,
|
|
207
|
+
)
|
|
208
|
+
ax.legend()
|
|
209
|
+
|
|
210
|
+
epoch_starts = abs(
|
|
211
|
+
self.dfs_pivot_i_global[step_k]["i_epoch"]
|
|
212
|
+
- self.dfs_pivot_i_global[step_k]["i_epoch"].shift(-1)
|
|
213
|
+
)
|
|
214
|
+
indi_global_epoch_starts = [0] + list(
|
|
215
|
+
epoch_starts[epoch_starts == 1].index
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
for i_epoch, i_global_epoch_start in enumerate(
|
|
219
|
+
indi_global_epoch_starts
|
|
220
|
+
):
|
|
221
|
+
ax.axvline(
|
|
222
|
+
x=i_global_epoch_start,
|
|
223
|
+
ymin=-1e4,
|
|
224
|
+
ymax=1e4,
|
|
225
|
+
linestyle="--",
|
|
226
|
+
color=_plt_module.colors.to_RGBA("gray", alpha=0.5),
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
if (step_k == "Validation") or (step_k == "Test"):
|
|
230
|
+
ax.scatter(
|
|
231
|
+
self.dfs_pivot_i_global[step_k].index,
|
|
232
|
+
self.dfs_pivot_i_global[step_k][plt_k],
|
|
233
|
+
label=step_k,
|
|
234
|
+
color=COLOR_DICT[step_k],
|
|
235
|
+
s=scattersize,
|
|
236
|
+
alpha=0.9,
|
|
237
|
+
)
|
|
238
|
+
ax.legend()
|
|
239
|
+
|
|
240
|
+
return fig
|
|
241
|
+
|
|
242
|
+
def print(self, step: str) -> None:
|
|
243
|
+
"""Prints metrics for given step.
|
|
244
|
+
|
|
245
|
+
Parameters
|
|
246
|
+
----------
|
|
247
|
+
step : str
|
|
248
|
+
Training phase to print metrics for
|
|
249
|
+
"""
|
|
250
|
+
df_pivot_i_epoch = self._to_dfs_pivot(self.logged_dict, pivot_column="i_epoch")
|
|
251
|
+
df_pivot_i_epoch_step = df_pivot_i_epoch[step]
|
|
252
|
+
df_pivot_i_epoch_step.columns = self._rename_if_key_to_plot(
|
|
253
|
+
df_pivot_i_epoch_step.columns
|
|
254
|
+
)
|
|
255
|
+
print("\n----------------------------------------\n")
|
|
256
|
+
print(f"\n{step}: (mean of batches)\n")
|
|
257
|
+
_pprint(df_pivot_i_epoch_step)
|
|
258
|
+
print("\n----------------------------------------\n")
|
|
259
|
+
|
|
260
|
+
@staticmethod
|
|
261
|
+
def _find_keys_to_plot(logged_dict: _Dict) -> _List[str]:
|
|
262
|
+
"""Find metrics to plot from logged dictionary.
|
|
263
|
+
|
|
264
|
+
Parameters
|
|
265
|
+
----------
|
|
266
|
+
logged_dict : _Dict
|
|
267
|
+
_Dictionary of logged metrics
|
|
268
|
+
|
|
269
|
+
Returns
|
|
270
|
+
-------
|
|
271
|
+
_List[str]
|
|
272
|
+
_List of metric names to plot
|
|
273
|
+
"""
|
|
274
|
+
for step_k in logged_dict.keys():
|
|
275
|
+
break
|
|
276
|
+
|
|
277
|
+
keys_to_plot = []
|
|
278
|
+
for k in logged_dict[step_k].keys():
|
|
279
|
+
if _re.search("_plot$", k):
|
|
280
|
+
keys_to_plot.append(k)
|
|
281
|
+
return keys_to_plot
|
|
282
|
+
|
|
283
|
+
@staticmethod
|
|
284
|
+
def _rename_if_key_to_plot(x: _Union[str, _pd.Index]) -> _Union[str, _pd.Index]:
|
|
285
|
+
"""Rename metric keys for plotting.
|
|
286
|
+
|
|
287
|
+
Parameters
|
|
288
|
+
----------
|
|
289
|
+
x : str or _pd.Index
|
|
290
|
+
Metric name(s) to rename
|
|
291
|
+
|
|
292
|
+
Returns
|
|
293
|
+
-------
|
|
294
|
+
str or _pd.Index
|
|
295
|
+
Renamed metric name(s)
|
|
296
|
+
"""
|
|
297
|
+
if isinstance(x, str):
|
|
298
|
+
if _re.search("_plot$", x):
|
|
299
|
+
return x.replace("_plot", "")
|
|
300
|
+
else:
|
|
301
|
+
return x
|
|
302
|
+
else:
|
|
303
|
+
return x.str.replace("_plot", "")
|
|
304
|
+
|
|
305
|
+
@staticmethod
|
|
306
|
+
def _to_dfs_pivot(
|
|
307
|
+
logged_dict: _Dict[str, _Dict],
|
|
308
|
+
pivot_column: _Optional[str] = None,
|
|
309
|
+
) -> _Dict[str, _pd.DataFrame]:
|
|
310
|
+
"""Convert logged dictionary to pivot DataFrames.
|
|
311
|
+
|
|
312
|
+
Parameters
|
|
313
|
+
----------
|
|
314
|
+
logged_dict : _Dict[str, _Dict]
|
|
315
|
+
_Dictionary of logged metrics
|
|
316
|
+
pivot_column : str, optional
|
|
317
|
+
Column to pivot on
|
|
318
|
+
|
|
319
|
+
Returns
|
|
320
|
+
-------
|
|
321
|
+
_Dict[str, _pd.DataFrame]
|
|
322
|
+
_Dictionary of pivot DataFrames
|
|
323
|
+
"""
|
|
324
|
+
|
|
325
|
+
dfs_pivot = {}
|
|
326
|
+
for step_k in logged_dict.keys():
|
|
327
|
+
if pivot_column is None:
|
|
328
|
+
df = _pd.DataFrame(logged_dict[step_k])
|
|
329
|
+
else:
|
|
330
|
+
df = (
|
|
331
|
+
_pd.DataFrame(logged_dict[step_k])
|
|
332
|
+
.groupby(pivot_column)
|
|
333
|
+
.mean()
|
|
334
|
+
.reset_index()
|
|
335
|
+
.set_index(pivot_column)
|
|
336
|
+
)
|
|
337
|
+
dfs_pivot[step_k] = df
|
|
338
|
+
return dfs_pivot
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
if __name__ == "__main__":
|
|
342
|
+
import warnings
|
|
343
|
+
|
|
344
|
+
import matplotlib.pyplot as plt
|
|
345
|
+
import torch
|
|
346
|
+
import torch.nn as nn
|
|
347
|
+
from sklearn.metrics import balanced_accuracy_score
|
|
348
|
+
from torch.utils.data import DataLoader, TensorDataset
|
|
349
|
+
from torch.utils.data.dataset import Subset
|
|
350
|
+
from torchvision import datasets
|
|
351
|
+
|
|
352
|
+
import sys
|
|
353
|
+
|
|
354
|
+
################################################################################
|
|
355
|
+
## Sets tee
|
|
356
|
+
################################################################################
|
|
357
|
+
sdir = scitex.io.path.mk_spath("") # "/tmp/sdir/"
|
|
358
|
+
sys.stdout, sys.stderr = scitex.gen.tee(sys, sdir)
|
|
359
|
+
|
|
360
|
+
################################################################################
|
|
361
|
+
## NN
|
|
362
|
+
################################################################################
|
|
363
|
+
class Perceptron(nn.Module):
|
|
364
|
+
def __init__(self):
|
|
365
|
+
super().__init__()
|
|
366
|
+
self.l1 = nn.Linear(28 * 28, 50)
|
|
367
|
+
self.l2 = nn.Linear(50, 10)
|
|
368
|
+
|
|
369
|
+
def forward(self, x):
|
|
370
|
+
x = x.view(-1, 28 * 28)
|
|
371
|
+
x = self.l1(x)
|
|
372
|
+
x = self.l2(x)
|
|
373
|
+
return x
|
|
374
|
+
|
|
375
|
+
################################################################################
|
|
376
|
+
## Prepaires demo data
|
|
377
|
+
################################################################################
|
|
378
|
+
## Downloads
|
|
379
|
+
_ds_tra_val = datasets.MNIST("/tmp/mnist", train=True, download=True)
|
|
380
|
+
_ds_tes = datasets.MNIST("/tmp/mnist", train=False, download=True)
|
|
381
|
+
|
|
382
|
+
## Training-Validation splitting
|
|
383
|
+
n_samples = len(_ds_tra_val) # n_samples is 60000
|
|
384
|
+
train_size = int(n_samples * 0.8) # train_size is 48000
|
|
385
|
+
|
|
386
|
+
subset1_indices = list(range(0, train_size)) # [0,1,.....47999]
|
|
387
|
+
subset2_indices = list(range(train_size, n_samples)) # [48000,48001,.....59999]
|
|
388
|
+
|
|
389
|
+
_ds_tra = Subset(_ds_tra_val, subset1_indices)
|
|
390
|
+
_ds_val = Subset(_ds_tra_val, subset2_indices)
|
|
391
|
+
|
|
392
|
+
## to tensors
|
|
393
|
+
ds_tra = TensorDataset(
|
|
394
|
+
_ds_tra.dataset.data.to(_torch.float32),
|
|
395
|
+
_ds_tra.dataset.targets,
|
|
396
|
+
)
|
|
397
|
+
ds_val = TensorDataset(
|
|
398
|
+
_ds_val.dataset.data.to(_torch.float32),
|
|
399
|
+
_ds_val.dataset.targets,
|
|
400
|
+
)
|
|
401
|
+
ds_tes = TensorDataset(
|
|
402
|
+
_ds_tes.data.to(_torch.float32),
|
|
403
|
+
_ds_tes.targets,
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
## to dataloaders
|
|
407
|
+
batch_size = 64
|
|
408
|
+
dl_tra = DataLoader(
|
|
409
|
+
dataset=ds_tra,
|
|
410
|
+
batch_size=batch_size,
|
|
411
|
+
shuffle=True,
|
|
412
|
+
drop_last=True,
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
dl_val = DataLoader(
|
|
416
|
+
dataset=ds_val,
|
|
417
|
+
batch_size=batch_size,
|
|
418
|
+
shuffle=False,
|
|
419
|
+
drop_last=True,
|
|
420
|
+
)
|
|
421
|
+
|
|
422
|
+
dl_tes = DataLoader(
|
|
423
|
+
dataset=ds_tes,
|
|
424
|
+
batch_size=batch_size,
|
|
425
|
+
shuffle=False,
|
|
426
|
+
drop_last=True,
|
|
427
|
+
)
|
|
428
|
+
|
|
429
|
+
################################################################################
|
|
430
|
+
## Preparation
|
|
431
|
+
################################################################################
|
|
432
|
+
model = Perceptron()
|
|
433
|
+
loss_func = nn.CrossEntropyLoss()
|
|
434
|
+
optimizer = _torch.optim.SGD(model.parameters(), lr=1e-3)
|
|
435
|
+
softmax = nn.Softmax(dim=-1)
|
|
436
|
+
|
|
437
|
+
################################################################################
|
|
438
|
+
## Main
|
|
439
|
+
################################################################################
|
|
440
|
+
lc_logger = LearningCurveLogger()
|
|
441
|
+
i_global = 0
|
|
442
|
+
|
|
443
|
+
n_classes = len(dl_tra.dataset.tensors[1].unique())
|
|
444
|
+
i_fold = 0
|
|
445
|
+
max_epochs = 3
|
|
446
|
+
|
|
447
|
+
for i_epoch in range(max_epochs):
|
|
448
|
+
step = "Validation"
|
|
449
|
+
for i_batch, batch in enumerate(dl_val):
|
|
450
|
+
|
|
451
|
+
X, T = batch
|
|
452
|
+
logits = model(X)
|
|
453
|
+
pred_proba = softmax(logits)
|
|
454
|
+
pred_class = pred_proba.argmax(dim=-1)
|
|
455
|
+
loss = loss_func(logits, T)
|
|
456
|
+
|
|
457
|
+
with warnings.catch_warnings():
|
|
458
|
+
warnings.simplefilter("ignore", UserWarning)
|
|
459
|
+
bACC = balanced_accuracy_score(T, pred_class)
|
|
460
|
+
|
|
461
|
+
dict_to_log = {
|
|
462
|
+
"loss_plot": float(loss),
|
|
463
|
+
"balanced_ACC_plot": float(bACC),
|
|
464
|
+
"pred_proba": pred_proba.detach().cpu().numpy(),
|
|
465
|
+
"gt_label": T.cpu().numpy(),
|
|
466
|
+
# "true_class": T.cpu().numpy(),
|
|
467
|
+
"i_fold": i_fold,
|
|
468
|
+
"i_epoch": i_epoch,
|
|
469
|
+
"i_global": i_global,
|
|
470
|
+
}
|
|
471
|
+
lc_logger(dict_to_log, step)
|
|
472
|
+
|
|
473
|
+
lc_logger.print(step)
|
|
474
|
+
|
|
475
|
+
step = "Training"
|
|
476
|
+
for i_batch, batch in enumerate(dl_tra):
|
|
477
|
+
optimizer.zero_grad()
|
|
478
|
+
|
|
479
|
+
X, T = batch
|
|
480
|
+
logits = model(X)
|
|
481
|
+
pred_proba = softmax(logits)
|
|
482
|
+
pred_class = pred_proba.argmax(dim=-1)
|
|
483
|
+
loss = loss_func(logits, T)
|
|
484
|
+
|
|
485
|
+
loss.backward()
|
|
486
|
+
optimizer.step()
|
|
487
|
+
|
|
488
|
+
with warnings.catch_warnings():
|
|
489
|
+
warnings.simplefilter("ignore", UserWarning)
|
|
490
|
+
bACC = balanced_accuracy_score(T, pred_class)
|
|
491
|
+
|
|
492
|
+
dict_to_log = {
|
|
493
|
+
"loss_plot": float(loss),
|
|
494
|
+
"balanced_ACC_plot": float(bACC),
|
|
495
|
+
"pred_proba": pred_proba.detach().cpu().numpy(),
|
|
496
|
+
"gt_label": T.cpu().numpy(),
|
|
497
|
+
# "true_class": T.cpu().numpy(),
|
|
498
|
+
"i_fold": i_fold,
|
|
499
|
+
"i_epoch": i_epoch,
|
|
500
|
+
"i_global": i_global,
|
|
501
|
+
}
|
|
502
|
+
lc_logger(dict_to_log, step)
|
|
503
|
+
|
|
504
|
+
i_global += 1
|
|
505
|
+
|
|
506
|
+
lc_logger.print(step)
|
|
507
|
+
|
|
508
|
+
step = "Test"
|
|
509
|
+
for i_batch, batch in enumerate(dl_tes):
|
|
510
|
+
|
|
511
|
+
X, T = batch
|
|
512
|
+
logits = model(X)
|
|
513
|
+
pred_proba = softmax(logits)
|
|
514
|
+
pred_class = pred_proba.argmax(dim=-1)
|
|
515
|
+
loss = loss_func(logits, T)
|
|
516
|
+
|
|
517
|
+
with warnings.catch_warnings():
|
|
518
|
+
warnings.simplefilter("ignore", UserWarning)
|
|
519
|
+
bACC = balanced_accuracy_score(T, pred_class)
|
|
520
|
+
|
|
521
|
+
dict_to_log = {
|
|
522
|
+
"loss_plot": float(loss),
|
|
523
|
+
"balanced_ACC_plot": float(bACC),
|
|
524
|
+
"pred_proba": pred_proba.detach().cpu().numpy(),
|
|
525
|
+
# "gt_label": T.cpu().numpy(),
|
|
526
|
+
"true_class": T.cpu().numpy(),
|
|
527
|
+
"i_fold": i_fold,
|
|
528
|
+
"i_epoch": i_epoch,
|
|
529
|
+
"i_global": i_global,
|
|
530
|
+
}
|
|
531
|
+
lc_logger(dict_to_log, step)
|
|
532
|
+
|
|
533
|
+
lc_logger.print(step)
|
|
534
|
+
|
|
535
|
+
plt_config_dict = dict(
|
|
536
|
+
# figsize=(8.7, 10),
|
|
537
|
+
figscale=2.5,
|
|
538
|
+
labelsize=16,
|
|
539
|
+
fontsize=12,
|
|
540
|
+
legendfontsize=12,
|
|
541
|
+
tick_size=0.8,
|
|
542
|
+
tick_width=0.2,
|
|
543
|
+
)
|
|
544
|
+
|
|
545
|
+
fig = lc_logger.plot_learning_curves(
|
|
546
|
+
plt,
|
|
547
|
+
plt_config_dict=plt_config_dict,
|
|
548
|
+
title=f"fold#{i_fold}",
|
|
549
|
+
linewidth=1,
|
|
550
|
+
scattersize=50,
|
|
551
|
+
)
|
|
552
|
+
fig.show()
|
|
553
|
+
# scitex.gen.save(fig, sdir + f"fold#{i_fold}.png")
|
|
554
|
+
|
|
555
|
+
# EOF
|