passagemath-symbolics 10.8.1a1__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_symbolics/__init__.py +3 -0
- passagemath_symbolics-10.8.1a1.dist-info/METADATA +186 -0
- passagemath_symbolics-10.8.1a1.dist-info/RECORD +181 -0
- passagemath_symbolics-10.8.1a1.dist-info/WHEEL +5 -0
- passagemath_symbolics-10.8.1a1.dist-info/top_level.txt +3 -0
- sage/all__sagemath_symbolics.py +17 -0
- sage/calculus/all.py +14 -0
- sage/calculus/calculus.py +2838 -0
- sage/calculus/desolvers.py +1864 -0
- sage/calculus/predefined.py +51 -0
- sage/calculus/tests.py +225 -0
- sage/calculus/var.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/calculus/var.pyx +401 -0
- sage/dynamics/all__sagemath_symbolics.py +6 -0
- sage/dynamics/complex_dynamics/all.py +5 -0
- sage/dynamics/complex_dynamics/mandel_julia.py +765 -0
- sage/dynamics/complex_dynamics/mandel_julia_helper.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/dynamics/complex_dynamics/mandel_julia_helper.pyx +1034 -0
- sage/ext/all__sagemath_symbolics.py +1 -0
- sage/ext_data/kenzo/CP2.txt +45 -0
- sage/ext_data/kenzo/CP3.txt +349 -0
- sage/ext_data/kenzo/CP4.txt +4774 -0
- sage/ext_data/kenzo/README.txt +49 -0
- sage/ext_data/kenzo/S4.txt +20 -0
- sage/ext_data/magma/latex/latex.m +1021 -0
- sage/ext_data/magma/latex/latex.spec +1 -0
- sage/ext_data/magma/sage/basic.m +356 -0
- sage/ext_data/magma/sage/sage.spec +1 -0
- sage/ext_data/magma/spec +9 -0
- sage/geometry/all__sagemath_symbolics.py +8 -0
- sage/geometry/hyperbolic_space/all.py +5 -0
- sage/geometry/hyperbolic_space/hyperbolic_coercion.py +755 -0
- sage/geometry/hyperbolic_space/hyperbolic_constants.py +5 -0
- sage/geometry/hyperbolic_space/hyperbolic_geodesic.py +2419 -0
- sage/geometry/hyperbolic_space/hyperbolic_interface.py +206 -0
- sage/geometry/hyperbolic_space/hyperbolic_isometry.py +1083 -0
- sage/geometry/hyperbolic_space/hyperbolic_model.py +1502 -0
- sage/geometry/hyperbolic_space/hyperbolic_point.py +621 -0
- sage/geometry/riemannian_manifolds/all.py +7 -0
- sage/geometry/riemannian_manifolds/parametrized_surface3d.py +1632 -0
- sage/geometry/riemannian_manifolds/surface3d_generators.py +461 -0
- sage/interfaces/all__sagemath_symbolics.py +1 -0
- sage/interfaces/magma.py +2991 -0
- sage/interfaces/magma_free.py +90 -0
- sage/interfaces/maple.py +1402 -0
- sage/interfaces/mathematica.py +1345 -0
- sage/interfaces/mathics.py +1312 -0
- sage/interfaces/sympy.py +1398 -0
- sage/interfaces/sympy_wrapper.py +197 -0
- sage/interfaces/tides.py +938 -0
- sage/libs/all__sagemath_symbolics.py +6 -0
- sage/manifolds/all.py +7 -0
- sage/manifolds/calculus_method.py +553 -0
- sage/manifolds/catalog.py +437 -0
- sage/manifolds/chart.py +4010 -0
- sage/manifolds/chart_func.py +3416 -0
- sage/manifolds/continuous_map.py +2183 -0
- sage/manifolds/continuous_map_image.py +155 -0
- sage/manifolds/differentiable/affine_connection.py +2475 -0
- sage/manifolds/differentiable/all.py +1 -0
- sage/manifolds/differentiable/automorphismfield.py +1383 -0
- sage/manifolds/differentiable/automorphismfield_group.py +604 -0
- sage/manifolds/differentiable/bundle_connection.py +1445 -0
- sage/manifolds/differentiable/characteristic_cohomology_class.py +1840 -0
- sage/manifolds/differentiable/chart.py +1241 -0
- sage/manifolds/differentiable/curve.py +1028 -0
- sage/manifolds/differentiable/de_rham_cohomology.py +541 -0
- sage/manifolds/differentiable/degenerate.py +559 -0
- sage/manifolds/differentiable/degenerate_submanifold.py +1668 -0
- sage/manifolds/differentiable/diff_form.py +1660 -0
- sage/manifolds/differentiable/diff_form_module.py +1062 -0
- sage/manifolds/differentiable/diff_map.py +1315 -0
- sage/manifolds/differentiable/differentiable_submanifold.py +291 -0
- sage/manifolds/differentiable/examples/all.py +1 -0
- sage/manifolds/differentiable/examples/euclidean.py +2517 -0
- sage/manifolds/differentiable/examples/real_line.py +897 -0
- sage/manifolds/differentiable/examples/sphere.py +1186 -0
- sage/manifolds/differentiable/examples/symplectic_space.py +187 -0
- sage/manifolds/differentiable/examples/symplectic_space_test.py +40 -0
- sage/manifolds/differentiable/integrated_curve.py +4035 -0
- sage/manifolds/differentiable/levi_civita_connection.py +841 -0
- sage/manifolds/differentiable/manifold.py +4254 -0
- sage/manifolds/differentiable/manifold_homset.py +1826 -0
- sage/manifolds/differentiable/metric.py +3032 -0
- sage/manifolds/differentiable/mixed_form.py +1507 -0
- sage/manifolds/differentiable/mixed_form_algebra.py +559 -0
- sage/manifolds/differentiable/multivector_module.py +800 -0
- sage/manifolds/differentiable/multivectorfield.py +1522 -0
- sage/manifolds/differentiable/poisson_tensor.py +268 -0
- sage/manifolds/differentiable/pseudo_riemannian.py +755 -0
- sage/manifolds/differentiable/pseudo_riemannian_submanifold.py +1839 -0
- sage/manifolds/differentiable/scalarfield.py +1343 -0
- sage/manifolds/differentiable/scalarfield_algebra.py +472 -0
- sage/manifolds/differentiable/symplectic_form.py +912 -0
- sage/manifolds/differentiable/symplectic_form_test.py +220 -0
- sage/manifolds/differentiable/tangent_space.py +412 -0
- sage/manifolds/differentiable/tangent_vector.py +616 -0
- sage/manifolds/differentiable/tensorfield.py +4665 -0
- sage/manifolds/differentiable/tensorfield_module.py +963 -0
- sage/manifolds/differentiable/tensorfield_paral.py +2450 -0
- sage/manifolds/differentiable/tensorfield_paral_test.py +16 -0
- sage/manifolds/differentiable/vector_bundle.py +1725 -0
- sage/manifolds/differentiable/vectorfield.py +1717 -0
- sage/manifolds/differentiable/vectorfield_module.py +2445 -0
- sage/manifolds/differentiable/vectorframe.py +1832 -0
- sage/manifolds/family.py +270 -0
- sage/manifolds/local_frame.py +1490 -0
- sage/manifolds/manifold.py +3090 -0
- sage/manifolds/manifold_homset.py +452 -0
- sage/manifolds/operators.py +359 -0
- sage/manifolds/point.py +994 -0
- sage/manifolds/scalarfield.py +3718 -0
- sage/manifolds/scalarfield_algebra.py +629 -0
- sage/manifolds/section.py +3111 -0
- sage/manifolds/section_module.py +831 -0
- sage/manifolds/structure.py +229 -0
- sage/manifolds/subset.py +2721 -0
- sage/manifolds/subsets/all.py +1 -0
- sage/manifolds/subsets/closure.py +131 -0
- sage/manifolds/subsets/pullback.py +883 -0
- sage/manifolds/topological_submanifold.py +891 -0
- sage/manifolds/trivialization.py +733 -0
- sage/manifolds/utilities.py +1348 -0
- sage/manifolds/vector_bundle.py +1347 -0
- sage/manifolds/vector_bundle_fiber.py +332 -0
- sage/manifolds/vector_bundle_fiber_element.py +111 -0
- sage/matrix/all__sagemath_symbolics.py +1 -0
- sage/matrix/matrix_symbolic_dense.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_symbolic_dense.pxd +6 -0
- sage/matrix/matrix_symbolic_dense.pyx +1030 -0
- sage/matrix/matrix_symbolic_sparse.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_symbolic_sparse.pxd +6 -0
- sage/matrix/matrix_symbolic_sparse.pyx +1038 -0
- sage/modules/all__sagemath_symbolics.py +1 -0
- sage/modules/vector_callable_symbolic_dense.py +105 -0
- sage/modules/vector_symbolic_dense.py +116 -0
- sage/modules/vector_symbolic_sparse.py +118 -0
- sage/rings/all__sagemath_symbolics.py +4 -0
- sage/rings/asymptotic/all.py +6 -0
- sage/rings/asymptotic/asymptotic_expansion_generators.py +1485 -0
- sage/rings/asymptotic/asymptotic_ring.py +4858 -0
- sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py +4106 -0
- sage/rings/asymptotic/growth_group.py +5373 -0
- sage/rings/asymptotic/growth_group_cartesian.py +1400 -0
- sage/rings/asymptotic/term_monoid.py +5205 -0
- sage/rings/function_field/all__sagemath_symbolics.py +2 -0
- sage/rings/polynomial/all__sagemath_symbolics.py +1 -0
- sage/symbolic/all.py +15 -0
- sage/symbolic/assumptions.py +987 -0
- sage/symbolic/benchmark.py +93 -0
- sage/symbolic/callable.py +456 -0
- sage/symbolic/callable.pyi +66 -0
- sage/symbolic/comparison_impl.pyi +38 -0
- sage/symbolic/complexity_measures.py +35 -0
- sage/symbolic/constants.py +1286 -0
- sage/symbolic/constants_c_impl.pyi +10 -0
- sage/symbolic/expression_conversion_algebraic.py +310 -0
- sage/symbolic/expression_conversion_sympy.py +317 -0
- sage/symbolic/expression_conversions.py +1727 -0
- sage/symbolic/function_factory.py +355 -0
- sage/symbolic/function_factory.pyi +41 -0
- sage/symbolic/getitem_impl.pyi +24 -0
- sage/symbolic/integration/all.py +1 -0
- sage/symbolic/integration/external.py +271 -0
- sage/symbolic/integration/integral.py +1075 -0
- sage/symbolic/maxima_wrapper.py +162 -0
- sage/symbolic/operators.py +267 -0
- sage/symbolic/operators.pyi +61 -0
- sage/symbolic/pynac_constant_impl.pyi +13 -0
- sage/symbolic/pynac_function_impl.pyi +8 -0
- sage/symbolic/random_tests.py +461 -0
- sage/symbolic/relation.py +2062 -0
- sage/symbolic/ring.cpython-314t-aarch64-linux-musl.so +0 -0
- sage/symbolic/ring.pxd +5 -0
- sage/symbolic/ring.pyi +110 -0
- sage/symbolic/ring.pyx +1393 -0
- sage/symbolic/series_impl.pyi +10 -0
- sage/symbolic/subring.py +1025 -0
- sage/symbolic/symengine.py +19 -0
- sage/symbolic/tests.py +40 -0
- sage/symbolic/units.py +1468 -0
|
@@ -0,0 +1,1021 @@
|
|
|
1
|
+
// Latex printing for MAGMA objects.
|
|
2
|
+
|
|
3
|
+
/***************************************************************
|
|
4
|
+
|
|
5
|
+
Copyright (C) 2006 William Stein <wstein@ucsd.edu>
|
|
6
|
+
2006 Jennifer Balakrishnan <jenb@mit.edu>
|
|
7
|
+
|
|
8
|
+
Distributed under the terms of the GNU General Public License (GPL)
|
|
9
|
+
|
|
10
|
+
***************************************************************/
|
|
11
|
+
|
|
12
|
+
/*
|
|
13
|
+
This converts MAGMA output to LaTeX. It's a work-in-progress that
|
|
14
|
+
currently handles a few basic types, matrices, polynomials,
|
|
15
|
+
power series, binary quadratic forms, elements of number fields,
|
|
16
|
+
finite fields, certain p-adic rings/fields, points, and elliptic curves.
|
|
17
|
+
*/
|
|
18
|
+
|
|
19
|
+
intrinsic Latex(x::RngIntElt) -> MonStgElt
|
|
20
|
+
{}
|
|
21
|
+
return Sprint(x);
|
|
22
|
+
end intrinsic;
|
|
23
|
+
|
|
24
|
+
intrinsic Latex(x::FldReElt) -> MonStgElt
|
|
25
|
+
{}
|
|
26
|
+
return Sprint(x);
|
|
27
|
+
end intrinsic;
|
|
28
|
+
|
|
29
|
+
intrinsic Latex(x::FldRatElt) -> MonStgElt
|
|
30
|
+
{}
|
|
31
|
+
if Denominator(x) eq 1 then
|
|
32
|
+
return Latex(Numerator(x));
|
|
33
|
+
end if;
|
|
34
|
+
return Sprintf("\\frac{%o}{%o}", Numerator(x), Denominator(x));
|
|
35
|
+
end intrinsic;
|
|
36
|
+
|
|
37
|
+
Letters:={@
|
|
38
|
+
"$.1",
|
|
39
|
+
"alpha",
|
|
40
|
+
"beta",
|
|
41
|
+
"gamma",
|
|
42
|
+
"delta",
|
|
43
|
+
"epsilon",
|
|
44
|
+
"varepsilon",
|
|
45
|
+
"zeta",
|
|
46
|
+
"eta",
|
|
47
|
+
"theta",
|
|
48
|
+
"theta",
|
|
49
|
+
"vartheta",
|
|
50
|
+
"iota",
|
|
51
|
+
"kappa",
|
|
52
|
+
"lambda",
|
|
53
|
+
"mu",
|
|
54
|
+
"nu",
|
|
55
|
+
"xi",
|
|
56
|
+
"pi",
|
|
57
|
+
"varpi",
|
|
58
|
+
"rho",
|
|
59
|
+
"varrho",
|
|
60
|
+
"sigma",
|
|
61
|
+
"varsigma",
|
|
62
|
+
"tau",
|
|
63
|
+
"upsilon",
|
|
64
|
+
"phi",
|
|
65
|
+
"varphi",
|
|
66
|
+
"chi",
|
|
67
|
+
"psi",
|
|
68
|
+
"omega",
|
|
69
|
+
"Gamma",
|
|
70
|
+
"Delta",
|
|
71
|
+
"Theta",
|
|
72
|
+
"Lambda",
|
|
73
|
+
"Xi",
|
|
74
|
+
"Pi",
|
|
75
|
+
"Sigma",
|
|
76
|
+
"Upsilon",
|
|
77
|
+
"Phi",
|
|
78
|
+
"Psi" @};
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
intrinsic Latex(x::RngPadElt) -> MonStgElt
|
|
82
|
+
{}
|
|
83
|
+
z := Integers()!x;
|
|
84
|
+
p := Prime(Parent(x));
|
|
85
|
+
l := p^(Degree(Parent(x)));
|
|
86
|
+
i := 0;
|
|
87
|
+
j :=AbsolutePrecision(x);
|
|
88
|
+
s := "";
|
|
89
|
+
if IsPrime(l) then
|
|
90
|
+
|
|
91
|
+
while z ne 0 and i eq 0 do
|
|
92
|
+
c := z mod p;
|
|
93
|
+
if c ne 0 then
|
|
94
|
+
s *:= Sprintf("%o+", c);
|
|
95
|
+
end if;
|
|
96
|
+
z := z div p;
|
|
97
|
+
i := i + 1;
|
|
98
|
+
end while;
|
|
99
|
+
|
|
100
|
+
while z ne 0 and i eq 1 do
|
|
101
|
+
c := z mod p;
|
|
102
|
+
if c ne 0 then
|
|
103
|
+
if c ne 1 then
|
|
104
|
+
s *:= Sprintf("%o\\cdot{}", c);
|
|
105
|
+
end if;
|
|
106
|
+
s *:= Sprintf("%o^{%o} + ", p, i);
|
|
107
|
+
end if;
|
|
108
|
+
z := z div p;
|
|
109
|
+
i := i + 1;
|
|
110
|
+
end while;
|
|
111
|
+
|
|
112
|
+
while z ne 0 and i lt Precision(Parent(x)) do
|
|
113
|
+
c := z mod p;
|
|
114
|
+
if c ne 0 then
|
|
115
|
+
if c ne 1 then
|
|
116
|
+
s *:= Sprintf("%o\\cdot{}", c);
|
|
117
|
+
end if;
|
|
118
|
+
s *:= Sprintf("%o^{%o} + ", p, i);
|
|
119
|
+
end if;
|
|
120
|
+
z := z div p;
|
|
121
|
+
i := i + 1;
|
|
122
|
+
end while;
|
|
123
|
+
|
|
124
|
+
else return Sprintf("\\mbox{\\rm %o}", x);
|
|
125
|
+
end if;
|
|
126
|
+
s *:= Sprintf("O(%o^{%o})", p, j);
|
|
127
|
+
return s;
|
|
128
|
+
end intrinsic;
|
|
129
|
+
|
|
130
|
+
intrinsic Latex(x::FldPadElt) -> MonStgElt
|
|
131
|
+
{}
|
|
132
|
+
v := Valuation(x);
|
|
133
|
+
z := RationalField()!x;
|
|
134
|
+
p := Prime(Parent(x));
|
|
135
|
+
l := p^(Degree(Parent(x)));
|
|
136
|
+
i := 0;
|
|
137
|
+
j :=AbsolutePrecision(x);
|
|
138
|
+
s := "";
|
|
139
|
+
if IsPrime(l) then
|
|
140
|
+
|
|
141
|
+
z:=Numerator(z);
|
|
142
|
+
while z ne 0 and i eq 0 do
|
|
143
|
+
c := z mod p;
|
|
144
|
+
if c ne 0 then
|
|
145
|
+
if c ne 1 then
|
|
146
|
+
s *:= Sprintf("%o", c);
|
|
147
|
+
end if;
|
|
148
|
+
if i+v ne 0 then
|
|
149
|
+
s*:= Sprintf("\\cdot{}%o^{%o} + ",p, i+v);
|
|
150
|
+
else if c ne 0 and c ne 1 then
|
|
151
|
+
s*:= Sprintf("+ ");
|
|
152
|
+
else if c eq 1 then
|
|
153
|
+
s*:= Sprintf("1 + ");
|
|
154
|
+
end if;
|
|
155
|
+
end if;
|
|
156
|
+
end if;
|
|
157
|
+
end if;
|
|
158
|
+
z := z div p;
|
|
159
|
+
i := i + 1;
|
|
160
|
+
end while;
|
|
161
|
+
|
|
162
|
+
while z ne 0 and i eq 1 do
|
|
163
|
+
c := z mod p;
|
|
164
|
+
if c ne 0 then
|
|
165
|
+
if c ne 1 then
|
|
166
|
+
s *:= Sprintf("%o", c);
|
|
167
|
+
end if;
|
|
168
|
+
if i+v ne 0 then
|
|
169
|
+
s *:= Sprintf("\\cdot{}%o^{%o} + ", p, i+v);
|
|
170
|
+
else if c ne 0 and c ne 1 then
|
|
171
|
+
s*:=Sprintf("+ ");
|
|
172
|
+
else if c eq 1 then
|
|
173
|
+
s*:=Sprintf("1 + ");
|
|
174
|
+
end if;
|
|
175
|
+
end if;
|
|
176
|
+
end if;
|
|
177
|
+
end if;
|
|
178
|
+
z := z div p;
|
|
179
|
+
i := i + 1;
|
|
180
|
+
end while;
|
|
181
|
+
|
|
182
|
+
while z ne 0 and i lt Precision(Parent(x)) do
|
|
183
|
+
c := z mod p;
|
|
184
|
+
if c ne 0 then
|
|
185
|
+
if c ne 1 then
|
|
186
|
+
s *:= Sprintf("%o", c);
|
|
187
|
+
end if;
|
|
188
|
+
if i+v ne 0 then
|
|
189
|
+
s *:= Sprintf("\\cdot{}%o^{%o} + ", p, i+v);
|
|
190
|
+
else if c ne 0 and c ne 1 then
|
|
191
|
+
s*:= Sprintf("+ ");
|
|
192
|
+
else if c eq 1 then
|
|
193
|
+
s*:= Sprintf("1 + ");
|
|
194
|
+
end if;
|
|
195
|
+
end if;
|
|
196
|
+
end if;
|
|
197
|
+
end if;
|
|
198
|
+
z := z div p;
|
|
199
|
+
i := i + 1;
|
|
200
|
+
end while;
|
|
201
|
+
else return Sprintf("\\text{%o}",x);
|
|
202
|
+
|
|
203
|
+
end if;
|
|
204
|
+
s *:= Sprintf("O(%o^{%o})", p, j);
|
|
205
|
+
return s;
|
|
206
|
+
end intrinsic;
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
function S(x)
|
|
210
|
+
if x gt 0 then
|
|
211
|
+
return "+";
|
|
212
|
+
end if;
|
|
213
|
+
if x lt 0 then
|
|
214
|
+
return "-";
|
|
215
|
+
end if;
|
|
216
|
+
if x eq 0 then
|
|
217
|
+
return "";
|
|
218
|
+
end if;
|
|
219
|
+
end function;
|
|
220
|
+
|
|
221
|
+
function Abs(x)
|
|
222
|
+
return Latex(AbsoluteValue(x));
|
|
223
|
+
end function;
|
|
224
|
+
|
|
225
|
+
intrinsic Latex(f::RngUPolElt) -> MonStgElt
|
|
226
|
+
{}
|
|
227
|
+
if Sprintf("%o",Parent(f).1) in Letters then
|
|
228
|
+
x:=Sprintf("\\%o",Parent(f).1);
|
|
229
|
+
else x:=Sprintf("%o",Parent(f).1);
|
|
230
|
+
end if;
|
|
231
|
+
v := Eltseq(f);
|
|
232
|
+
if v[1] ne 0 then
|
|
233
|
+
s :=Abs(v[1]);
|
|
234
|
+
else s:= "";
|
|
235
|
+
end if;
|
|
236
|
+
|
|
237
|
+
if s eq "" then
|
|
238
|
+
|
|
239
|
+
if AbsoluteValue(v[2]) eq 1 then
|
|
240
|
+
s:= Sprintf("%o",x) * s;
|
|
241
|
+
else if v[2] eq 0 then
|
|
242
|
+
s := S(v[1])*s;
|
|
243
|
+
else if v[2] ne 0 then
|
|
244
|
+
s := Abs(v[2]) * Sprintf("%o",x) *S(v[1])* s;
|
|
245
|
+
end if;
|
|
246
|
+
end if;
|
|
247
|
+
end if;
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
else if AbsoluteValue(v[2]) eq 1 then
|
|
251
|
+
s:= Sprintf("%o",x) * S(v[1])* s;
|
|
252
|
+
else if v[2] eq 0 then
|
|
253
|
+
s := S(v[1])*s;
|
|
254
|
+
else if v[2] ne 0 then
|
|
255
|
+
s := Abs(v[2]) * Sprintf("%o",x) *S(v[1])* s;
|
|
256
|
+
end if;
|
|
257
|
+
end if;
|
|
258
|
+
end if;
|
|
259
|
+
|
|
260
|
+
end if;
|
|
261
|
+
|
|
262
|
+
for i in [3..#v-1] do
|
|
263
|
+
if s eq "" then
|
|
264
|
+
|
|
265
|
+
if AbsoluteValue(v[i]) eq 1 then
|
|
266
|
+
s:= Sprintf("%o",x)* Sprintf("^{%o}", i-1) * S(v[i-1]) * s;
|
|
267
|
+
else
|
|
268
|
+
|
|
269
|
+
if v[i] eq 0 then
|
|
270
|
+
s := S(v[i-1])*s;
|
|
271
|
+
|
|
272
|
+
else
|
|
273
|
+
|
|
274
|
+
if v[i] ne 0 then
|
|
275
|
+
s := Abs(v[i]) * Sprintf("%o",x) * Sprintf("^{%o}", i-1) * S(v[i-1]) * s;
|
|
276
|
+
end if;
|
|
277
|
+
end if;
|
|
278
|
+
end if;
|
|
279
|
+
|
|
280
|
+
else
|
|
281
|
+
if AbsoluteValue(v[i]) eq 1 then
|
|
282
|
+
s:= Sprintf("%o",x) * Sprintf("^{%o}", i-1) * S(v[i-1]) * s;
|
|
283
|
+
else
|
|
284
|
+
|
|
285
|
+
if v[i] eq 0 then
|
|
286
|
+
s := S(v[i-1])*s;
|
|
287
|
+
|
|
288
|
+
else
|
|
289
|
+
|
|
290
|
+
if v[i] ne 0 then
|
|
291
|
+
s := Abs(v[i]) * Sprintf("%o",x)*Sprintf("^{%o}", i-1) *S(v[i-1])* s;
|
|
292
|
+
end if;
|
|
293
|
+
end if;
|
|
294
|
+
end if;
|
|
295
|
+
end if;
|
|
296
|
+
|
|
297
|
+
end for;
|
|
298
|
+
|
|
299
|
+
if #v eq 2 then
|
|
300
|
+
if S(v[2]) eq "-" then
|
|
301
|
+
s := S(v[2])*s;
|
|
302
|
+
end if;
|
|
303
|
+
end if;
|
|
304
|
+
|
|
305
|
+
if #v gt 2 then
|
|
306
|
+
if AbsoluteValue(v[#v]) eq 1 then
|
|
307
|
+
if S(v[#v]) eq "-" then
|
|
308
|
+
s:= Sprintf("-%o",x)* Sprintf("^{%o}", #v-1)*S(v[#v-1])*s;
|
|
309
|
+
else s:=Sprintf("%o",x)* Sprintf("^{%o}", #v-1)*S(v[#v-1])*s;
|
|
310
|
+
end if;
|
|
311
|
+
else
|
|
312
|
+
|
|
313
|
+
if v[#v] ne 0 then
|
|
314
|
+
if S(v[#v]) eq "-" then
|
|
315
|
+
s := S(v[#v])*Abs(v[#v])*Sprintf("x")
|
|
316
|
+
*Sprintf("^{%o}", #v-1) *S(v[#v-1])* s;
|
|
317
|
+
else s := Abs(v[#v])*Sprintf("%o",x)*Sprintf("^{%o}", #v-1) *S(v[#v-1])* s;
|
|
318
|
+
end if;
|
|
319
|
+
end if;
|
|
320
|
+
end if;
|
|
321
|
+
end if;
|
|
322
|
+
|
|
323
|
+
return s;
|
|
324
|
+
end intrinsic;
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
intrinsic Latex(f::RngSerElt) -> MonStgElt
|
|
328
|
+
{}
|
|
329
|
+
s:="";
|
|
330
|
+
n:=AbsolutePrecision(f);
|
|
331
|
+
d:=Degree(LeadingTerm(f));
|
|
332
|
+
v:=ElementToSequence(f);
|
|
333
|
+
m:=#v;
|
|
334
|
+
if Sprintf("%o",Parent(f).1) in Letters then
|
|
335
|
+
zn:=Sprintf("\\%o",Parent(f).1);
|
|
336
|
+
else zn:=Sprintf("%o",Parent(f).1);
|
|
337
|
+
end if;
|
|
338
|
+
|
|
339
|
+
if d eq 0 then
|
|
340
|
+
if v[1] ne 0 then
|
|
341
|
+
s:=s*Latex(v[1]);
|
|
342
|
+
end if;
|
|
343
|
+
|
|
344
|
+
if v[2] ne 0 then
|
|
345
|
+
if s eq "" then
|
|
346
|
+
if AbsoluteValue(v[2]) eq 1 then
|
|
347
|
+
if S(v[2]) eq "-" then
|
|
348
|
+
s:= s*S(v[2])*Sprintf("%o",zn);
|
|
349
|
+
else s:= s*Sprintf("%o",zn);
|
|
350
|
+
end if;
|
|
351
|
+
else if S(v[2]) eq "-" then
|
|
352
|
+
s:= s*S(v[2])*Abs(v[2])*Sprintf("%o",zn);
|
|
353
|
+
else s:= s*Abs(v[2])*Sprintf("%o",zn);
|
|
354
|
+
end if;
|
|
355
|
+
end if;
|
|
356
|
+
else if AbsoluteValue(v[2]) eq 1 then
|
|
357
|
+
s:= s*S(v[2])*Sprintf("%o",zn);
|
|
358
|
+
else s:= s*S(v[2])*Abs(v[2])*Sprintf("%o",zn);
|
|
359
|
+
end if;
|
|
360
|
+
end if;
|
|
361
|
+
end if;
|
|
362
|
+
|
|
363
|
+
for i in [3..m] do
|
|
364
|
+
if v[i] ne 0 then
|
|
365
|
+
if s eq "" then
|
|
366
|
+
if AbsoluteValue(v[i]) eq 1 then
|
|
367
|
+
if S(v[i]) eq "-" then
|
|
368
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
369
|
+
else s:= s*Sprintf("%o^{%o}",zn,i-1);
|
|
370
|
+
end if;
|
|
371
|
+
else if S(v[i]) eq "-" then
|
|
372
|
+
s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
373
|
+
else s:= s*Abs(v[i])*Sprintf("%o^{%o-1}",zn,i-1);
|
|
374
|
+
end if;
|
|
375
|
+
end if;
|
|
376
|
+
else if AbsoluteValue(v[i]) eq 1 then
|
|
377
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
378
|
+
else s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
379
|
+
end if;
|
|
380
|
+
end if;
|
|
381
|
+
end if;
|
|
382
|
+
end for;
|
|
383
|
+
|
|
384
|
+
else if d eq 1 then
|
|
385
|
+
|
|
386
|
+
if v[1] ne 0 then
|
|
387
|
+
if s eq "" then
|
|
388
|
+
if AbsoluteValue(v[1]) eq 1 then
|
|
389
|
+
if S(v[1]) eq "-" then
|
|
390
|
+
s:= s*S(v[1])*Sprintf("%o",zn);
|
|
391
|
+
else s:= s*Sprintf("%o",zn);
|
|
392
|
+
end if;
|
|
393
|
+
else if S(v[1]) eq "-" then
|
|
394
|
+
s:= s*S(v[1])*Abs(v[1])*Sprintf("%o",zn);
|
|
395
|
+
else s:= s*Abs(v[1])*Sprintf("%o",zn);
|
|
396
|
+
end if;
|
|
397
|
+
end if;
|
|
398
|
+
else if AbsoluteValue(v[1]) eq 1 then
|
|
399
|
+
s:= s*S(v[1])*Sprintf("%o",zn);
|
|
400
|
+
else s:= s*S(v[1])*Abs(v[1])*Sprintf("%o",zn);
|
|
401
|
+
end if;
|
|
402
|
+
end if;
|
|
403
|
+
end if;
|
|
404
|
+
|
|
405
|
+
for i in [2..m] do
|
|
406
|
+
if v[i] ne 0 then
|
|
407
|
+
if s eq "" then
|
|
408
|
+
if AbsoluteValue(v[i]) eq 1 then
|
|
409
|
+
if S(v[i]) eq "-" then
|
|
410
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i);
|
|
411
|
+
else s:= s*Sprintf("%o^{%o}",zn,i);
|
|
412
|
+
end if;
|
|
413
|
+
else if S(v[i]) eq "-" then
|
|
414
|
+
s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i);
|
|
415
|
+
else s:= s*Abs(v[i])*Sprintf("%o^{%o}",zn,i);
|
|
416
|
+
end if;
|
|
417
|
+
end if;
|
|
418
|
+
else if AbsoluteValue(v[i]) eq 1 then
|
|
419
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i);
|
|
420
|
+
else s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i);
|
|
421
|
+
end if;
|
|
422
|
+
end if;
|
|
423
|
+
end if;
|
|
424
|
+
end for;
|
|
425
|
+
else for i in [1..m] do
|
|
426
|
+
if v[i] ne 0 then
|
|
427
|
+
if s eq "" then
|
|
428
|
+
if AbsoluteValue(v[i]) eq 1 then
|
|
429
|
+
if S(v[i]) eq "-" then
|
|
430
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,d+i-1);
|
|
431
|
+
else s:= s*Sprintf("%o^{%o}",zn,d+i-1);
|
|
432
|
+
end if;
|
|
433
|
+
else if S(v[i]) eq "-" then
|
|
434
|
+
s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,d+i-1);
|
|
435
|
+
else s:= s*Abs(v[i])*Sprintf("%o^{%o}",zn,d+i-1);
|
|
436
|
+
end if;
|
|
437
|
+
end if;
|
|
438
|
+
else if AbsoluteValue(v[i]) eq 1 then
|
|
439
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,d+i-1);
|
|
440
|
+
else s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,d+i-1);
|
|
441
|
+
end if;
|
|
442
|
+
end if;
|
|
443
|
+
end if;
|
|
444
|
+
end for;
|
|
445
|
+
end if;
|
|
446
|
+
end if;
|
|
447
|
+
|
|
448
|
+
s:=s*Sprintf("+O(%o^{%o})",zn,n);
|
|
449
|
+
return s;
|
|
450
|
+
end intrinsic;
|
|
451
|
+
|
|
452
|
+
intrinsic Latex(E::CrvEll) -> MonStgElt
|
|
453
|
+
{}
|
|
454
|
+
v:=aInvariants(E);
|
|
455
|
+
|
|
456
|
+
s:="y^2";
|
|
457
|
+
|
|
458
|
+
if v[1] ne 0 then
|
|
459
|
+
if AbsoluteValue(v[1]) eq 1 then
|
|
460
|
+
s:=s*S(v[1])*Sprintf("xy");
|
|
461
|
+
else
|
|
462
|
+
s:= s*S(v[1])*Abs(v[1])*Sprintf("xy");
|
|
463
|
+
end if;
|
|
464
|
+
end if;
|
|
465
|
+
|
|
466
|
+
if v[3] ne 0 then
|
|
467
|
+
if AbsoluteValue(v[3]) eq 1 then
|
|
468
|
+
s:=s*S(v[3])*Sprintf("y");
|
|
469
|
+
else
|
|
470
|
+
s:=s*S(v[3])*Abs(v[3])*Sprintf("y");
|
|
471
|
+
end if;
|
|
472
|
+
end if;
|
|
473
|
+
|
|
474
|
+
s:=s*Sprintf("=x^3");
|
|
475
|
+
|
|
476
|
+
if v[2] ne 0 then
|
|
477
|
+
if AbsoluteValue(v[2]) eq 1 then
|
|
478
|
+
s:= s*S(v[2])*Sprintf("x^2");
|
|
479
|
+
else
|
|
480
|
+
s:=s*S(v[2])*Abs(v[2])*Sprintf("x^2");
|
|
481
|
+
end if;
|
|
482
|
+
end if;
|
|
483
|
+
|
|
484
|
+
if v[4] ne 0 then
|
|
485
|
+
if AbsoluteValue(v[4]) eq 1 then
|
|
486
|
+
s:=s*S(v[4])*Sprintf("x");
|
|
487
|
+
else
|
|
488
|
+
s:=s*S(v[4])*Abs(v[4])*Sprintf("x");
|
|
489
|
+
end if;
|
|
490
|
+
end if;
|
|
491
|
+
|
|
492
|
+
if v[5] ne 0 then
|
|
493
|
+
s:=s*S(v[5])*Abs(v[5]);
|
|
494
|
+
end if;
|
|
495
|
+
|
|
496
|
+
return s;
|
|
497
|
+
end intrinsic;
|
|
498
|
+
|
|
499
|
+
intrinsic Latex(f::FldFunRatElt) -> MonStgElt
|
|
500
|
+
{}
|
|
501
|
+
if Denominator(f) eq 1 then
|
|
502
|
+
return Latex(Numerator(f));
|
|
503
|
+
end if;
|
|
504
|
+
return Sprintf("\\frac{%o}{%o}", Latex(Numerator(f)), Latex(Denominator(f)));
|
|
505
|
+
end intrinsic;
|
|
506
|
+
|
|
507
|
+
intrinsic Latex(f::QuadBinElt) -> MonStgElt
|
|
508
|
+
{}
|
|
509
|
+
s:="";
|
|
510
|
+
if AbsoluteValue(f[1]) eq 1 then
|
|
511
|
+
if S(f[1]) eq "-" then
|
|
512
|
+
s:= s*Sprintf("-x^2");
|
|
513
|
+
else s:= s*Sprintf("x^2");
|
|
514
|
+
end if;
|
|
515
|
+
else
|
|
516
|
+
if S(f[1]) eq "-" then
|
|
517
|
+
s:= s*S(f[1])*Abs(f[1])*Sprintf("x^2");
|
|
518
|
+
else s:= s*Abs(f[1])*Sprintf("x^2");
|
|
519
|
+
end if;
|
|
520
|
+
end if;
|
|
521
|
+
|
|
522
|
+
if f[2] ne 0 then
|
|
523
|
+
if AbsoluteValue(f[2]) eq 1 then
|
|
524
|
+
s:=s*S(f[2])*Sprintf("xy");
|
|
525
|
+
else
|
|
526
|
+
s:=s*S(f[2])*Abs(f[2])*Sprintf("xy");
|
|
527
|
+
end if;
|
|
528
|
+
end if;
|
|
529
|
+
|
|
530
|
+
if AbsoluteValue(f[3]) eq 1 then
|
|
531
|
+
s:=s*S(f[3])*Sprintf("y^2");
|
|
532
|
+
else
|
|
533
|
+
s:= s*S(f[3])*Abs(f[3])*Sprintf("y^2");
|
|
534
|
+
end if;
|
|
535
|
+
return s;
|
|
536
|
+
end intrinsic;
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
intrinsic Latex(M::Mtrx) -> MonStgElt
|
|
540
|
+
{}
|
|
541
|
+
m:=NumberOfRows(M);
|
|
542
|
+
n:=NumberOfColumns(M);
|
|
543
|
+
s:=Sprintf("\\left(\\begin{array}{");
|
|
544
|
+
for i in [1..n] do
|
|
545
|
+
s := s * Sprintf("c");
|
|
546
|
+
end for;
|
|
547
|
+
s:= s * Sprintf("}");
|
|
548
|
+
for i in [1..m-1] do
|
|
549
|
+
for j in [1..n-1] do
|
|
550
|
+
s := s * Latex(M[i,j]) * Sprintf("&");
|
|
551
|
+
end for;
|
|
552
|
+
s := s * Latex(M[i,n]) * Sprintf("\\\\");
|
|
553
|
+
end for;
|
|
554
|
+
|
|
555
|
+
for j in [1..n-1] do
|
|
556
|
+
s := s * Latex(M[m,j]) * Sprintf("&");
|
|
557
|
+
end for;
|
|
558
|
+
s := s * Latex(M[m,n]) * "\\end{array}\\right)";
|
|
559
|
+
return s;
|
|
560
|
+
end intrinsic;
|
|
561
|
+
|
|
562
|
+
intrinsic Latex(P::PtEll) -> MonStgElt
|
|
563
|
+
{}
|
|
564
|
+
return Sprintf("(%o,%o)",Latex(P[1]),Latex(P[2]));
|
|
565
|
+
|
|
566
|
+
end intrinsic;
|
|
567
|
+
|
|
568
|
+
intrinsic Latex(P::Pt) -> MonStgElt
|
|
569
|
+
{}
|
|
570
|
+
n:=#Coordinates(P);
|
|
571
|
+
s:="(";
|
|
572
|
+
for i in [1..n-1] do
|
|
573
|
+
s:=s*Latex(P[i])*Sprintf(",");
|
|
574
|
+
end for;
|
|
575
|
+
s:=s*Latex(P[n])*Sprintf(")");
|
|
576
|
+
return s;
|
|
577
|
+
end intrinsic;
|
|
578
|
+
|
|
579
|
+
intrinsic Latex(a::FldQuadElt) -> MonStgElt
|
|
580
|
+
{}
|
|
581
|
+
s:="";
|
|
582
|
+
v:=ElementToSequence(a);
|
|
583
|
+
D:=Discriminant(Parent(a))/4;
|
|
584
|
+
|
|
585
|
+
if v[1] ne 0 then
|
|
586
|
+
s:=s*Latex(v[1]);
|
|
587
|
+
end if;
|
|
588
|
+
|
|
589
|
+
if v[2] ne 0 then
|
|
590
|
+
if s eq "" then
|
|
591
|
+
if AbsoluteValue(v[2]) eq 1 then
|
|
592
|
+
if S(v[2]) eq "-" then
|
|
593
|
+
s:= s*S(v[2])*Sprintf("\\sqrt{%o}",D);
|
|
594
|
+
else s:= s*Sprintf("\\sqrt{%o}",D);
|
|
595
|
+
end if;
|
|
596
|
+
else if S(v[2]) eq "-" then
|
|
597
|
+
s:= s*S(v[2])*Abs(v[2])*Sprintf("\\sqrt{%o}",D);
|
|
598
|
+
else s:= s*Abs(v[2])*Sprintf("\\sqrt{%o}",D);
|
|
599
|
+
end if;
|
|
600
|
+
end if;
|
|
601
|
+
else if AbsoluteValue(v[2]) eq 1 then
|
|
602
|
+
s:= s*S(v[2])*Sprintf("\\sqrt{%o}",D);
|
|
603
|
+
else s:= s*S(v[2])*Abs(v[2])*Sprintf("\\sqrt{%o}",D);
|
|
604
|
+
end if;
|
|
605
|
+
end if;
|
|
606
|
+
end if;
|
|
607
|
+
return s;
|
|
608
|
+
end intrinsic;
|
|
609
|
+
|
|
610
|
+
intrinsic Latex(a::FldCycElt) -> MonStgElt
|
|
611
|
+
{}
|
|
612
|
+
s:="";
|
|
613
|
+
v:=ElementToSequence(a);
|
|
614
|
+
n:=CyclotomicOrder(Parent(a));
|
|
615
|
+
zn:=Sprintf("\\zeta_{%o}",n);
|
|
616
|
+
m:=Degree(Parent(a));
|
|
617
|
+
|
|
618
|
+
if v[1] ne 0 then
|
|
619
|
+
s:=s*Latex(v[1]);
|
|
620
|
+
end if;
|
|
621
|
+
|
|
622
|
+
if v[2] ne 0 then
|
|
623
|
+
if s eq "" then
|
|
624
|
+
if AbsoluteValue(v[2]) eq 1 then
|
|
625
|
+
if S(v[2]) eq "-" then
|
|
626
|
+
s:= s*S(v[2])*Sprintf("%o",zn);
|
|
627
|
+
else s:= s*Sprintf("%o",zn);
|
|
628
|
+
end if;
|
|
629
|
+
else if S(v[2]) eq "-" then
|
|
630
|
+
s:= s*S(v[2])*Abs(v[2])*Sprintf("%o",zn);
|
|
631
|
+
else s:= s*Abs(v[2])*Sprintf("%o",zn);
|
|
632
|
+
end if;
|
|
633
|
+
end if;
|
|
634
|
+
else if AbsoluteValue(v[2]) eq 1 then
|
|
635
|
+
s:= s*S(v[2])*Sprintf("%o",zn);
|
|
636
|
+
else s:= s*S(v[2])*Abs(v[2])*Sprintf("%o",zn);
|
|
637
|
+
end if;
|
|
638
|
+
end if;
|
|
639
|
+
end if;
|
|
640
|
+
|
|
641
|
+
for i in [3..m-1] do
|
|
642
|
+
if v[i] ne 0 then
|
|
643
|
+
if s eq "" then
|
|
644
|
+
if AbsoluteValue(v[i]) eq 1 then
|
|
645
|
+
if S(v[i]) eq "-" then
|
|
646
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
647
|
+
else s:= s*Sprintf("%o^{%o}",zn,i-1);
|
|
648
|
+
end if;
|
|
649
|
+
else if S(v[i]) eq "-" then
|
|
650
|
+
s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
651
|
+
else s:= s*Abs(v[i])*Sprintf("%o^{%o-1}",zn,i-1);
|
|
652
|
+
end if;
|
|
653
|
+
end if;
|
|
654
|
+
else if AbsoluteValue(v[i]) eq 1 then
|
|
655
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
656
|
+
else s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
657
|
+
end if;
|
|
658
|
+
end if;
|
|
659
|
+
end if;
|
|
660
|
+
end for;
|
|
661
|
+
return s;
|
|
662
|
+
end intrinsic;
|
|
663
|
+
|
|
664
|
+
|
|
665
|
+
intrinsic Latex(a::FldNumElt) -> MonStgElt
|
|
666
|
+
{}
|
|
667
|
+
s:="";
|
|
668
|
+
v:=ElementToSequence(a);
|
|
669
|
+
n:=Degree(Parent(a));
|
|
670
|
+
|
|
671
|
+
if Sprintf("%o",Parent(a).1) in Letters then
|
|
672
|
+
zn:=Sprintf("\\%o",Parent(a).1);
|
|
673
|
+
else zn:=Sprintf("%o",Parent(a).1);
|
|
674
|
+
end if;
|
|
675
|
+
|
|
676
|
+
if v[1] ne 0 then
|
|
677
|
+
s:=s*Latex(v[1]);
|
|
678
|
+
end if;
|
|
679
|
+
|
|
680
|
+
if v[2] ne 0 then
|
|
681
|
+
if s eq "" then
|
|
682
|
+
if AbsoluteValue(v[2]) eq 1 then
|
|
683
|
+
if S(v[2]) eq "-" then
|
|
684
|
+
s:= s*S(v[2])*Sprintf("%o",zn);
|
|
685
|
+
else s:= s*Sprintf("%o",zn);
|
|
686
|
+
end if;
|
|
687
|
+
else if S(v[2]) eq "-" then
|
|
688
|
+
s:= s*S(v[2])*Abs(v[2])*Sprintf("%o",zn);
|
|
689
|
+
else s:= s*Abs(v[2])*Sprintf("%o",zn);
|
|
690
|
+
end if;
|
|
691
|
+
end if;
|
|
692
|
+
else if AbsoluteValue(v[2]) eq 1 then
|
|
693
|
+
s:= s*S(v[2])*Sprintf("%o",zn);
|
|
694
|
+
else s:= s*S(v[2])*Abs(v[2])*Sprintf("%o",zn);
|
|
695
|
+
end if;
|
|
696
|
+
end if;
|
|
697
|
+
end if;
|
|
698
|
+
|
|
699
|
+
for i in [3..n] do
|
|
700
|
+
if v[i] ne 0 then
|
|
701
|
+
if s eq "" then
|
|
702
|
+
if AbsoluteValue(v[i]) eq 1 then
|
|
703
|
+
if S(v[i]) eq "-" then
|
|
704
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
705
|
+
else s:= s*Sprintf("%o^{%o}",zn,i-1);
|
|
706
|
+
end if;
|
|
707
|
+
else if S(v[i]) eq "-" then
|
|
708
|
+
s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
709
|
+
else s:= s*Abs(v[i])*Sprintf("%o^{%o-1}",zn,i-1);
|
|
710
|
+
end if;
|
|
711
|
+
end if;
|
|
712
|
+
else if AbsoluteValue(v[i]) eq 1 then
|
|
713
|
+
s:= s*S(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
714
|
+
else s:= s*S(v[i])*Abs(v[i])*Sprintf("%o^{%o}",zn,i-1);
|
|
715
|
+
end if;
|
|
716
|
+
end if;
|
|
717
|
+
end if;
|
|
718
|
+
end for;
|
|
719
|
+
return s;
|
|
720
|
+
end intrinsic;
|
|
721
|
+
|
|
722
|
+
intrinsic Latex(K::FldFin) -> MonStgElt
|
|
723
|
+
{}
|
|
724
|
+
p := Characteristic(K);
|
|
725
|
+
n := Degree(K);
|
|
726
|
+
s := Sprintf("\\mathbf{F}_{{%o}",p);
|
|
727
|
+
if n gt 1 then
|
|
728
|
+
s *:= Sprintf("^{%o}}",n);
|
|
729
|
+
else
|
|
730
|
+
s *:= "}";
|
|
731
|
+
end if;
|
|
732
|
+
return s;
|
|
733
|
+
end intrinsic;
|
|
734
|
+
|
|
735
|
+
intrinsic Latex(a::FldFinElt) -> MonStgElt
|
|
736
|
+
{}
|
|
737
|
+
s:="";
|
|
738
|
+
v:=ElementToSequence(a);
|
|
739
|
+
m:=#v;
|
|
740
|
+
n:=#(Parent(a));
|
|
741
|
+
if IsPrime(n) then
|
|
742
|
+
return Sprint(a);
|
|
743
|
+
else
|
|
744
|
+
if Sprintf("%o",Parent(a).1) in Letters then
|
|
745
|
+
zn:=Sprintf("\\%o",Parent(a).1);
|
|
746
|
+
else zn:=Sprintf("%o",Parent(a).1);
|
|
747
|
+
end if;
|
|
748
|
+
end if;
|
|
749
|
+
|
|
750
|
+
if v[1] ne (Parent(a))!0 then
|
|
751
|
+
s:=s*Sprintf("%o", v[1]);
|
|
752
|
+
end if;
|
|
753
|
+
|
|
754
|
+
if v[2] ne (Parent(a))!0 then
|
|
755
|
+
if s eq "" then
|
|
756
|
+
if v[2] eq Parent(a)!1 then
|
|
757
|
+
s:= s*Sprintf("%o",zn);
|
|
758
|
+
else
|
|
759
|
+
s:= s*Sprintf("%o%o",v[2],zn);
|
|
760
|
+
end if;
|
|
761
|
+
else
|
|
762
|
+
if v[2] eq Parent(a)!1 then
|
|
763
|
+
s:= s*Sprintf("+%o",zn);
|
|
764
|
+
else
|
|
765
|
+
s:= s*Sprintf("+%o%o",v[2],zn);
|
|
766
|
+
end if;
|
|
767
|
+
end if;
|
|
768
|
+
end if;
|
|
769
|
+
|
|
770
|
+
for i in [3..m] do
|
|
771
|
+
if v[i] ne Parent(a)!0 then
|
|
772
|
+
if s eq "" then
|
|
773
|
+
if v[i] eq Parent(a)!1 then
|
|
774
|
+
s:= s*Sprintf("%o^{%o}",zn,i-1);
|
|
775
|
+
else
|
|
776
|
+
s:= s*Sprintf("%o%o^{%o-1}",v[i],zn,i-1);
|
|
777
|
+
end if;
|
|
778
|
+
else
|
|
779
|
+
if v[i] eq Parent(a)!1 then
|
|
780
|
+
s:= s*Sprintf("+%o^{%o}",zn,i-1);
|
|
781
|
+
else s:= s*Sprintf("+%o%o^{%o}",v[i],zn,i-1);
|
|
782
|
+
end if;
|
|
783
|
+
end if;
|
|
784
|
+
end if;
|
|
785
|
+
end for;
|
|
786
|
+
return s;
|
|
787
|
+
end intrinsic;
|
|
788
|
+
|
|
789
|
+
intrinsic Latex(x::.) -> MonStgElt
|
|
790
|
+
{}
|
|
791
|
+
return Sprintf("\\mbox{\\rm %o}", x);
|
|
792
|
+
end intrinsic;
|
|
793
|
+
|
|
794
|
+
|
|
795
|
+
/*
|
|
796
|
+
|
|
797
|
+
These are the MAGMA types:
|
|
798
|
+
(*) indicates done
|
|
799
|
+
|
|
800
|
+
AlgAssElt
|
|
801
|
+
AlgAssVElt
|
|
802
|
+
AlgBasElt
|
|
803
|
+
AlgChtrElt
|
|
804
|
+
AlgClffElt
|
|
805
|
+
AlgExtElt
|
|
806
|
+
AlgFPElt
|
|
807
|
+
AlgFPEltOld
|
|
808
|
+
AlgFPGElt
|
|
809
|
+
AlgFPLieElt
|
|
810
|
+
AlgFinDElt
|
|
811
|
+
AlgFrElt
|
|
812
|
+
AlgGenElt
|
|
813
|
+
AlgGrpElt
|
|
814
|
+
AlgHckElt
|
|
815
|
+
AlgIUEElt
|
|
816
|
+
AlgInfDElt
|
|
817
|
+
AlgLieElt
|
|
818
|
+
AlgMatElt
|
|
819
|
+
AlgMatLieElt
|
|
820
|
+
AlgMatVElt
|
|
821
|
+
AlgPBWElt
|
|
822
|
+
AlgQUEElt
|
|
823
|
+
AlgQuatElt
|
|
824
|
+
AlgQuatOrdElt
|
|
825
|
+
AlgSymElt
|
|
826
|
+
AlgUEElt
|
|
827
|
+
AutCrvEll
|
|
828
|
+
CopElt
|
|
829
|
+
(*)CrvEll
|
|
830
|
+
DiffCrvElt
|
|
831
|
+
DiffFunElt
|
|
832
|
+
DivCrvElt
|
|
833
|
+
DivFunElt
|
|
834
|
+
DivNumElt
|
|
835
|
+
ExtReElt
|
|
836
|
+
FldACElt
|
|
837
|
+
FldAlgElt
|
|
838
|
+
FldComElt
|
|
839
|
+
(*)FldCycElt
|
|
840
|
+
FldElt
|
|
841
|
+
(*)FldFin
|
|
842
|
+
(*)FldFinElt
|
|
843
|
+
FldFracElt
|
|
844
|
+
FldFunElt
|
|
845
|
+
FldFunFracSchElt
|
|
846
|
+
FldFunFracSchEltOld
|
|
847
|
+
FldFunGElt
|
|
848
|
+
FldFunOrdElt
|
|
849
|
+
(*)FldFunRatElt
|
|
850
|
+
FldFunRatMElt
|
|
851
|
+
FldFunRatUElt
|
|
852
|
+
(*)FldNumElt
|
|
853
|
+
FldNumGElt
|
|
854
|
+
FldOrdElt
|
|
855
|
+
FldPadElt
|
|
856
|
+
FldPrElt
|
|
857
|
+
(*)FldQuadElt
|
|
858
|
+
(*)FldRatElt
|
|
859
|
+
(*)FldReElt
|
|
860
|
+
FldResLst
|
|
861
|
+
FldResLstElt
|
|
862
|
+
FldTimeElt
|
|
863
|
+
GenMPolBElt
|
|
864
|
+
GenMPolBGElt
|
|
865
|
+
GenMPolElt
|
|
866
|
+
GenMPolGElt
|
|
867
|
+
GenMPolResElt
|
|
868
|
+
GrpAbElt
|
|
869
|
+
GrpAbGenElt
|
|
870
|
+
GrpAtcElt
|
|
871
|
+
GrpAutoElt
|
|
872
|
+
GrpBBElt
|
|
873
|
+
GrpBrdElt
|
|
874
|
+
GrpCaygElt
|
|
875
|
+
GrpDrchElt
|
|
876
|
+
GrpDrchEltNew
|
|
877
|
+
GrpElt
|
|
878
|
+
GrpFPCosElt
|
|
879
|
+
GrpFPCoxElt
|
|
880
|
+
GrpFPDcosElt
|
|
881
|
+
GrpFPElt
|
|
882
|
+
GrpFrmlElt
|
|
883
|
+
GrpGPCElt
|
|
884
|
+
GrpGenElt
|
|
885
|
+
GrpLieAutoElt
|
|
886
|
+
GrpLieElt
|
|
887
|
+
GrpMatElt
|
|
888
|
+
GrpMatProjElt
|
|
889
|
+
GrpPCElt
|
|
890
|
+
GrpPSL2
|
|
891
|
+
GrpPSL2Elt
|
|
892
|
+
GrpPermDcosElt
|
|
893
|
+
GrpPermElt
|
|
894
|
+
GrpPermLcosElt
|
|
895
|
+
GrpPermRcosElt
|
|
896
|
+
GrpRWSElt
|
|
897
|
+
GrpSLPElt
|
|
898
|
+
HilbSpcElt
|
|
899
|
+
Infty
|
|
900
|
+
IsoCrvEll
|
|
901
|
+
LatElt
|
|
902
|
+
List
|
|
903
|
+
MPolElt
|
|
904
|
+
MapCrvEll
|
|
905
|
+
MapIsoCrvEll
|
|
906
|
+
ModAbVarElt
|
|
907
|
+
ModAlgBasElt
|
|
908
|
+
ModAlgElt
|
|
909
|
+
ModAltElt
|
|
910
|
+
ModBrdtElt
|
|
911
|
+
ModCycElt
|
|
912
|
+
ModDedElt
|
|
913
|
+
ModEDElt
|
|
914
|
+
ModExtElt
|
|
915
|
+
ModFldElt
|
|
916
|
+
ModFrmElt
|
|
917
|
+
ModGrpElt
|
|
918
|
+
ModHgnElt
|
|
919
|
+
ModHrmElt
|
|
920
|
+
ModLatElt
|
|
921
|
+
ModMPolElt
|
|
922
|
+
ModMatFldElt
|
|
923
|
+
ModMatGrpElt
|
|
924
|
+
ModMatRngElt
|
|
925
|
+
ModRngElt
|
|
926
|
+
ModRngMPolRedElt
|
|
927
|
+
ModSSElt
|
|
928
|
+
ModSymElt
|
|
929
|
+
ModThetaElt
|
|
930
|
+
ModTupAlgElt
|
|
931
|
+
ModTupFldElt
|
|
932
|
+
ModTupRngElt
|
|
933
|
+
MonAbElt
|
|
934
|
+
MonFPElt
|
|
935
|
+
MonOrdElt
|
|
936
|
+
MonPlcElt
|
|
937
|
+
MonRWSElt
|
|
938
|
+
MonStgElt
|
|
939
|
+
MonStgGenElt
|
|
940
|
+
(*)Mtrx
|
|
941
|
+
MtrxSpcElt
|
|
942
|
+
OFldComElt
|
|
943
|
+
OFldReElt
|
|
944
|
+
PicCrvElt
|
|
945
|
+
PicHypSngElt
|
|
946
|
+
PlcCrvElt
|
|
947
|
+
PlcFunElt
|
|
948
|
+
PlcNumElt
|
|
949
|
+
(*)Pt
|
|
950
|
+
(*)PtEll
|
|
951
|
+
PtGrp
|
|
952
|
+
PtHyp
|
|
953
|
+
(*)QuadBinElt
|
|
954
|
+
Rec
|
|
955
|
+
RecField
|
|
956
|
+
RecFrmt
|
|
957
|
+
Ref
|
|
958
|
+
RegExp
|
|
959
|
+
RegExpAlg
|
|
960
|
+
Rel
|
|
961
|
+
RelElt
|
|
962
|
+
RngCycElt
|
|
963
|
+
RngDiffElt
|
|
964
|
+
RngDiffOpElt
|
|
965
|
+
RngElt
|
|
966
|
+
RngFracElt
|
|
967
|
+
RngFrmElt
|
|
968
|
+
RngFunFracElt
|
|
969
|
+
RngFunFracSchElt
|
|
970
|
+
RngFunFracSchEltOld
|
|
971
|
+
RngFunFracSchOld
|
|
972
|
+
RngFunGElt
|
|
973
|
+
RngFunOrdElt
|
|
974
|
+
RngFunOrdGElt
|
|
975
|
+
RngFunOrdIdl
|
|
976
|
+
RngGalElt
|
|
977
|
+
RngHckElt
|
|
978
|
+
RngHckIdl
|
|
979
|
+
(*)RngIntElt
|
|
980
|
+
RngIntResElt
|
|
981
|
+
RngMPolElt
|
|
982
|
+
RngMPolResElt
|
|
983
|
+
RngMSerElt
|
|
984
|
+
RngOrdElt
|
|
985
|
+
RngOrdFracIdl
|
|
986
|
+
RngOrdIdl
|
|
987
|
+
RngOrdResElt
|
|
988
|
+
RngPadElt
|
|
989
|
+
RngPadResElt
|
|
990
|
+
RngPadResExtElt
|
|
991
|
+
RngPowLazElt
|
|
992
|
+
RngQuadElt
|
|
993
|
+
RngQuadFracIdl
|
|
994
|
+
RngQuadIdl
|
|
995
|
+
RngReSubElt
|
|
996
|
+
RngRelKElt
|
|
997
|
+
RngSLPolElt
|
|
998
|
+
(*)RngSerElt
|
|
999
|
+
RngSerLaurElt
|
|
1000
|
+
RngSerPowElt
|
|
1001
|
+
RngSerPuisElt
|
|
1002
|
+
(*)RngUPolElt
|
|
1003
|
+
RngUPolResElt
|
|
1004
|
+
RngValElt
|
|
1005
|
+
RngWittElt
|
|
1006
|
+
SchGrpEll
|
|
1007
|
+
SeqEnum
|
|
1008
|
+
Set
|
|
1009
|
+
SetCspElt
|
|
1010
|
+
SetPtEll
|
|
1011
|
+
SgpFPElt
|
|
1012
|
+
SpcFldElt
|
|
1013
|
+
SpcHypElt
|
|
1014
|
+
SpcRngElt
|
|
1015
|
+
SubFldLatElt
|
|
1016
|
+
SubGrpLatElt
|
|
1017
|
+
SubModLatElt
|
|
1018
|
+
SymCrvEll
|
|
1019
|
+
UnusedMapCrvEll
|
|
1020
|
+
|
|
1021
|
+
*/
|