scitex 2.0.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scitex/__init__.py +73 -0
- scitex/__main__.py +89 -0
- scitex/__version__.py +14 -0
- scitex/_sh.py +59 -0
- scitex/ai/_LearningCurveLogger.py +583 -0
- scitex/ai/__Classifiers.py +101 -0
- scitex/ai/__init__.py +55 -0
- scitex/ai/_gen_ai/_Anthropic.py +173 -0
- scitex/ai/_gen_ai/_BaseGenAI.py +336 -0
- scitex/ai/_gen_ai/_DeepSeek.py +175 -0
- scitex/ai/_gen_ai/_Google.py +161 -0
- scitex/ai/_gen_ai/_Groq.py +97 -0
- scitex/ai/_gen_ai/_Llama.py +142 -0
- scitex/ai/_gen_ai/_OpenAI.py +230 -0
- scitex/ai/_gen_ai/_PARAMS.py +565 -0
- scitex/ai/_gen_ai/_Perplexity.py +191 -0
- scitex/ai/_gen_ai/__init__.py +32 -0
- scitex/ai/_gen_ai/_calc_cost.py +78 -0
- scitex/ai/_gen_ai/_format_output_func.py +183 -0
- scitex/ai/_gen_ai/_genai_factory.py +71 -0
- scitex/ai/act/__init__.py +8 -0
- scitex/ai/act/_define.py +11 -0
- scitex/ai/classification/__init__.py +7 -0
- scitex/ai/classification/classification_reporter.py +1137 -0
- scitex/ai/classification/classifier_server.py +131 -0
- scitex/ai/classification/classifiers.py +101 -0
- scitex/ai/classification_reporter.py +1161 -0
- scitex/ai/classifier_server.py +131 -0
- scitex/ai/clustering/__init__.py +11 -0
- scitex/ai/clustering/_pca.py +115 -0
- scitex/ai/clustering/_umap.py +376 -0
- scitex/ai/early_stopping.py +149 -0
- scitex/ai/feature_extraction/__init__.py +56 -0
- scitex/ai/feature_extraction/vit.py +148 -0
- scitex/ai/genai/__init__.py +277 -0
- scitex/ai/genai/anthropic.py +177 -0
- scitex/ai/genai/anthropic_provider.py +320 -0
- scitex/ai/genai/anthropic_refactored.py +109 -0
- scitex/ai/genai/auth_manager.py +200 -0
- scitex/ai/genai/base_genai.py +336 -0
- scitex/ai/genai/base_provider.py +291 -0
- scitex/ai/genai/calc_cost.py +78 -0
- scitex/ai/genai/chat_history.py +307 -0
- scitex/ai/genai/cost_tracker.py +276 -0
- scitex/ai/genai/deepseek.py +188 -0
- scitex/ai/genai/deepseek_provider.py +251 -0
- scitex/ai/genai/format_output_func.py +183 -0
- scitex/ai/genai/genai_factory.py +71 -0
- scitex/ai/genai/google.py +169 -0
- scitex/ai/genai/google_provider.py +228 -0
- scitex/ai/genai/groq.py +104 -0
- scitex/ai/genai/groq_provider.py +248 -0
- scitex/ai/genai/image_processor.py +250 -0
- scitex/ai/genai/llama.py +155 -0
- scitex/ai/genai/llama_provider.py +214 -0
- scitex/ai/genai/mock_provider.py +127 -0
- scitex/ai/genai/model_registry.py +304 -0
- scitex/ai/genai/openai.py +230 -0
- scitex/ai/genai/openai_provider.py +293 -0
- scitex/ai/genai/params.py +565 -0
- scitex/ai/genai/perplexity.py +202 -0
- scitex/ai/genai/perplexity_provider.py +205 -0
- scitex/ai/genai/provider_base.py +302 -0
- scitex/ai/genai/provider_factory.py +370 -0
- scitex/ai/genai/response_handler.py +235 -0
- scitex/ai/layer/_Pass.py +21 -0
- scitex/ai/layer/__init__.py +10 -0
- scitex/ai/layer/_switch.py +8 -0
- scitex/ai/loss/_L1L2Losses.py +34 -0
- scitex/ai/loss/__init__.py +12 -0
- scitex/ai/loss/multi_task_loss.py +47 -0
- scitex/ai/metrics/__init__.py +9 -0
- scitex/ai/metrics/_bACC.py +51 -0
- scitex/ai/metrics/silhoute_score_block.py +496 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/__init__.py +0 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/__init__.py +3 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger.py +207 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger2020.py +238 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/ranger913A.py +215 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/ranger/rangerqh.py +184 -0
- scitex/ai/optim/Ranger_Deep_Learning_Optimizer/setup.py +24 -0
- scitex/ai/optim/__init__.py +13 -0
- scitex/ai/optim/_get_set.py +31 -0
- scitex/ai/optim/_optimizers.py +71 -0
- scitex/ai/plt/__init__.py +21 -0
- scitex/ai/plt/_conf_mat.py +592 -0
- scitex/ai/plt/_learning_curve.py +194 -0
- scitex/ai/plt/_optuna_study.py +111 -0
- scitex/ai/plt/aucs/__init__.py +2 -0
- scitex/ai/plt/aucs/example.py +60 -0
- scitex/ai/plt/aucs/pre_rec_auc.py +223 -0
- scitex/ai/plt/aucs/roc_auc.py +246 -0
- scitex/ai/sampling/undersample.py +29 -0
- scitex/ai/sk/__init__.py +11 -0
- scitex/ai/sk/_clf.py +58 -0
- scitex/ai/sk/_to_sktime.py +100 -0
- scitex/ai/sklearn/__init__.py +26 -0
- scitex/ai/sklearn/clf.py +58 -0
- scitex/ai/sklearn/to_sktime.py +100 -0
- scitex/ai/training/__init__.py +7 -0
- scitex/ai/training/early_stopping.py +150 -0
- scitex/ai/training/learning_curve_logger.py +555 -0
- scitex/ai/utils/__init__.py +22 -0
- scitex/ai/utils/_check_params.py +50 -0
- scitex/ai/utils/_default_dataset.py +46 -0
- scitex/ai/utils/_format_samples_for_sktime.py +26 -0
- scitex/ai/utils/_label_encoder.py +134 -0
- scitex/ai/utils/_merge_labels.py +22 -0
- scitex/ai/utils/_sliding_window_data_augmentation.py +11 -0
- scitex/ai/utils/_under_sample.py +51 -0
- scitex/ai/utils/_verify_n_gpus.py +16 -0
- scitex/ai/utils/grid_search.py +148 -0
- scitex/context/__init__.py +9 -0
- scitex/context/_suppress_output.py +38 -0
- scitex/db/_BaseMixins/_BaseBackupMixin.py +30 -0
- scitex/db/_BaseMixins/_BaseBatchMixin.py +31 -0
- scitex/db/_BaseMixins/_BaseBlobMixin.py +81 -0
- scitex/db/_BaseMixins/_BaseConnectionMixin.py +43 -0
- scitex/db/_BaseMixins/_BaseImportExportMixin.py +39 -0
- scitex/db/_BaseMixins/_BaseIndexMixin.py +29 -0
- scitex/db/_BaseMixins/_BaseMaintenanceMixin.py +33 -0
- scitex/db/_BaseMixins/_BaseQueryMixin.py +52 -0
- scitex/db/_BaseMixins/_BaseRowMixin.py +32 -0
- scitex/db/_BaseMixins/_BaseSchemaMixin.py +44 -0
- scitex/db/_BaseMixins/_BaseTableMixin.py +66 -0
- scitex/db/_BaseMixins/_BaseTransactionMixin.py +52 -0
- scitex/db/_BaseMixins/__init__.py +30 -0
- scitex/db/_PostgreSQL.py +126 -0
- scitex/db/_PostgreSQLMixins/_BackupMixin.py +166 -0
- scitex/db/_PostgreSQLMixins/_BatchMixin.py +82 -0
- scitex/db/_PostgreSQLMixins/_BlobMixin.py +231 -0
- scitex/db/_PostgreSQLMixins/_ConnectionMixin.py +92 -0
- scitex/db/_PostgreSQLMixins/_ImportExportMixin.py +59 -0
- scitex/db/_PostgreSQLMixins/_IndexMixin.py +64 -0
- scitex/db/_PostgreSQLMixins/_MaintenanceMixin.py +175 -0
- scitex/db/_PostgreSQLMixins/_QueryMixin.py +108 -0
- scitex/db/_PostgreSQLMixins/_RowMixin.py +75 -0
- scitex/db/_PostgreSQLMixins/_SchemaMixin.py +126 -0
- scitex/db/_PostgreSQLMixins/_TableMixin.py +176 -0
- scitex/db/_PostgreSQLMixins/_TransactionMixin.py +57 -0
- scitex/db/_PostgreSQLMixins/__init__.py +34 -0
- scitex/db/_SQLite3.py +2136 -0
- scitex/db/_SQLite3Mixins/_BatchMixin.py +243 -0
- scitex/db/_SQLite3Mixins/_BlobMixin.py +229 -0
- scitex/db/_SQLite3Mixins/_ConnectionMixin.py +108 -0
- scitex/db/_SQLite3Mixins/_ImportExportMixin.py +80 -0
- scitex/db/_SQLite3Mixins/_IndexMixin.py +32 -0
- scitex/db/_SQLite3Mixins/_MaintenanceMixin.py +176 -0
- scitex/db/_SQLite3Mixins/_QueryMixin.py +83 -0
- scitex/db/_SQLite3Mixins/_RowMixin.py +75 -0
- scitex/db/_SQLite3Mixins/_TableMixin.py +183 -0
- scitex/db/_SQLite3Mixins/_TransactionMixin.py +71 -0
- scitex/db/_SQLite3Mixins/__init__.py +30 -0
- scitex/db/__init__.py +14 -0
- scitex/db/_delete_duplicates.py +397 -0
- scitex/db/_inspect.py +163 -0
- scitex/decorators/__init__.py +54 -0
- scitex/decorators/_auto_order.py +172 -0
- scitex/decorators/_batch_fn.py +127 -0
- scitex/decorators/_cache_disk.py +32 -0
- scitex/decorators/_cache_mem.py +12 -0
- scitex/decorators/_combined.py +98 -0
- scitex/decorators/_converters.py +282 -0
- scitex/decorators/_deprecated.py +26 -0
- scitex/decorators/_not_implemented.py +30 -0
- scitex/decorators/_numpy_fn.py +86 -0
- scitex/decorators/_pandas_fn.py +121 -0
- scitex/decorators/_preserve_doc.py +19 -0
- scitex/decorators/_signal_fn.py +95 -0
- scitex/decorators/_timeout.py +55 -0
- scitex/decorators/_torch_fn.py +136 -0
- scitex/decorators/_wrap.py +39 -0
- scitex/decorators/_xarray_fn.py +88 -0
- scitex/dev/__init__.py +15 -0
- scitex/dev/_analyze_code_flow.py +284 -0
- scitex/dev/_reload.py +59 -0
- scitex/dict/_DotDict.py +442 -0
- scitex/dict/__init__.py +18 -0
- scitex/dict/_listed_dict.py +42 -0
- scitex/dict/_pop_keys.py +36 -0
- scitex/dict/_replace.py +13 -0
- scitex/dict/_safe_merge.py +62 -0
- scitex/dict/_to_str.py +32 -0
- scitex/dsp/__init__.py +72 -0
- scitex/dsp/_crop.py +122 -0
- scitex/dsp/_demo_sig.py +331 -0
- scitex/dsp/_detect_ripples.py +212 -0
- scitex/dsp/_ensure_3d.py +18 -0
- scitex/dsp/_hilbert.py +78 -0
- scitex/dsp/_listen.py +702 -0
- scitex/dsp/_misc.py +30 -0
- scitex/dsp/_mne.py +32 -0
- scitex/dsp/_modulation_index.py +79 -0
- scitex/dsp/_pac.py +319 -0
- scitex/dsp/_psd.py +102 -0
- scitex/dsp/_resample.py +65 -0
- scitex/dsp/_time.py +36 -0
- scitex/dsp/_transform.py +68 -0
- scitex/dsp/_wavelet.py +212 -0
- scitex/dsp/add_noise.py +111 -0
- scitex/dsp/example.py +253 -0
- scitex/dsp/filt.py +155 -0
- scitex/dsp/norm.py +18 -0
- scitex/dsp/params.py +51 -0
- scitex/dsp/reference.py +43 -0
- scitex/dsp/template.py +25 -0
- scitex/dsp/utils/__init__.py +15 -0
- scitex/dsp/utils/_differential_bandpass_filters.py +120 -0
- scitex/dsp/utils/_ensure_3d.py +18 -0
- scitex/dsp/utils/_ensure_even_len.py +10 -0
- scitex/dsp/utils/_zero_pad.py +48 -0
- scitex/dsp/utils/filter.py +408 -0
- scitex/dsp/utils/pac.py +177 -0
- scitex/dt/__init__.py +8 -0
- scitex/dt/_linspace.py +130 -0
- scitex/etc/__init__.py +15 -0
- scitex/etc/wait_key.py +34 -0
- scitex/gen/_DimHandler.py +196 -0
- scitex/gen/_TimeStamper.py +244 -0
- scitex/gen/__init__.py +95 -0
- scitex/gen/_alternate_kwarg.py +13 -0
- scitex/gen/_cache.py +11 -0
- scitex/gen/_check_host.py +34 -0
- scitex/gen/_ci.py +12 -0
- scitex/gen/_close.py +222 -0
- scitex/gen/_embed.py +78 -0
- scitex/gen/_inspect_module.py +257 -0
- scitex/gen/_is_ipython.py +12 -0
- scitex/gen/_less.py +48 -0
- scitex/gen/_list_packages.py +139 -0
- scitex/gen/_mat2py.py +88 -0
- scitex/gen/_norm.py +170 -0
- scitex/gen/_paste.py +18 -0
- scitex/gen/_print_config.py +84 -0
- scitex/gen/_shell.py +48 -0
- scitex/gen/_src.py +111 -0
- scitex/gen/_start.py +451 -0
- scitex/gen/_symlink.py +55 -0
- scitex/gen/_symlog.py +27 -0
- scitex/gen/_tee.py +238 -0
- scitex/gen/_title2path.py +60 -0
- scitex/gen/_title_case.py +88 -0
- scitex/gen/_to_even.py +84 -0
- scitex/gen/_to_odd.py +34 -0
- scitex/gen/_to_rank.py +39 -0
- scitex/gen/_transpose.py +37 -0
- scitex/gen/_type.py +78 -0
- scitex/gen/_var_info.py +73 -0
- scitex/gen/_wrap.py +17 -0
- scitex/gen/_xml2dict.py +76 -0
- scitex/gen/misc.py +730 -0
- scitex/gen/path.py +0 -0
- scitex/general/__init__.py +5 -0
- scitex/gists/_SigMacro_processFigure_S.py +128 -0
- scitex/gists/_SigMacro_toBlue.py +172 -0
- scitex/gists/__init__.py +12 -0
- scitex/io/_H5Explorer.py +292 -0
- scitex/io/__init__.py +82 -0
- scitex/io/_cache.py +101 -0
- scitex/io/_flush.py +24 -0
- scitex/io/_glob.py +103 -0
- scitex/io/_json2md.py +113 -0
- scitex/io/_load.py +168 -0
- scitex/io/_load_configs.py +146 -0
- scitex/io/_load_modules/__init__.py +38 -0
- scitex/io/_load_modules/_catboost.py +66 -0
- scitex/io/_load_modules/_con.py +20 -0
- scitex/io/_load_modules/_db.py +24 -0
- scitex/io/_load_modules/_docx.py +42 -0
- scitex/io/_load_modules/_eeg.py +110 -0
- scitex/io/_load_modules/_hdf5.py +196 -0
- scitex/io/_load_modules/_image.py +19 -0
- scitex/io/_load_modules/_joblib.py +19 -0
- scitex/io/_load_modules/_json.py +18 -0
- scitex/io/_load_modules/_markdown.py +103 -0
- scitex/io/_load_modules/_matlab.py +37 -0
- scitex/io/_load_modules/_numpy.py +39 -0
- scitex/io/_load_modules/_optuna.py +155 -0
- scitex/io/_load_modules/_pandas.py +69 -0
- scitex/io/_load_modules/_pdf.py +31 -0
- scitex/io/_load_modules/_pickle.py +24 -0
- scitex/io/_load_modules/_torch.py +16 -0
- scitex/io/_load_modules/_txt.py +126 -0
- scitex/io/_load_modules/_xml.py +49 -0
- scitex/io/_load_modules/_yaml.py +23 -0
- scitex/io/_mv_to_tmp.py +19 -0
- scitex/io/_path.py +286 -0
- scitex/io/_reload.py +78 -0
- scitex/io/_save.py +539 -0
- scitex/io/_save_modules/__init__.py +66 -0
- scitex/io/_save_modules/_catboost.py +22 -0
- scitex/io/_save_modules/_csv.py +89 -0
- scitex/io/_save_modules/_excel.py +49 -0
- scitex/io/_save_modules/_hdf5.py +249 -0
- scitex/io/_save_modules/_html.py +48 -0
- scitex/io/_save_modules/_image.py +140 -0
- scitex/io/_save_modules/_joblib.py +25 -0
- scitex/io/_save_modules/_json.py +25 -0
- scitex/io/_save_modules/_listed_dfs_as_csv.py +57 -0
- scitex/io/_save_modules/_listed_scalars_as_csv.py +42 -0
- scitex/io/_save_modules/_matlab.py +24 -0
- scitex/io/_save_modules/_mp4.py +29 -0
- scitex/io/_save_modules/_numpy.py +57 -0
- scitex/io/_save_modules/_optuna_study_as_csv_and_pngs.py +38 -0
- scitex/io/_save_modules/_pickle.py +45 -0
- scitex/io/_save_modules/_plotly.py +27 -0
- scitex/io/_save_modules/_text.py +23 -0
- scitex/io/_save_modules/_torch.py +26 -0
- scitex/io/_save_modules/_yaml.py +29 -0
- scitex/life/__init__.py +10 -0
- scitex/life/_monitor_rain.py +49 -0
- scitex/linalg/__init__.py +17 -0
- scitex/linalg/_distance.py +63 -0
- scitex/linalg/_geometric_median.py +64 -0
- scitex/linalg/_misc.py +73 -0
- scitex/nn/_AxiswiseDropout.py +27 -0
- scitex/nn/_BNet.py +126 -0
- scitex/nn/_BNet_Res.py +164 -0
- scitex/nn/_ChannelGainChanger.py +44 -0
- scitex/nn/_DropoutChannels.py +50 -0
- scitex/nn/_Filters.py +489 -0
- scitex/nn/_FreqGainChanger.py +110 -0
- scitex/nn/_GaussianFilter.py +48 -0
- scitex/nn/_Hilbert.py +111 -0
- scitex/nn/_MNet_1000.py +157 -0
- scitex/nn/_ModulationIndex.py +221 -0
- scitex/nn/_PAC.py +414 -0
- scitex/nn/_PSD.py +40 -0
- scitex/nn/_ResNet1D.py +120 -0
- scitex/nn/_SpatialAttention.py +25 -0
- scitex/nn/_Spectrogram.py +161 -0
- scitex/nn/_SwapChannels.py +50 -0
- scitex/nn/_TransposeLayer.py +19 -0
- scitex/nn/_Wavelet.py +183 -0
- scitex/nn/__init__.py +63 -0
- scitex/os/__init__.py +8 -0
- scitex/os/_mv.py +50 -0
- scitex/parallel/__init__.py +8 -0
- scitex/parallel/_run.py +151 -0
- scitex/path/__init__.py +33 -0
- scitex/path/_clean.py +52 -0
- scitex/path/_find.py +108 -0
- scitex/path/_get_module_path.py +51 -0
- scitex/path/_get_spath.py +35 -0
- scitex/path/_getsize.py +18 -0
- scitex/path/_increment_version.py +87 -0
- scitex/path/_mk_spath.py +51 -0
- scitex/path/_path.py +19 -0
- scitex/path/_split.py +23 -0
- scitex/path/_this_path.py +19 -0
- scitex/path/_version.py +101 -0
- scitex/pd/__init__.py +41 -0
- scitex/pd/_find_indi.py +126 -0
- scitex/pd/_find_pval.py +113 -0
- scitex/pd/_force_df.py +154 -0
- scitex/pd/_from_xyz.py +71 -0
- scitex/pd/_ignore_SettingWithCopyWarning.py +34 -0
- scitex/pd/_melt_cols.py +81 -0
- scitex/pd/_merge_columns.py +221 -0
- scitex/pd/_mv.py +63 -0
- scitex/pd/_replace.py +62 -0
- scitex/pd/_round.py +93 -0
- scitex/pd/_slice.py +63 -0
- scitex/pd/_sort.py +91 -0
- scitex/pd/_to_numeric.py +53 -0
- scitex/pd/_to_xy.py +59 -0
- scitex/pd/_to_xyz.py +110 -0
- scitex/plt/__init__.py +36 -0
- scitex/plt/_subplots/_AxesWrapper.py +182 -0
- scitex/plt/_subplots/_AxisWrapper.py +249 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_AdjustmentMixin.py +414 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_MatplotlibPlotMixin.py +896 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_SeabornMixin.py +368 -0
- scitex/plt/_subplots/_AxisWrapperMixins/_TrackingMixin.py +185 -0
- scitex/plt/_subplots/_AxisWrapperMixins/__init__.py +16 -0
- scitex/plt/_subplots/_FigWrapper.py +226 -0
- scitex/plt/_subplots/_SubplotsWrapper.py +171 -0
- scitex/plt/_subplots/__init__.py +111 -0
- scitex/plt/_subplots/_export_as_csv.py +232 -0
- scitex/plt/_subplots/_export_as_csv_formatters/__init__.py +61 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_bar.py +90 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_barh.py +49 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_boxplot.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_contour.py +39 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_errorbar.py +125 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_eventplot.py +72 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill.py +34 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_fill_between.py +36 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_hist.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_imshow2d.py +32 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot.py +79 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_box.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_conf_mat.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_ecdf.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_fillv.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_heatmap.py +66 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_image.py +95 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_joyplot.py +67 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_kde.py +52 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_line.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_ci.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_mean_std.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_median_iqr.py +46 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_raster.py +44 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_rectangle.py +103 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_scatter_hist.py +82 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_shaded_line.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_plot_violin.py +117 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_scatter.py +30 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_barplot.py +51 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_boxplot.py +93 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_heatmap.py +94 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_histplot.py +92 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_jointplot.py +65 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_kdeplot.py +59 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_lineplot.py +58 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_pairplot.py +45 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_scatterplot.py +70 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_stripplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_swarmplot.py +75 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_sns_violinplot.py +155 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violin.py +64 -0
- scitex/plt/_subplots/_export_as_csv_formatters/_format_violinplot.py +77 -0
- scitex/plt/_subplots/_export_as_csv_formatters/test_formatters.py +210 -0
- scitex/plt/_subplots/_export_as_csv_formatters/verify_formatters.py +342 -0
- scitex/plt/_subplots/_export_as_csv_formatters.py +115 -0
- scitex/plt/_tpl.py +28 -0
- scitex/plt/ax/__init__.py +114 -0
- scitex/plt/ax/_plot/__init__.py +53 -0
- scitex/plt/ax/_plot/_plot_circular_hist.py +124 -0
- scitex/plt/ax/_plot/_plot_conf_mat.py +136 -0
- scitex/plt/ax/_plot/_plot_cube.py +57 -0
- scitex/plt/ax/_plot/_plot_ecdf.py +84 -0
- scitex/plt/ax/_plot/_plot_fillv.py +55 -0
- scitex/plt/ax/_plot/_plot_heatmap.py +266 -0
- scitex/plt/ax/_plot/_plot_image.py +94 -0
- scitex/plt/ax/_plot/_plot_joyplot.py +76 -0
- scitex/plt/ax/_plot/_plot_raster.py +172 -0
- scitex/plt/ax/_plot/_plot_rectangle.py +69 -0
- scitex/plt/ax/_plot/_plot_scatter_hist.py +133 -0
- scitex/plt/ax/_plot/_plot_shaded_line.py +142 -0
- scitex/plt/ax/_plot/_plot_statistical_shaded_line.py +221 -0
- scitex/plt/ax/_plot/_plot_violin.py +343 -0
- scitex/plt/ax/_style/__init__.py +38 -0
- scitex/plt/ax/_style/_add_marginal_ax.py +44 -0
- scitex/plt/ax/_style/_add_panel.py +92 -0
- scitex/plt/ax/_style/_extend.py +64 -0
- scitex/plt/ax/_style/_force_aspect.py +37 -0
- scitex/plt/ax/_style/_format_label.py +23 -0
- scitex/plt/ax/_style/_hide_spines.py +84 -0
- scitex/plt/ax/_style/_map_ticks.py +182 -0
- scitex/plt/ax/_style/_rotate_labels.py +215 -0
- scitex/plt/ax/_style/_sci_note.py +279 -0
- scitex/plt/ax/_style/_set_log_scale.py +299 -0
- scitex/plt/ax/_style/_set_meta.py +261 -0
- scitex/plt/ax/_style/_set_n_ticks.py +37 -0
- scitex/plt/ax/_style/_set_size.py +16 -0
- scitex/plt/ax/_style/_set_supxyt.py +116 -0
- scitex/plt/ax/_style/_set_ticks.py +276 -0
- scitex/plt/ax/_style/_set_xyt.py +121 -0
- scitex/plt/ax/_style/_share_axes.py +264 -0
- scitex/plt/ax/_style/_shift.py +139 -0
- scitex/plt/ax/_style/_show_spines.py +333 -0
- scitex/plt/color/_PARAMS.py +70 -0
- scitex/plt/color/__init__.py +52 -0
- scitex/plt/color/_add_hue_col.py +41 -0
- scitex/plt/color/_colors.py +205 -0
- scitex/plt/color/_get_colors_from_cmap.py +134 -0
- scitex/plt/color/_interpolate.py +29 -0
- scitex/plt/color/_vizualize_colors.py +54 -0
- scitex/plt/utils/__init__.py +44 -0
- scitex/plt/utils/_calc_bacc_from_conf_mat.py +46 -0
- scitex/plt/utils/_calc_nice_ticks.py +101 -0
- scitex/plt/utils/_close.py +68 -0
- scitex/plt/utils/_colorbar.py +96 -0
- scitex/plt/utils/_configure_mpl.py +295 -0
- scitex/plt/utils/_histogram_utils.py +132 -0
- scitex/plt/utils/_im2grid.py +70 -0
- scitex/plt/utils/_is_valid_axis.py +78 -0
- scitex/plt/utils/_mk_colorbar.py +65 -0
- scitex/plt/utils/_mk_patches.py +26 -0
- scitex/plt/utils/_scientific_captions.py +638 -0
- scitex/plt/utils/_scitex_config.py +223 -0
- scitex/reproduce/__init__.py +14 -0
- scitex/reproduce/_fix_seeds.py +45 -0
- scitex/reproduce/_gen_ID.py +55 -0
- scitex/reproduce/_gen_timestamp.py +35 -0
- scitex/res/__init__.py +5 -0
- scitex/resource/__init__.py +13 -0
- scitex/resource/_get_processor_usages.py +281 -0
- scitex/resource/_get_specs.py +280 -0
- scitex/resource/_log_processor_usages.py +190 -0
- scitex/resource/_utils/__init__.py +31 -0
- scitex/resource/_utils/_get_env_info.py +481 -0
- scitex/resource/limit_ram.py +33 -0
- scitex/scholar/__init__.py +24 -0
- scitex/scholar/_local_search.py +454 -0
- scitex/scholar/_paper.py +244 -0
- scitex/scholar/_pdf_downloader.py +325 -0
- scitex/scholar/_search.py +393 -0
- scitex/scholar/_vector_search.py +370 -0
- scitex/scholar/_web_sources.py +457 -0
- scitex/stats/__init__.py +31 -0
- scitex/stats/_calc_partial_corr.py +17 -0
- scitex/stats/_corr_test_multi.py +94 -0
- scitex/stats/_corr_test_wrapper.py +115 -0
- scitex/stats/_describe_wrapper.py +90 -0
- scitex/stats/_multiple_corrections.py +63 -0
- scitex/stats/_nan_stats.py +93 -0
- scitex/stats/_p2stars.py +116 -0
- scitex/stats/_p2stars_wrapper.py +56 -0
- scitex/stats/_statistical_tests.py +73 -0
- scitex/stats/desc/__init__.py +40 -0
- scitex/stats/desc/_describe.py +189 -0
- scitex/stats/desc/_nan.py +289 -0
- scitex/stats/desc/_real.py +94 -0
- scitex/stats/multiple/__init__.py +14 -0
- scitex/stats/multiple/_bonferroni_correction.py +72 -0
- scitex/stats/multiple/_fdr_correction.py +400 -0
- scitex/stats/multiple/_multicompair.py +28 -0
- scitex/stats/tests/__corr_test.py +277 -0
- scitex/stats/tests/__corr_test_multi.py +343 -0
- scitex/stats/tests/__corr_test_single.py +277 -0
- scitex/stats/tests/__init__.py +22 -0
- scitex/stats/tests/_brunner_munzel_test.py +192 -0
- scitex/stats/tests/_nocorrelation_test.py +28 -0
- scitex/stats/tests/_smirnov_grubbs.py +98 -0
- scitex/str/__init__.py +113 -0
- scitex/str/_clean_path.py +75 -0
- scitex/str/_color_text.py +52 -0
- scitex/str/_decapitalize.py +58 -0
- scitex/str/_factor_out_digits.py +281 -0
- scitex/str/_format_plot_text.py +498 -0
- scitex/str/_grep.py +48 -0
- scitex/str/_latex.py +155 -0
- scitex/str/_latex_fallback.py +471 -0
- scitex/str/_mask_api.py +39 -0
- scitex/str/_mask_api_key.py +8 -0
- scitex/str/_parse.py +158 -0
- scitex/str/_print_block.py +47 -0
- scitex/str/_print_debug.py +68 -0
- scitex/str/_printc.py +62 -0
- scitex/str/_readable_bytes.py +38 -0
- scitex/str/_remove_ansi.py +23 -0
- scitex/str/_replace.py +134 -0
- scitex/str/_search.py +125 -0
- scitex/str/_squeeze_space.py +36 -0
- scitex/tex/__init__.py +10 -0
- scitex/tex/_preview.py +103 -0
- scitex/tex/_to_vec.py +116 -0
- scitex/torch/__init__.py +18 -0
- scitex/torch/_apply_to.py +34 -0
- scitex/torch/_nan_funcs.py +77 -0
- scitex/types/_ArrayLike.py +44 -0
- scitex/types/_ColorLike.py +21 -0
- scitex/types/__init__.py +14 -0
- scitex/types/_is_listed_X.py +70 -0
- scitex/utils/__init__.py +22 -0
- scitex/utils/_compress_hdf5.py +116 -0
- scitex/utils/_email.py +120 -0
- scitex/utils/_grid.py +148 -0
- scitex/utils/_notify.py +247 -0
- scitex/utils/_search.py +121 -0
- scitex/web/__init__.py +38 -0
- scitex/web/_search_pubmed.py +438 -0
- scitex/web/_summarize_url.py +158 -0
- scitex-2.0.0.dist-info/METADATA +307 -0
- scitex-2.0.0.dist-info/RECORD +572 -0
- scitex-2.0.0.dist-info/WHEEL +6 -0
- scitex-2.0.0.dist-info/licenses/LICENSE +7 -0
- scitex-2.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,189 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-12-05 09:20:53 (ywatanabe)"
|
|
4
|
+
# File: ./scitex_repo/src/scitex/stats/desc/_describe.py
|
|
5
|
+
|
|
6
|
+
THIS_FILE = "/home/ywatanabe/proj/scitex_repo/src/scitex/stats/desc/_describe.py"
|
|
7
|
+
|
|
8
|
+
"""
|
|
9
|
+
Functionality:
|
|
10
|
+
- Computes descriptive statistics on PyTorch tensors
|
|
11
|
+
Input:
|
|
12
|
+
- PyTorch tensor or numpy array
|
|
13
|
+
Output:
|
|
14
|
+
- Descriptive statistics (mean, std, quantiles, etc.)
|
|
15
|
+
Prerequisites:
|
|
16
|
+
- PyTorch, NumPy
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
from typing import List, Optional, Tuple, Union
|
|
20
|
+
|
|
21
|
+
import numpy as np
|
|
22
|
+
import torch
|
|
23
|
+
|
|
24
|
+
from ...decorators import batch_fn, torch_fn
|
|
25
|
+
from ._nan import (
|
|
26
|
+
nancount,
|
|
27
|
+
nankurtosis,
|
|
28
|
+
nanmax,
|
|
29
|
+
nanmean,
|
|
30
|
+
nanmin,
|
|
31
|
+
nanq25,
|
|
32
|
+
nanq50,
|
|
33
|
+
nanq75,
|
|
34
|
+
nanskewness,
|
|
35
|
+
nanstd,
|
|
36
|
+
nanvar,
|
|
37
|
+
)
|
|
38
|
+
from ._real import kurtosis, mean, q25, q50, q75, skewness, std
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def verify_non_leakage(
|
|
42
|
+
x: torch.Tensor,
|
|
43
|
+
dim: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
44
|
+
):
|
|
45
|
+
"""
|
|
46
|
+
Verifies that statistics computation doesn't leak information across samples.
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
x : torch.Tensor
|
|
51
|
+
Input tensor
|
|
52
|
+
dim : Optional[Union[int, Tuple[int, ...]]]
|
|
53
|
+
Dimension(s) used for computation
|
|
54
|
+
|
|
55
|
+
Returns
|
|
56
|
+
-------
|
|
57
|
+
bool
|
|
58
|
+
True if verification passes
|
|
59
|
+
|
|
60
|
+
Raises
|
|
61
|
+
------
|
|
62
|
+
AssertionError
|
|
63
|
+
If statistics leak information across samples
|
|
64
|
+
"""
|
|
65
|
+
# Full calculation
|
|
66
|
+
described, _ = describe(x, dim=(1, 2))
|
|
67
|
+
|
|
68
|
+
# Compute statistics on first sample
|
|
69
|
+
x_first = x[:1]
|
|
70
|
+
described_first, _ = describe(x_first, dim=dim)
|
|
71
|
+
|
|
72
|
+
# Verify shapes match
|
|
73
|
+
assert (
|
|
74
|
+
described_first.shape == described[:1].shape
|
|
75
|
+
), f"Shape mismatch: {described_first.shape} != {described[:1].shape}"
|
|
76
|
+
|
|
77
|
+
# Verify values match
|
|
78
|
+
torch.testing.assert_close(
|
|
79
|
+
described_first,
|
|
80
|
+
described[:1],
|
|
81
|
+
rtol=1e-5,
|
|
82
|
+
atol=1e-8,
|
|
83
|
+
msg="Statistics leak information across samples",
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
return True
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
@batch_fn
|
|
90
|
+
@torch_fn
|
|
91
|
+
def describe(
|
|
92
|
+
x: torch.Tensor,
|
|
93
|
+
axis: int = -1,
|
|
94
|
+
dim: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
95
|
+
keepdims: bool = False,
|
|
96
|
+
funcs: Union[List[str], str] = [
|
|
97
|
+
"nanmean",
|
|
98
|
+
"nanstd",
|
|
99
|
+
"nankurtosis",
|
|
100
|
+
"nanskewness",
|
|
101
|
+
"nanq25",
|
|
102
|
+
"nanq50",
|
|
103
|
+
"nanq75",
|
|
104
|
+
],
|
|
105
|
+
device: Optional[torch.device] = None,
|
|
106
|
+
batch_size: int = -1,
|
|
107
|
+
) -> Tuple[torch.Tensor, List[str]]:
|
|
108
|
+
"""
|
|
109
|
+
Computes various descriptive statistics.
|
|
110
|
+
|
|
111
|
+
Parameters
|
|
112
|
+
----------
|
|
113
|
+
x : torch.Tensor
|
|
114
|
+
Input tensor
|
|
115
|
+
axis : int, default=-1
|
|
116
|
+
Deprecated. Use dim instead
|
|
117
|
+
dim : int or tuple of ints, optional
|
|
118
|
+
Dimension(s) along which to compute statistics
|
|
119
|
+
keepdims : bool, default=True
|
|
120
|
+
Whether to keep reduced dimensions
|
|
121
|
+
funcs : list of str or "all"
|
|
122
|
+
Statistical functions to compute
|
|
123
|
+
device : torch.device, optional
|
|
124
|
+
Device to use for computation
|
|
125
|
+
|
|
126
|
+
Returns
|
|
127
|
+
-------
|
|
128
|
+
Tuple[torch.Tensor, List[str]]
|
|
129
|
+
Computed statistics and their names
|
|
130
|
+
"""
|
|
131
|
+
dim = axis if dim is None else dim
|
|
132
|
+
dim = (dim,) if isinstance(dim, int) else tuple(dim)
|
|
133
|
+
|
|
134
|
+
func_names = funcs
|
|
135
|
+
func_candidates = {
|
|
136
|
+
"mean": mean,
|
|
137
|
+
"std": std,
|
|
138
|
+
"kurtosis": kurtosis,
|
|
139
|
+
"skewness": skewness,
|
|
140
|
+
"q25": q25,
|
|
141
|
+
"q50": q50,
|
|
142
|
+
"q75": q75,
|
|
143
|
+
"nanmean": nanmean,
|
|
144
|
+
"nanstd": nanstd,
|
|
145
|
+
"nanvar": nanvar,
|
|
146
|
+
"nankurtosis": nankurtosis,
|
|
147
|
+
"nanskewness": nanskewness,
|
|
148
|
+
"nanq25": nanq25,
|
|
149
|
+
"nanq50": nanq50,
|
|
150
|
+
"nanq75": nanq75,
|
|
151
|
+
"nanmax": nanmax,
|
|
152
|
+
"nanmin": nanmin,
|
|
153
|
+
"nancount": nancount,
|
|
154
|
+
# "nanprod": nanprod,
|
|
155
|
+
# "nanargmin": nanargmin,
|
|
156
|
+
# "nanargmax": nanargmax,
|
|
157
|
+
}
|
|
158
|
+
|
|
159
|
+
if funcs == "all":
|
|
160
|
+
_funcs = list(func_candidates.values())
|
|
161
|
+
func_names = list(func_candidates.keys())
|
|
162
|
+
else:
|
|
163
|
+
_funcs = [func_candidates[ff] for ff in func_names]
|
|
164
|
+
|
|
165
|
+
calculated = [ff(x, dim=dim, keepdims=keepdims) for ff in _funcs]
|
|
166
|
+
return torch.stack(calculated, dim=-1), func_names
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
if __name__ == "__main__":
|
|
170
|
+
from scitex.stats.desc._describe import describe, verify_non_leakage
|
|
171
|
+
|
|
172
|
+
# x = np.random.rand(4, 3, 2)
|
|
173
|
+
# x = np.random.rand(390, 250, 16, 100, 100)
|
|
174
|
+
# print(scitex.stats.desc.nankurtosis(x, dim=(1,2)).shape)
|
|
175
|
+
|
|
176
|
+
x = np.random.rand(10, 250, 16, 100, 100)
|
|
177
|
+
|
|
178
|
+
described, _ = describe(x[:10], dim=(-2, -1), batch_size=1)
|
|
179
|
+
# verify_non_leakage(x, dim=(1, 2))
|
|
180
|
+
# # print(describe(x, dim=(1, 2), keepdims=False)[0].shape)
|
|
181
|
+
# # print(describe(x, funcs="all", dim=(1, 2), keepdims=False)[0].shape)
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
"""
|
|
185
|
+
python ./scitex_repo/src/scitex/stats/desc/_describe.py
|
|
186
|
+
python -m src.scitex.stats.desc._describe
|
|
187
|
+
"""
|
|
188
|
+
|
|
189
|
+
# EOF
|
|
@@ -0,0 +1,289 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-11-25 20:51:05 (ywatanabe)"
|
|
4
|
+
# File: ./scitex_repo/src/scitex/stats/desc/_nan.py
|
|
5
|
+
|
|
6
|
+
THIS_FILE = "/home/ywatanabe/proj/scitex_repo/src/scitex/stats/desc/_nan.py"
|
|
7
|
+
|
|
8
|
+
from scitex.decorators import torch_fn, batch_fn
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@torch_fn
|
|
13
|
+
@batch_fn
|
|
14
|
+
def nanmax(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
15
|
+
min_value = torch.finfo(x.dtype).min
|
|
16
|
+
dim = axis if dim is None else dim
|
|
17
|
+
if isinstance(dim, (tuple, list)):
|
|
18
|
+
for d in sorted(dim, reverse=True):
|
|
19
|
+
x = x.nan_to_num(min_value).max(dim=d, keepdims=keepdims)[0]
|
|
20
|
+
else:
|
|
21
|
+
x = x.nan_to_num(min_value).max(dim=dim, keepdims=keepdims)[0]
|
|
22
|
+
return x
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@torch_fn
|
|
26
|
+
@batch_fn
|
|
27
|
+
def nanmin(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
28
|
+
max_value = torch.finfo(x.dtype).max
|
|
29
|
+
dim = axis if dim is None else dim
|
|
30
|
+
if isinstance(dim, (tuple, list)):
|
|
31
|
+
for d in sorted(dim, reverse=True):
|
|
32
|
+
x = x.nan_to_num(max_value).min(dim=d, keepdims=keepdims)[0]
|
|
33
|
+
else:
|
|
34
|
+
x = x.nan_to_num(max_value).min(dim=dim, keepdims=keepdims)[0]
|
|
35
|
+
return x
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
@torch_fn
|
|
39
|
+
@batch_fn
|
|
40
|
+
def nansum(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
41
|
+
return torch.nansum(x, dim=dim, keepdims=keepdims)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
@torch_fn
|
|
45
|
+
@batch_fn
|
|
46
|
+
def nanmean(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
47
|
+
return torch.nanmean(x, dim=dim, keepdims=keepdims)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
@torch_fn
|
|
51
|
+
@batch_fn
|
|
52
|
+
def nanvar(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
53
|
+
tensor_mean = nanmean(x, dim=dim, keepdims=True)
|
|
54
|
+
return (x - tensor_mean).square().nanmean(dim=dim, keepdims=keepdims)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@torch_fn
|
|
58
|
+
@batch_fn
|
|
59
|
+
def nanstd(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
60
|
+
return torch.sqrt(nanvar(x, dim=dim, keepdims=keepdims))
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
# @torch_fn
|
|
64
|
+
# def nanzscore(x, axis=-1, dim=None, batch_size=None, keepdims=True):
|
|
65
|
+
# _mean = nanmean(x, dim=dim, keepdims=True)
|
|
66
|
+
# _std = nanstd(x, dim=dim, keepdims=True)
|
|
67
|
+
# zscores = (x - _mean) / _std
|
|
68
|
+
# return zscores if keepdims else zscores.squeeze(dim)
|
|
69
|
+
@torch_fn
|
|
70
|
+
@batch_fn
|
|
71
|
+
def nanzscore(x, axis=-1, dim=None, batch_size=None, keepdims=True):
|
|
72
|
+
dim = axis if dim is None else dim
|
|
73
|
+
if isinstance(dim, (tuple, list)):
|
|
74
|
+
_mean = nanmean(x, dim=dim, keepdims=True)
|
|
75
|
+
_std = nanstd(x, dim=dim, keepdims=True)
|
|
76
|
+
else:
|
|
77
|
+
_mean = nanmean(x, dim=dim, keepdims=True)
|
|
78
|
+
_std = nanstd(x, dim=dim, keepdims=True)
|
|
79
|
+
zscores = (x - _mean) / _std
|
|
80
|
+
return zscores if keepdims else zscores.squeeze(dim)
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
# @torch_fn
|
|
84
|
+
# def nankurtosis(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
85
|
+
# zscores = nanzscore(x, axis=axis, keepdims=True)
|
|
86
|
+
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype) # Changed this line
|
|
87
|
+
# k = torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims)
|
|
88
|
+
# correction = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))
|
|
89
|
+
# return correction * k - 3 * (n - 1)**2 / ((n - 2) * (n - 3))
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
# @torch_fn
|
|
93
|
+
# def nankurtosis(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
94
|
+
# dim = axis if dim is None else dim
|
|
95
|
+
# if isinstance(dim, (tuple, list)):
|
|
96
|
+
# zscores = nanzscore(x, dim=dim, keepdims=True)
|
|
97
|
+
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype)
|
|
98
|
+
# k = torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims)
|
|
99
|
+
# correction = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))
|
|
100
|
+
# result = correction * k - 3 * (n - 1)**2 / ((n - 2) * (n - 3))
|
|
101
|
+
# return result.squeeze() if not keepdims else result
|
|
102
|
+
# else:
|
|
103
|
+
# # Original code for single dimension
|
|
104
|
+
# zscores = nanzscore(x, dim=dim, keepdims=True)
|
|
105
|
+
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype)
|
|
106
|
+
# k = torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims)
|
|
107
|
+
# correction = (n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3))
|
|
108
|
+
# result = correction * k - 3 * (n - 1)**2 / ((n - 2) * (n - 3))
|
|
109
|
+
# return result.squeeze() if not keepdims else result
|
|
110
|
+
|
|
111
|
+
# @torch_fn
|
|
112
|
+
# def nanskewness(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
113
|
+
# zscores = nanzscore(x, axis=axis, keepdims=True)
|
|
114
|
+
# n = (~torch.isnan(x)).sum(dim=dim, keepdim=True).to(x.dtype) # Changed this line
|
|
115
|
+
# s = torch.nanmean(torch.pow(zscores, 3.0), dim=dim, keepdims=keepdims)
|
|
116
|
+
# correction = n**2 / ((n - 1) * (n - 2))
|
|
117
|
+
# return correction * s
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
@torch_fn
|
|
121
|
+
@batch_fn
|
|
122
|
+
def nankurtosis(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
123
|
+
zscores = nanzscore(x, axis=axis, keepdims=True)
|
|
124
|
+
return torch.nanmean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims) - 3.0
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
@torch_fn
|
|
128
|
+
@batch_fn
|
|
129
|
+
def nanskewness(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
130
|
+
zscores = nanzscore(x, axis=axis, keepdims=True)
|
|
131
|
+
return torch.nanmean(torch.pow(zscores, 3.0), dim=dim, keepdims=keepdims)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
@torch_fn
|
|
135
|
+
@batch_fn
|
|
136
|
+
def nanprod(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
137
|
+
dim = axis if dim is None else dim
|
|
138
|
+
if isinstance(dim, (tuple, list)):
|
|
139
|
+
for d in sorted(dim, reverse=True):
|
|
140
|
+
x = x.nan_to_num(1).prod(dim=d, keepdims=keepdims)
|
|
141
|
+
else:
|
|
142
|
+
x = x.nan_to_num(1).prod(dim=dim, keepdims=keepdims)
|
|
143
|
+
return x
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
@torch_fn
|
|
147
|
+
@batch_fn
|
|
148
|
+
def nancumprod(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
149
|
+
dim = axis if dim is None else dim
|
|
150
|
+
if isinstance(dim, (tuple, list)):
|
|
151
|
+
raise ValueError("cumprod does not support multiple dimensions")
|
|
152
|
+
return x.nan_to_num(1).cumprod(dim=dim)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
@torch_fn
|
|
156
|
+
@batch_fn
|
|
157
|
+
def nancumsum(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
158
|
+
dim = axis if dim is None else dim
|
|
159
|
+
if isinstance(dim, (tuple, list)):
|
|
160
|
+
raise ValueError("cumsum does not support multiple dimensions")
|
|
161
|
+
return x.nan_to_num(0).cumsum(dim=dim)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
@torch_fn
|
|
165
|
+
@batch_fn
|
|
166
|
+
def nanargmin(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
167
|
+
max_value = torch.finfo(x.dtype).max
|
|
168
|
+
dim = axis if dim is None else dim
|
|
169
|
+
if isinstance(dim, (tuple, list)):
|
|
170
|
+
for d in sorted(dim, reverse=True):
|
|
171
|
+
x = x.nan_to_num(max_value).argmin(dim=d, keepdims=keepdims)
|
|
172
|
+
else:
|
|
173
|
+
x = x.nan_to_num(max_value).argmin(dim=dim, keepdims=keepdims)
|
|
174
|
+
return x
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
@torch_fn
|
|
178
|
+
@batch_fn
|
|
179
|
+
def nanargmax(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
180
|
+
min_value = torch.finfo(x.dtype).min
|
|
181
|
+
dim = axis if dim is None else dim
|
|
182
|
+
if isinstance(dim, (tuple, list)):
|
|
183
|
+
for d in sorted(dim, reverse=True):
|
|
184
|
+
x = x.nan_to_num(min_value).argmax(dim=d, keepdims=keepdims)
|
|
185
|
+
else:
|
|
186
|
+
x = x.nan_to_num(min_value).argmax(dim=dim, keepdims=keepdims)
|
|
187
|
+
return x
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
@torch_fn
|
|
191
|
+
@batch_fn
|
|
192
|
+
def nanquantile(x, q, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
193
|
+
dim = axis if dim is None else dim
|
|
194
|
+
if isinstance(dim, (tuple, list)):
|
|
195
|
+
# For multiple dimensions, flatten them first
|
|
196
|
+
# Save original shape for potential keepdims
|
|
197
|
+
original_shape = x.shape
|
|
198
|
+
|
|
199
|
+
# Calculate new shape: keep dimensions not in dim, flatten those in dim
|
|
200
|
+
dim_list = list(dim) if isinstance(dim, tuple) else dim
|
|
201
|
+
# Normalize negative dimensions
|
|
202
|
+
dim_list = [d if d >= 0 else len(original_shape) + d for d in dim_list]
|
|
203
|
+
|
|
204
|
+
# Determine which dimensions to keep
|
|
205
|
+
keep_dims = [i for i in range(len(original_shape)) if i not in dim_list]
|
|
206
|
+
|
|
207
|
+
# Permute tensor to move dims to reduce to the end
|
|
208
|
+
perm_dims = keep_dims + dim_list
|
|
209
|
+
x_perm = x.permute(perm_dims)
|
|
210
|
+
|
|
211
|
+
# Reshape to flatten the dimensions to reduce
|
|
212
|
+
new_shape = [original_shape[i] for i in keep_dims] + [-1]
|
|
213
|
+
x_flat = x_perm.reshape(new_shape)
|
|
214
|
+
|
|
215
|
+
# Apply nanquantile on the flattened dimension
|
|
216
|
+
mask = ~torch.isnan(x_flat)
|
|
217
|
+
x_filtered = torch.where(mask, x_flat, torch.tensor(float("inf")))
|
|
218
|
+
result = torch.quantile(x_filtered, q / 100, dim=-1, keepdim=keepdims)
|
|
219
|
+
|
|
220
|
+
# If keepdims, reshape back with singleton dimensions
|
|
221
|
+
if keepdims:
|
|
222
|
+
final_shape = list(original_shape)
|
|
223
|
+
for d in dim_list:
|
|
224
|
+
final_shape[d] = 1
|
|
225
|
+
result = result.reshape(final_shape)
|
|
226
|
+
|
|
227
|
+
return result
|
|
228
|
+
else:
|
|
229
|
+
mask = ~torch.isnan(x)
|
|
230
|
+
x_filtered = torch.where(mask, x, torch.tensor(float("inf")))
|
|
231
|
+
x = torch.quantile(x_filtered, q / 100, dim=dim, keepdim=keepdims)
|
|
232
|
+
return x
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
def nanq25(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
236
|
+
kwargs = {"axis": axis, "dim": dim, "keepdims": keepdims}
|
|
237
|
+
if batch_size is not None:
|
|
238
|
+
kwargs["batch_size"] = batch_size
|
|
239
|
+
return nanquantile(x, 25, **kwargs)
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
def nanq50(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
243
|
+
kwargs = {"axis": axis, "dim": dim, "keepdims": keepdims}
|
|
244
|
+
if batch_size is not None:
|
|
245
|
+
kwargs["batch_size"] = batch_size
|
|
246
|
+
return nanquantile(x, 50, **kwargs)
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
def nanq75(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
250
|
+
kwargs = {"axis": axis, "dim": dim, "keepdims": keepdims}
|
|
251
|
+
if batch_size is not None:
|
|
252
|
+
kwargs["batch_size"] = batch_size
|
|
253
|
+
return nanquantile(x, 75, **kwargs)
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
@torch_fn
|
|
257
|
+
@batch_fn
|
|
258
|
+
def nancount(x, axis=-1, dim=None, batch_size=None, keepdims=False):
|
|
259
|
+
"""Count number of non-NaN values along specified dimensions.
|
|
260
|
+
|
|
261
|
+
Parameters
|
|
262
|
+
----------
|
|
263
|
+
x : torch.Tensor
|
|
264
|
+
Input tensor
|
|
265
|
+
axis : int, default=-1
|
|
266
|
+
Deprecated. Use dim instead
|
|
267
|
+
dim : int or tuple of ints, optional
|
|
268
|
+
Dimension(s) along which to count
|
|
269
|
+
keepdims : bool, default=True
|
|
270
|
+
Whether to keep reduced dimensions
|
|
271
|
+
|
|
272
|
+
Returns
|
|
273
|
+
-------
|
|
274
|
+
torch.Tensor
|
|
275
|
+
Count of non-NaN values
|
|
276
|
+
"""
|
|
277
|
+
dim = axis if dim is None else dim
|
|
278
|
+
mask = ~torch.isnan(x)
|
|
279
|
+
|
|
280
|
+
if isinstance(dim, (tuple, list)):
|
|
281
|
+
for d in sorted(dim, reverse=True):
|
|
282
|
+
mask = mask.sum(dim=d, keepdims=keepdims)
|
|
283
|
+
else:
|
|
284
|
+
mask = mask.sum(dim=dim, keepdims=keepdims)
|
|
285
|
+
|
|
286
|
+
return mask
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
# EOF
|
|
@@ -0,0 +1,94 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Time-stamp: "2024-11-17 21:17:13 (ywatanabe)"
|
|
4
|
+
# File: ./scitex_repo/src/scitex/stats/desc/_real.py
|
|
5
|
+
|
|
6
|
+
THIS_FILE = "/home/ywatanabe/proj/scitex_repo/src/scitex/stats/desc/_real.py"
|
|
7
|
+
|
|
8
|
+
"""
|
|
9
|
+
Functionality:
|
|
10
|
+
- Computes descriptive statistics on PyTorch tensors
|
|
11
|
+
Input:
|
|
12
|
+
- PyTorch tensor or numpy array
|
|
13
|
+
Output:
|
|
14
|
+
- Descriptive statistics (mean, std, quantiles, etc.)
|
|
15
|
+
Prerequisites:
|
|
16
|
+
- PyTorch, NumPy
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
21
|
+
import torch
|
|
22
|
+
|
|
23
|
+
from ...decorators import torch_fn
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@torch_fn
|
|
27
|
+
def mean(x, axis=-1, dim=None, keepdims=False):
|
|
28
|
+
return x.mean(dim, keepdims=keepdims)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@torch_fn
|
|
32
|
+
def std(x, axis=-1, dim=None, keepdims=False):
|
|
33
|
+
return x.std(dim, keepdims=keepdims)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@torch_fn
|
|
37
|
+
def var(x, axis=-1, dim=None, keepdims=False):
|
|
38
|
+
return x.var(dim, keepdims=keepdims)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
@torch_fn
|
|
42
|
+
def zscore(x, axis=-1, dim=None, keepdims=True):
|
|
43
|
+
_mean = mean(x, dim=dim, keepdims=True)
|
|
44
|
+
_std = std(x, dim=dim, keepdims=True)
|
|
45
|
+
zscores = (x - _mean) / _std
|
|
46
|
+
return zscores if keepdims else zscores.squeeze(dim)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@torch_fn
|
|
50
|
+
def skewness(x, axis=-1, dim=None, keepdims=False):
|
|
51
|
+
zscores = zscore(x, axis=axis, keepdims=True)
|
|
52
|
+
return torch.mean(torch.pow(zscores, 3.0), dim=dim, keepdims=keepdims)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@torch_fn
|
|
56
|
+
def kurtosis(x, axis=-1, dim=None, keepdims=False):
|
|
57
|
+
zscores = zscore(x, axis=axis, keepdims=True)
|
|
58
|
+
return torch.mean(torch.pow(zscores, 4.0), dim=dim, keepdims=keepdims) - 3.0
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
@torch_fn
|
|
62
|
+
def quantile(x, q, axis=-1, dim=None, keepdims=False):
|
|
63
|
+
dim = axis if dim is None else dim
|
|
64
|
+
if isinstance(dim, (tuple, list)):
|
|
65
|
+
for d in sorted(dim, reverse=True):
|
|
66
|
+
x = torch.quantile(x, q / 100, dim=d, keepdims=keepdims)
|
|
67
|
+
else:
|
|
68
|
+
x = torch.quantile(x, q / 100, dim=dim, keepdims=keepdims)
|
|
69
|
+
return x
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
@torch_fn
|
|
73
|
+
def q25(x, axis=-1, dim=None, keepdims=False):
|
|
74
|
+
return quantile(x, 25, axis=axis, dim=dim, keepdims=keepdims)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
@torch_fn
|
|
78
|
+
def q50(x, axis=-1, dim=None, keepdims=False):
|
|
79
|
+
return quantile(x, 50, axis=axis, dim=dim, keepdims=keepdims)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
@torch_fn
|
|
83
|
+
def q75(x, axis=-1, dim=None, keepdims=False):
|
|
84
|
+
return quantile(x, 75, axis=axis, dim=dim, keepdims=keepdims)
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
if __name__ == "__main__":
|
|
88
|
+
# from scitex.stats.desc import *
|
|
89
|
+
|
|
90
|
+
x = np.random.rand(4, 3, 2)
|
|
91
|
+
print(describe(x, dim=(1, 2), keepdims=False)[0].shape)
|
|
92
|
+
print(describe(x, funcs="all", dim=(1, 2), keepdims=False)[0].shape)
|
|
93
|
+
|
|
94
|
+
# EOF
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
"""Scitex multiple module."""
|
|
3
|
+
|
|
4
|
+
from ._bonferroni_correction import bonferroni_correction, bonferroni_correction_torch
|
|
5
|
+
from ._fdr_correction import ArrayLike, fdr_correction
|
|
6
|
+
from ._multicompair import multicompair
|
|
7
|
+
|
|
8
|
+
__all__ = [
|
|
9
|
+
"ArrayLike",
|
|
10
|
+
"bonferroni_correction",
|
|
11
|
+
"bonferroni_correction_torch",
|
|
12
|
+
"fdr_correction",
|
|
13
|
+
"multicompair",
|
|
14
|
+
]
|
|
@@ -0,0 +1,72 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# Time-stamp: "2021-09-25 15:39:51 (ylab)"
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
import scitex
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def bonferroni_correction(pval, alpha=0.05):
|
|
10
|
+
# https://github.com/mne-tools/mne-python/blob/main/mne/stats/multi_comp.py
|
|
11
|
+
"""P-value correction with Bonferroni method.
|
|
12
|
+
|
|
13
|
+
Parameters
|
|
14
|
+
----------
|
|
15
|
+
pval : array_like
|
|
16
|
+
Set of p-values of the individual tests.
|
|
17
|
+
alpha : float
|
|
18
|
+
Error rate.
|
|
19
|
+
|
|
20
|
+
Returns
|
|
21
|
+
-------
|
|
22
|
+
reject : array, bool
|
|
23
|
+
True if a hypothesis is rejected, False if not.
|
|
24
|
+
pval_corrected : array
|
|
25
|
+
P-values adjusted for multiple hypothesis testing to limit FDR.
|
|
26
|
+
"""
|
|
27
|
+
pval = np.asarray(pval)
|
|
28
|
+
pval_corrected = pval * float(pval.size)
|
|
29
|
+
# p-values must not be larger than 1.
|
|
30
|
+
pval_corrected = pval_corrected.clip(max=1.0)
|
|
31
|
+
reject = pval_corrected < alpha
|
|
32
|
+
return reject, pval_corrected
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def bonferroni_correction_torch(pvals, alpha=0.05):
|
|
36
|
+
"""P-value correction with Bonferroni method.
|
|
37
|
+
|
|
38
|
+
Parameters
|
|
39
|
+
----------
|
|
40
|
+
pvals : array_like
|
|
41
|
+
Set of p-values of the individual tests.
|
|
42
|
+
alpha : float
|
|
43
|
+
Error rate.
|
|
44
|
+
|
|
45
|
+
Returns
|
|
46
|
+
-------
|
|
47
|
+
reject : array, bool
|
|
48
|
+
True if a hypothesis is rejected, False if not.
|
|
49
|
+
pvals_corrected : array
|
|
50
|
+
P-values adjusted for multiple hypothesis testing to limit FDR.
|
|
51
|
+
"""
|
|
52
|
+
pvals = torch.tensor(pvals)
|
|
53
|
+
pvals_corrected = pvals * torch.tensor(pvals.size()).float()
|
|
54
|
+
# p-values must not be larger than 1.
|
|
55
|
+
pvals_corrected = pvals_corrected.clip(max=1.0)
|
|
56
|
+
reject = pvals_corrected < alpha
|
|
57
|
+
return reject, pvals_corrected
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
if __name__ == "__main__":
|
|
61
|
+
pvals_npy = np.array([0.02, 0.03, 0.05])
|
|
62
|
+
pvals_torch = torch.tensor(np.array([0.02, 0.03, 0.05]))
|
|
63
|
+
|
|
64
|
+
reject, pvals_corrected = bonferroni_correction(pvals_npy, alpha=0.05)
|
|
65
|
+
|
|
66
|
+
reject_torch, pvals_corrected_torch = bonferroni_correction_torch(
|
|
67
|
+
pvals_torch, alpha=0.05
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
arr = pvals_corrected.astype(float)
|
|
71
|
+
tor = pvals_corrected_torch.numpy().astype(float)
|
|
72
|
+
print(scitex.gen.isclose(arr, tor))
|