scitex 2.0.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +73 -0
- scitex/__main__.py +89 -0
- scitex/__version__.py +14 -0
- scitex/_sh.py +59 -0
- scitex/ai/_LearningCurveLogger.py +583 -0
- scitex/ai/__Classifiers.py +101 -0
- scitex/ai/__init__.py +55 -0
- scitex/ai/_gen_ai/_Anthropic.py +173 -0
- scitex/ai/_gen_ai/_BaseGenAI.py +336 -0
- scitex/ai/_gen_ai/_DeepSeek.py +175 -0
- scitex/ai/_gen_ai/_Google.py +161 -0
- scitex/ai/_gen_ai/_Groq.py +97 -0
- scitex/ai/_gen_ai/_Llama.py +142 -0
- scitex/ai/_gen_ai/_OpenAI.py +230 -0
- scitex/ai/_gen_ai/_PARAMS.py +565 -0
- scitex/ai/_gen_ai/_Perplexity.py +191 -0
- scitex/ai/_gen_ai/__init__.py +32 -0
- scitex/ai/_gen_ai/_calc_cost.py +78 -0
- scitex/ai/_gen_ai/_format_output_func.py +183 -0
- scitex/ai/_gen_ai/_genai_factory.py +71 -0
- scitex/ai/act/__init__.py +8 -0
- scitex/ai/act/_define.py +11 -0
- scitex/ai/classification/__init__.py +7 -0
- scitex/ai/classification/classification_reporter.py +1137 -0
- scitex/ai/classification/classifier_server.py +131 -0
- scitex/ai/classification/classifiers.py +101 -0
- scitex/ai/classification_reporter.py +1161 -0
- scitex/ai/classifier_server.py +131 -0
- scitex/ai/clustering/__init__.py +11 -0
- scitex/ai/clustering/_pca.py +115 -0
- scitex/ai/clustering/_umap.py +376 -0
- scitex/ai/early_stopping.py +149 -0
- scitex/ai/feature_extraction/__init__.py +56 -0
- scitex/ai/feature_extraction/vit.py +148 -0
- scitex/ai/genai/__init__.py +277 -0
- scitex/ai/genai/anthropic.py +177 -0
- scitex/ai/genai/anthropic_provider.py +320 -0
- scitex/ai/genai/anthropic_refactored.py +109 -0
- scitex/ai/genai/auth_manager.py +200 -0
- scitex/ai/genai/base_genai.py +336 -0
- scitex/ai/genai/base_provider.py +291 -0
- scitex/ai/genai/calc_cost.py +78 -0
- scitex/ai/genai/chat_history.py +307 -0
- scitex/ai/genai/cost_tracker.py +276 -0
- scitex/ai/genai/deepseek.py +188 -0
- scitex/ai/genai/deepseek_provider.py +251 -0
- scitex/ai/genai/format_output_func.py +183 -0
- scitex/ai/genai/genai_factory.py +71 -0
- scitex/ai/genai/google.py +169 -0
- scitex/ai/genai/google_provider.py +228 -0
- scitex/ai/genai/groq.py +104 -0
- scitex/ai/genai/groq_provider.py +248 -0
- scitex/ai/genai/image_processor.py +250 -0
- scitex/ai/genai/llama.py +155 -0
- scitex/ai/genai/llama_provider.py +214 -0
- scitex/ai/genai/mock_provider.py +127 -0
- scitex/ai/genai/model_registry.py +304 -0
- scitex/ai/genai/openai.py +230 -0
- scitex/ai/genai/openai_provider.py +293 -0
- scitex/ai/genai/params.py +565 -0
- scitex/ai/genai/perplexity.py +202 -0
- scitex/ai/genai/perplexity_provider.py +205 -0
- scitex/ai/genai/provider_base.py +302 -0
- scitex/ai/genai/provider_factory.py +370 -0
- scitex/ai/genai/response_handler.py +235 -0
- scitex/ai/layer/_Pass.py +21 -0
- scitex/ai/layer/__init__.py +10 -0
- scitex/ai/layer/_switch.py +8 -0
- scitex/ai/loss/_L1L2Losses.py +34 -0
- scitex/ai/loss/__init__.py +12 -0
- scitex/ai/loss/multi_task_loss.py +47 -0
- scitex/ai/metrics/__init__.py +9 -0
- scitex/ai/metrics/_bACC.py +51 -0
- scitex/ai/metrics/silhoute_score_block.py +496 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
- scitex/ai/optim/__init__.py +13 -0
- scitex/ai/optim/_get_set.py +31 -0
- scitex/ai/optim/_optimizers.py +71 -0
- scitex/ai/plt/__init__.py +21 -0
- scitex/ai/plt/_conf_mat.py +592 -0
- scitex/ai/plt/_learning_curve.py +194 -0
- scitex/ai/plt/_optuna_study.py +111 -0
- scitex/ai/plt/aucs/__init__.py +2 -0
- scitex/ai/plt/aucs/example.py +60 -0
- scitex/ai/plt/aucs/pre_rec_auc.py +223 -0
- scitex/ai/plt/aucs/roc_auc.py +246 -0
- scitex/ai/sampling/undersample.py +29 -0
- scitex/ai/sk/__init__.py +11 -0
- scitex/ai/sk/_clf.py +58 -0
- scitex/ai/sk/_to_sktime.py +100 -0
- scitex/ai/sklearn/__init__.py +26 -0
- scitex/ai/sklearn/clf.py +58 -0
- scitex/ai/sklearn/to_sktime.py +100 -0
- scitex/ai/training/__init__.py +7 -0
- scitex/ai/training/early_stopping.py +150 -0
- scitex/ai/training/learning_curve_logger.py +555 -0
- scitex/ai/utils/__init__.py +22 -0
- scitex/ai/utils/_check_params.py +50 -0
- scitex/ai/utils/_default_dataset.py +46 -0
- scitex/ai/utils/_format_samples_for_sktime.py +26 -0
- scitex/ai/utils/_label_encoder.py +134 -0
- scitex/ai/utils/_merge_labels.py +22 -0
- scitex/ai/utils/_sliding_window_data_augmentation.py +11 -0
- scitex/ai/utils/_under_sample.py +51 -0
- scitex/ai/utils/_verify_n_gpus.py +16 -0
- scitex/ai/utils/grid_search.py +148 -0
- scitex/context/__init__.py +9 -0
- scitex/context/_suppress_output.py +38 -0
- scitex/db/_BaseMixins/_BaseBackupMixin.py +30 -0
- scitex/db/_BaseMixins/_BaseBatchMixin.py +31 -0
- scitex/db/_BaseMixins/_BaseBlobMixin.py +81 -0
- scitex/db/_BaseMixins/_BaseConnectionMixin.py +43 -0
- scitex/db/_BaseMixins/_BaseImportExportMixin.py +39 -0
- scitex/db/_BaseMixins/_BaseIndexMixin.py +29 -0
- scitex/db/_BaseMixins/_BaseMaintenanceMixin.py +33 -0
- scitex/db/_BaseMixins/_BaseQueryMixin.py +52 -0
- scitex/db/_BaseMixins/_BaseRowMixin.py +32 -0
- scitex/db/_BaseMixins/_BaseSchemaMixin.py +44 -0
- scitex/db/_BaseMixins/_BaseTableMixin.py +66 -0
- scitex/db/_BaseMixins/_BaseTransactionMixin.py +52 -0
- scitex/db/_BaseMixins/__init__.py +30 -0
- scitex/db/_PostgreSQL.py +126 -0
- scitex/db/_PostgreSQLMixins/_BackupMixin.py +166 -0
- scitex/db/_PostgreSQLMixins/_BatchMixin.py +82 -0
- scitex/db/_PostgreSQLMixins/_BlobMixin.py +231 -0
- scitex/db/_PostgreSQLMixins/_ConnectionMixin.py +92 -0
- scitex/db/_PostgreSQLMixins/_ImportExportMixin.py +59 -0
- scitex/db/_PostgreSQLMixins/_IndexMixin.py +64 -0
- scitex/db/_PostgreSQLMixins/_MaintenanceMixin.py +175 -0
- scitex/db/_PostgreSQLMixins/_QueryMixin.py +108 -0
- scitex/db/_PostgreSQLMixins/_RowMixin.py +75 -0
- scitex/db/_PostgreSQLMixins/_SchemaMixin.py +126 -0
- scitex/db/_PostgreSQLMixins/_TableMixin.py +176 -0
- scitex/db/_PostgreSQLMixins/_TransactionMixin.py +57 -0
- scitex/db/_PostgreSQLMixins/__init__.py +34 -0
- scitex/db/_SQLite3.py +2136 -0
- scitex/db/_SQLite3Mixins/_BatchMixin.py +243 -0
- scitex/db/_SQLite3Mixins/_BlobMixin.py +229 -0
- scitex/db/_SQLite3Mixins/_ConnectionMixin.py +108 -0
- scitex/db/_SQLite3Mixins/_ImportExportMixin.py +80 -0
- scitex/db/_SQLite3Mixins/_IndexMixin.py +32 -0
- scitex/db/_SQLite3Mixins/_MaintenanceMixin.py +176 -0
- scitex/db/_SQLite3Mixins/_QueryMixin.py +83 -0
- scitex/db/_SQLite3Mixins/_RowMixin.py +75 -0
- scitex/db/_SQLite3Mixins/_TableMixin.py +183 -0
- scitex/db/_SQLite3Mixins/_TransactionMixin.py +71 -0
- scitex/db/_SQLite3Mixins/__init__.py +30 -0
- scitex/db/__init__.py +14 -0
- scitex/db/_delete_duplicates.py +397 -0
- scitex/db/_inspect.py +163 -0
- scitex/decorators/__init__.py +54 -0
- scitex/decorators/_auto_order.py +172 -0
- scitex/decorators/_batch_fn.py +127 -0
- scitex/decorators/_cache_disk.py +32 -0
- scitex/decorators/_cache_mem.py +12 -0
- scitex/decorators/_combined.py +98 -0
- scitex/decorators/_converters.py +282 -0
- scitex/decorators/_deprecated.py +26 -0
- scitex/decorators/_not_implemented.py +30 -0
- scitex/decorators/_numpy_fn.py +86 -0
- scitex/decorators/_pandas_fn.py +121 -0
- scitex/decorators/_preserve_doc.py +19 -0
- scitex/decorators/_signal_fn.py +95 -0
- scitex/decorators/_timeout.py +55 -0
- scitex/decorators/_torch_fn.py +136 -0
- scitex/decorators/_wrap.py +39 -0
- scitex/decorators/_xarray_fn.py +88 -0
- scitex/dev/__init__.py +15 -0
- scitex/dev/_analyze_code_flow.py +284 -0
- scitex/dev/_reload.py +59 -0
- scitex/dict/_DotDict.py +442 -0
- scitex/dict/__init__.py +18 -0
- scitex/dict/_listed_dict.py +42 -0
- scitex/dict/_pop_keys.py +36 -0
- scitex/dict/_replace.py +13 -0
- scitex/dict/_safe_merge.py +62 -0
- scitex/dict/_to_str.py +32 -0
- scitex/dsp/__init__.py +72 -0
- scitex/dsp/_crop.py +122 -0
- scitex/dsp/_demo_sig.py +331 -0
- scitex/dsp/_detect_ripples.py +212 -0
- scitex/dsp/_ensure_3d.py +18 -0
- scitex/dsp/_hilbert.py +78 -0
- scitex/dsp/_listen.py +702 -0
- scitex/dsp/_misc.py +30 -0
- scitex/dsp/_mne.py +32 -0
- scitex/dsp/_modulation_index.py +79 -0
- scitex/dsp/_pac.py +319 -0
- scitex/dsp/_psd.py +102 -0
- scitex/dsp/_resample.py +65 -0
- scitex/dsp/_time.py +36 -0
- scitex/dsp/_transform.py +68 -0
- scitex/dsp/_wavelet.py +212 -0
- scitex/dsp/add_noise.py +111 -0
- scitex/dsp/example.py +253 -0
- scitex/dsp/filt.py +155 -0
- scitex/dsp/norm.py +18 -0
- scitex/dsp/params.py +51 -0
- scitex/dsp/reference.py +43 -0
- scitex/dsp/template.py +25 -0
- scitex/dsp/utils/__init__.py +15 -0
- scitex/dsp/utils/_differential_bandpass_filters.py +120 -0
- scitex/dsp/utils/_ensure_3d.py +18 -0
- scitex/dsp/utils/_ensure_even_len.py +10 -0
- scitex/dsp/utils/_zero_pad.py +48 -0
- scitex/dsp/utils/filter.py +408 -0
- scitex/dsp/utils/pac.py +177 -0
- scitex/dt/__init__.py +8 -0
- scitex/dt/_linspace.py +130 -0
- scitex/etc/__init__.py +15 -0
- scitex/etc/wait_key.py +34 -0
- scitex/gen/_DimHandler.py +196 -0
- scitex/gen/_TimeStamper.py +244 -0
- scitex/gen/__init__.py +95 -0
- scitex/gen/_alternate_kwarg.py +13 -0
- scitex/gen/_cache.py +11 -0
- scitex/gen/_check_host.py +34 -0
- scitex/gen/_ci.py +12 -0
- scitex/gen/_close.py +222 -0
- scitex/gen/_embed.py +78 -0
- scitex/gen/_inspect_module.py +257 -0
- scitex/gen/_is_ipython.py +12 -0
- scitex/gen/_less.py +48 -0
- scitex/gen/_list_packages.py +139 -0
- scitex/gen/_mat2py.py +88 -0
- scitex/gen/_norm.py +170 -0
- scitex/gen/_paste.py +18 -0
- scitex/gen/_print_config.py +84 -0
- scitex/gen/_shell.py +48 -0
- scitex/gen/_src.py +111 -0
- scitex/gen/_start.py +451 -0
- scitex/gen/_symlink.py +55 -0
- scitex/gen/_symlog.py +27 -0
- scitex/gen/_tee.py +238 -0
- scitex/gen/_title2path.py +60 -0
- scitex/gen/_title_case.py +88 -0
- scitex/gen/_to_even.py +84 -0
- scitex/gen/_to_odd.py +34 -0
- scitex/gen/_to_rank.py +39 -0
- scitex/gen/_transpose.py +37 -0
- scitex/gen/_type.py +78 -0
- scitex/gen/_var_info.py +73 -0
- scitex/gen/_wrap.py +17 -0
- scitex/gen/_xml2dict.py +76 -0
- scitex/gen/misc.py +730 -0
- scitex/gen/path.py +0 -0
- scitex/general/__init__.py +5 -0
- scitex/gists/_SigMacro_processFigure_S.py +128 -0
- scitex/gists/_SigMacro_toBlue.py +172 -0
- scitex/gists/__init__.py +12 -0
- scitex/io/_H5Explorer.py +292 -0
- scitex/io/__init__.py +82 -0
- scitex/io/_cache.py +101 -0
- scitex/io/_flush.py +24 -0
- scitex/io/_glob.py +103 -0
- scitex/io/_json2md.py +113 -0
- scitex/io/_load.py +168 -0
- scitex/io/_load_configs.py +146 -0
- scitex/io/_load_modules/__init__.py +38 -0
- scitex/io/_load_modules/_catboost.py +66 -0
- scitex/io/_load_modules/_con.py +20 -0
- scitex/io/_load_modules/_db.py +24 -0
- scitex/io/_load_modules/_docx.py +42 -0
- scitex/io/_load_modules/_eeg.py +110 -0
- scitex/io/_load_modules/_hdf5.py +196 -0
- scitex/io/_load_modules/_image.py +19 -0
- scitex/io/_load_modules/_joblib.py +19 -0
- scitex/io/_load_modules/_json.py +18 -0
- scitex/io/_load_modules/_markdown.py +103 -0
- scitex/io/_load_modules/_matlab.py +37 -0
- scitex/io/_load_modules/_numpy.py +39 -0
- scitex/io/_load_modules/_optuna.py +155 -0
- scitex/io/_load_modules/_pandas.py +69 -0
- scitex/io/_load_modules/_pdf.py +31 -0
- scitex/io/_load_modules/_pickle.py +24 -0
- scitex/io/_load_modules/_torch.py +16 -0
- scitex/io/_load_modules/_txt.py +126 -0
- scitex/io/_load_modules/_xml.py +49 -0
- scitex/io/_load_modules/_yaml.py +23 -0
- scitex/io/_mv_to_tmp.py +19 -0
- scitex/io/_path.py +286 -0
- scitex/io/_reload.py +78 -0
- scitex/io/_save.py +539 -0
- scitex/io/_save_modules/__init__.py +66 -0
- scitex/io/_save_modules/_catboost.py +22 -0
- scitex/io/_save_modules/_csv.py +89 -0
- scitex/io/_save_modules/_excel.py +49 -0
- scitex/io/_save_modules/_hdf5.py +249 -0
- scitex/io/_save_modules/_html.py +48 -0
- scitex/io/_save_modules/_image.py +140 -0
- scitex/io/_save_modules/_joblib.py +25 -0
- scitex/io/_save_modules/_json.py +25 -0
- scitex/io/_save_modules/_listed_dfs_as_csv.py +57 -0
- scitex/io/_save_modules/_listed_scalars_as_csv.py +42 -0
- scitex/io/_save_modules/_matlab.py +24 -0
- scitex/io/_save_modules/_mp4.py +29 -0
- scitex/io/_save_modules/_numpy.py +57 -0
- scitex/io/_save_modules/_optuna_study_as_csv_and_pngs.py +38 -0
- scitex/io/_save_modules/_pickle.py +45 -0
- scitex/io/_save_modules/_plotly.py +27 -0
- scitex/io/_save_modules/_text.py +23 -0
- scitex/io/_save_modules/_torch.py +26 -0
- scitex/io/_save_modules/_yaml.py +29 -0
- scitex/life/__init__.py +10 -0
- scitex/life/_monitor_rain.py +49 -0
- scitex/linalg/__init__.py +17 -0
- scitex/linalg/_distance.py +63 -0
- scitex/linalg/_geometric_median.py +64 -0
- scitex/linalg/_misc.py +73 -0
- scitex/nn/_AxiswiseDropout.py +27 -0
- scitex/nn/_BNet.py +126 -0
- scitex/nn/_BNet_Res.py +164 -0
- scitex/nn/_ChannelGainChanger.py +44 -0
- scitex/nn/_DropoutChannels.py +50 -0
- scitex/nn/_Filters.py +489 -0
- scitex/nn/_FreqGainChanger.py +110 -0
- scitex/nn/_GaussianFilter.py +48 -0
- scitex/nn/_Hilbert.py +111 -0
- scitex/nn/_MNet_1000.py +157 -0
- scitex/nn/_ModulationIndex.py +221 -0
- scitex/nn/_PAC.py +414 -0
- scitex/nn/_PSD.py +40 -0
- scitex/nn/_ResNet1D.py +120 -0
- scitex/nn/_SpatialAttention.py +25 -0
- scitex/nn/_Spectrogram.py +161 -0
- scitex/nn/_SwapChannels.py +50 -0
- scitex/nn/_TransposeLayer.py +19 -0
- scitex/nn/_Wavelet.py +183 -0
- scitex/nn/__init__.py +63 -0
- scitex/os/__init__.py +8 -0
- scitex/os/_mv.py +50 -0
- scitex/parallel/__init__.py +8 -0
- scitex/parallel/_run.py +151 -0
- scitex/path/__init__.py +33 -0
- scitex/path/_clean.py +52 -0
- scitex/path/_find.py +108 -0
- scitex/path/_get_module_path.py +51 -0
- scitex/path/_get_spath.py +35 -0
- scitex/path/_getsize.py +18 -0
- scitex/path/_increment_version.py +87 -0
- scitex/path/_mk_spath.py +51 -0
- scitex/path/_path.py +19 -0
- scitex/path/_split.py +23 -0
- scitex/path/_this_path.py +19 -0
- scitex/path/_version.py +101 -0
- scitex/pd/__init__.py +41 -0
- scitex/pd/_find_indi.py +126 -0
- scitex/pd/_find_pval.py +113 -0
- scitex/pd/_force_df.py +154 -0
- scitex/pd/_from_xyz.py +71 -0
- scitex/pd/_ignore_SettingWithCopyWarning.py +34 -0
- scitex/pd/_melt_cols.py +81 -0
- scitex/pd/_merge_columns.py +221 -0
- scitex/pd/_mv.py +63 -0
- scitex/pd/_replace.py +62 -0
- scitex/pd/_round.py +93 -0
- scitex/pd/_slice.py +63 -0
- scitex/pd/_sort.py +91 -0
- scitex/pd/_to_numeric.py +53 -0
- scitex/pd/_to_xy.py +59 -0
- scitex/pd/_to_xyz.py +110 -0
- scitex/plt/__init__.py +36 -0
- scitex/plt/_subplots/_AxesWrapper.py +182 -0
- scitex/plt/_subplots/_AxisWrapper.py +249 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +414 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +896 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +368 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_TrackingMixin.py +185 -0
- scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +16 -0
- scitex/plt/_subplots/_FigWrapper.py +226 -0
- scitex/plt/_subplots/_SubplotsWrapper.py +171 -0
- scitex/plt/_subplots/__init__.py +111 -0
- scitex/plt/_subplots/_export_as_csv.py +232 -0
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +61 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +90 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +49 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +39 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +125 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +72 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +34 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +36 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +32 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +66 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +95 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +67 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +52 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +103 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +82 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +117 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +30 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +51 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +93 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +94 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +92 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +65 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +45 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +155 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +77 -0
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +210 -0
- scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +342 -0
- scitex/plt/_subplots/_export_as_csv_formatters.py +115 -0
- scitex/plt/_tpl.py +28 -0
- scitex/plt/ax/__init__.py +114 -0
- scitex/plt/ax/_plot/__init__.py +53 -0
- scitex/plt/ax/_plot/_plot_circular_hist.py +124 -0
- scitex/plt/ax/_plot/_plot_conf_mat.py +136 -0
- scitex/plt/ax/_plot/_plot_cube.py +57 -0
- scitex/plt/ax/_plot/_plot_ecdf.py +84 -0
- scitex/plt/ax/_plot/_plot_fillv.py +55 -0
- scitex/plt/ax/_plot/_plot_heatmap.py +266 -0
- scitex/plt/ax/_plot/_plot_image.py +94 -0
- scitex/plt/ax/_plot/_plot_joyplot.py +76 -0
- scitex/plt/ax/_plot/_plot_raster.py +172 -0
- scitex/plt/ax/_plot/_plot_rectangle.py +69 -0
- scitex/plt/ax/_plot/_plot_scatter_hist.py +133 -0
- scitex/plt/ax/_plot/_plot_shaded_line.py +142 -0
- scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +221 -0
- scitex/plt/ax/_plot/_plot_violin.py +343 -0
- scitex/plt/ax/_style/__init__.py +38 -0
- scitex/plt/ax/_style/_add_marginal_ax.py +44 -0
- scitex/plt/ax/_style/_add_panel.py +92 -0
- scitex/plt/ax/_style/_extend.py +64 -0
- scitex/plt/ax/_style/_force_aspect.py +37 -0
- scitex/plt/ax/_style/_format_label.py +23 -0
- scitex/plt/ax/_style/_hide_spines.py +84 -0
- scitex/plt/ax/_style/_map_ticks.py +182 -0
- scitex/plt/ax/_style/_rotate_labels.py +215 -0
- scitex/plt/ax/_style/_sci_note.py +279 -0
- scitex/plt/ax/_style/_set_log_scale.py +299 -0
- scitex/plt/ax/_style/_set_meta.py +261 -0
- scitex/plt/ax/_style/_set_n_ticks.py +37 -0
- scitex/plt/ax/_style/_set_size.py +16 -0
- scitex/plt/ax/_style/_set_supxyt.py +116 -0
- scitex/plt/ax/_style/_set_ticks.py +276 -0
- scitex/plt/ax/_style/_set_xyt.py +121 -0
- scitex/plt/ax/_style/_share_axes.py +264 -0
- scitex/plt/ax/_style/_shift.py +139 -0
- scitex/plt/ax/_style/_show_spines.py +333 -0
- scitex/plt/color/_PARAMS.py +70 -0
- scitex/plt/color/__init__.py +52 -0
- scitex/plt/color/_add_hue_col.py +41 -0
- scitex/plt/color/_colors.py +205 -0
- scitex/plt/color/_get_colors_from_cmap.py +134 -0
- scitex/plt/color/_interpolate.py +29 -0
- scitex/plt/color/_vizualize_colors.py +54 -0
- scitex/plt/utils/__init__.py +44 -0
- scitex/plt/utils/_calc_bacc_from_conf_mat.py +46 -0
- scitex/plt/utils/_calc_nice_ticks.py +101 -0
- scitex/plt/utils/_close.py +68 -0
- scitex/plt/utils/_colorbar.py +96 -0
- scitex/plt/utils/_configure_mpl.py +295 -0
- scitex/plt/utils/_histogram_utils.py +132 -0
- scitex/plt/utils/_im2grid.py +70 -0
- scitex/plt/utils/_is_valid_axis.py +78 -0
- scitex/plt/utils/_mk_colorbar.py +65 -0
- scitex/plt/utils/_mk_patches.py +26 -0
- scitex/plt/utils/_scientific_captions.py +638 -0
- scitex/plt/utils/_scitex_config.py +223 -0
- scitex/reproduce/__init__.py +14 -0
- scitex/reproduce/_fix_seeds.py +45 -0
- scitex/reproduce/_gen_ID.py +55 -0
- scitex/reproduce/_gen_timestamp.py +35 -0
- scitex/res/__init__.py +5 -0
- scitex/resource/__init__.py +13 -0
- scitex/resource/_get_processor_usages.py +281 -0
- scitex/resource/_get_specs.py +280 -0
- scitex/resource/_log_processor_usages.py +190 -0
- scitex/resource/_utils/__init__.py +31 -0
- scitex/resource/_utils/_get_env_info.py +481 -0
- scitex/resource/limit_ram.py +33 -0
- scitex/scholar/__init__.py +24 -0
- scitex/scholar/_local_search.py +454 -0
- scitex/scholar/_paper.py +244 -0
- scitex/scholar/_pdf_downloader.py +325 -0
- scitex/scholar/_search.py +393 -0
- scitex/scholar/_vector_search.py +370 -0
- scitex/scholar/_web_sources.py +457 -0
- scitex/stats/__init__.py +31 -0
- scitex/stats/_calc_partial_corr.py +17 -0
- scitex/stats/_corr_test_multi.py +94 -0
- scitex/stats/_corr_test_wrapper.py +115 -0
- scitex/stats/_describe_wrapper.py +90 -0
- scitex/stats/_multiple_corrections.py +63 -0
- scitex/stats/_nan_stats.py +93 -0
- scitex/stats/_p2stars.py +116 -0
- scitex/stats/_p2stars_wrapper.py +56 -0
- scitex/stats/_statistical_tests.py +73 -0
- scitex/stats/desc/__init__.py +40 -0
- scitex/stats/desc/_describe.py +189 -0
- scitex/stats/desc/_nan.py +289 -0
- scitex/stats/desc/_real.py +94 -0
- scitex/stats/multiple/__init__.py +14 -0
- scitex/stats/multiple/_bonferroni_correction.py +72 -0
- scitex/stats/multiple/_fdr_correction.py +400 -0
- scitex/stats/multiple/_multicompair.py +28 -0
- scitex/stats/tests/__corr_test.py +277 -0
- scitex/stats/tests/__corr_test_multi.py +343 -0
- scitex/stats/tests/__corr_test_single.py +277 -0
- scitex/stats/tests/__init__.py +22 -0
- scitex/stats/tests/_brunner_munzel_test.py +192 -0
- scitex/stats/tests/_nocorrelation_test.py +28 -0
- scitex/stats/tests/_smirnov_grubbs.py +98 -0
- scitex/str/__init__.py +113 -0
- scitex/str/_clean_path.py +75 -0
- scitex/str/_color_text.py +52 -0
- scitex/str/_decapitalize.py +58 -0
- scitex/str/_factor_out_digits.py +281 -0
- scitex/str/_format_plot_text.py +498 -0
- scitex/str/_grep.py +48 -0
- scitex/str/_latex.py +155 -0
- scitex/str/_latex_fallback.py +471 -0
- scitex/str/_mask_api.py +39 -0
- scitex/str/_mask_api_key.py +8 -0
- scitex/str/_parse.py +158 -0
- scitex/str/_print_block.py +47 -0
- scitex/str/_print_debug.py +68 -0
- scitex/str/_printc.py +62 -0
- scitex/str/_readable_bytes.py +38 -0
- scitex/str/_remove_ansi.py +23 -0
- scitex/str/_replace.py +134 -0
- scitex/str/_search.py +125 -0
- scitex/str/_squeeze_space.py +36 -0
- scitex/tex/__init__.py +10 -0
- scitex/tex/_preview.py +103 -0
- scitex/tex/_to_vec.py +116 -0
- scitex/torch/__init__.py +18 -0
- scitex/torch/_apply_to.py +34 -0
- scitex/torch/_nan_funcs.py +77 -0
- scitex/types/_ArrayLike.py +44 -0
- scitex/types/_ColorLike.py +21 -0
- scitex/types/__init__.py +14 -0
- scitex/types/_is_listed_X.py +70 -0
- scitex/utils/__init__.py +22 -0
- scitex/utils/_compress_hdf5.py +116 -0
- scitex/utils/_email.py +120 -0
- scitex/utils/_grid.py +148 -0
- scitex/utils/_notify.py +247 -0
- scitex/utils/_search.py +121 -0
- scitex/web/__init__.py +38 -0
- scitex/web/_search_pubmed.py +438 -0
- scitex/web/_summarize_url.py +158 -0
- scitex-2.0.0.dist-info/METADATA +307 -0
- scitex-2.0.0.dist-info/RECORD +572 -0
- scitex-2.0.0.dist-info/WHEEL +6 -0
- scitex-2.0.0.dist-info/licenses/LICENSE +7 -0
- scitex-2.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-10-06 10:47:42 (ywatanabe)"
|
|
4
|
+
# _fdr_correction.py
|
|
5
|
+
|
|
6
|
+
"""
|
|
7
|
+
Functionality:
|
|
8
|
+
- Implements False Discovery Rate (FDR) correction for multiple comparisons
|
|
9
|
+
- Provides both NumPy and PyTorch implementations
|
|
10
|
+
|
|
11
|
+
Input:
|
|
12
|
+
- Array-like object of p-values
|
|
13
|
+
- Alpha level for significance
|
|
14
|
+
- Method for correction ('indep' or 'negcorr')
|
|
15
|
+
|
|
16
|
+
Output:
|
|
17
|
+
- Boolean array indicating rejected hypotheses
|
|
18
|
+
- Array of corrected p-values
|
|
19
|
+
|
|
20
|
+
Prerequisites:
|
|
21
|
+
- NumPy, PyTorch, pandas, statsmodels, and scitex packages
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
"""Imports"""
|
|
25
|
+
from typing import Union, Tuple
|
|
26
|
+
import numpy as np
|
|
27
|
+
import torch
|
|
28
|
+
import pandas as pd
|
|
29
|
+
from statsmodels.stats.multitest import fdrcorrection
|
|
30
|
+
import scitex
|
|
31
|
+
from ...decorators import pandas_fn
|
|
32
|
+
|
|
33
|
+
ArrayLike = Union[np.ndarray, torch.Tensor, pd.Series]
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@pandas_fn
|
|
37
|
+
def fdr_correction(results: pd.DataFrame) -> pd.DataFrame:
|
|
38
|
+
"""
|
|
39
|
+
Apply FDR correction to p-value columns in a DataFrame.
|
|
40
|
+
|
|
41
|
+
Example:
|
|
42
|
+
--------
|
|
43
|
+
>>> df = pd.DataFrame({'p_value': [0.01, 0.05, 0.1], 'other': [1, 2, 3]})
|
|
44
|
+
>>> fdr_correction(df)
|
|
45
|
+
p_value other p_value_fdr p_value_fdr_stars
|
|
46
|
+
0 0.01 1 0.030000 **
|
|
47
|
+
1 0.05 2 0.075000 *
|
|
48
|
+
2 0.10 3 0.100000
|
|
49
|
+
|
|
50
|
+
Parameters:
|
|
51
|
+
-----------
|
|
52
|
+
results : pd.DataFrame
|
|
53
|
+
DataFrame containing p-value columns
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
--------
|
|
57
|
+
pd.DataFrame
|
|
58
|
+
DataFrame with added FDR-corrected p-values and stars
|
|
59
|
+
"""
|
|
60
|
+
pval_cols = scitex.stats.find_pval(results, multiple=True)
|
|
61
|
+
if not pval_cols:
|
|
62
|
+
return results
|
|
63
|
+
|
|
64
|
+
for pval_col in pval_cols:
|
|
65
|
+
non_nan = results.dropna(subset=[pval_col])
|
|
66
|
+
nan_rows = results[results[pval_col].isna()]
|
|
67
|
+
|
|
68
|
+
pvals = non_nan[pval_col]
|
|
69
|
+
if isinstance(pvals, pd.DataFrame):
|
|
70
|
+
pvals = pvals.values.flatten()
|
|
71
|
+
|
|
72
|
+
_, fdr_corrected_pvals = fdrcorrection(pvals)
|
|
73
|
+
non_nan[f"{pval_col}_fdr"] = fdr_corrected_pvals
|
|
74
|
+
nan_rows[f"{pval_col}_fdr"] = np.nan
|
|
75
|
+
|
|
76
|
+
results = pd.concat([non_nan, nan_rows]).sort_index()
|
|
77
|
+
results[f"{pval_col}_fdr_stars"] = results[f"{pval_col}_fdr"].apply(
|
|
78
|
+
scitex.stats.p2stars
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
return results
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
# def _ecdf(xx: ArrayLike) -> ArrayLike:
|
|
85
|
+
# """Compute empirical cumulative distribution function."""
|
|
86
|
+
# nobs = len(xx)
|
|
87
|
+
# return np.arange(1, nobs + 1) / float(nobs)
|
|
88
|
+
|
|
89
|
+
# def _ecdf_torch(xx: torch.Tensor) -> torch.Tensor:
|
|
90
|
+
# """Compute empirical cumulative distribution function using PyTorch."""
|
|
91
|
+
# nobs = len(xx)
|
|
92
|
+
# return torch.arange(1, nobs + 1, device=xx.device) / float(nobs)
|
|
93
|
+
|
|
94
|
+
# def fdr_correction_torch(pvals: torch.Tensor, alpha: float = 0.05, method: str = "indep") -> Tuple[torch.Tensor, torch.Tensor]:
|
|
95
|
+
# """
|
|
96
|
+
# P-value correction with False Discovery Rate (FDR) using PyTorch.
|
|
97
|
+
|
|
98
|
+
# Example:
|
|
99
|
+
# >>> pvals = torch.tensor([0.01, 0.02, 0.03, 0.04, 0.05])
|
|
100
|
+
# >>> reject, pvals_corrected = fdr_correction_torch(pvals)
|
|
101
|
+
# >>> print(reject, pvals_corrected)
|
|
102
|
+
|
|
103
|
+
# Parameters:
|
|
104
|
+
# -----------
|
|
105
|
+
# pvals : torch.Tensor
|
|
106
|
+
# Set of p-values of the individual tests
|
|
107
|
+
# alpha : float, optional
|
|
108
|
+
# Error rate (default is 0.05)
|
|
109
|
+
# method : str, optional
|
|
110
|
+
# 'indep' for Benjamini/Hochberg, 'negcorr' for Benjamini/Yekutieli (default is 'indep')
|
|
111
|
+
|
|
112
|
+
# Returns:
|
|
113
|
+
# --------
|
|
114
|
+
# reject : torch.Tensor
|
|
115
|
+
# Boolean tensor indicating rejected hypotheses
|
|
116
|
+
# pvals_corrected : torch.Tensor
|
|
117
|
+
# Tensor of corrected p-values
|
|
118
|
+
# """
|
|
119
|
+
# shape_init = pvals.shape
|
|
120
|
+
# pvals = pvals.ravel()
|
|
121
|
+
|
|
122
|
+
# pvals_sortind = torch.argsort(pvals)
|
|
123
|
+
# pvals_sorted = pvals[pvals_sortind]
|
|
124
|
+
# sortrevind = pvals_sortind.argsort()
|
|
125
|
+
|
|
126
|
+
# if method in ["i", "indep", "p", "poscorr"]:
|
|
127
|
+
# ecdffactor = _ecdf_torch(pvals_sorted)
|
|
128
|
+
# elif method in ["n", "negcorr"]:
|
|
129
|
+
# cm = torch.sum(1.0 / torch.arange(1, len(pvals_sorted) + 1, device=pvals.device))
|
|
130
|
+
# ecdffactor = _ecdf_torch(pvals_sorted) / cm
|
|
131
|
+
# else:
|
|
132
|
+
# raise ValueError("Method should be 'indep' or 'negcorr'")
|
|
133
|
+
|
|
134
|
+
# ecdffactor = ecdffactor.to(pvals_sorted.dtype)
|
|
135
|
+
|
|
136
|
+
# reject = pvals_sorted < (ecdffactor * alpha)
|
|
137
|
+
|
|
138
|
+
# if reject.any():
|
|
139
|
+
# rejectmax = torch.nonzero(reject, as_tuple=True)[0].max()
|
|
140
|
+
# else:
|
|
141
|
+
# rejectmax = torch.tensor(0, device=pvals.device)
|
|
142
|
+
# reject[:rejectmax+1] = True
|
|
143
|
+
|
|
144
|
+
# pvals_corrected_raw = pvals_sorted / ecdffactor
|
|
145
|
+
# pvals_corrected = torch.minimum(torch.ones_like(pvals_corrected_raw), torch.cummin(pvals_corrected_raw.flip(0), 0)[0].flip(0))
|
|
146
|
+
|
|
147
|
+
# pvals_corrected = pvals_corrected[sortrevind].reshape(shape_init)
|
|
148
|
+
# reject = reject[sortrevind].reshape(shape_init)
|
|
149
|
+
# return reject, pvals_corrected
|
|
150
|
+
|
|
151
|
+
if __name__ == "__main__":
|
|
152
|
+
pvals = [0.02, 0.03, 0.05]
|
|
153
|
+
pvals_torch = torch.tensor(np.array([0.02, 0.03, 0.05]))
|
|
154
|
+
|
|
155
|
+
reject, pvals_corrected = fdr_correction(pd.DataFrame({"p_value": pvals}))
|
|
156
|
+
|
|
157
|
+
reject_torch, pvals_corrected_torch = fdr_correction_torch(
|
|
158
|
+
pvals_torch, alpha=0.05, method="indep"
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
arr = pvals_corrected["fdr_p_value"].to_numpy().astype(float)
|
|
162
|
+
tor = pvals_corrected_torch.numpy().astype(float)
|
|
163
|
+
print(scitex.gen.isclose(arr, tor))
|
|
164
|
+
|
|
165
|
+
# #!/usr/bin/env python3
|
|
166
|
+
# # Time-stamp: "2024-10-06 09:26:33 (ywatanabe)"
|
|
167
|
+
|
|
168
|
+
# """
|
|
169
|
+
# Functionality:
|
|
170
|
+
# - Implements False Discovery Rate (FDR) correction for multiple comparisons
|
|
171
|
+
# - Provides both NumPy and PyTorch implementations
|
|
172
|
+
|
|
173
|
+
# Input:
|
|
174
|
+
# - Array-like object of p-values
|
|
175
|
+
# - Alpha level for significance
|
|
176
|
+
# - Method for correction ('indep' or 'negcorr')
|
|
177
|
+
|
|
178
|
+
# Output:
|
|
179
|
+
# - Boolean array indicating rejected hypotheses
|
|
180
|
+
# - Array of corrected p-values
|
|
181
|
+
|
|
182
|
+
# Prerequisites:
|
|
183
|
+
# - NumPy, PyTorch, pandas, statsmodels, and scitex packages
|
|
184
|
+
# """
|
|
185
|
+
|
|
186
|
+
# """Imports"""
|
|
187
|
+
# from typing import Union, Tuple
|
|
188
|
+
# import numpy as np
|
|
189
|
+
# import torch
|
|
190
|
+
# import pandas as pd
|
|
191
|
+
# from statsmodels.stats.multitest import fdrcorrection
|
|
192
|
+
# import scitex
|
|
193
|
+
|
|
194
|
+
# ArrayLike = Union[np.ndarray, torch.Tensor, pd.Series]
|
|
195
|
+
|
|
196
|
+
# def fdr_correction(results: pd.DataFrame) -> pd.DataFrame:
|
|
197
|
+
# """
|
|
198
|
+
# Apply FDR correction to p-values in a DataFrame.
|
|
199
|
+
|
|
200
|
+
# Example:
|
|
201
|
+
# >>> df = pd.DataFrame({'p_value': [0.01, 0.02, 0.03, 0.04, 0.05]})
|
|
202
|
+
# >>> corrected_df = fdr_correction(df)
|
|
203
|
+
# >>> print(corrected_df)
|
|
204
|
+
|
|
205
|
+
# Parameters:
|
|
206
|
+
# -----------
|
|
207
|
+
# results : pd.DataFrame
|
|
208
|
+
# DataFrame containing a 'p_value' column
|
|
209
|
+
|
|
210
|
+
# Returns:
|
|
211
|
+
# --------
|
|
212
|
+
# pd.DataFrame
|
|
213
|
+
# DataFrame with added 'fdr_p_value' and 'fdr_stars' columns
|
|
214
|
+
# """
|
|
215
|
+
# if "p_value" not in results.columns:
|
|
216
|
+
# return results
|
|
217
|
+
# _, fdr_corrected_pvals = fdrcorrection(results["p_value"])
|
|
218
|
+
# results["fdr_p_value"] = fdr_corrected_pvals
|
|
219
|
+
# results["fdr_stars"] = results["fdr_p_value"].apply(scitex.stats.p2stars)
|
|
220
|
+
# return results
|
|
221
|
+
|
|
222
|
+
# def fdr_correction(pvals, alpha=0.05, method="indep"):
|
|
223
|
+
# # https://github.com/mne-tools/mne-python/blob/main/mne/stats/multi_comp.py
|
|
224
|
+
# """P-value correction with False Discovery Rate (FDR).
|
|
225
|
+
|
|
226
|
+
# Correction for multiple comparison using FDR :footcite:`GenoveseEtAl2002`.
|
|
227
|
+
|
|
228
|
+
# This covers Benjamini/Hochberg for independent or positively correlated and
|
|
229
|
+
# Benjamini/Yekutieli for gen or negatively correlated tests.
|
|
230
|
+
|
|
231
|
+
# Parameters
|
|
232
|
+
# ----------
|
|
233
|
+
# pvals : array_like
|
|
234
|
+
# Set of p-values of the individual tests.
|
|
235
|
+
# alpha : float
|
|
236
|
+
# Error rate.
|
|
237
|
+
# method : 'indep' | 'negcorr'
|
|
238
|
+
# If 'indep' it implements Benjamini/Hochberg for independent or if
|
|
239
|
+
# 'negcorr' it corresponds to Benjamini/Yekutieli.
|
|
240
|
+
|
|
241
|
+
# Returns
|
|
242
|
+
# -------
|
|
243
|
+
# reject : array, bool
|
|
244
|
+
# True if a hypothesis is rejected, False if not.
|
|
245
|
+
# pval_corrected : array
|
|
246
|
+
# alpha : float
|
|
247
|
+
# Error rate.
|
|
248
|
+
# method : 'indep' | 'negcorr'
|
|
249
|
+
# If 'indep' it implements Benjamini/Hochberg for independent or if
|
|
250
|
+
# 'negcorr' it corresponds to Benjamini/Yekutieli.
|
|
251
|
+
|
|
252
|
+
# Returns
|
|
253
|
+
# -------
|
|
254
|
+
# reject : array, bool
|
|
255
|
+
# True if a hypothesis is rejected, False if not.
|
|
256
|
+
# pval_corrected : array
|
|
257
|
+
# alpha : float
|
|
258
|
+
# Error rate.
|
|
259
|
+
# method : 'indep' | 'negcorr'
|
|
260
|
+
# If 'indep' it implements Benjamini/Hochberg for independent or if
|
|
261
|
+
# 'negcorr' it corresponds to Benjamini/Yekutieli.
|
|
262
|
+
|
|
263
|
+
# Returns
|
|
264
|
+
# -------
|
|
265
|
+
# reject : array, bool
|
|
266
|
+
# True if a hypothesis is rejected, False if not.
|
|
267
|
+
# pval_corrected : array
|
|
268
|
+
# P-values adjusted for multiple hypothesis testing to limit FDR.
|
|
269
|
+
|
|
270
|
+
# Returns
|
|
271
|
+
# -------
|
|
272
|
+
# reject : array, bool
|
|
273
|
+
# True if a hypothesis is rejected, False if not.
|
|
274
|
+
# pval_corrected : array
|
|
275
|
+
# P-values adjusted for multiple hypothesis testing to limit FDR.
|
|
276
|
+
|
|
277
|
+
# References
|
|
278
|
+
# ----------
|
|
279
|
+
# .. footbibliography::
|
|
280
|
+
# """
|
|
281
|
+
# pvals = np.asarray(pvals)
|
|
282
|
+
# shape_init = pvals.shape
|
|
283
|
+
# pvals = pvals.ravel()
|
|
284
|
+
|
|
285
|
+
# pvals_sortind = np.argsort(pvals)
|
|
286
|
+
# pvals_sorted = pvals[pvals_sortind]
|
|
287
|
+
# sortrevind = pvals_sortind.argsort()
|
|
288
|
+
|
|
289
|
+
# if method in ["i", "indep", "p", "poscorr"]:
|
|
290
|
+
# ecdffactor = _ecdf(pvals_sorted)
|
|
291
|
+
# elif method in ["n", "negcorr"]:
|
|
292
|
+
# cm = np.sum(1.0 / np.arange(1, len(pvals_sorted) + 1))
|
|
293
|
+
# ecdffactor = _ecdf(pvals_sorted) / cm
|
|
294
|
+
# else:
|
|
295
|
+
# raise ValueError("Method should be 'indep' and 'negcorr'")
|
|
296
|
+
|
|
297
|
+
# reject = pvals_sorted < (ecdffactor * alpha)
|
|
298
|
+
# if reject.any():
|
|
299
|
+
# rejectmax = max(np.nonzero(reject)[0])
|
|
300
|
+
# else:
|
|
301
|
+
# rejectmax = 0
|
|
302
|
+
# reject[:rejectmax] = True
|
|
303
|
+
|
|
304
|
+
# pvals_corrected_raw = pvals_sorted / ecdffactor
|
|
305
|
+
# pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1]
|
|
306
|
+
# pvals_corrected[pvals_corrected > 1.0] = 1.0
|
|
307
|
+
# pvals_corrected = pvals_corrected[sortrevind].reshape(shape_init)
|
|
308
|
+
# reject = reject[sortrevind].reshape(shape_init)
|
|
309
|
+
# return reject, pvals_corrected
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
# def fdr_correction(results: pd.DataFrame) -> pd.DataFrame:
|
|
313
|
+
# if "p_value" not in results.columns:
|
|
314
|
+
# return results
|
|
315
|
+
# _, fdr_corrected_pvals = fdrcorrection(results["p_value"])
|
|
316
|
+
# results["fdr_p_value"] = fdr_corrected_pvals
|
|
317
|
+
# results["fdr_stars"] = results["fdr_p_value"].apply(scitex.stats.p2stars)
|
|
318
|
+
# return results
|
|
319
|
+
|
|
320
|
+
# def _ecdf(xx: ArrayLike) -> ArrayLike:
|
|
321
|
+
# """Compute empirical cumulative distribution function."""
|
|
322
|
+
# nobs = len(xx)
|
|
323
|
+
# return np.arange(1, nobs + 1) / float(nobs)
|
|
324
|
+
|
|
325
|
+
# def _ecdf_torch(xx: torch.Tensor) -> torch.Tensor:
|
|
326
|
+
# """Compute empirical cumulative distribution function using PyTorch."""
|
|
327
|
+
# nobs = len(xx)
|
|
328
|
+
# return torch.arange(1, nobs + 1, device=xx.device) / float(nobs)
|
|
329
|
+
|
|
330
|
+
# def fdr_correction_torch(pvals: torch.Tensor, alpha: float = 0.05, method: str = "indep") -> Tuple[torch.Tensor, torch.Tensor]:
|
|
331
|
+
# """
|
|
332
|
+
# P-value correction with False Discovery Rate (FDR) using PyTorch.
|
|
333
|
+
|
|
334
|
+
# Example:
|
|
335
|
+
# >>> pvals = torch.tensor([0.01, 0.02, 0.03, 0.04, 0.05])
|
|
336
|
+
# >>> reject, pvals_corrected = fdr_correction_torch(pvals)
|
|
337
|
+
# >>> print(reject, pvals_corrected)
|
|
338
|
+
|
|
339
|
+
# Parameters:
|
|
340
|
+
# -----------
|
|
341
|
+
# pvals : torch.Tensor
|
|
342
|
+
# Set of p-values of the individual tests
|
|
343
|
+
# alpha : float, optional
|
|
344
|
+
# Error rate (default is 0.05)
|
|
345
|
+
# method : str, optional
|
|
346
|
+
# 'indep' for Benjamini/Hochberg, 'negcorr' for Benjamini/Yekutieli (default is 'indep')
|
|
347
|
+
|
|
348
|
+
# Returns:
|
|
349
|
+
# --------
|
|
350
|
+
# reject : torch.Tensor
|
|
351
|
+
# Boolean tensor indicating rejected hypotheses
|
|
352
|
+
# pvals_corrected : torch.Tensor
|
|
353
|
+
# Tensor of corrected p-values
|
|
354
|
+
# """
|
|
355
|
+
# shape_init = pvals.shape
|
|
356
|
+
# pvals = pvals.ravel()
|
|
357
|
+
|
|
358
|
+
# pvals_sortind = torch.argsort(pvals)
|
|
359
|
+
# pvals_sorted = pvals[pvals_sortind]
|
|
360
|
+
# sortrevind = pvals_sortind.argsort()
|
|
361
|
+
|
|
362
|
+
# if method in ["i", "indep", "p", "poscorr"]:
|
|
363
|
+
# ecdffactor = _ecdf_torch(pvals_sorted)
|
|
364
|
+
# elif method in ["n", "negcorr"]:
|
|
365
|
+
# cm = torch.sum(1.0 / torch.arange(1, len(pvals_sorted) + 1, device=pvals.device))
|
|
366
|
+
# ecdffactor = _ecdf_torch(pvals_sorted) / cm
|
|
367
|
+
# else:
|
|
368
|
+
# raise ValueError("Method should be 'indep' or 'negcorr'")
|
|
369
|
+
|
|
370
|
+
# ecdffactor = ecdffactor.to(pvals_sorted.dtype)
|
|
371
|
+
|
|
372
|
+
# reject = pvals_sorted < (ecdffactor * alpha)
|
|
373
|
+
|
|
374
|
+
# if reject.any():
|
|
375
|
+
# rejectmax = torch.nonzero(reject, as_tuple=True)[0].max()
|
|
376
|
+
# else:
|
|
377
|
+
# rejectmax = torch.tensor(0, device=pvals.device)
|
|
378
|
+
# reject[:rejectmax+1] = True
|
|
379
|
+
|
|
380
|
+
# pvals_corrected_raw = pvals_sorted / ecdffactor
|
|
381
|
+
# pvals_corrected = torch.minimum(torch.ones_like(pvals_corrected_raw), torch.cummin(pvals_corrected_raw.flip(0), 0)[0].flip(0))
|
|
382
|
+
|
|
383
|
+
# pvals_corrected = pvals_corrected[sortrevind].reshape(shape_init)
|
|
384
|
+
# reject = reject[sortrevind].reshape(shape_init)
|
|
385
|
+
# return reject, pvals_corrected
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
# if __name__ == "__main__":
|
|
389
|
+
# pvals = [0.02, 0.03, 0.05]
|
|
390
|
+
# pvals_torch = torch.tensor(np.array([0.02, 0.03, 0.05]))
|
|
391
|
+
|
|
392
|
+
# reject, pvals_corrected = fdr_correction(pvals, alpha=0.05, method="indep")
|
|
393
|
+
|
|
394
|
+
# reject_torch, pvals_corrected_torch = fdr_correction_torch(
|
|
395
|
+
# pvals, alpha=0.05, method="indep"
|
|
396
|
+
# )
|
|
397
|
+
|
|
398
|
+
# arr = pvals_corrected.astype(float)
|
|
399
|
+
# tor = pvals_corrected_torch.numpy().astype(float)
|
|
400
|
+
# print(scitex.gen.isclose(arr, tor))
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import scipy.stats as stats
|
|
5
|
+
from statsmodels.stats.multicomp import MultiComparison
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def multicompair(data, labels, testfunc=None):
|
|
9
|
+
# https://pythonhealthcare.org/2018/04/13/55-statistics-multi-comparison-with-tukeys-test-and-the-holm-bonferroni-method/
|
|
10
|
+
_labels = labels.copy()
|
|
11
|
+
# Set up the data for comparison (creates a specialised object)
|
|
12
|
+
for i_labels in range(len(_labels)):
|
|
13
|
+
_labels[i_labels] = [_labels[i_labels] for i_data in range(len(data[i_labels]))]
|
|
14
|
+
|
|
15
|
+
data, _labels = np.hstack(data), np.hstack(_labels)
|
|
16
|
+
MultiComp = MultiComparison(data, _labels)
|
|
17
|
+
|
|
18
|
+
if testfunc is not None:
|
|
19
|
+
# print(MultiComp.allpairtest(testfunc, mehotd='bonf', pvalidx=1))
|
|
20
|
+
return MultiComp.allpairtest(testfunc, method="bonf", pvalidx=1)
|
|
21
|
+
else:
|
|
22
|
+
# print(MultiComp.tukeyhsd().summary())
|
|
23
|
+
return MultiComp.tukeyhsd().summary()
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
# t_statistic, p_value = scipy.stats.ttest_ind(data1, data2, equal_var=False) # Welch's t test
|
|
27
|
+
# W_statistic, p_value = scipy.stats.brunnermunzel(data1, data2)
|
|
28
|
+
# H_statistic, p_value = scipy.stats.kruskal(*data) # one-way ANOVA on RANKs
|
|
@@ -0,0 +1,277 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-10-06 12:04:31 (ywatanabe)"
|
|
4
|
+
|
|
5
|
+
from bisect import bisect_right
|
|
6
|
+
import numpy as np
|
|
7
|
+
import scitex
|
|
8
|
+
from scipy import stats
|
|
9
|
+
from typing import Any, Literal, Dict, Callable
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def _corr_test_base(
|
|
13
|
+
data1: np.ndarray,
|
|
14
|
+
data2: np.ndarray,
|
|
15
|
+
only_significant: bool,
|
|
16
|
+
num_permutations: int,
|
|
17
|
+
seed: int,
|
|
18
|
+
corr_func: Callable,
|
|
19
|
+
test_name: str,
|
|
20
|
+
) -> Dict[str, Any]:
|
|
21
|
+
np.random.seed(seed)
|
|
22
|
+
|
|
23
|
+
non_nan_indices = ~(np.isnan(data1) | np.isnan(data2))
|
|
24
|
+
data1, data2 = data1[non_nan_indices], data2[non_nan_indices]
|
|
25
|
+
|
|
26
|
+
corr_obs, _ = corr_func(data1, data2)
|
|
27
|
+
surrogate = np.array(
|
|
28
|
+
[
|
|
29
|
+
corr_func(data1, np.random.permutation(data2))[0]
|
|
30
|
+
for _ in range(num_permutations)
|
|
31
|
+
]
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
rank = bisect_right(sorted(surrogate), corr_obs)
|
|
35
|
+
pvalue = min(rank, num_permutations - rank) / num_permutations * 2
|
|
36
|
+
|
|
37
|
+
stars = scitex.stats.p2stars(pvalue)
|
|
38
|
+
sample_size = len(data1)
|
|
39
|
+
effect_size = np.abs(corr_obs)
|
|
40
|
+
|
|
41
|
+
result_string = (
|
|
42
|
+
f"{test_name} Corr. = {corr_obs:.3f}; p-value = {pvalue:.3f} "
|
|
43
|
+
f"(n={sample_size:,}, eff={effect_size:.3f}) {stars}"
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
if not only_significant or (only_significant and pvalue < 0.05):
|
|
47
|
+
print(result_string)
|
|
48
|
+
|
|
49
|
+
return {
|
|
50
|
+
"p_value": round(pvalue, 3),
|
|
51
|
+
"stars": stars,
|
|
52
|
+
"effsize": round(effect_size, 3),
|
|
53
|
+
"corr": round(corr_obs, 3),
|
|
54
|
+
"surrogate": surrogate,
|
|
55
|
+
"n": sample_size,
|
|
56
|
+
"test_name": f"Permutation-based {test_name} correlation",
|
|
57
|
+
"statistic": round(corr_obs, 3),
|
|
58
|
+
"H0": f"There is no {test_name.lower()} correlation between the two variables",
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def corr_test_spearman(
|
|
63
|
+
data1: np.ndarray,
|
|
64
|
+
data2: np.ndarray,
|
|
65
|
+
only_significant: bool = False,
|
|
66
|
+
num_permutations: int = 1_000,
|
|
67
|
+
seed: int = 42,
|
|
68
|
+
) -> Dict[str, Any]:
|
|
69
|
+
return _corr_test_base(
|
|
70
|
+
data1,
|
|
71
|
+
data2,
|
|
72
|
+
only_significant,
|
|
73
|
+
num_permutations,
|
|
74
|
+
seed,
|
|
75
|
+
stats.spearmanr,
|
|
76
|
+
"Spearman",
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def corr_test_pearson(
|
|
81
|
+
data1: np.ndarray,
|
|
82
|
+
data2: np.ndarray,
|
|
83
|
+
only_significant: bool = False,
|
|
84
|
+
num_permutations: int = 1_000,
|
|
85
|
+
seed: int = 42,
|
|
86
|
+
) -> Dict[str, Any]:
|
|
87
|
+
return _corr_test_base(
|
|
88
|
+
data1,
|
|
89
|
+
data2,
|
|
90
|
+
only_significant,
|
|
91
|
+
num_permutations,
|
|
92
|
+
seed,
|
|
93
|
+
stats.pearsonr,
|
|
94
|
+
"Pearson",
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def corr_test(
|
|
99
|
+
data1: np.ndarray,
|
|
100
|
+
data2: np.ndarray,
|
|
101
|
+
test: Literal["pearson", "spearman"] = "pearson",
|
|
102
|
+
only_significant: bool = False,
|
|
103
|
+
num_permutations: int = 1_000,
|
|
104
|
+
seed: int = 42,
|
|
105
|
+
) -> Dict[str, Any]:
|
|
106
|
+
"""
|
|
107
|
+
Performs a correlation test between two datasets using permutation.
|
|
108
|
+
|
|
109
|
+
Parameters
|
|
110
|
+
----------
|
|
111
|
+
data1 : np.ndarray
|
|
112
|
+
First dataset for correlation.
|
|
113
|
+
data2 : np.ndarray
|
|
114
|
+
Second dataset for correlation.
|
|
115
|
+
test : {"pearson", "spearman"}, optional
|
|
116
|
+
Type of correlation test to perform. Default is "pearson".
|
|
117
|
+
only_significant : bool, optional
|
|
118
|
+
If True, only prints significant results. Default is False.
|
|
119
|
+
num_permutations : int, optional
|
|
120
|
+
Number of permutations for the test. Default is 1,000.
|
|
121
|
+
seed : int, optional
|
|
122
|
+
Random seed for reproducibility. Default is 42.
|
|
123
|
+
|
|
124
|
+
Returns
|
|
125
|
+
-------
|
|
126
|
+
Dict[str, Any]
|
|
127
|
+
Contains 'p_value', 'stars', 'effsize', 'corr', 'surrogate', 'n', 'test_name', 'statistic', and 'H0'.
|
|
128
|
+
|
|
129
|
+
Example
|
|
130
|
+
-------
|
|
131
|
+
>>> xx = np.array([3, 4, 4, 5, 7, 8, 10, 12, 13, 15])
|
|
132
|
+
>>> yy = np.array([2, 4, 4, 5, 4, 7, 8, 19, 14, 10])
|
|
133
|
+
>>> results = corr_test(xx, yy, test="pearson")
|
|
134
|
+
"""
|
|
135
|
+
if test == "spearman":
|
|
136
|
+
return corr_test_spearman(
|
|
137
|
+
data1, data2, only_significant, num_permutations, seed
|
|
138
|
+
)
|
|
139
|
+
elif test == "pearson":
|
|
140
|
+
return corr_test_pearson(data1, data2, only_significant, num_permutations, seed)
|
|
141
|
+
else:
|
|
142
|
+
raise ValueError("Invalid test type. Choose 'pearson' or 'spearman'.")
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
if __name__ == "__main__":
|
|
146
|
+
xx = np.array([3, 4, 4, 5, 7, 8, 10, 12, 13, 15])
|
|
147
|
+
yy = np.array([2, 4, 4, 5, 4, 7, 8, 19, 14, 10])
|
|
148
|
+
results_pearson = corr_test(xx, yy)
|
|
149
|
+
results_spearman = corr_test(xx, yy, test="spearman")
|
|
150
|
+
print("Pearson results:", results_pearson)
|
|
151
|
+
print("Spearman results:", results_spearman)
|
|
152
|
+
# #!/usr/bin/env python3
|
|
153
|
+
# # -*- coding: utf-8 -*-
|
|
154
|
+
# # Time-stamp: "2024-10-06 12:02:18 (ywatanabe)"
|
|
155
|
+
|
|
156
|
+
# from bisect import bisect_right
|
|
157
|
+
# import numpy as np
|
|
158
|
+
# import scitex
|
|
159
|
+
# from scipy import stats
|
|
160
|
+
# from typing import Any, Literal, Dict, List
|
|
161
|
+
|
|
162
|
+
# def _corr_test_base(
|
|
163
|
+
# data1: np.ndarray,
|
|
164
|
+
# data2: np.ndarray,
|
|
165
|
+
# only_significant: bool,
|
|
166
|
+
# num_permutations: int,
|
|
167
|
+
# seed: int,
|
|
168
|
+
# corr_func: callable,
|
|
169
|
+
# test_name: str
|
|
170
|
+
# ) -> Dict[str, Any]:
|
|
171
|
+
# np.random.seed(seed)
|
|
172
|
+
|
|
173
|
+
# non_nan_indices = ~(np.isnan(data1) | np.isnan(data2))
|
|
174
|
+
# data1, data2 = data1[non_nan_indices], data2[non_nan_indices]
|
|
175
|
+
|
|
176
|
+
# corr_obs, _ = corr_func(data1, data2)
|
|
177
|
+
# surrogate = [
|
|
178
|
+
# corr_func(data1, np.random.permutation(data2))[0]
|
|
179
|
+
# for _ in range(num_permutations)
|
|
180
|
+
# ]
|
|
181
|
+
|
|
182
|
+
# rank = bisect_right(sorted(surrogate), corr_obs)
|
|
183
|
+
# pvalue = min(rank, num_permutations - rank) / num_permutations * 2
|
|
184
|
+
|
|
185
|
+
# stars = scitex.stats.p2stars(pvalue)
|
|
186
|
+
# sample_size = len(data1)
|
|
187
|
+
# effect_size = np.abs(corr_obs)
|
|
188
|
+
|
|
189
|
+
# # result_string = (
|
|
190
|
+
# # f"{test_name} Corr. = {corr_obs:.3f}; p-value = {pvalue:.3f} "
|
|
191
|
+
# # f"(n={sample_size:,}, eff={effect_size:.3f}) {stars}"
|
|
192
|
+
# # )
|
|
193
|
+
|
|
194
|
+
# if not only_significant or (only_significant and pvalue < 0.05):
|
|
195
|
+
# print(result_string)
|
|
196
|
+
|
|
197
|
+
# return {
|
|
198
|
+
# "p_value": round(pvalue, 3),
|
|
199
|
+
# "stars": stars,
|
|
200
|
+
# "effsize": round(effect_size, 3),
|
|
201
|
+
# "corr": round(corr_obs, 3),
|
|
202
|
+
# "surrogate": np.array(surrogate),
|
|
203
|
+
# "n": sample_size,
|
|
204
|
+
# "test_name": f"Permutation-based {test_name} correlation",
|
|
205
|
+
# "statistic": round(corr_obs, 3),
|
|
206
|
+
# "H0": f"There is no {test_name.lower()} correlation between the two variables",
|
|
207
|
+
# }
|
|
208
|
+
|
|
209
|
+
# def corr_test_spearman(
|
|
210
|
+
# data1: np.ndarray,
|
|
211
|
+
# data2: np.ndarray,
|
|
212
|
+
# only_significant: bool = False,
|
|
213
|
+
# num_permutations: int = 1_000,
|
|
214
|
+
# seed: int = 42,
|
|
215
|
+
# ) -> Dict[str, Any]:
|
|
216
|
+
# return _corr_test_base(data1, data2, only_significant, num_permutations, seed, stats.spearmanr, "Spearman")
|
|
217
|
+
|
|
218
|
+
# def corr_test_pearson(
|
|
219
|
+
# data1: np.ndarray,
|
|
220
|
+
# data2: np.ndarray,
|
|
221
|
+
# only_significant: bool = False,
|
|
222
|
+
# num_permutations: int = 1_000,
|
|
223
|
+
# seed: int = 42,
|
|
224
|
+
# ) -> Dict[str, Any]:
|
|
225
|
+
# return _corr_test_base(data1, data2, only_significant, num_permutations, seed, stats.pearsonr, "Pearson")
|
|
226
|
+
|
|
227
|
+
# def corr_test(
|
|
228
|
+
# data1: np.ndarray,
|
|
229
|
+
# data2: np.ndarray,
|
|
230
|
+
# test: Literal["pearson", "spearman"] = "pearson",
|
|
231
|
+
# only_significant: bool = False,
|
|
232
|
+
# num_permutations: int = 1_000,
|
|
233
|
+
# seed: int = 42,
|
|
234
|
+
# ) -> Dict[str, Any]:
|
|
235
|
+
# """
|
|
236
|
+
# Performs a correlation test between two datasets using permutation.
|
|
237
|
+
|
|
238
|
+
# Parameters
|
|
239
|
+
# ----------
|
|
240
|
+
# data1 : np.ndarray
|
|
241
|
+
# First dataset for correlation.
|
|
242
|
+
# data2 : np.ndarray
|
|
243
|
+
# Second dataset for correlation.
|
|
244
|
+
# test : {"pearson", "spearman"}, optional
|
|
245
|
+
# Type of correlation test to perform. Default is "pearson".
|
|
246
|
+
# only_significant : bool, optional
|
|
247
|
+
# If True, only prints significant results. Default is False.
|
|
248
|
+
# num_permutations : int, optional
|
|
249
|
+
# Number of permutations for the test. Default is 1,000.
|
|
250
|
+
# seed : int, optional
|
|
251
|
+
# Random seed for reproducibility. Default is 42.
|
|
252
|
+
|
|
253
|
+
# Returns
|
|
254
|
+
# -------
|
|
255
|
+
# Dict[str, Any]
|
|
256
|
+
# Contains 'p_value', 'stars', 'effsize', 'corr', 'surrogate', 'n', 'test_name', 'statistic', and 'H0'.
|
|
257
|
+
|
|
258
|
+
# Example
|
|
259
|
+
# -------
|
|
260
|
+
# >>> xx = np.array([3, 4, 4, 5, 7, 8, 10, 12, 13, 15])
|
|
261
|
+
# >>> yy = np.array([2, 4, 4, 5, 4, 7, 8, 19, 14, 10])
|
|
262
|
+
# >>> results = corr_test(xx, yy, test="pearson")
|
|
263
|
+
# """
|
|
264
|
+
# if test == "spearman":
|
|
265
|
+
# return corr_test_spearman(data1, data2, only_significant, num_permutations, seed)
|
|
266
|
+
# elif test == "pearson":
|
|
267
|
+
# return corr_test_pearson(data1, data2, only_significant, num_permutations, seed)
|
|
268
|
+
# else:
|
|
269
|
+
# raise ValueError("Invalid test type. Choose 'spearman' or 'pearson'.")
|
|
270
|
+
|
|
271
|
+
# if __name__ == "__main__":
|
|
272
|
+
# xx = np.array([3, 4, 4, 5, 7, 8, 10, 12, 13, 15])
|
|
273
|
+
# yy = np.array([2, 4, 4, 5, 4, 7, 8, 19, 14, 10])
|
|
274
|
+
# results_spearman = corr_test(xx, yy)
|
|
275
|
+
# results_pearson = corr_test(xx, yy, test="pearson")
|
|
276
|
+
# print("Spearman results:", results_spearman)
|
|
277
|
+
# print("Pearson results:", results_pearson)
|