passagemath-symbolics 10.8.1a1__cp314-cp314t-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (181) hide show
  1. passagemath_symbolics/__init__.py +3 -0
  2. passagemath_symbolics-10.8.1a1.dist-info/METADATA +186 -0
  3. passagemath_symbolics-10.8.1a1.dist-info/RECORD +181 -0
  4. passagemath_symbolics-10.8.1a1.dist-info/WHEEL +5 -0
  5. passagemath_symbolics-10.8.1a1.dist-info/top_level.txt +3 -0
  6. sage/all__sagemath_symbolics.py +17 -0
  7. sage/calculus/all.py +14 -0
  8. sage/calculus/calculus.py +2838 -0
  9. sage/calculus/desolvers.py +1864 -0
  10. sage/calculus/predefined.py +51 -0
  11. sage/calculus/tests.py +225 -0
  12. sage/calculus/var.cpython-314t-aarch64-linux-musl.so +0 -0
  13. sage/calculus/var.pyx +401 -0
  14. sage/dynamics/all__sagemath_symbolics.py +6 -0
  15. sage/dynamics/complex_dynamics/all.py +5 -0
  16. sage/dynamics/complex_dynamics/mandel_julia.py +765 -0
  17. sage/dynamics/complex_dynamics/mandel_julia_helper.cpython-314t-aarch64-linux-musl.so +0 -0
  18. sage/dynamics/complex_dynamics/mandel_julia_helper.pyx +1034 -0
  19. sage/ext/all__sagemath_symbolics.py +1 -0
  20. sage/ext_data/kenzo/CP2.txt +45 -0
  21. sage/ext_data/kenzo/CP3.txt +349 -0
  22. sage/ext_data/kenzo/CP4.txt +4774 -0
  23. sage/ext_data/kenzo/README.txt +49 -0
  24. sage/ext_data/kenzo/S4.txt +20 -0
  25. sage/ext_data/magma/latex/latex.m +1021 -0
  26. sage/ext_data/magma/latex/latex.spec +1 -0
  27. sage/ext_data/magma/sage/basic.m +356 -0
  28. sage/ext_data/magma/sage/sage.spec +1 -0
  29. sage/ext_data/magma/spec +9 -0
  30. sage/geometry/all__sagemath_symbolics.py +8 -0
  31. sage/geometry/hyperbolic_space/all.py +5 -0
  32. sage/geometry/hyperbolic_space/hyperbolic_coercion.py +755 -0
  33. sage/geometry/hyperbolic_space/hyperbolic_constants.py +5 -0
  34. sage/geometry/hyperbolic_space/hyperbolic_geodesic.py +2419 -0
  35. sage/geometry/hyperbolic_space/hyperbolic_interface.py +206 -0
  36. sage/geometry/hyperbolic_space/hyperbolic_isometry.py +1083 -0
  37. sage/geometry/hyperbolic_space/hyperbolic_model.py +1502 -0
  38. sage/geometry/hyperbolic_space/hyperbolic_point.py +621 -0
  39. sage/geometry/riemannian_manifolds/all.py +7 -0
  40. sage/geometry/riemannian_manifolds/parametrized_surface3d.py +1632 -0
  41. sage/geometry/riemannian_manifolds/surface3d_generators.py +461 -0
  42. sage/interfaces/all__sagemath_symbolics.py +1 -0
  43. sage/interfaces/magma.py +2991 -0
  44. sage/interfaces/magma_free.py +90 -0
  45. sage/interfaces/maple.py +1402 -0
  46. sage/interfaces/mathematica.py +1345 -0
  47. sage/interfaces/mathics.py +1312 -0
  48. sage/interfaces/sympy.py +1398 -0
  49. sage/interfaces/sympy_wrapper.py +197 -0
  50. sage/interfaces/tides.py +938 -0
  51. sage/libs/all__sagemath_symbolics.py +6 -0
  52. sage/manifolds/all.py +7 -0
  53. sage/manifolds/calculus_method.py +553 -0
  54. sage/manifolds/catalog.py +437 -0
  55. sage/manifolds/chart.py +4010 -0
  56. sage/manifolds/chart_func.py +3416 -0
  57. sage/manifolds/continuous_map.py +2183 -0
  58. sage/manifolds/continuous_map_image.py +155 -0
  59. sage/manifolds/differentiable/affine_connection.py +2475 -0
  60. sage/manifolds/differentiable/all.py +1 -0
  61. sage/manifolds/differentiable/automorphismfield.py +1383 -0
  62. sage/manifolds/differentiable/automorphismfield_group.py +604 -0
  63. sage/manifolds/differentiable/bundle_connection.py +1445 -0
  64. sage/manifolds/differentiable/characteristic_cohomology_class.py +1840 -0
  65. sage/manifolds/differentiable/chart.py +1241 -0
  66. sage/manifolds/differentiable/curve.py +1028 -0
  67. sage/manifolds/differentiable/de_rham_cohomology.py +541 -0
  68. sage/manifolds/differentiable/degenerate.py +559 -0
  69. sage/manifolds/differentiable/degenerate_submanifold.py +1668 -0
  70. sage/manifolds/differentiable/diff_form.py +1660 -0
  71. sage/manifolds/differentiable/diff_form_module.py +1062 -0
  72. sage/manifolds/differentiable/diff_map.py +1315 -0
  73. sage/manifolds/differentiable/differentiable_submanifold.py +291 -0
  74. sage/manifolds/differentiable/examples/all.py +1 -0
  75. sage/manifolds/differentiable/examples/euclidean.py +2517 -0
  76. sage/manifolds/differentiable/examples/real_line.py +897 -0
  77. sage/manifolds/differentiable/examples/sphere.py +1186 -0
  78. sage/manifolds/differentiable/examples/symplectic_space.py +187 -0
  79. sage/manifolds/differentiable/examples/symplectic_space_test.py +40 -0
  80. sage/manifolds/differentiable/integrated_curve.py +4035 -0
  81. sage/manifolds/differentiable/levi_civita_connection.py +841 -0
  82. sage/manifolds/differentiable/manifold.py +4254 -0
  83. sage/manifolds/differentiable/manifold_homset.py +1826 -0
  84. sage/manifolds/differentiable/metric.py +3032 -0
  85. sage/manifolds/differentiable/mixed_form.py +1507 -0
  86. sage/manifolds/differentiable/mixed_form_algebra.py +559 -0
  87. sage/manifolds/differentiable/multivector_module.py +800 -0
  88. sage/manifolds/differentiable/multivectorfield.py +1522 -0
  89. sage/manifolds/differentiable/poisson_tensor.py +268 -0
  90. sage/manifolds/differentiable/pseudo_riemannian.py +755 -0
  91. sage/manifolds/differentiable/pseudo_riemannian_submanifold.py +1839 -0
  92. sage/manifolds/differentiable/scalarfield.py +1343 -0
  93. sage/manifolds/differentiable/scalarfield_algebra.py +472 -0
  94. sage/manifolds/differentiable/symplectic_form.py +912 -0
  95. sage/manifolds/differentiable/symplectic_form_test.py +220 -0
  96. sage/manifolds/differentiable/tangent_space.py +412 -0
  97. sage/manifolds/differentiable/tangent_vector.py +616 -0
  98. sage/manifolds/differentiable/tensorfield.py +4665 -0
  99. sage/manifolds/differentiable/tensorfield_module.py +963 -0
  100. sage/manifolds/differentiable/tensorfield_paral.py +2450 -0
  101. sage/manifolds/differentiable/tensorfield_paral_test.py +16 -0
  102. sage/manifolds/differentiable/vector_bundle.py +1725 -0
  103. sage/manifolds/differentiable/vectorfield.py +1717 -0
  104. sage/manifolds/differentiable/vectorfield_module.py +2445 -0
  105. sage/manifolds/differentiable/vectorframe.py +1832 -0
  106. sage/manifolds/family.py +270 -0
  107. sage/manifolds/local_frame.py +1490 -0
  108. sage/manifolds/manifold.py +3090 -0
  109. sage/manifolds/manifold_homset.py +452 -0
  110. sage/manifolds/operators.py +359 -0
  111. sage/manifolds/point.py +994 -0
  112. sage/manifolds/scalarfield.py +3718 -0
  113. sage/manifolds/scalarfield_algebra.py +629 -0
  114. sage/manifolds/section.py +3111 -0
  115. sage/manifolds/section_module.py +831 -0
  116. sage/manifolds/structure.py +229 -0
  117. sage/manifolds/subset.py +2721 -0
  118. sage/manifolds/subsets/all.py +1 -0
  119. sage/manifolds/subsets/closure.py +131 -0
  120. sage/manifolds/subsets/pullback.py +883 -0
  121. sage/manifolds/topological_submanifold.py +891 -0
  122. sage/manifolds/trivialization.py +733 -0
  123. sage/manifolds/utilities.py +1348 -0
  124. sage/manifolds/vector_bundle.py +1347 -0
  125. sage/manifolds/vector_bundle_fiber.py +332 -0
  126. sage/manifolds/vector_bundle_fiber_element.py +111 -0
  127. sage/matrix/all__sagemath_symbolics.py +1 -0
  128. sage/matrix/matrix_symbolic_dense.cpython-314t-aarch64-linux-musl.so +0 -0
  129. sage/matrix/matrix_symbolic_dense.pxd +6 -0
  130. sage/matrix/matrix_symbolic_dense.pyx +1030 -0
  131. sage/matrix/matrix_symbolic_sparse.cpython-314t-aarch64-linux-musl.so +0 -0
  132. sage/matrix/matrix_symbolic_sparse.pxd +6 -0
  133. sage/matrix/matrix_symbolic_sparse.pyx +1038 -0
  134. sage/modules/all__sagemath_symbolics.py +1 -0
  135. sage/modules/vector_callable_symbolic_dense.py +105 -0
  136. sage/modules/vector_symbolic_dense.py +116 -0
  137. sage/modules/vector_symbolic_sparse.py +118 -0
  138. sage/rings/all__sagemath_symbolics.py +4 -0
  139. sage/rings/asymptotic/all.py +6 -0
  140. sage/rings/asymptotic/asymptotic_expansion_generators.py +1485 -0
  141. sage/rings/asymptotic/asymptotic_ring.py +4858 -0
  142. sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py +4106 -0
  143. sage/rings/asymptotic/growth_group.py +5373 -0
  144. sage/rings/asymptotic/growth_group_cartesian.py +1400 -0
  145. sage/rings/asymptotic/term_monoid.py +5205 -0
  146. sage/rings/function_field/all__sagemath_symbolics.py +2 -0
  147. sage/rings/polynomial/all__sagemath_symbolics.py +1 -0
  148. sage/symbolic/all.py +15 -0
  149. sage/symbolic/assumptions.py +987 -0
  150. sage/symbolic/benchmark.py +93 -0
  151. sage/symbolic/callable.py +456 -0
  152. sage/symbolic/callable.pyi +66 -0
  153. sage/symbolic/comparison_impl.pyi +38 -0
  154. sage/symbolic/complexity_measures.py +35 -0
  155. sage/symbolic/constants.py +1286 -0
  156. sage/symbolic/constants_c_impl.pyi +10 -0
  157. sage/symbolic/expression_conversion_algebraic.py +310 -0
  158. sage/symbolic/expression_conversion_sympy.py +317 -0
  159. sage/symbolic/expression_conversions.py +1727 -0
  160. sage/symbolic/function_factory.py +355 -0
  161. sage/symbolic/function_factory.pyi +41 -0
  162. sage/symbolic/getitem_impl.pyi +24 -0
  163. sage/symbolic/integration/all.py +1 -0
  164. sage/symbolic/integration/external.py +271 -0
  165. sage/symbolic/integration/integral.py +1075 -0
  166. sage/symbolic/maxima_wrapper.py +162 -0
  167. sage/symbolic/operators.py +267 -0
  168. sage/symbolic/operators.pyi +61 -0
  169. sage/symbolic/pynac_constant_impl.pyi +13 -0
  170. sage/symbolic/pynac_function_impl.pyi +8 -0
  171. sage/symbolic/random_tests.py +461 -0
  172. sage/symbolic/relation.py +2062 -0
  173. sage/symbolic/ring.cpython-314t-aarch64-linux-musl.so +0 -0
  174. sage/symbolic/ring.pxd +5 -0
  175. sage/symbolic/ring.pyi +110 -0
  176. sage/symbolic/ring.pyx +1393 -0
  177. sage/symbolic/series_impl.pyi +10 -0
  178. sage/symbolic/subring.py +1025 -0
  179. sage/symbolic/symengine.py +19 -0
  180. sage/symbolic/tests.py +40 -0
  181. sage/symbolic/units.py +1468 -0
@@ -0,0 +1,2183 @@
1
+ # sage_setup: distribution = sagemath-symbolics
2
+ r"""
3
+ Continuous Maps Between Topological Manifolds
4
+
5
+ :class:`ContinuousMap` implements continuous maps from a topological
6
+ manifold `M` to some topological manifold `N` over the same topological
7
+ field `K` as `M`.
8
+
9
+ AUTHORS:
10
+
11
+ - Eric Gourgoulhon, Michal Bejger (2013-2015): initial version
12
+ - Travis Scrimshaw (2016): review tweaks
13
+
14
+ REFERENCES:
15
+
16
+ - Chap. 1 of [KN1963]_
17
+ - [Lee2011]_
18
+ """
19
+
20
+ # ****************************************************************************
21
+ # Copyright (C) 2015-2019 Eric Gourgoulhon <eric.gourgoulhon@obspm.fr>
22
+ # Copyright (C) 2015 Michal Bejger <bejger@camk.edu.pl>
23
+ # Copyright (C) 2016 Travis Scrimshaw <tscrimsh@umn.edu>
24
+ # Copyright (C) 2018 Florentin Jaffredo <florentin.jaffredo@polytechnique.edu>
25
+ # Copyright (C) 2020 Michael Jung <micjung@uni-potsdam.de>
26
+ # Copyright (C) 2021 Matthias Koeppe <mkoeppe@math.ucdavis.edu>
27
+ #
28
+ # This program is free software: you can redistribute it and/or modify
29
+ # it under the terms of the GNU General Public License as published by
30
+ # the Free Software Foundation, either version 2 of the License, or
31
+ # (at your option) any later version.
32
+ # https://www.gnu.org/licenses/
33
+ # ****************************************************************************
34
+
35
+ from sage.categories.homset import Hom
36
+ from sage.categories.morphism import Morphism
37
+
38
+
39
+ class ContinuousMap(Morphism):
40
+ r"""
41
+ Continuous map between two topological manifolds.
42
+
43
+ This class implements continuous maps of the type
44
+
45
+ .. MATH::
46
+
47
+ \Phi: M \longrightarrow N,
48
+
49
+ where `M` and `N` are topological manifolds over the same
50
+ topological field `K`.
51
+
52
+ Continuous maps are the morphisms of the category of topological
53
+ manifolds. The set of all continuous maps from `M` to `N` is
54
+ therefore the homset between `M` and `N`, which is denoted
55
+ by `\mathrm{Hom}(M,N)`.
56
+
57
+ The class :class:`ContinuousMap` is a Sage *element* class,
58
+ whose *parent* class is
59
+ :class:`~sage.manifolds.manifold_homset.TopologicalManifoldHomset`.
60
+
61
+ INPUT:
62
+
63
+ - ``parent`` -- homset `\mathrm{Hom}(M,N)` to which the continuous
64
+ map belongs
65
+ - ``coord_functions`` -- dictionary of the coordinate expressions
66
+ (as lists or tuples of the coordinates of the image expressed in
67
+ terms of the coordinates of the considered point) with the pairs
68
+ of charts ``(chart1, chart2)`` as keys (``chart1`` being a chart
69
+ on `M` and ``chart2`` a chart on `N`)
70
+ - ``name`` -- (default: ``None``) name given to ``self``
71
+ - ``latex_name`` -- (default: ``None``) LaTeX symbol to denote the
72
+ continuous map; if ``None``, the LaTeX symbol is set to
73
+ ``name``
74
+ - ``is_isomorphism`` -- boolean (default: ``False``); determines whether the
75
+ constructed object is a isomorphism (i.e. a homeomorphism). If set to
76
+ ``True``, then the manifolds `M` and `N` must have the same dimension.
77
+ - ``is_identity`` -- boolean (default: ``False``); determines whether the
78
+ constructed object is the identity map. If set to ``True``,
79
+ then `N` must be `M` and the entry ``coord_functions`` is not used.
80
+
81
+ .. NOTE::
82
+
83
+ If the information passed by means of the argument
84
+ ``coord_functions`` is not sufficient to fully specify the
85
+ continuous map, further coordinate expressions, in other charts,
86
+ can be subsequently added by means of the method :meth:`add_expr`.
87
+
88
+ EXAMPLES:
89
+
90
+ The standard embedding of the sphere `S^2` into `\RR^3`::
91
+
92
+ sage: M = Manifold(2, 'S^2', structure='topological') # the 2-dimensional sphere S^2
93
+ sage: U = M.open_subset('U') # complement of the North pole
94
+ sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
95
+ sage: V = M.open_subset('V') # complement of the South pole
96
+ sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
97
+ sage: M.declare_union(U,V) # S^2 is the union of U and V
98
+ sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
99
+ ....: intersection_name='W',
100
+ ....: restrictions1=x^2+y^2!=0,
101
+ ....: restrictions2=u^2+v^2!=0)
102
+ sage: uv_to_xy = xy_to_uv.inverse()
103
+ sage: N = Manifold(3, 'R^3', latex_name=r'\RR^3', structure='topological') # R^3
104
+ sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3
105
+ sage: Phi = M.continuous_map(N,
106
+ ....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)],
107
+ ....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]},
108
+ ....: name='Phi', latex_name=r'\Phi')
109
+ sage: Phi
110
+ Continuous map Phi from the 2-dimensional topological manifold S^2
111
+ to the 3-dimensional topological manifold R^3
112
+ sage: Phi.parent()
113
+ Set of Morphisms from 2-dimensional topological manifold S^2
114
+ to 3-dimensional topological manifold R^3
115
+ in Category of manifolds over Real Field with 53 bits of precision
116
+ sage: Phi.parent() is Hom(M, N)
117
+ True
118
+ sage: type(Phi)
119
+ <class 'sage.manifolds.manifold_homset.TopologicalManifoldHomset_with_category.element_class'>
120
+ sage: Phi.display()
121
+ Phi: S^2 → R^3
122
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
123
+ on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
124
+
125
+ It is possible to create the map using
126
+ :meth:`~sage.manifolds.manifold.TopologicalManifold.continuous_map`
127
+ with only in a single pair of charts. The argument ``coord_functions``
128
+ is then a mere list of coordinate expressions (and not a dictionary)
129
+ and the arguments ``chart1`` and ``chart2`` have to be provided if
130
+ the charts differ from the default ones on the domain and/or codomain::
131
+
132
+ sage: Phi1 = M.continuous_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)],
133
+ ....: chart1=c_xy, chart2=c_cart,
134
+ ....: name='Phi', latex_name=r'\Phi')
135
+
136
+ Since ``c_xy`` and ``c_cart`` are the default charts on respectively
137
+ ``M`` and ``N``, they can be omitted, so that the above declaration
138
+ is equivalent to::
139
+
140
+ sage: Phi1 = M.continuous_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)],
141
+ ....: name='Phi', latex_name=r'\Phi')
142
+
143
+ With such a declaration, the continuous map ``Phi1`` is only partially
144
+ defined on the manifold `S^2` as it is known in only one chart::
145
+
146
+ sage: Phi1.display()
147
+ Phi: S^2 → R^3
148
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
149
+
150
+ The definition can be completed by using :meth:`add_expr`::
151
+
152
+ sage: Phi1.add_expr(c_uv, c_cart, [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)])
153
+ sage: Phi1.display()
154
+ Phi: S^2 → R^3
155
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
156
+ on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
157
+
158
+ At this stage, ``Phi1`` and ``Phi`` are fully equivalent::
159
+
160
+ sage: Phi1 == Phi
161
+ True
162
+
163
+ The map acts on points::
164
+
165
+ sage: np = M.point((0,0), chart=c_uv) # the North pole
166
+ sage: Phi(np)
167
+ Point on the 3-dimensional topological manifold R^3
168
+ sage: Phi(np).coord() # Cartesian coordinates
169
+ (0, 0, 1)
170
+ sage: sp = M.point((0,0), chart=c_xy) # the South pole
171
+ sage: Phi(sp).coord() # Cartesian coordinates
172
+ (0, 0, -1)
173
+
174
+ The test suite is passed::
175
+
176
+ sage: TestSuite(Phi).run()
177
+ sage: TestSuite(Phi1).run()
178
+
179
+ Continuous maps can be composed by means of the operator ``*``.
180
+ Let us introduce the map `\RR^3 \to \RR^2` corresponding to
181
+ the projection from the point `(X, Y, Z) = (0, 0, 1)` onto the
182
+ equatorial plane `Z = 0`::
183
+
184
+ sage: P = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # R^2 (equatorial plane)
185
+ sage: cP.<xP, yP> = P.chart()
186
+ sage: Psi = N.continuous_map(P, (X/(1-Z), Y/(1-Z)), name='Psi',
187
+ ....: latex_name=r'\Psi')
188
+ sage: Psi
189
+ Continuous map Psi from the 3-dimensional topological manifold R^3
190
+ to the 2-dimensional topological manifold R^2
191
+ sage: Psi.display()
192
+ Psi: R^3 → R^2
193
+ (X, Y, Z) ↦ (xP, yP) = (-X/(Z - 1), -Y/(Z - 1))
194
+
195
+ Then we compose ``Psi`` with ``Phi``, thereby getting a map
196
+ `S^2 \to \RR^2`::
197
+
198
+ sage: ster = Psi * Phi ; ster
199
+ Continuous map from the 2-dimensional topological manifold S^2
200
+ to the 2-dimensional topological manifold R^2
201
+
202
+ Let us test on the South pole (``sp``) that ``ster`` is indeed the
203
+ composite of ``Psi`` and ``Phi``::
204
+
205
+ sage: ster(sp) == Psi(Phi(sp))
206
+ True
207
+
208
+ Actually ``ster`` is the stereographic projection from the North pole,
209
+ as its coordinate expression reveals::
210
+
211
+ sage: ster.display()
212
+ S^2 → R^2
213
+ on U: (x, y) ↦ (xP, yP) = (x, y)
214
+ on V: (u, v) ↦ (xP, yP) = (u/(u^2 + v^2), v/(u^2 + v^2))
215
+
216
+ If the codomain of a continuous map is 1-dimensional, the map can
217
+ be defined by a single symbolic expression for each pair of charts
218
+ and not by a list/tuple with a single element::
219
+
220
+ sage: N = Manifold(1, 'N', structure='topological')
221
+ sage: c_N = N.chart('X')
222
+ sage: Phi = M.continuous_map(N, {(c_xy, c_N): x^2+y^2,
223
+ ....: (c_uv, c_N): 1/(u^2+v^2)})
224
+
225
+ sage: Psi = M.continuous_map(N, {(c_xy, c_N): [x^2+y^2],
226
+ ....: (c_uv, c_N): [1/(u^2+v^2)]})
227
+ sage: Phi == Psi
228
+ True
229
+
230
+ Next we construct an example of continuous map `\RR \to \RR^2`::
231
+
232
+ sage: R = Manifold(1, 'R', structure='topological') # field R
233
+ sage: T.<t> = R.chart() # canonical chart on R
234
+ sage: R2 = Manifold(2, 'R^2', structure='topological') # R^2
235
+ sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2
236
+ sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name='Phi'); Phi
237
+ Continuous map Phi from the 1-dimensional topological manifold R
238
+ to the 2-dimensional topological manifold R^2
239
+ sage: Phi.parent()
240
+ Set of Morphisms from 1-dimensional topological manifold R
241
+ to 2-dimensional topological manifold R^2
242
+ in Category of manifolds over Real Field with 53 bits of precision
243
+ sage: Phi.parent() is Hom(R, R2)
244
+ True
245
+ sage: Phi.display()
246
+ Phi: R → R^2
247
+ t ↦ (x, y) = (cos(t), sin(t))
248
+
249
+ An example of homeomorphism between the unit open disk and the
250
+ Euclidean plane `\RR^2`::
251
+
252
+ sage: D = R2.open_subset('D', coord_def={c_xy: x^2+y^2<1}) # the open unit disk
253
+ sage: Phi = D.homeomorphism(R2, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)],
254
+ ....: name='Phi', latex_name=r'\Phi')
255
+ sage: Phi
256
+ Homeomorphism Phi from the Open subset D of the 2-dimensional
257
+ topological manifold R^2 to the 2-dimensional topological manifold R^2
258
+ sage: Phi.parent()
259
+ Set of Morphisms from Open subset D of the 2-dimensional topological
260
+ manifold R^2 to 2-dimensional topological manifold R^2 in Category of
261
+ manifolds over Real Field with 53 bits of precision
262
+ sage: Phi.parent() is Hom(D, R2)
263
+ True
264
+ sage: Phi.display()
265
+ Phi: D → R^2
266
+ (x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))
267
+
268
+ The image of a point::
269
+
270
+ sage: p = D.point((1/2,0))
271
+ sage: q = Phi(p) ; q
272
+ Point on the 2-dimensional topological manifold R^2
273
+ sage: q.coord()
274
+ (1/3*sqrt(3), 0)
275
+
276
+ The inverse homeomorphism is computed by :meth:`inverse`::
277
+
278
+ sage: Phi.inverse()
279
+ Homeomorphism Phi^(-1) from the 2-dimensional topological manifold R^2
280
+ to the Open subset D of the 2-dimensional topological manifold R^2
281
+ sage: Phi.inverse().display()
282
+ Phi^(-1): R^2 → D
283
+ (x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))
284
+
285
+ Equivalently, one may use the notations ``^(-1)`` or ``~`` to
286
+ get the inverse::
287
+
288
+ sage: Phi^(-1) is Phi.inverse()
289
+ True
290
+ sage: ~Phi is Phi.inverse()
291
+ True
292
+
293
+ Check that ``~Phi`` is indeed the inverse of ``Phi``::
294
+
295
+ sage: (~Phi)(q) == p
296
+ True
297
+ sage: Phi * ~Phi == R2.identity_map()
298
+ True
299
+ sage: ~Phi * Phi == D.identity_map()
300
+ True
301
+
302
+ The coordinate expression of the inverse homeomorphism::
303
+
304
+ sage: (~Phi).display()
305
+ Phi^(-1): R^2 → D
306
+ (x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))
307
+
308
+ A special case of homeomorphism: the identity map of the open unit disk::
309
+
310
+ sage: id = D.identity_map() ; id
311
+ Identity map Id_D of the Open subset D of the 2-dimensional topological
312
+ manifold R^2
313
+ sage: latex(id)
314
+ \mathrm{Id}_{D}
315
+ sage: id.parent()
316
+ Set of Morphisms from Open subset D of the 2-dimensional topological
317
+ manifold R^2 to Open subset D of the 2-dimensional topological
318
+ manifold R^2 in Join of Category of subobjects of sets and Category of
319
+ manifolds over Real Field with 53 bits of precision
320
+ sage: id.parent() is Hom(D, D)
321
+ True
322
+ sage: id is Hom(D,D).one() # the identity element of the monoid Hom(D,D)
323
+ True
324
+
325
+ The identity map acting on a point::
326
+
327
+ sage: id(p)
328
+ Point on the 2-dimensional topological manifold R^2
329
+ sage: id(p) == p
330
+ True
331
+ sage: id(p) is p
332
+ True
333
+
334
+ The coordinate expression of the identity map::
335
+
336
+ sage: id.display()
337
+ Id_D: D → D
338
+ (x, y) ↦ (x, y)
339
+
340
+ The identity map is its own inverse::
341
+
342
+ sage: id^(-1) is id
343
+ True
344
+ sage: ~id is id
345
+ True
346
+ """
347
+
348
+ def __init__(
349
+ self,
350
+ parent,
351
+ coord_functions=None,
352
+ name=None,
353
+ latex_name=None,
354
+ is_isomorphism=False,
355
+ is_identity=False,
356
+ ):
357
+ r"""
358
+ Initialize ``self``.
359
+
360
+ TESTS::
361
+
362
+ sage: M = Manifold(2, 'M', structure='topological')
363
+ sage: X.<x,y> = M.chart()
364
+ sage: N = Manifold(3, 'N', structure='topological')
365
+ sage: Y.<u,v,w> = N.chart()
366
+ sage: f = Hom(M,N)({(X,Y): (x+y, x*y, x-y)}, name='f') ; f
367
+ Continuous map f from the 2-dimensional topological manifold M
368
+ to the 3-dimensional topological manifold N
369
+ sage: f.display()
370
+ f: M → N
371
+ (x, y) ↦ (u, v, w) = (x + y, x*y, x - y)
372
+ sage: TestSuite(f).run()
373
+
374
+ The identity map::
375
+
376
+ sage: f = Hom(M,M)({}, is_identity=True) ; f
377
+ Identity map Id_M of the 2-dimensional topological manifold M
378
+ sage: f.display()
379
+ Id_M: M → M
380
+ (x, y) ↦ (x, y)
381
+ sage: TestSuite(f).run()
382
+ """
383
+ Morphism.__init__(self, parent)
384
+ domain = parent.domain()
385
+ codomain = parent.codomain()
386
+ self._domain = domain
387
+ self._codomain = codomain
388
+ # dict. of coordinate expressions of the
389
+ # map:
390
+ # - key: pair of charts
391
+ # - value: instance of MultiCoordFunction
392
+ self._coord_expression = {}
393
+ self._is_isomorphism = False # default value; may be redefined below
394
+ self._is_identity = False # default value; may be redefined below
395
+ if is_identity:
396
+ # Construction of the identity map
397
+ self._is_identity = True
398
+ self._is_isomorphism = True
399
+ if domain != codomain:
400
+ raise ValueError(
401
+ "the domain and codomain must coincide for the identity map"
402
+ )
403
+ if name is None:
404
+ name = 'Id_' + domain._name
405
+ if latex_name is None:
406
+ latex_name = r'\mathrm{Id}_{' + domain._latex_name + r'}'
407
+ self._name = name
408
+ self._latex_name = latex_name
409
+ for chart in domain.atlas():
410
+ coord_funct = chart[:]
411
+ self._coord_expression[(chart, chart)] = chart.multifunction(
412
+ *coord_funct
413
+ )
414
+ else:
415
+ # Construction of a generic continuous map
416
+ if is_isomorphism:
417
+ self._is_isomorphism = True
418
+ if domain.dim() != codomain.dim():
419
+ raise ValueError(
420
+ "for an isomorphism, the source"
421
+ " manifold and target manifold must"
422
+ " have the same dimension"
423
+ )
424
+ if coord_functions is not None:
425
+ n2 = self._codomain.dim()
426
+ for chart_pair, expression in coord_functions.items():
427
+ if chart_pair[0] not in self._domain.atlas():
428
+ raise ValueError(
429
+ "{} is not a chart ".format(chart_pair[0])
430
+ + "defined on the {}".format(self._domain)
431
+ )
432
+ if chart_pair[1] not in self._codomain.atlas():
433
+ raise ValueError(
434
+ "{} is not a chart ".format(chart_pair[1])
435
+ + "defined on the {}".format(self._codomain)
436
+ )
437
+ if n2 == 1:
438
+ # a single expression entry is allowed
439
+ if not isinstance(expression, (tuple, list)):
440
+ expression = (expression,)
441
+ if len(expression) != n2:
442
+ raise ValueError(
443
+ "{} coordinate ".format(n2) + "functions must be provided"
444
+ )
445
+ self._coord_expression[chart_pair] = chart_pair[0].multifunction(
446
+ *expression
447
+ )
448
+ self._name = name
449
+ if latex_name is None:
450
+ self._latex_name = self._name
451
+ else:
452
+ self._latex_name = latex_name
453
+ self._init_derived() # initialization of derived quantities
454
+
455
+ #
456
+ # SageObject methods
457
+ #
458
+
459
+ def _repr_(self):
460
+ r"""
461
+ Return a string representation of ``self``.
462
+
463
+ TESTS::
464
+
465
+ sage: M = Manifold(2, 'M', structure='topological')
466
+ sage: X.<x,y> = M.chart()
467
+ sage: N = Manifold(2, 'N', structure='topological')
468
+ sage: Y.<u,v> = N.chart()
469
+ sage: f = Hom(M,N)({(X,Y): (x+y,x*y)})
470
+ sage: f
471
+ Continuous map from the 2-dimensional topological manifold M
472
+ to the 2-dimensional topological manifold N
473
+ sage: f = Hom(M,N)({(X,Y): (x+y,x*y)}, name='f')
474
+ sage: f
475
+ Continuous map f from the 2-dimensional topological manifold M
476
+ to the 2-dimensional topological manifold N
477
+ sage: f = Hom(M,N)({(X,Y): (x+y,x-y)}, name='f', is_isomorphism=True)
478
+ sage: f
479
+ Homeomorphism f from the 2-dimensional topological manifold M
480
+ to the 2-dimensional topological manifold N
481
+ sage: f = Hom(M,M)({(X,X): (x+y,x-y)}, name='f', is_isomorphism=True)
482
+ sage: f
483
+ Homeomorphism f of the 2-dimensional topological manifold M
484
+ sage: f = Hom(M,M)({}, name='f', is_identity=True)
485
+ sage: f
486
+ Identity map f of the 2-dimensional topological manifold M
487
+ """
488
+ if self._is_identity:
489
+ return "Identity map {} of the {}".format(self._name, self._domain)
490
+ if self._is_isomorphism:
491
+ description = "Homeomorphism"
492
+ else:
493
+ description = "Continuous map"
494
+ if self._name is not None:
495
+ description += " " + self._name
496
+ if self._domain == self._codomain:
497
+ if self._is_isomorphism:
498
+ description += " of the {}".format(self._domain)
499
+ else:
500
+ description += " from the {} to itself".format(self._domain)
501
+ else:
502
+ description += " from the {} to the {}".format(self._domain, self._codomain)
503
+ return description
504
+
505
+ def _latex_(self):
506
+ r"""
507
+ LaTeX representation of ``self``.
508
+
509
+ TESTS::
510
+
511
+ sage: M = Manifold(2, 'M', structure='topological')
512
+ sage: X.<x,y> = M.chart()
513
+ sage: f = Hom(M,M)({(X,X): (x+y,x*y)}, name='f')
514
+ sage: latex(f)
515
+ f
516
+ sage: f = Hom(M,M)({(X,X): (x+y,x*y)}, name='f', latex_name=r'\Phi')
517
+ sage: latex(f)
518
+ \Phi
519
+ """
520
+ if self._latex_name is None:
521
+ return r'\text{' + str(self) + r'}'
522
+ else:
523
+ return self._latex_name
524
+
525
+ #
526
+ # Hash and equality
527
+ #
528
+
529
+ def __hash__(self):
530
+ """
531
+ Hash function.
532
+
533
+ TESTS::
534
+
535
+ sage: M = Manifold(2, 'M', structure='topological')
536
+ sage: X.<x,y> = M.chart()
537
+ sage: N = Manifold(2, 'N', structure='topological')
538
+ sage: Y.<u,v> = N.chart()
539
+ sage: f = M.continuous_map(N, {(X,Y): (x+y,x*y)})
540
+ sage: hash(f) == f.__hash__()
541
+ True
542
+
543
+ Let us check that ``f`` can be used as a dictionary key::
544
+
545
+ sage: {f: 1}[f]
546
+ 1
547
+ """
548
+ return hash((self._domain, self._codomain))
549
+
550
+ def __eq__(self, other):
551
+ r"""
552
+ Comparison (equality) operator.
553
+
554
+ INPUT:
555
+
556
+ - ``other`` -- a :class:`ContinuousMap`
557
+
558
+ OUTPUT: ``True`` if ``self`` is equal to ``other`` and ``False`` otherwise
559
+
560
+ TESTS::
561
+
562
+ sage: M = Manifold(3, 'M', structure='topological')
563
+ sage: X.<x,y,z> = M.chart()
564
+ sage: N = Manifold(2, 'N', structure='topological')
565
+ sage: Y.<u,v> = N.chart()
566
+ sage: f = M.continuous_map(N, {(X,Y): [x+y+z, 2*x*y*z]}, name='f')
567
+ sage: g = M.continuous_map(N, {(X,Y): [x+y+z, 2*x*y*z]}, name='g')
568
+ sage: f == g
569
+ True
570
+ sage: g = M.continuous_map(N, {(X,Y): [x+y+z, 1]}, name='g')
571
+ sage: f == g
572
+ False
573
+ """
574
+ if other is self:
575
+ return True
576
+ if not isinstance(other, type(self)):
577
+ return False
578
+ if self.parent() != other.parent():
579
+ return False
580
+ if self._is_identity:
581
+ return other.is_identity()
582
+ if other._is_identity:
583
+ return self.is_identity()
584
+ for charts, coord_functions in self._coord_expression.items():
585
+ try:
586
+ if coord_functions.expr() != other.expr(*charts):
587
+ return False
588
+ except ValueError:
589
+ return False
590
+ return True
591
+
592
+ def __ne__(self, other):
593
+ r"""
594
+ Inequality operator.
595
+
596
+ INPUT:
597
+
598
+ - ``other`` -- a :class:`ContinuousMap`
599
+
600
+ OUTPUT:
601
+
602
+ - ``True`` if ``self`` is different from ``other`` and
603
+ ``False`` otherwise
604
+
605
+ TESTS::
606
+
607
+ sage: M = Manifold(3, 'M', structure='topological')
608
+ sage: X.<x,y,z> = M.chart()
609
+ sage: N = Manifold(2, 'N', structure='topological')
610
+ sage: Y.<u,v> = N.chart()
611
+ sage: f = M.continuous_map(N, {(X,Y): [x+y+z, 2*x*y*z]}, name='f')
612
+ sage: g = M.continuous_map(N, {(X,Y): [x+y+z, 2*x*y*z]}, name='g')
613
+ sage: f != g
614
+ False
615
+ sage: g = M.continuous_map(N, {(X,Y): [x+y+z, 1]}, name='g')
616
+ sage: f != g
617
+ True
618
+ """
619
+ return not (self == other)
620
+
621
+ #
622
+ # Map methods
623
+ #
624
+
625
+ def _call_(self, point):
626
+ r"""
627
+ Compute the image of a point by ``self``.
628
+
629
+ INPUT:
630
+
631
+ - ``point`` -- :class:`~sage.manifolds.point.TopologicalManifoldPoint`;
632
+ point in the domain of ``self``
633
+
634
+ OUTPUT: image of the point by ``self``
635
+
636
+ EXAMPLES:
637
+
638
+ Planar rotation acting on a point::
639
+
640
+ sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # Euclidean plane
641
+ sage: c_cart.<x,y> = M.chart() # Cartesian coordinates
642
+
643
+ A pi/3 rotation around the origin defined in Cartesian coordinates::
644
+
645
+ sage: rot = M.continuous_map(M, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
646
+ ....: name='R')
647
+ sage: p = M.point((1,2), name='p')
648
+ sage: q = rot(p) ; q
649
+ Point R(p) on the 2-dimensional topological manifold R^2
650
+ sage: q.coord()
651
+ (-sqrt(3) + 1/2, 1/2*sqrt(3) + 1)
652
+
653
+ Image computed after some change of coordinates::
654
+
655
+ sage: c_spher.<r,ph> = M.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coord. on the plane
656
+ sage: ch = c_spher.transition_map(c_cart, [r*cos(ph), r*sin(ph)])
657
+ sage: p1 = M.point((sqrt(5), arctan(2)), chart=c_spher) # p1 is defined only in terms of c_spher
658
+ sage: q1 = rot(p1) # but the computation of the action of rot is still possible
659
+ sage: q1 == q
660
+ True
661
+
662
+ Image computed by means of spherical coordinates::
663
+
664
+ sage: rot.add_expr(c_spher, c_spher, (r, ph+pi/3)) # now rot is known in terms of c_spher
665
+ sage: p2 = M.point((sqrt(5), arctan(2)), chart=c_spher)
666
+ sage: q2 = rot(p2) # computation on c_spher
667
+ sage: q2 == q
668
+ True
669
+ """
670
+ # NB: checking that ``point`` belongs to the map's domain has been
671
+ # already performed by Map.__call__(); this check is therefore not
672
+ # repeated here.
673
+ if self._is_identity:
674
+ return point
675
+ chart1, chart2 = None, None
676
+ for chart in point._coordinates:
677
+ for chart_pair in self._coord_expression:
678
+ if chart_pair[0] is chart:
679
+ chart1 = chart
680
+ chart2 = chart_pair[1]
681
+ break
682
+ if chart1 is not None:
683
+ break
684
+ else:
685
+ # attempt to perform a change of coordinate on the point
686
+ for chart_pair in self._coord_expression:
687
+ try:
688
+ point.coord(chart_pair[0])
689
+ chart1, chart2 = chart_pair
690
+ except ValueError:
691
+ pass
692
+ if chart1 is not None:
693
+ break
694
+ else:
695
+ raise ValueError(
696
+ "no pair of charts has been found to "
697
+ + "compute the action of the {} on the {}".format(self, point)
698
+ )
699
+ coord_map = self._coord_expression[(chart1, chart2)]
700
+ y = coord_map(*(point._coordinates[chart1]))
701
+ if point._name is None or self._name is None:
702
+ res_name = None
703
+ else:
704
+ res_name = self._name + '(' + point._name + ')'
705
+ if point._latex_name is None or self._latex_name is None:
706
+ res_latex_name = None
707
+ else:
708
+ res_latex_name = (
709
+ self._latex_name + r'\left(' + point._latex_name + r'\right)'
710
+ )
711
+ # The image point is created as an element of the domain of chart2:
712
+ dom2 = chart2.domain()
713
+ return dom2.element_class(
714
+ dom2,
715
+ coords=y,
716
+ chart=chart2,
717
+ name=res_name,
718
+ latex_name=res_latex_name,
719
+ check_coords=False,
720
+ )
721
+
722
+ #
723
+ # Morphism methods
724
+ #
725
+
726
+ def is_identity(self):
727
+ r"""
728
+ Check whether ``self`` is an identity map.
729
+
730
+ EXAMPLES:
731
+
732
+ Tests on continuous maps of a 2-dimensional manifold::
733
+
734
+ sage: M = Manifold(2, 'M', structure='topological')
735
+ sage: X.<x,y> = M.chart()
736
+ sage: M.identity_map().is_identity() # obviously...
737
+ True
738
+ sage: Hom(M, M).one().is_identity() # a variant of the obvious
739
+ True
740
+ sage: a = M.continuous_map(M, coord_functions={(X,X): (x, y)})
741
+ sage: a.is_identity()
742
+ True
743
+ sage: a = M.continuous_map(M, coord_functions={(X,X): (x, y+1)})
744
+ sage: a.is_identity()
745
+ False
746
+
747
+ Of course, if the codomain of the map does not coincide with its
748
+ domain, the outcome is ``False``::
749
+
750
+ sage: N = Manifold(2, 'N', structure='topological')
751
+ sage: Y.<u,v> = N.chart()
752
+ sage: a = M.continuous_map(N, {(X,Y): (x, y)})
753
+ sage: a.display()
754
+ M → N
755
+ (x, y) ↦ (u, v) = (x, y)
756
+ sage: a.is_identity()
757
+ False
758
+ """
759
+ if self._is_identity:
760
+ return True
761
+ if self._codomain != self._domain:
762
+ return False
763
+ for chart in self._domain._top_charts:
764
+ try:
765
+ if chart[:] != self.expr(chart, chart):
766
+ return False
767
+ except ValueError:
768
+ return False
769
+ # If this point is reached, ``self`` must be the identity:
770
+ self._is_identity = True
771
+ return True
772
+
773
+ def _composition_(self, other, homset):
774
+ r"""
775
+ Composition of ``self`` with another morphism.
776
+
777
+ The composition is performed on the right, i.e. the returned
778
+ morphism is ``self * other``.
779
+
780
+ INPUT:
781
+
782
+ - ``other`` -- a continuous map whose codomain is the domain
783
+ of ``self``
784
+ - ``homset`` -- the homset of the continuous map ``self*other``;
785
+ this argument is required to follow the prototype of
786
+ :meth:`~sage.categories.map.Map._composition_` and is determined by
787
+ :meth:`~sage.categories.map.Map._composition` (single underscore),
788
+ that is supposed to call the current method
789
+
790
+ OUTPUT:
791
+
792
+ - :class:`~sage.manifolds.continuous_map.ContinuousMap` that is
793
+ the composite map ``self * other``
794
+
795
+ TESTS::
796
+
797
+ sage: M = Manifold(3, 'M', structure='topological')
798
+ sage: X.<x,y,z> = M.chart()
799
+ sage: N = Manifold(2, 'N', structure='topological')
800
+ sage: Y.<u,v> = N.chart()
801
+ sage: Q = Manifold(4, 'Q', structure='topological')
802
+ sage: Z.<a,b,c,d> = Q.chart()
803
+ sage: f = N.continuous_map(Q, [u+v, u*v, 1+u, 2-v])
804
+ sage: g = M.continuous_map(N, [x+y+z, x*y*z])
805
+ sage: s = f._composition_(g, Hom(M,Q)); s
806
+ Continuous map from the 3-dimensional topological manifold M
807
+ to the 4-dimensional topological manifold Q
808
+ sage: s.display()
809
+ M → Q
810
+ (x, y, z) ↦ (a, b, c, d) = ((x*y + 1)*z + x + y, x*y*z^2 + (x^2*y + x*y^2)*z, x + y + z + 1, -x*y*z + 2)
811
+ sage: s == f*g
812
+ True
813
+ """
814
+ # This method is invoked by Map._composition (single underscore),
815
+ # which is itself invoked by Map.__mul__ . The latter performs the
816
+ # check other._codomain == self._domain. There is therefore no need
817
+ # to perform it here.
818
+ if self._is_identity:
819
+ return other
820
+ if other._is_identity:
821
+ return self
822
+ resu_funct = {}
823
+ for chart1 in other._domain._top_charts:
824
+ for chart2 in self._domain._top_charts:
825
+ for chart3 in self._codomain._top_charts:
826
+ try:
827
+ self23 = self.coord_functions(chart2, chart3)
828
+ resu_funct[(chart1, chart3)] = self23(
829
+ *other.expr(chart1, chart2), simplify=True
830
+ )
831
+ except ValueError:
832
+ pass
833
+ return homset(resu_funct)
834
+
835
+ def image(self, subset=None, inverse=None):
836
+ r"""
837
+ Return the image of ``self`` or the image of ``subset`` under ``self``.
838
+
839
+ INPUT:
840
+
841
+ - ``inverse`` -- (default: ``None``) continuous map from
842
+ ``map.codomain()`` to ``map.domain()``, which once restricted to the image
843
+ of `\Phi` is the inverse of `\Phi` onto its image if the latter
844
+ exists (NB: no check of this is performed)
845
+ - ``subset`` -- (default: the domain of ``map``) a subset of the domain of
846
+ ``self``
847
+
848
+ EXAMPLES::
849
+
850
+ sage: M = Manifold(2, 'M', structure='topological')
851
+ sage: N = Manifold(1, 'N', ambient=M, structure='topological')
852
+ sage: CM.<x,y> = M.chart()
853
+ sage: CN.<u> = N.chart(coord_restrictions=lambda u: [u > -1, u < 1])
854
+ sage: Phi = N.continuous_map(M, {(CN,CM): [u, u^2]}, name='Phi')
855
+ sage: Phi.image()
856
+ Image of the Continuous map Phi
857
+ from the 1-dimensional topological submanifold N
858
+ immersed in the 2-dimensional topological manifold M
859
+ to the 2-dimensional topological manifold M
860
+
861
+ sage: S = N.subset('S')
862
+ sage: Phi_S = Phi.image(S); Phi_S
863
+ Image of the Subset S of the
864
+ 1-dimensional topological submanifold N
865
+ immersed in the 2-dimensional topological manifold M
866
+ under the Continuous map Phi
867
+ from the 1-dimensional topological submanifold N
868
+ immersed in the 2-dimensional topological manifold M
869
+ to the 2-dimensional topological manifold M
870
+ sage: Phi_S.is_subset(M)
871
+ True
872
+ """
873
+ from sage.manifolds.continuous_map_image import ImageManifoldSubset
874
+
875
+ if self._is_identity:
876
+ if subset is None:
877
+ return self.domain()
878
+ else:
879
+ return subset
880
+ return ImageManifoldSubset(self, inverse=inverse, domain_subset=subset)
881
+
882
+ def preimage(self, codomain_subset, name=None, latex_name=None):
883
+ r"""
884
+ Return the preimage of ``codomain_subset`` under ``self``.
885
+
886
+ An alias is :meth:`pullback`.
887
+
888
+ INPUT:
889
+
890
+ - ``codomain_subset`` -- an instance of
891
+ :class:`~sage.manifolds.subset.ManifoldSubset`
892
+ - ``name`` -- string; name (symbol) given to the subset
893
+ - ``latex_name`` -- string (default: ``None``); LaTeX symbol to
894
+ denote the subset; if none are provided, it is set to ``name``
895
+
896
+ OUTPUT:
897
+
898
+ - either a :class:`~sage.manifolds.manifold.TopologicalManifold` or
899
+ a :class:`~sage.manifolds.subsets.pullback.ManifoldSubsetPullback`
900
+
901
+ EXAMPLES::
902
+
903
+ sage: R = Manifold(1, 'R', structure='topological') # field R
904
+ sage: T.<t> = R.chart() # canonical chart on R
905
+ sage: R2 = Manifold(2, 'R^2', structure='topological') # R^2
906
+ sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2
907
+ sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name='Phi'); Phi
908
+ Continuous map Phi
909
+ from the 1-dimensional topological manifold R
910
+ to the 2-dimensional topological manifold R^2
911
+ sage: Q1 = R2.open_subset('Q1', coord_def={c_xy: [x>0, y>0]}); Q1
912
+ Open subset Q1 of the 2-dimensional topological manifold R^2
913
+ sage: Phi_inv_Q1 = Phi.preimage(Q1); Phi_inv_Q1
914
+ Subset Phi_inv_Q1 of the 1-dimensional topological manifold R
915
+ sage: R.point([pi/4]) in Phi_inv_Q1
916
+ True
917
+ sage: R.point([0]) in Phi_inv_Q1
918
+ False
919
+ sage: R.point([3*pi/4]) in Phi_inv_Q1
920
+ False
921
+
922
+ The identity map is handled specially::
923
+
924
+ sage: M = Manifold(2, 'M', structure='topological')
925
+ sage: X.<x,y> = M.chart()
926
+ sage: M.identity_map().preimage(M)
927
+ 2-dimensional topological manifold M
928
+ sage: M.identity_map().preimage(M) is M
929
+ True
930
+
931
+ Another trivial case::
932
+
933
+ sage: M = Manifold(2, 'M', structure='topological')
934
+ sage: X.<x,y> = M.chart()
935
+ sage: D1 = M.open_subset('D1', coord_def={X: x^2+y^2<1}) # the open unit disk
936
+ sage: D2 = M.open_subset('D2', coord_def={X: x^2+y^2<4})
937
+ sage: f = Hom(D1,D2)({(X.restrict(D1), X.restrict(D2)): (2*x, 2*y)}, name='f')
938
+ sage: f.preimage(D2)
939
+ Open subset D1 of the 2-dimensional topological manifold M
940
+ sage: f.preimage(M)
941
+ Open subset D1 of the 2-dimensional topological manifold M
942
+ """
943
+ if self._is_identity:
944
+ return codomain_subset
945
+ if self._codomain.is_subset(codomain_subset):
946
+ return self._domain
947
+ from sage.manifolds.subsets.pullback import ManifoldSubsetPullback
948
+
949
+ return ManifoldSubsetPullback(
950
+ self, codomain_subset, name=name, latex_name=latex_name
951
+ )
952
+
953
+ pullback = preimage
954
+
955
+ #
956
+ # Monoid methods
957
+ #
958
+
959
+ def _mul_(self, other):
960
+ r"""
961
+ Composition of ``self`` with another morphism (endomorphism case).
962
+
963
+ This applies only when the parent of ``self`` is a monoid, i.e. when
964
+ ``self`` is an endomorphism of the category of topological manifolds,
965
+ i.e. a continuous map `M \to M`, where `M` is a topological manifold.
966
+
967
+ INPUT:
968
+
969
+ - ``other`` -- a continuous map whose codomain is the domain
970
+ of ``self``
971
+
972
+ OUTPUT:
973
+
974
+ - :class:`~sage.manifolds.continuous_map.ContinuousMap` that
975
+ is the composite map ``self * other``
976
+
977
+ TESTS::
978
+
979
+ sage: M = Manifold(2, 'M', structure='topological')
980
+ sage: X.<x,y> = M.chart()
981
+ sage: f = M.continuous_map(M, [x+y, x*y], name='f')
982
+ sage: g = M.continuous_map(M, [1-y, 2+x], name='g')
983
+ sage: s = f._mul_(g); s
984
+ Continuous map from the 2-dimensional topological manifold M
985
+ to itself
986
+ sage: s.display()
987
+ M → M
988
+ (x, y) ↦ (x - y + 3, -(x + 2)*y + x + 2)
989
+ sage: s == f*g
990
+ True
991
+ sage: f._mul_(M.identity_map()) == f
992
+ True
993
+ sage: M.identity_map()._mul_(f) == f
994
+ True
995
+ """
996
+ dom = self._domain
997
+ return self._composition_(other, Hom(dom, dom))
998
+
999
+ #
1000
+ # Other methods
1001
+ #
1002
+
1003
+ def _init_derived(self):
1004
+ r"""
1005
+ Initialize the derived quantities of ``self``.
1006
+
1007
+ TESTS::
1008
+
1009
+ sage: M = Manifold(2, 'M', structure='topological')
1010
+ sage: X.<x,y> = M.chart()
1011
+ sage: f = M.homeomorphism(M, [x+y, x-y])
1012
+ sage: f._init_derived()
1013
+ sage: f._restrictions
1014
+ {}
1015
+ sage: f._inverse
1016
+
1017
+ ``_extensions_graph`` and ``_restrictions_graph`` were not originally
1018
+ derived quantities, but this induced a bug when dealing with other
1019
+ derived quantities (see :issue:`26012`)::
1020
+
1021
+ sage: M = Manifold(2, 'M')
1022
+ sage: C.<x, y> = M.chart()
1023
+ sage: U = M.open_subset('U', coord_def={C:x>0})
1024
+ sage: g = M.metric('g')
1025
+ sage: g[:] = [[1, 0], [0, 1]]
1026
+ sage: gU = g.restrict(U)
1027
+ sage: g[:] = [[1, 0], [0, 2]]
1028
+ sage: g.inverse()[:]
1029
+ [ 1 0]
1030
+ [ 0 1/2]
1031
+ sage: g.inverse().restrict(U)[:] # used to be wrong
1032
+ [ 1 0]
1033
+ [ 0 1/2]
1034
+ """
1035
+ # dict. of restrictions to subdomains of self._domain
1036
+ self._restrictions = {}
1037
+ self._restrictions_graph = {(self._domain, self._codomain): self}
1038
+ # dict. of known extensions of self on bigger domains,
1039
+ # including self, with pairs of domain codomain as keys.
1040
+ # Its elements can be seen as incoming edges on a graph.
1041
+ self._extensions_graph = {(self._domain, self._codomain): self}
1042
+ # dict. of known restrictions of self on smaller domains,
1043
+ # including self, with pairs of domain codomain as keys.
1044
+ # Its elements can be seen as outgoing edges on a graph.
1045
+
1046
+ if self._is_identity:
1047
+ self._inverse = self
1048
+ else:
1049
+ self._inverse = None
1050
+
1051
+ def _del_derived(self):
1052
+ r"""
1053
+ Delete the derived quantities of ``self``.
1054
+
1055
+ TESTS::
1056
+
1057
+ sage: M = Manifold(2, 'M', structure='topological')
1058
+ sage: X.<x,y> = M.chart()
1059
+ sage: f = M.homeomorphism(M, [x+y, x-y])
1060
+ sage: f^(-1)
1061
+ Homeomorphism of the 2-dimensional topological manifold M
1062
+ sage: f._inverse # was set by f^(-1)
1063
+ Homeomorphism of the 2-dimensional topological manifold M
1064
+ sage: f._del_derived()
1065
+ sage: f._inverse # has been set to None by _del_derived()
1066
+ """
1067
+ self._restrictions.clear()
1068
+ self._restrictions_graph = {(self._domain, self._codomain): self}
1069
+ self._extensions_graph = {(self._domain, self._codomain): self}
1070
+ if not self._is_identity:
1071
+ self._inverse = None
1072
+
1073
+ def display(self, chart1=None, chart2=None):
1074
+ r"""
1075
+ Display the expression of ``self`` in one or more pair of charts.
1076
+
1077
+ If the expression is not known already, it is computed from some
1078
+ expression in other charts by means of change-of-coordinate formulas.
1079
+
1080
+ INPUT:
1081
+
1082
+ - ``chart1`` -- (default: ``None``) chart on the domain of ``self``;
1083
+ if ``None``, the display is performed on all the charts on the
1084
+ domain in which the map is known or computable via some change
1085
+ of coordinates
1086
+ - ``chart2`` -- (default: ``None``) chart on the codomain of ``self``;
1087
+ if ``None``, the display is performed on all the charts on the
1088
+ codomain in which the map is known or computable via some change
1089
+ of coordinates
1090
+
1091
+ The output is either text-formatted (console mode) or LaTeX-formatted
1092
+ (notebook mode).
1093
+
1094
+ EXAMPLES:
1095
+
1096
+ A simple reparametrization::
1097
+
1098
+ sage: R.<t> = manifolds.RealLine()
1099
+ sage: I = R.open_interval(0, 2*pi)
1100
+ sage: J = R.open_interval(2*pi, 6*pi)
1101
+ sage: h = J.continuous_map(I, ((t-2*pi)/2,), name='h')
1102
+ sage: h.display()
1103
+ h: (2*pi, 6*pi) → (0, 2*pi)
1104
+ t ↦ t = -pi + 1/2*t
1105
+ sage: latex(h.display())
1106
+ \begin{array}{llcl} h:& \left(2 \, \pi, 6 \, \pi\right) &
1107
+ \longrightarrow & \left(0, 2 \, \pi\right) \\ & t & \longmapsto &
1108
+ t = -\pi + \frac{1}{2} \, t \end{array}
1109
+
1110
+ Standard embedding of the sphere `S^2` in `\RR^3`::
1111
+
1112
+ sage: M = Manifold(2, 'S^2', structure='topological') # the 2-dimensional sphere S^2
1113
+ sage: U = M.open_subset('U') # complement of the North pole
1114
+ sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
1115
+ sage: V = M.open_subset('V') # complement of the South pole
1116
+ sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
1117
+ sage: M.declare_union(U,V) # S^2 is the union of U and V
1118
+ sage: N = Manifold(3, 'R^3', latex_name=r'\RR^3', structure='topological') # R^3
1119
+ sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3
1120
+ sage: Phi = M.continuous_map(N,
1121
+ ....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)],
1122
+ ....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]},
1123
+ ....: name='Phi', latex_name=r'\Phi')
1124
+ sage: Phi.display(c_xy, c_cart)
1125
+ Phi: S^2 → R^3
1126
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
1127
+ sage: Phi.display(c_uv, c_cart)
1128
+ Phi: S^2 → R^3
1129
+ on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
1130
+
1131
+ The LaTeX output of that embedding is::
1132
+
1133
+ sage: latex(Phi.display(c_xy, c_cart))
1134
+ \begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3
1135
+ \\ \text{on}\ U : & \left(x, y\right) & \longmapsto
1136
+ & \left(X, Y, Z\right) = \left(\frac{2 \, x}{x^{2} + y^{2} + 1},
1137
+ \frac{2 \, y}{x^{2} + y^{2} + 1},
1138
+ \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right)
1139
+ \end{array}
1140
+
1141
+ If the argument ``chart2`` is not specified, the display is performed
1142
+ on all the charts on the codomain in which the map is known
1143
+ or computable via some change of coordinates (here only one chart:
1144
+ ``c_cart``)::
1145
+
1146
+ sage: Phi.display(c_xy)
1147
+ Phi: S^2 → R^3
1148
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
1149
+
1150
+ Similarly, if the argument ``chart1`` is omitted, the display is
1151
+ performed on all the charts on the domain of ``Phi`` in which the
1152
+ map is known or computable via some change of coordinates::
1153
+
1154
+ sage: Phi.display(chart2=c_cart)
1155
+ Phi: S^2 → R^3
1156
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
1157
+ on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
1158
+
1159
+ If neither ``chart1`` nor ``chart2`` is specified, the display is
1160
+ performed on all the pair of charts in which ``Phi`` is known or
1161
+ computable via some change of coordinates::
1162
+
1163
+ sage: Phi.display()
1164
+ Phi: S^2 → R^3
1165
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
1166
+ on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
1167
+
1168
+ If a chart covers entirely the map's domain, the mention "on ..."
1169
+ is omitted::
1170
+
1171
+ sage: Phi.restrict(U).display()
1172
+ Phi: U → R^3
1173
+ (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
1174
+
1175
+ A shortcut of ``display()`` is ``disp()``::
1176
+
1177
+ sage: Phi.disp()
1178
+ Phi: S^2 → R^3
1179
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
1180
+ on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
1181
+
1182
+ Display when SymPy is the symbolic engine::
1183
+
1184
+ sage: M.set_calculus_method('sympy')
1185
+ sage: N.set_calculus_method('sympy')
1186
+ sage: Phi.display(c_xy, c_cart)
1187
+ Phi: S^2 → R^3
1188
+ on U: (x, y) ↦ (X, Y, Z) = (2*x/(x**2 + y**2 + 1),
1189
+ 2*y/(x**2 + y**2 + 1), (x**2 + y**2 - 1)/(x**2 + y**2 + 1))
1190
+ sage: latex(Phi.display(c_xy, c_cart))
1191
+ \begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3
1192
+ \\ \text{on}\ U : & \left(x, y\right) & \longmapsto
1193
+ & \left(X, Y, Z\right) = \left(\frac{2 x}{x^{2} + y^{2} + 1},
1194
+ \frac{2 y}{x^{2} + y^{2} + 1},
1195
+ \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right)
1196
+ \end{array}
1197
+ """
1198
+ from sage.misc.latex import latex
1199
+ from sage.tensor.modules.format_utilities import FormattedExpansion
1200
+ from sage.typeset.unicode_characters import unicode_mapsto, unicode_to
1201
+
1202
+ def _display_expression(self, chart1, chart2, result):
1203
+ r"""
1204
+ Helper function for :meth:`display`.
1205
+ """
1206
+ try:
1207
+ # get coordinate expression
1208
+ coord_func = self.coord_functions(chart1, chart2)
1209
+ expression = coord_func.expr()
1210
+ except (TypeError, ValueError):
1211
+ return
1212
+ # if that succeeds, proceed:
1213
+ coords1 = chart1[:]
1214
+ if len(coords1) == 1:
1215
+ coords1 = coords1[0]
1216
+ coords2 = chart2[:]
1217
+ if len(coords2) == 1:
1218
+ coords2 = coords2[0]
1219
+ if len(expression) == 1:
1220
+ expression = expression[0]
1221
+ coord_func = coord_func[0]
1222
+ if chart1._domain == self._domain:
1223
+ result._txt += ' '
1224
+ result._latex += ' & '
1225
+ else:
1226
+ result._txt += 'on ' + chart1._domain._name + ': '
1227
+ result._latex += r'\text{on}\ ' + latex(chart1._domain) + r': & '
1228
+ result._txt += repr(coords1) + ' ' + unicode_mapsto + ' '
1229
+ result._latex += latex(coords1) + r'& \longmapsto & '
1230
+ if chart2 == chart1:
1231
+ result._txt += repr(expression) + '\n'
1232
+ result._latex += latex(coord_func) + r'\\'
1233
+ else:
1234
+ result._txt += repr(coords2) + ' = ' + repr(expression) + '\n'
1235
+ result._latex += latex(coords2) + ' = ' + latex(coord_func) + r'\\'
1236
+
1237
+ result = FormattedExpansion()
1238
+ if self._name is None:
1239
+ symbol = ''
1240
+ else:
1241
+ symbol = self._name + ': '
1242
+ result._txt = (
1243
+ symbol
1244
+ + self._domain._name
1245
+ + ' '
1246
+ + unicode_to
1247
+ + ' '
1248
+ + self._codomain._name
1249
+ + '\n'
1250
+ )
1251
+ if self._latex_name is None:
1252
+ symbol = ''
1253
+ else:
1254
+ symbol = self._latex_name + ':'
1255
+ result._latex = (
1256
+ r'\begin{array}{llcl} '
1257
+ + symbol
1258
+ + r'&'
1259
+ + latex(self._domain)
1260
+ + r'& \longrightarrow & '
1261
+ + latex(self._codomain)
1262
+ + r'\\'
1263
+ )
1264
+ if chart1 is None:
1265
+ if chart2 is None:
1266
+ for ch1 in self._domain._top_charts:
1267
+ for ch2 in self._codomain.atlas():
1268
+ _display_expression(self, ch1, ch2, result)
1269
+ else:
1270
+ for ch1 in self._domain._top_charts:
1271
+ _display_expression(self, ch1, chart2, result)
1272
+ else:
1273
+ if chart2 is None:
1274
+ for ch2 in self._codomain.atlas():
1275
+ _display_expression(self, chart1, ch2, result)
1276
+ else:
1277
+ _display_expression(self, chart1, chart2, result)
1278
+ result._txt = result._txt[:-1]
1279
+ result._latex = result._latex[:-2] + r'\end{array}'
1280
+ return result
1281
+
1282
+ disp = display
1283
+
1284
+ def coord_functions(self, chart1=None, chart2=None):
1285
+ r"""
1286
+ Return the functions of the coordinates representing ``self``
1287
+ in a given pair of charts.
1288
+
1289
+ If these functions are not already known, they are computed from
1290
+ known ones by means of change-of-chart formulas.
1291
+
1292
+ INPUT:
1293
+
1294
+ - ``chart1`` -- (default: ``None``) chart on the domain of ``self``;
1295
+ if ``None``, the domain's default chart is assumed
1296
+ - ``chart2`` -- (default: ``None``) chart on the codomain of ``self``;
1297
+ if ``None``, the codomain's default chart is assumed
1298
+
1299
+ OUTPUT:
1300
+
1301
+ - a :class:`~sage.manifolds.chart_func.MultiCoordFunction`
1302
+ representing the continuous map in the above two charts
1303
+
1304
+ EXAMPLES:
1305
+
1306
+ Continuous map from a 2-dimensional manifold to a 3-dimensional
1307
+ one::
1308
+
1309
+ sage: M = Manifold(2, 'M', structure='topological')
1310
+ sage: N = Manifold(3, 'N', structure='topological')
1311
+ sage: c_uv.<u,v> = M.chart()
1312
+ sage: c_xyz.<x,y,z> = N.chart()
1313
+ sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name='Phi',
1314
+ ....: latex_name=r'\Phi')
1315
+ sage: Phi.display()
1316
+ Phi: M → N
1317
+ (u, v) ↦ (x, y, z) = (u*v, u/v, u + v)
1318
+ sage: Phi.coord_functions(c_uv, c_xyz)
1319
+ Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
1320
+ sage: Phi.coord_functions() # equivalent to above since 'uv' and 'xyz' are default charts
1321
+ Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
1322
+ sage: type(Phi.coord_functions())
1323
+ <class 'sage.manifolds.chart_func.MultiCoordFunction'>
1324
+
1325
+ Coordinate representation in other charts::
1326
+
1327
+ sage: c_UV.<U,V> = M.chart() # new chart on M
1328
+ sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v])
1329
+ sage: ch_uv_UV.inverse()(U,V)
1330
+ (1/2*U + 1/2*V, -1/2*U + 1/2*V)
1331
+ sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N
1332
+ sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ,
1333
+ ....: [2*x-3*y+z, y+z-x, -x+2*y-z])
1334
+ sage: ch_xyz_XYZ.inverse()(X,Y,Z)
1335
+ (3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z)
1336
+ sage: Phi.coord_functions(c_UV, c_xyz)
1337
+ Coordinate functions (-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V) on
1338
+ the Chart (M, (U, V))
1339
+ sage: Phi.coord_functions(c_uv, c_XYZ)
1340
+ Coordinate functions (((2*u + 1)*v^2 + u*v - 3*u)/v,
1341
+ -((u - 1)*v^2 - u*v - u)/v, -((u + 1)*v^2 + u*v - 2*u)/v) on the
1342
+ Chart (M, (u, v))
1343
+ sage: Phi.coord_functions(c_UV, c_XYZ)
1344
+ Coordinate functions
1345
+ (-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V),
1346
+ 1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V),
1347
+ 1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V))
1348
+ on the Chart (M, (U, V))
1349
+
1350
+ Coordinate representation with respect to a subchart in the domain::
1351
+
1352
+ sage: A = M.open_subset('A', coord_def={c_uv: u>0})
1353
+ sage: Phi.coord_functions(c_uv.restrict(A), c_xyz)
1354
+ Coordinate functions (u*v, u/v, u + v) on the Chart (A, (u, v))
1355
+
1356
+ Coordinate representation with respect to a superchart
1357
+ in the codomain::
1358
+
1359
+ sage: B = N.open_subset('B', coord_def={c_xyz: x<0})
1360
+ sage: c_xyz_B = c_xyz.restrict(B)
1361
+ sage: Phi1 = M.continuous_map(B, {(c_uv, c_xyz_B): (u*v, u/v, u+v)})
1362
+ sage: Phi1.coord_functions(c_uv, c_xyz_B) # definition charts
1363
+ Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
1364
+ sage: Phi1.coord_functions(c_uv, c_xyz) # c_xyz = superchart of c_xyz_B
1365
+ Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
1366
+
1367
+ Coordinate representation with respect to a pair
1368
+ ``(subchart, superchart)``::
1369
+
1370
+ sage: Phi1.coord_functions(c_uv.restrict(A), c_xyz)
1371
+ Coordinate functions (u*v, u/v, u + v) on the Chart (A, (u, v))
1372
+
1373
+ Same example with SymPy as the symbolic calculus engine::
1374
+
1375
+ sage: M.set_calculus_method('sympy')
1376
+ sage: N.set_calculus_method('sympy')
1377
+ sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name='Phi',
1378
+ ....: latex_name=r'\Phi')
1379
+ sage: Phi.coord_functions(c_uv, c_xyz)
1380
+ Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
1381
+ sage: Phi.coord_functions(c_UV, c_xyz)
1382
+ Coordinate functions (-U**2/4 + V**2/4, (-U - V)/(U - V), V) on the Chart (M, (U, V))
1383
+ sage: Phi.coord_functions(c_UV, c_XYZ)
1384
+ Coordinate functions ((-U**3 + U**2*V + U*V**2 + 2*U*V + 6*U - V**3
1385
+ - 2*V**2 + 6*V)/(2*(U - V)), (U**3/4 - U**2*V/4 - U*V**2/4 + U*V
1386
+ - U + V**3/4 - V**2 - V)/(U - V), (U**3 - U**2*V - U*V**2 - 4*U*V
1387
+ - 8*U + V**3 + 4*V**2 - 8*V)/(4*(U - V))) on the Chart (M, (U, V))
1388
+ """
1389
+ dom1 = self._domain
1390
+ dom2 = self._codomain
1391
+ def_chart1 = dom1._def_chart
1392
+ def_chart2 = dom2._def_chart
1393
+ if chart1 is None:
1394
+ chart1 = def_chart1
1395
+ if chart2 is None:
1396
+ chart2 = def_chart2
1397
+ if (chart1, chart2) not in self._coord_expression:
1398
+ # Check whether (chart1, chart2) are (subchart, superchart) of
1399
+ # a pair of charts where the expression of self is known:
1400
+ for ochart1, ochart2 in self._coord_expression:
1401
+ if chart1 in ochart1._subcharts and ochart2 in chart2._subcharts:
1402
+ coord_functions = self._coord_expression[(ochart1, ochart2)].expr()
1403
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1404
+ *coord_functions
1405
+ )
1406
+ return self._coord_expression[(chart1, chart2)]
1407
+ # Special case of the identity in a single chart:
1408
+ if self._is_identity and chart1 == chart2:
1409
+ coord_functions = chart1[:]
1410
+ self._coord_expression[(chart1, chart1)] = chart1.multifunction(
1411
+ *coord_functions
1412
+ )
1413
+ return self._coord_expression[(chart1, chart2)]
1414
+ # Some change of coordinates must be performed
1415
+ change_start = []
1416
+ change_arrival = []
1417
+ for ochart1, ochart2 in self._coord_expression:
1418
+ if chart1 == ochart1:
1419
+ change_arrival.append(ochart2)
1420
+ if chart2 == ochart2:
1421
+ change_start.append(ochart1)
1422
+ # 1/ Trying to make a change of chart only on the codomain:
1423
+ # the codomain's default chart is privileged:
1424
+ sel_chart2 = None # selected chart2
1425
+ if (
1426
+ def_chart2 in change_arrival
1427
+ and (def_chart2, chart2) in dom2._coord_changes
1428
+ ):
1429
+ sel_chart2 = def_chart2
1430
+ else:
1431
+ for ochart2 in change_arrival:
1432
+ if (ochart2, chart2) in dom2._coord_changes:
1433
+ sel_chart2 = ochart2
1434
+ break
1435
+ if sel_chart2 is not None:
1436
+ oexpr = self._coord_expression[(chart1, sel_chart2)]
1437
+ chg2 = dom2._coord_changes[(sel_chart2, chart2)]
1438
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1439
+ *chg2(*oexpr.expr())
1440
+ )
1441
+ return self._coord_expression[(chart1, chart2)]
1442
+
1443
+ # 2/ Trying to make a change of chart only on the start domain:
1444
+ # the domain's default chart is privileged:
1445
+ sel_chart1 = None # selected chart1
1446
+ if (
1447
+ def_chart1 in change_start
1448
+ and (chart1, def_chart1) in dom1._coord_changes
1449
+ ):
1450
+ sel_chart1 = def_chart1
1451
+ else:
1452
+ for ochart1 in change_start:
1453
+ if (chart1, ochart1) in dom1._coord_changes:
1454
+ sel_chart1 = ochart1
1455
+ break
1456
+ if sel_chart1 is not None:
1457
+ oexpr = self._coord_expression[(sel_chart1, chart2)]
1458
+ chg1 = dom1._coord_changes[(chart1, sel_chart1)]
1459
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1460
+ *oexpr(*chg1._transf.expr())
1461
+ )
1462
+ return self._coord_expression[(chart1, chart2)]
1463
+
1464
+ # 3/ If this point is reached, it is necessary to perform some
1465
+ # coordinate change both on the start domain and the arrival one
1466
+ # the default charts are privileged:
1467
+ if (
1468
+ (def_chart1, def_chart2) in self._coord_expression
1469
+ and (chart1, def_chart1) in dom1._coord_changes
1470
+ and (def_chart2, chart2) in dom2._coord_changes
1471
+ ):
1472
+ sel_chart1 = def_chart1
1473
+ sel_chart2 = def_chart2
1474
+ else:
1475
+ for ochart1, ochart2 in self._coord_expression:
1476
+ if (chart1, ochart1) in dom1._coord_changes and (
1477
+ ochart2,
1478
+ chart2,
1479
+ ) in dom2._coord_changes:
1480
+ sel_chart1 = ochart1
1481
+ sel_chart2 = ochart2
1482
+ break
1483
+ if sel_chart1 is not None and sel_chart2 is not None:
1484
+ oexpr = self._coord_expression[(sel_chart1, sel_chart2)]
1485
+ chg1 = dom1._coord_changes[(chart1, sel_chart1)]
1486
+ chg2 = dom2._coord_changes[(sel_chart2, chart2)]
1487
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1488
+ *chg2(*oexpr(*chg1._transf.expr()))
1489
+ )
1490
+ return self._coord_expression[(chart1, chart2)]
1491
+
1492
+ # 4/ If this point is reached, the demanded value cannot be
1493
+ # computed
1494
+ raise ValueError(
1495
+ "the expression of the map in the pair "
1496
+ + "({}, {})".format(chart1, chart2)
1497
+ + " cannot "
1498
+ + "be computed by means of known changes of charts"
1499
+ )
1500
+
1501
+ return self._coord_expression[(chart1, chart2)]
1502
+
1503
+ def expr(self, chart1=None, chart2=None):
1504
+ r"""
1505
+ Return the expression of ``self`` in terms of
1506
+ specified coordinates.
1507
+
1508
+ If the expression is not already known, it is computed from some
1509
+ known expression by means of change-of-chart formulas.
1510
+
1511
+ INPUT:
1512
+
1513
+ - ``chart1`` -- (default: ``None``) chart on the map's domain;
1514
+ if ``None``, the domain's default chart is assumed
1515
+ - ``chart2`` -- (default: ``None``) chart on the map's codomain;
1516
+ if ``None``, the codomain's default chart is assumed
1517
+
1518
+ OUTPUT:
1519
+
1520
+ - symbolic expression representing the continuous map in the
1521
+ above two charts
1522
+
1523
+ EXAMPLES:
1524
+
1525
+ Continuous map from a 2-dimensional manifold to a
1526
+ 3-dimensional one::
1527
+
1528
+ sage: M = Manifold(2, 'M', structure='topological')
1529
+ sage: N = Manifold(3, 'N', structure='topological')
1530
+ sage: c_uv.<u,v> = M.chart()
1531
+ sage: c_xyz.<x,y,z> = N.chart()
1532
+ sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name='Phi',
1533
+ ....: latex_name=r'\Phi')
1534
+ sage: Phi.display()
1535
+ Phi: M → N
1536
+ (u, v) ↦ (x, y, z) = (u*v, u/v, u + v)
1537
+ sage: Phi.expr(c_uv, c_xyz)
1538
+ (u*v, u/v, u + v)
1539
+ sage: Phi.expr() # equivalent to above since 'uv' and 'xyz' are default charts
1540
+ (u*v, u/v, u + v)
1541
+ sage: type(Phi.expr()[0])
1542
+ <class 'sage.symbolic.expression.Expression'>
1543
+
1544
+ Expressions in other charts::
1545
+
1546
+ sage: c_UV.<U,V> = M.chart() # new chart on M
1547
+ sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v])
1548
+ sage: ch_uv_UV.inverse()(U,V)
1549
+ (1/2*U + 1/2*V, -1/2*U + 1/2*V)
1550
+ sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N
1551
+ sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ,
1552
+ ....: [2*x-3*y+z, y+z-x, -x+2*y-z])
1553
+ sage: ch_xyz_XYZ.inverse()(X,Y,Z)
1554
+ (3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z)
1555
+ sage: Phi.expr(c_UV, c_xyz)
1556
+ (-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V)
1557
+ sage: Phi.expr(c_uv, c_XYZ)
1558
+ (((2*u + 1)*v^2 + u*v - 3*u)/v,
1559
+ -((u - 1)*v^2 - u*v - u)/v,
1560
+ -((u + 1)*v^2 + u*v - 2*u)/v)
1561
+ sage: Phi.expr(c_UV, c_XYZ)
1562
+ (-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V),
1563
+ 1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V),
1564
+ 1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V))
1565
+
1566
+ A rotation in some Euclidean plane::
1567
+
1568
+ sage: M = Manifold(2, 'M', structure='topological') # the plane (minus a segment to have global regular spherical coordinates)
1569
+ sage: c_spher.<r,ph> = M.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on the plane
1570
+ sage: rot = M.continuous_map(M, (r, ph+pi/3), name='R') # pi/3 rotation around r=0
1571
+ sage: rot.expr()
1572
+ (r, 1/3*pi + ph)
1573
+
1574
+ Expression of the rotation in terms of Cartesian coordinates::
1575
+
1576
+ sage: c_cart.<x,y> = M.chart() # Declaration of Cartesian coordinates
1577
+ sage: ch_spher_cart = c_spher.transition_map(c_cart,
1578
+ ....: [r*cos(ph), r*sin(ph)]) # relation to spherical coordinates
1579
+ sage: ch_spher_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x))
1580
+ Check of the inverse coordinate transformation:
1581
+ r == r *passed*
1582
+ ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
1583
+ x == x *passed*
1584
+ y == y *passed*
1585
+ NB: a failed report can reflect a mere lack of simplification.
1586
+ sage: rot.expr(c_cart, c_cart)
1587
+ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
1588
+ """
1589
+ return self.coord_functions(chart1, chart2).expr()
1590
+
1591
+ expression = expr
1592
+
1593
+ def set_expr(self, chart1, chart2, coord_functions):
1594
+ r"""
1595
+ Set a new coordinate representation of ``self``.
1596
+
1597
+ The expressions with respect to other charts are deleted, in order to
1598
+ avoid any inconsistency. To keep them, use :meth:`add_expr` instead.
1599
+
1600
+ INPUT:
1601
+
1602
+ - ``chart1`` -- chart for the coordinates on the domain of ``self``
1603
+ - ``chart2`` -- chart for the coordinates on the codomain of ``self``
1604
+ - ``coord_functions`` -- the coordinate symbolic expression of the
1605
+ map in the above charts: list (or tuple) of the coordinates of
1606
+ the image expressed in terms of the coordinates of the considered
1607
+ point; if the dimension of the arrival manifold is 1, a single
1608
+ coordinate expression can be passed instead of a tuple with a
1609
+ single element
1610
+
1611
+ EXAMPLES:
1612
+
1613
+ Polar representation of a planar rotation initially defined in
1614
+ Cartesian coordinates::
1615
+
1616
+ sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # the Euclidean plane R^2
1617
+ sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2
1618
+ sage: U = M.open_subset('U', coord_def={c_xy: (y!=0, x<0)}) # the complement of the segment y=0 and x>0
1619
+ sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U
1620
+ sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on U
1621
+
1622
+ Links between spherical coordinates and Cartesian ones::
1623
+
1624
+ sage: ch_cart_spher = c_cart.transition_map(c_spher,
1625
+ ....: [sqrt(x*x+y*y), atan2(y,x)])
1626
+ sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
1627
+ Check of the inverse coordinate transformation:
1628
+ x == x *passed*
1629
+ y == y *passed*
1630
+ r == r *passed*
1631
+ ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
1632
+ NB: a failed report can reflect a mere lack of simplification.
1633
+ sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
1634
+ ....: name='R')
1635
+ sage: rot.display(c_cart, c_cart)
1636
+ R: U → U
1637
+ (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
1638
+
1639
+ Let us use the method :meth:`set_expr` to set the
1640
+ spherical-coordinate expression by hand::
1641
+
1642
+ sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3))
1643
+ sage: rot.display(c_spher, c_spher)
1644
+ R: U → U
1645
+ (r, ph) ↦ (r, 1/3*pi + ph)
1646
+
1647
+ The expression in Cartesian coordinates has been erased::
1648
+
1649
+ sage: rot._coord_expression
1650
+ {(Chart (U, (r, ph)),
1651
+ Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph)
1652
+ on the Chart (U, (r, ph))}
1653
+
1654
+ It is recovered (thanks to the known change of coordinates) by a call
1655
+ to :meth:`display`::
1656
+
1657
+ sage: rot.display(c_cart, c_cart)
1658
+ R: U → U
1659
+ (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
1660
+
1661
+ sage: rot._coord_expression # random (dictionary output)
1662
+ {(Chart (U, (x, y)),
1663
+ Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x,
1664
+ 1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)),
1665
+ (Chart (U, (r, ph)),
1666
+ Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph)
1667
+ on the Chart (U, (r, ph))}
1668
+
1669
+ TESTS:
1670
+
1671
+ We check that this does not change the equality nor the hash value::
1672
+
1673
+ sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological')
1674
+ sage: c_xy.<x,y> = M.chart()
1675
+ sage: U = M.open_subset('U', coord_def={c_xy: (y!=0, x<0)})
1676
+ sage: c_cart = c_xy.restrict(U)
1677
+ sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi')
1678
+ sage: ch_cart_spher = c_cart.transition_map(c_spher,
1679
+ ....: [sqrt(x*x+y*y), atan2(y,x)])
1680
+ sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
1681
+ Check of the inverse coordinate transformation:
1682
+ x == x *passed*
1683
+ y == y *passed*
1684
+ r == r *passed*
1685
+ ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
1686
+ NB: a failed report can reflect a mere lack of simplification.
1687
+ sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
1688
+ ....: name='R')
1689
+ sage: rot2 = copy(rot)
1690
+ sage: rot == rot2 and hash(rot) == hash(rot2)
1691
+ True
1692
+ sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3))
1693
+ sage: rot == rot2 and hash(rot) == hash(rot2)
1694
+ True
1695
+ """
1696
+ if self._is_identity:
1697
+ raise NotImplementedError(
1698
+ "set_expr() must not be used for the identity map"
1699
+ )
1700
+ if chart1 not in self._domain.atlas():
1701
+ raise ValueError(
1702
+ "the {}".format(chart1)
1703
+ + " has not been defined on the {}".format(self._domain)
1704
+ )
1705
+ if chart2 not in self._codomain.atlas():
1706
+ raise ValueError(
1707
+ "the {}".format(chart2)
1708
+ + " has not been defined on the {}".format(self._codomain)
1709
+ )
1710
+ self._coord_expression.clear()
1711
+ self._del_derived()
1712
+ n2 = self._codomain.dim()
1713
+ if n2 > 1:
1714
+ if len(coord_functions) != n2:
1715
+ raise ValueError(
1716
+ "{} coordinate functions must ".format(n2) + "be provided."
1717
+ )
1718
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1719
+ *coord_functions
1720
+ )
1721
+ else:
1722
+ if isinstance(coord_functions, (list, tuple)):
1723
+ coord_functions = coord_functions[0]
1724
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1725
+ coord_functions
1726
+ )
1727
+
1728
+ set_expression = set_expr
1729
+
1730
+ def add_expr(self, chart1, chart2, coord_functions):
1731
+ r"""
1732
+ Set a new coordinate representation of ``self``.
1733
+
1734
+ The previous expressions with respect to other charts are kept. To
1735
+ clear them, use :meth:`set_expr` instead.
1736
+
1737
+ INPUT:
1738
+
1739
+ - ``chart1`` -- chart for the coordinates on the map's domain
1740
+ - ``chart2`` -- chart for the coordinates on the map's codomain
1741
+ - ``coord_functions`` -- the coordinate symbolic expression of the
1742
+ map in the above charts: list (or tuple) of the coordinates of
1743
+ the image expressed in terms of the coordinates of the considered
1744
+ point; if the dimension of the arrival manifold is 1, a single
1745
+ coordinate expression can be passed instead of a tuple with a
1746
+ single element
1747
+
1748
+ .. WARNING::
1749
+
1750
+ If the map has already expressions in other charts, it
1751
+ is the user's responsibility to make sure that the expression
1752
+ to be added is consistent with them.
1753
+
1754
+ EXAMPLES:
1755
+
1756
+ Polar representation of a planar rotation initially defined in
1757
+ Cartesian coordinates::
1758
+
1759
+ sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # the Euclidean plane R^2
1760
+ sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2
1761
+ sage: U = M.open_subset('U', coord_def={c_xy: (y!=0, x<0)}) # the complement of the segment y=0 and x>0
1762
+ sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U
1763
+ sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on U
1764
+
1765
+ We construct the links between spherical coordinates and
1766
+ Cartesian ones::
1767
+
1768
+ sage: ch_cart_spher = c_cart.transition_map(c_spher, [sqrt(x*x+y*y), atan2(y,x)])
1769
+ sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph))
1770
+ Check of the inverse coordinate transformation:
1771
+ x == x *passed*
1772
+ y == y *passed*
1773
+ r == r *passed*
1774
+ ph == arctan2(r*sin(ph), r*cos(ph)) **failed**
1775
+ NB: a failed report can reflect a mere lack of simplification.
1776
+ sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
1777
+ ....: name='R')
1778
+ sage: rot.display(c_cart, c_cart)
1779
+ R: U → U
1780
+ (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
1781
+
1782
+ If we calculate the expression in terms of spherical coordinates,
1783
+ via the method :meth:`display`, we notice some difficulties
1784
+ in ``arctan2`` simplifications::
1785
+
1786
+ sage: rot.display(c_spher, c_spher)
1787
+ R: U → U
1788
+ (r, ph) ↦ (r, arctan2(1/2*(sqrt(3)*cos(ph) + sin(ph))*r, -1/2*(sqrt(3)*sin(ph) - cos(ph))*r))
1789
+
1790
+ Therefore, we use the method :meth:`add_expr` to set the
1791
+ spherical-coordinate expression by hand::
1792
+
1793
+ sage: rot.add_expr(c_spher, c_spher, (r, ph+pi/3))
1794
+ sage: rot.display(c_spher, c_spher)
1795
+ R: U → U
1796
+ (r, ph) ↦ (r, 1/3*pi + ph)
1797
+
1798
+ The call to :meth:`add_expr` has not deleted the expression in
1799
+ terms of Cartesian coordinates, as we can check by printing the
1800
+ internal dictionary ``_coord_expression``, which stores the
1801
+ various internal representations of the continuous map::
1802
+
1803
+ sage: rot._coord_expression # random (dictionary output)
1804
+ {(Chart (U, (x, y)), Chart (U, (x, y))):
1805
+ Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
1806
+ on the Chart (U, (x, y)),
1807
+ (Chart (U, (r, ph)), Chart (U, (r, ph))):
1808
+ Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
1809
+
1810
+ If, on the contrary, we use :meth:`set_expr`, the expression in
1811
+ Cartesian coordinates is lost::
1812
+
1813
+ sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3))
1814
+ sage: rot._coord_expression
1815
+ {(Chart (U, (r, ph)), Chart (U, (r, ph))):
1816
+ Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
1817
+
1818
+ It is recovered (thanks to the known change of coordinates) by
1819
+ a call to :meth:`display`::
1820
+
1821
+ sage: rot.display(c_cart, c_cart)
1822
+ R: U → U
1823
+ (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
1824
+
1825
+ sage: rot._coord_expression # random (dictionary output)
1826
+ {(Chart (U, (x, y)), Chart (U, (x, y))):
1827
+ Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
1828
+ on the Chart (U, (x, y)),
1829
+ (Chart (U, (r, ph)), Chart (U, (r, ph))):
1830
+ Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
1831
+
1832
+ The rotation can be applied to a point by means of either
1833
+ coordinate system::
1834
+
1835
+ sage: p = M.point((1,2)) # p defined by its Cartesian coord.
1836
+ sage: q = rot(p) # q is computed by means of Cartesian coord.
1837
+ sage: p1 = M.point((sqrt(5), arctan(2)), chart=c_spher) # p1 is defined only in terms of c_spher
1838
+ sage: q1 = rot(p1) # computation by means of spherical coordinates
1839
+ sage: q1 == q
1840
+ True
1841
+ """
1842
+ if self._is_identity:
1843
+ raise NotImplementedError(
1844
+ "add_expr() must not be used for the identity map"
1845
+ )
1846
+ if chart1 not in self._domain.atlas():
1847
+ raise ValueError(
1848
+ "the {}".format(chart1)
1849
+ + " has not been defined on the {}".format(self._domain)
1850
+ )
1851
+ if chart2 not in self._codomain.atlas():
1852
+ raise ValueError(
1853
+ "the {}".format(chart2)
1854
+ + " has not been defined on the {}".format(self._codomain)
1855
+ )
1856
+ self._del_derived()
1857
+ n2 = self._codomain.dim()
1858
+ if n2 > 1:
1859
+ if len(coord_functions) != n2:
1860
+ raise ValueError("{} coordinate functions must be provided".format(n2))
1861
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1862
+ *coord_functions
1863
+ )
1864
+ else:
1865
+ if isinstance(coord_functions, (list, tuple)):
1866
+ coord_functions = coord_functions[0]
1867
+ self._coord_expression[(chart1, chart2)] = chart1.multifunction(
1868
+ coord_functions
1869
+ )
1870
+
1871
+ add_expression = add_expr
1872
+
1873
+ def restrict(self, subdomain, subcodomain=None):
1874
+ r"""
1875
+ Restriction of ``self`` to some open subset of its
1876
+ domain of definition.
1877
+
1878
+ INPUT:
1879
+
1880
+ - ``subdomain`` -- :class:`~sage.manifolds.manifold.TopologicalManifold`;
1881
+ an open subset of the domain of ``self``
1882
+ - ``subcodomain`` -- (default: ``None``) an open subset of the codomain
1883
+ of ``self``; if ``None``, the codomain of ``self`` is assumed
1884
+
1885
+ OUTPUT:
1886
+
1887
+ - a :class:`ContinuousMap` that is the restriction
1888
+ of ``self`` to ``subdomain``
1889
+
1890
+ EXAMPLES:
1891
+
1892
+ Restriction to an annulus of a homeomorphism between the open unit
1893
+ disk and `\RR^2`::
1894
+
1895
+ sage: M = Manifold(2, 'R^2', structure='topological') # R^2
1896
+ sage: c_xy.<x,y> = M.chart() # Cartesian coord. on R^2
1897
+ sage: D = M.open_subset('D', coord_def={c_xy: x^2+y^2<1}) # the open unit disk
1898
+ sage: Phi = D.continuous_map(M, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)],
1899
+ ....: name='Phi', latex_name=r'\Phi')
1900
+ sage: Phi.display()
1901
+ Phi: D → R^2
1902
+ (x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))
1903
+ sage: c_xy_D = c_xy.restrict(D)
1904
+ sage: U = D.open_subset('U', coord_def={c_xy_D: x^2+y^2>1/2}) # the annulus 1/2 < r < 1
1905
+ sage: Phi.restrict(U)
1906
+ Continuous map Phi
1907
+ from the Open subset U of the 2-dimensional topological manifold R^2
1908
+ to the 2-dimensional topological manifold R^2
1909
+ sage: Phi.restrict(U).parent()
1910
+ Set of Morphisms from Open subset U of the 2-dimensional topological
1911
+ manifold R^2 to 2-dimensional topological manifold R^2 in Category
1912
+ of manifolds over Real Field with 53 bits of precision
1913
+ sage: Phi.domain()
1914
+ Open subset D of the 2-dimensional topological manifold R^2
1915
+ sage: Phi.restrict(U).domain()
1916
+ Open subset U of the 2-dimensional topological manifold R^2
1917
+ sage: Phi.restrict(U).display()
1918
+ Phi: U → R^2
1919
+ (x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))
1920
+
1921
+ The result is cached::
1922
+
1923
+ sage: Phi.restrict(U) is Phi.restrict(U)
1924
+ True
1925
+
1926
+ The restriction of the identity map::
1927
+
1928
+ sage: id = D.identity_map() ; id
1929
+ Identity map Id_D of the Open subset D of the 2-dimensional
1930
+ topological manifold R^2
1931
+ sage: id.restrict(U)
1932
+ Identity map Id_U of the Open subset U of the 2-dimensional
1933
+ topological manifold R^2
1934
+ sage: id.restrict(U) is U.identity_map()
1935
+ True
1936
+
1937
+ The codomain can be restricted (i.e. made tighter)::
1938
+
1939
+ sage: Phi = D.continuous_map(M, [x/sqrt(1+x^2+y^2), y/sqrt(1+x^2+y^2)])
1940
+ sage: Phi
1941
+ Continuous map from
1942
+ the Open subset D of the 2-dimensional topological manifold R^2
1943
+ to the 2-dimensional topological manifold R^2
1944
+ sage: Phi.restrict(D, subcodomain=D)
1945
+ Continuous map from the Open subset D of the 2-dimensional
1946
+ topological manifold R^2 to itself
1947
+ """
1948
+ if subcodomain is None:
1949
+ if self._is_identity:
1950
+ subcodomain = subdomain
1951
+ else:
1952
+ subcodomain = self._codomain
1953
+ if subdomain == self._domain and subcodomain == self._codomain:
1954
+ return self
1955
+ if (subdomain, subcodomain) not in self._restrictions:
1956
+ if not subdomain.is_subset(self._domain):
1957
+ raise ValueError(
1958
+ "the specified domain is not a subset"
1959
+ " of the domain of definition of the"
1960
+ " continuous map"
1961
+ )
1962
+ if not subcodomain.is_subset(self._codomain):
1963
+ raise ValueError(
1964
+ "the specified codomain is not a subset"
1965
+ " of the codomain of the continuous map"
1966
+ )
1967
+ # Special case of the identity map:
1968
+ if self._is_identity:
1969
+ self._restrictions[(subdomain, subcodomain)] = subdomain.identity_map()
1970
+ return self._restrictions[(subdomain, subcodomain)]
1971
+
1972
+ # First one tries to get the restriction from a tighter domain:
1973
+ for dom, rst in self._restrictions.items():
1974
+ if (
1975
+ subdomain.is_subset(dom[0])
1976
+ and (subdomain, subcodomain) in rst._restrictions
1977
+ ):
1978
+ res = rst._restrictions[(subdomain, subcodomain)]
1979
+ self._restrictions[(subdomain, subcodomain)] = res
1980
+ self._restrictions.update(res._restrictions)
1981
+ self._restrictions_graph.update(res._restrictions_graph)
1982
+ res._extensions_graph.update(self._extensions_graph)
1983
+ for ext in self._extensions_graph.values():
1984
+ ext._restrictions[subdomain] = res
1985
+ ext._restrictions.update(res._restrictions)
1986
+ ext._restrictions_graph.update(res._restrictions_graph)
1987
+ return self._restrictions[(subdomain, subcodomain)]
1988
+
1989
+ # Maybe it didn't exist but could have:
1990
+ for dom, rst in self._restrictions.items():
1991
+ if subdomain.is_subset(dom[0]) and subcodomain.is_subset(dom[1]):
1992
+ res = rst.restrict(subdomain, subcodomain) # all propagation
1993
+ # is done here
1994
+ # should be useless:
1995
+ self._restrictions[(subdomain, subcodomain)] = res
1996
+ self._restrictions_graph[(subdomain, subcodomain)] = res
1997
+ return self._restrictions[(subdomain, subcodomain)]
1998
+
1999
+ # Secondly one tries to get the restriction from one previously
2000
+ # defined on a larger domain:
2001
+ for dom, ext in self._extensions_graph.items():
2002
+ if (subdomain, subcodomain) in ext._restrictions:
2003
+ res = ext._restrictions[(subdomain, subcodomain)]
2004
+ self._restrictions[(subdomain, subcodomain)] = res
2005
+ self._restrictions.update(res._restrictions)
2006
+ self._restrictions_graph.update(res._restrictions_graph)
2007
+ res._extensions_graph.update(self._extensions_graph)
2008
+ for ext in self._extensions_graph.values():
2009
+ ext._restrictions[subdomain] = res
2010
+ ext._restrictions.update(res._restrictions)
2011
+ ext._restrictions_graph.update(res._restrictions_graph)
2012
+ return self._restrictions[(subdomain, subcodomain)]
2013
+
2014
+ # Generic case:
2015
+ homset = Hom(subdomain, subcodomain)
2016
+ resu = type(self)(homset, name=self._name, latex_name=self._latex_name)
2017
+ for charts in self._coord_expression:
2018
+ for ch1 in charts[0]._subcharts:
2019
+ if ch1._domain.is_subset(subdomain):
2020
+ for ch2 in charts[1]._subcharts:
2021
+ if ch2._domain.is_subset(subcodomain):
2022
+ for sch2 in ch2._supercharts:
2023
+ if (ch1, sch2) in resu._coord_expression:
2024
+ break
2025
+ else:
2026
+ for sch2 in ch2._subcharts:
2027
+ if (ch1, sch2) in resu._coord_expression:
2028
+ del resu._coord_expression[(ch1, sch2)]
2029
+ coord_functions = self._coord_expression[
2030
+ charts
2031
+ ].expr()
2032
+ resu._coord_expression[(ch1, ch2)] = (
2033
+ ch1.multifunction(*coord_functions)
2034
+ )
2035
+
2036
+ # propagate extensions
2037
+ for dom, ext in self._extensions_graph.items(): # includes self
2038
+ ext._restrictions[(subdomain, subcodomain)] = resu
2039
+ ext._restrictions_graph[(subdomain, subcodomain)] = resu
2040
+
2041
+ # propagate restrictions
2042
+ for dom, rst in self._restrictions.items():
2043
+ if dom[0].is_subset(subdomain) and dom[1].is_subset(subcodomain):
2044
+ if rst is not resu:
2045
+ resu._restrictions.update(rst._restrictions_graph)
2046
+ resu._restrictions_graph.update(rst._restrictions_graph)
2047
+ rst._extensions_graph.update(resu._extensions_graph)
2048
+
2049
+ self._restrictions[(subdomain, subcodomain)] = resu
2050
+ self._restrictions_graph[(subdomain, subcodomain)] = resu
2051
+ resu._extensions_graph.update(self._extensions_graph)
2052
+
2053
+ return self._restrictions[(subdomain, subcodomain)]
2054
+
2055
+ def __invert__(self):
2056
+ r"""
2057
+ Return the inverse of ``self`` if it is an isomorphism.
2058
+
2059
+ OUTPUT: the inverse isomorphism
2060
+
2061
+ EXAMPLES:
2062
+
2063
+ The inverse of a rotation in the Euclidean plane::
2064
+
2065
+ sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological')
2066
+ sage: c_cart.<x,y> = M.chart()
2067
+
2068
+ A pi/3 rotation around the origin::
2069
+
2070
+ sage: rot = M.homeomorphism(M, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2),
2071
+ ....: name='R')
2072
+ sage: rot.inverse()
2073
+ Homeomorphism R^(-1) of the 2-dimensional topological manifold R^2
2074
+ sage: rot.inverse().display()
2075
+ R^(-1): R^2 → R^2
2076
+ (x, y) ↦ (1/2*sqrt(3)*y + 1/2*x, -1/2*sqrt(3)*x + 1/2*y)
2077
+
2078
+ Checking that applying successively the homeomorphism and its
2079
+ inverse results in the identity::
2080
+
2081
+ sage: a, b = var('a b')
2082
+ sage: p = M.point((a,b)) # a generic point on M
2083
+ sage: q = rot(p)
2084
+ sage: p1 = rot.inverse()(q)
2085
+ sage: p1 == p
2086
+ True
2087
+
2088
+ The result is cached::
2089
+
2090
+ sage: rot.inverse() is rot.inverse()
2091
+ True
2092
+
2093
+ The notations ``^(-1)`` or ``~`` can also be used for the inverse::
2094
+
2095
+ sage: rot^(-1) is rot.inverse()
2096
+ True
2097
+ sage: ~rot is rot.inverse()
2098
+ True
2099
+
2100
+ An example with multiple charts: the equatorial symmetry on the
2101
+ 2-sphere::
2102
+
2103
+ sage: M = Manifold(2, 'M', structure='topological') # the 2-dimensional sphere S^2
2104
+ sage: U = M.open_subset('U') # complement of the North pole
2105
+ sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
2106
+ sage: V = M.open_subset('V') # complement of the South pole
2107
+ sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
2108
+ sage: M.declare_union(U,V) # S^2 is the union of U and V
2109
+ sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)),
2110
+ ....: intersection_name='W',
2111
+ ....: restrictions1=x^2+y^2!=0,
2112
+ ....: restrictions2=u^2+v^2!=0)
2113
+ sage: uv_to_xy = xy_to_uv.inverse()
2114
+ sage: s = M.homeomorphism(M, {(c_xy, c_uv): [x, y], (c_uv, c_xy): [u, v]},
2115
+ ....: name='s')
2116
+ sage: s.display()
2117
+ s: M → M
2118
+ on U: (x, y) ↦ (u, v) = (x, y)
2119
+ on V: (u, v) ↦ (x, y) = (u, v)
2120
+ sage: si = s.inverse(); si
2121
+ Homeomorphism s^(-1) of the 2-dimensional topological manifold M
2122
+ sage: si.display()
2123
+ s^(-1): M → M
2124
+ on U: (x, y) ↦ (u, v) = (x, y)
2125
+ on V: (u, v) ↦ (x, y) = (u, v)
2126
+
2127
+ The equatorial symmetry is of course an involution::
2128
+
2129
+ sage: si == s
2130
+ True
2131
+ """
2132
+ from sage.symbolic.relation import solve
2133
+ from sage.symbolic.ring import SR
2134
+
2135
+ if self._inverse is not None:
2136
+ return self._inverse
2137
+ if not self._is_isomorphism:
2138
+ raise ValueError("the {} is not an isomorphism".format(self))
2139
+ coord_functions = {} # coordinate expressions of the result
2140
+ for chart1, chart2 in self._coord_expression:
2141
+ coord_map = self._coord_expression[(chart1, chart2)]
2142
+ n1 = len(chart1._xx)
2143
+ n2 = len(chart2._xx)
2144
+ # New symbolic variables (different from chart2._xx to allow for a
2145
+ # correct solution even when chart2 = chart1):
2146
+ x2 = SR.temp_var(n=n2)
2147
+ equations = [x2[i] == coord_map._functions[i].expr() for i in range(n2)]
2148
+ solutions = solve(equations, chart1._xx, solution_dict=True)
2149
+ if not solutions:
2150
+ raise ValueError("no solution found")
2151
+ if len(solutions) > 1:
2152
+ raise ValueError("non-unique solution found")
2153
+ substitutions = dict(zip(x2, chart2._xx))
2154
+ sol = solutions[0]
2155
+ inv_functions = [sol[chart1._xx[i]].subs(substitutions) for i in range(n1)]
2156
+ for i in range(n1):
2157
+ x = inv_functions[i]
2158
+ try:
2159
+ # simplify derived from calculus_method
2160
+ inv_functions[i] = chart2.simplify(x)
2161
+ except AttributeError:
2162
+ pass
2163
+ coord_functions[(chart2, chart1)] = inv_functions
2164
+ SR.cleanup_var(x2)
2165
+ if self._name is None:
2166
+ name = None
2167
+ else:
2168
+ name = self._name + '^(-1)'
2169
+ if self._latex_name is None:
2170
+ latex_name = None
2171
+ else:
2172
+ latex_name = self._latex_name + r'^{-1}'
2173
+ homset = Hom(self._codomain, self._domain)
2174
+ self._inverse = type(self)(
2175
+ homset,
2176
+ coord_functions=coord_functions,
2177
+ name=name,
2178
+ latex_name=latex_name,
2179
+ is_isomorphism=True,
2180
+ )
2181
+ return self._inverse
2182
+
2183
+ inverse = __invert__