passagemath-symbolics 10.8.1a1__cp314-cp314t-musllinux_1_2_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (181) hide show
  1. passagemath_symbolics/__init__.py +3 -0
  2. passagemath_symbolics-10.8.1a1.dist-info/METADATA +186 -0
  3. passagemath_symbolics-10.8.1a1.dist-info/RECORD +181 -0
  4. passagemath_symbolics-10.8.1a1.dist-info/WHEEL +5 -0
  5. passagemath_symbolics-10.8.1a1.dist-info/top_level.txt +3 -0
  6. sage/all__sagemath_symbolics.py +17 -0
  7. sage/calculus/all.py +14 -0
  8. sage/calculus/calculus.py +2838 -0
  9. sage/calculus/desolvers.py +1864 -0
  10. sage/calculus/predefined.py +51 -0
  11. sage/calculus/tests.py +225 -0
  12. sage/calculus/var.cpython-314t-aarch64-linux-musl.so +0 -0
  13. sage/calculus/var.pyx +401 -0
  14. sage/dynamics/all__sagemath_symbolics.py +6 -0
  15. sage/dynamics/complex_dynamics/all.py +5 -0
  16. sage/dynamics/complex_dynamics/mandel_julia.py +765 -0
  17. sage/dynamics/complex_dynamics/mandel_julia_helper.cpython-314t-aarch64-linux-musl.so +0 -0
  18. sage/dynamics/complex_dynamics/mandel_julia_helper.pyx +1034 -0
  19. sage/ext/all__sagemath_symbolics.py +1 -0
  20. sage/ext_data/kenzo/CP2.txt +45 -0
  21. sage/ext_data/kenzo/CP3.txt +349 -0
  22. sage/ext_data/kenzo/CP4.txt +4774 -0
  23. sage/ext_data/kenzo/README.txt +49 -0
  24. sage/ext_data/kenzo/S4.txt +20 -0
  25. sage/ext_data/magma/latex/latex.m +1021 -0
  26. sage/ext_data/magma/latex/latex.spec +1 -0
  27. sage/ext_data/magma/sage/basic.m +356 -0
  28. sage/ext_data/magma/sage/sage.spec +1 -0
  29. sage/ext_data/magma/spec +9 -0
  30. sage/geometry/all__sagemath_symbolics.py +8 -0
  31. sage/geometry/hyperbolic_space/all.py +5 -0
  32. sage/geometry/hyperbolic_space/hyperbolic_coercion.py +755 -0
  33. sage/geometry/hyperbolic_space/hyperbolic_constants.py +5 -0
  34. sage/geometry/hyperbolic_space/hyperbolic_geodesic.py +2419 -0
  35. sage/geometry/hyperbolic_space/hyperbolic_interface.py +206 -0
  36. sage/geometry/hyperbolic_space/hyperbolic_isometry.py +1083 -0
  37. sage/geometry/hyperbolic_space/hyperbolic_model.py +1502 -0
  38. sage/geometry/hyperbolic_space/hyperbolic_point.py +621 -0
  39. sage/geometry/riemannian_manifolds/all.py +7 -0
  40. sage/geometry/riemannian_manifolds/parametrized_surface3d.py +1632 -0
  41. sage/geometry/riemannian_manifolds/surface3d_generators.py +461 -0
  42. sage/interfaces/all__sagemath_symbolics.py +1 -0
  43. sage/interfaces/magma.py +2991 -0
  44. sage/interfaces/magma_free.py +90 -0
  45. sage/interfaces/maple.py +1402 -0
  46. sage/interfaces/mathematica.py +1345 -0
  47. sage/interfaces/mathics.py +1312 -0
  48. sage/interfaces/sympy.py +1398 -0
  49. sage/interfaces/sympy_wrapper.py +197 -0
  50. sage/interfaces/tides.py +938 -0
  51. sage/libs/all__sagemath_symbolics.py +6 -0
  52. sage/manifolds/all.py +7 -0
  53. sage/manifolds/calculus_method.py +553 -0
  54. sage/manifolds/catalog.py +437 -0
  55. sage/manifolds/chart.py +4010 -0
  56. sage/manifolds/chart_func.py +3416 -0
  57. sage/manifolds/continuous_map.py +2183 -0
  58. sage/manifolds/continuous_map_image.py +155 -0
  59. sage/manifolds/differentiable/affine_connection.py +2475 -0
  60. sage/manifolds/differentiable/all.py +1 -0
  61. sage/manifolds/differentiable/automorphismfield.py +1383 -0
  62. sage/manifolds/differentiable/automorphismfield_group.py +604 -0
  63. sage/manifolds/differentiable/bundle_connection.py +1445 -0
  64. sage/manifolds/differentiable/characteristic_cohomology_class.py +1840 -0
  65. sage/manifolds/differentiable/chart.py +1241 -0
  66. sage/manifolds/differentiable/curve.py +1028 -0
  67. sage/manifolds/differentiable/de_rham_cohomology.py +541 -0
  68. sage/manifolds/differentiable/degenerate.py +559 -0
  69. sage/manifolds/differentiable/degenerate_submanifold.py +1668 -0
  70. sage/manifolds/differentiable/diff_form.py +1660 -0
  71. sage/manifolds/differentiable/diff_form_module.py +1062 -0
  72. sage/manifolds/differentiable/diff_map.py +1315 -0
  73. sage/manifolds/differentiable/differentiable_submanifold.py +291 -0
  74. sage/manifolds/differentiable/examples/all.py +1 -0
  75. sage/manifolds/differentiable/examples/euclidean.py +2517 -0
  76. sage/manifolds/differentiable/examples/real_line.py +897 -0
  77. sage/manifolds/differentiable/examples/sphere.py +1186 -0
  78. sage/manifolds/differentiable/examples/symplectic_space.py +187 -0
  79. sage/manifolds/differentiable/examples/symplectic_space_test.py +40 -0
  80. sage/manifolds/differentiable/integrated_curve.py +4035 -0
  81. sage/manifolds/differentiable/levi_civita_connection.py +841 -0
  82. sage/manifolds/differentiable/manifold.py +4254 -0
  83. sage/manifolds/differentiable/manifold_homset.py +1826 -0
  84. sage/manifolds/differentiable/metric.py +3032 -0
  85. sage/manifolds/differentiable/mixed_form.py +1507 -0
  86. sage/manifolds/differentiable/mixed_form_algebra.py +559 -0
  87. sage/manifolds/differentiable/multivector_module.py +800 -0
  88. sage/manifolds/differentiable/multivectorfield.py +1522 -0
  89. sage/manifolds/differentiable/poisson_tensor.py +268 -0
  90. sage/manifolds/differentiable/pseudo_riemannian.py +755 -0
  91. sage/manifolds/differentiable/pseudo_riemannian_submanifold.py +1839 -0
  92. sage/manifolds/differentiable/scalarfield.py +1343 -0
  93. sage/manifolds/differentiable/scalarfield_algebra.py +472 -0
  94. sage/manifolds/differentiable/symplectic_form.py +912 -0
  95. sage/manifolds/differentiable/symplectic_form_test.py +220 -0
  96. sage/manifolds/differentiable/tangent_space.py +412 -0
  97. sage/manifolds/differentiable/tangent_vector.py +616 -0
  98. sage/manifolds/differentiable/tensorfield.py +4665 -0
  99. sage/manifolds/differentiable/tensorfield_module.py +963 -0
  100. sage/manifolds/differentiable/tensorfield_paral.py +2450 -0
  101. sage/manifolds/differentiable/tensorfield_paral_test.py +16 -0
  102. sage/manifolds/differentiable/vector_bundle.py +1725 -0
  103. sage/manifolds/differentiable/vectorfield.py +1717 -0
  104. sage/manifolds/differentiable/vectorfield_module.py +2445 -0
  105. sage/manifolds/differentiable/vectorframe.py +1832 -0
  106. sage/manifolds/family.py +270 -0
  107. sage/manifolds/local_frame.py +1490 -0
  108. sage/manifolds/manifold.py +3090 -0
  109. sage/manifolds/manifold_homset.py +452 -0
  110. sage/manifolds/operators.py +359 -0
  111. sage/manifolds/point.py +994 -0
  112. sage/manifolds/scalarfield.py +3718 -0
  113. sage/manifolds/scalarfield_algebra.py +629 -0
  114. sage/manifolds/section.py +3111 -0
  115. sage/manifolds/section_module.py +831 -0
  116. sage/manifolds/structure.py +229 -0
  117. sage/manifolds/subset.py +2721 -0
  118. sage/manifolds/subsets/all.py +1 -0
  119. sage/manifolds/subsets/closure.py +131 -0
  120. sage/manifolds/subsets/pullback.py +883 -0
  121. sage/manifolds/topological_submanifold.py +891 -0
  122. sage/manifolds/trivialization.py +733 -0
  123. sage/manifolds/utilities.py +1348 -0
  124. sage/manifolds/vector_bundle.py +1347 -0
  125. sage/manifolds/vector_bundle_fiber.py +332 -0
  126. sage/manifolds/vector_bundle_fiber_element.py +111 -0
  127. sage/matrix/all__sagemath_symbolics.py +1 -0
  128. sage/matrix/matrix_symbolic_dense.cpython-314t-aarch64-linux-musl.so +0 -0
  129. sage/matrix/matrix_symbolic_dense.pxd +6 -0
  130. sage/matrix/matrix_symbolic_dense.pyx +1030 -0
  131. sage/matrix/matrix_symbolic_sparse.cpython-314t-aarch64-linux-musl.so +0 -0
  132. sage/matrix/matrix_symbolic_sparse.pxd +6 -0
  133. sage/matrix/matrix_symbolic_sparse.pyx +1038 -0
  134. sage/modules/all__sagemath_symbolics.py +1 -0
  135. sage/modules/vector_callable_symbolic_dense.py +105 -0
  136. sage/modules/vector_symbolic_dense.py +116 -0
  137. sage/modules/vector_symbolic_sparse.py +118 -0
  138. sage/rings/all__sagemath_symbolics.py +4 -0
  139. sage/rings/asymptotic/all.py +6 -0
  140. sage/rings/asymptotic/asymptotic_expansion_generators.py +1485 -0
  141. sage/rings/asymptotic/asymptotic_ring.py +4858 -0
  142. sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py +4106 -0
  143. sage/rings/asymptotic/growth_group.py +5373 -0
  144. sage/rings/asymptotic/growth_group_cartesian.py +1400 -0
  145. sage/rings/asymptotic/term_monoid.py +5205 -0
  146. sage/rings/function_field/all__sagemath_symbolics.py +2 -0
  147. sage/rings/polynomial/all__sagemath_symbolics.py +1 -0
  148. sage/symbolic/all.py +15 -0
  149. sage/symbolic/assumptions.py +987 -0
  150. sage/symbolic/benchmark.py +93 -0
  151. sage/symbolic/callable.py +456 -0
  152. sage/symbolic/callable.pyi +66 -0
  153. sage/symbolic/comparison_impl.pyi +38 -0
  154. sage/symbolic/complexity_measures.py +35 -0
  155. sage/symbolic/constants.py +1286 -0
  156. sage/symbolic/constants_c_impl.pyi +10 -0
  157. sage/symbolic/expression_conversion_algebraic.py +310 -0
  158. sage/symbolic/expression_conversion_sympy.py +317 -0
  159. sage/symbolic/expression_conversions.py +1727 -0
  160. sage/symbolic/function_factory.py +355 -0
  161. sage/symbolic/function_factory.pyi +41 -0
  162. sage/symbolic/getitem_impl.pyi +24 -0
  163. sage/symbolic/integration/all.py +1 -0
  164. sage/symbolic/integration/external.py +271 -0
  165. sage/symbolic/integration/integral.py +1075 -0
  166. sage/symbolic/maxima_wrapper.py +162 -0
  167. sage/symbolic/operators.py +267 -0
  168. sage/symbolic/operators.pyi +61 -0
  169. sage/symbolic/pynac_constant_impl.pyi +13 -0
  170. sage/symbolic/pynac_function_impl.pyi +8 -0
  171. sage/symbolic/random_tests.py +461 -0
  172. sage/symbolic/relation.py +2062 -0
  173. sage/symbolic/ring.cpython-314t-aarch64-linux-musl.so +0 -0
  174. sage/symbolic/ring.pxd +5 -0
  175. sage/symbolic/ring.pyi +110 -0
  176. sage/symbolic/ring.pyx +1393 -0
  177. sage/symbolic/series_impl.pyi +10 -0
  178. sage/symbolic/subring.py +1025 -0
  179. sage/symbolic/symengine.py +19 -0
  180. sage/symbolic/tests.py +40 -0
  181. sage/symbolic/units.py +1468 -0
@@ -0,0 +1,2838 @@
1
+ # sage_setup: distribution = sagemath-symbolics
2
+ r"""
3
+ Symbolic Computation
4
+
5
+ AUTHORS:
6
+
7
+ - Bobby Moretti and William Stein (2006-2007)
8
+
9
+ - Robert Bradshaw (2007-10): minpoly(), numerical algorithm
10
+
11
+ - Robert Bradshaw (2008-10): minpoly(), algebraic algorithm
12
+
13
+ - Golam Mortuza Hossain (2009-06-15): _limit_latex()
14
+
15
+ - Golam Mortuza Hossain (2009-06-22): _laplace_latex(), _inverse_laplace_latex()
16
+
17
+ - Tom Coates (2010-06-11): fixed :issue:`9217`
18
+
19
+ EXAMPLES:
20
+
21
+ The basic units of the calculus package are symbolic expressions which
22
+ are elements of the symbolic expression ring (SR). To create a
23
+ symbolic variable object in Sage, use the :func:`var` function, whose
24
+ argument is the text of that variable. Note that Sage is intelligent
25
+ about LaTeXing variable names.
26
+
27
+ ::
28
+
29
+ sage: x1 = var('x1'); x1
30
+ x1
31
+ sage: latex(x1)
32
+ x_{1}
33
+ sage: theta = var('theta'); theta
34
+ theta
35
+ sage: latex(theta)
36
+ \theta
37
+
38
+ Sage predefines ``x`` to be a global indeterminate.
39
+ Thus the following works::
40
+
41
+ sage: x^2
42
+ x^2
43
+ sage: type(x)
44
+ <class 'sage.symbolic.expression.Expression'>
45
+
46
+ More complicated expressions in Sage can be built up using ordinary
47
+ arithmetic. The following are valid, and follow the rules of Python
48
+ arithmetic: (The '=' operator represents assignment, and not
49
+ equality)
50
+
51
+ ::
52
+
53
+ sage: var('x,y,z')
54
+ (x, y, z)
55
+ sage: f = x + y + z/(2*sin(y*z/55))
56
+ sage: g = f^f; g
57
+ (x + y + 1/2*z/sin(1/55*y*z))^(x + y + 1/2*z/sin(1/55*y*z))
58
+
59
+ Differentiation and integration are available, but behind the
60
+ scenes through Maxima::
61
+
62
+ sage: f = sin(x)/cos(2*y)
63
+ sage: f.derivative(y)
64
+ 2*sin(x)*sin(2*y)/cos(2*y)^2
65
+ sage: g = f.integral(x); g
66
+ -cos(x)/cos(2*y)
67
+
68
+ Note that these methods usually require an explicit variable name. If none
69
+ is given, Sage will try to find one for you.
70
+
71
+ ::
72
+
73
+ sage: f = sin(x); f.derivative()
74
+ cos(x)
75
+
76
+ If the expression is a callable symbolic expression (i.e., the
77
+ variable order is specified), then Sage can calculate the matrix
78
+ derivative (i.e., the gradient, Jacobian matrix, etc.) if no variables
79
+ are specified. In the example below, we use the second derivative
80
+ test to determine that there is a saddle point at (0,-1/2).
81
+
82
+ ::
83
+
84
+ sage: f(x,y) = x^2*y + y^2 + y
85
+ sage: f.diff() # gradient
86
+ (x, y) |--> (2*x*y, x^2 + 2*y + 1)
87
+ sage: solve(list(f.diff()), [x,y])
88
+ [[x == -I, y == 0], [x == I, y == 0], [x == 0, y == (-1/2)]]
89
+ sage: H=f.diff(2); H # Hessian matrix
90
+ [(x, y) |--> 2*y (x, y) |--> 2*x]
91
+ [(x, y) |--> 2*x (x, y) |--> 2]
92
+ sage: H(x=0, y=-1/2)
93
+ [-1 0]
94
+ [ 0 2]
95
+ sage: H(x=0, y=-1/2).eigenvalues()
96
+ [-1, 2]
97
+
98
+ Here we calculate the Jacobian for the polar coordinate transformation::
99
+
100
+ sage: T(r,theta) = [r*cos(theta),r*sin(theta)]
101
+ sage: T
102
+ (r, theta) |--> (r*cos(theta), r*sin(theta))
103
+ sage: T.diff() # Jacobian matrix
104
+ [ (r, theta) |--> cos(theta) (r, theta) |--> -r*sin(theta)]
105
+ [ (r, theta) |--> sin(theta) (r, theta) |--> r*cos(theta)]
106
+ sage: diff(T) # Jacobian matrix
107
+ [ (r, theta) |--> cos(theta) (r, theta) |--> -r*sin(theta)]
108
+ [ (r, theta) |--> sin(theta) (r, theta) |--> r*cos(theta)]
109
+ sage: T.diff().det() # Jacobian
110
+ (r, theta) |--> r*cos(theta)^2 + r*sin(theta)^2
111
+
112
+ When the order of variables is ambiguous, Sage will raise an
113
+ exception when differentiating::
114
+
115
+ sage: f = sin(x+y); f.derivative()
116
+ Traceback (most recent call last):
117
+ ...
118
+ ValueError: No differentiation variable specified.
119
+
120
+ Simplifying symbolic sums is also possible, using the
121
+ :func:`sum` command, which also uses Maxima in the background::
122
+
123
+ sage: k, m = var('k, m')
124
+ sage: sum(1/k^4, k, 1, oo)
125
+ 1/90*pi^4
126
+ sage: sum(binomial(m,k), k, 0, m)
127
+ 2^m
128
+
129
+ Symbolic matrices can be used as well in various ways,
130
+ including exponentiation::
131
+
132
+ sage: M = matrix([[x,x^2],[1/x,x]])
133
+ sage: M^2
134
+ [x^2 + x 2*x^3]
135
+ [ 2 x^2 + x]
136
+ sage: e^M
137
+ [ 1/2*(e^(2*sqrt(x)) + 1)*e^(x - sqrt(x)) 1/2*(x*e^(2*sqrt(x)) - x)*sqrt(x)*e^(x - sqrt(x))]
138
+ [ 1/2*(e^(2*sqrt(x)) - 1)*e^(x - sqrt(x))/x^(3/2) 1/2*(e^(2*sqrt(x)) + 1)*e^(x - sqrt(x))]
139
+
140
+ Complex exponentiation works, but may require a patched version of
141
+ maxima (:issue:`32898`) for now::
142
+
143
+ sage: M = i*matrix([[pi]])
144
+ sage: e^M # not tested, requires patched maxima
145
+ [-1]
146
+ sage: M = i*matrix([[pi,0],[0,2*pi]])
147
+ sage: e^M
148
+ [-1 0]
149
+ [ 0 1]
150
+ sage: M = matrix([[0,pi],[-pi,0]])
151
+ sage: e^M
152
+ [-1 0]
153
+ [ 0 -1]
154
+
155
+ Substitution works similarly. We can substitute with a python
156
+ dict::
157
+
158
+ sage: f = sin(x*y - z)
159
+ sage: f({x: var('t'), y: z})
160
+ sin(t*z - z)
161
+
162
+ Also we can substitute with keywords::
163
+
164
+ sage: f = sin(x*y - z)
165
+ sage: f(x=t, y=z)
166
+ sin(t*z - z)
167
+
168
+ Another example::
169
+
170
+ sage: f = sin(2*pi*x/y)
171
+ sage: f(x=4)
172
+ sin(8*pi/y)
173
+
174
+ It is no longer allowed to call expressions with positional arguments::
175
+
176
+ sage: f = sin(x)
177
+ sage: f(y)
178
+ Traceback (most recent call last):
179
+ ...
180
+ TypeError: Substitution using function-call syntax and unnamed
181
+ arguments has been removed. You can use named arguments instead, like
182
+ EXPR(x=..., y=...)
183
+ sage: f(x=pi)
184
+ 0
185
+
186
+ We can also make a :class:`CallableSymbolicExpression`,
187
+ which is a :class:`SymbolicExpression` that is a function of
188
+ specified variables in a fixed order. Each
189
+ :class:`SymbolicExpression` has a
190
+ ``function(...)`` method that is used to create a
191
+ :class:`CallableSymbolicExpression`, as illustrated below::
192
+
193
+ sage: u = log((2-x)/(y+5))
194
+ sage: f = u.function(x, y); f
195
+ (x, y) |--> log(-(x - 2)/(y + 5))
196
+
197
+ There is an easier way of creating a
198
+ :class:`CallableSymbolicExpression`, which relies on the
199
+ Sage preparser.
200
+
201
+ ::
202
+
203
+ sage: f(x,y) = log(x)*cos(y); f
204
+ (x, y) |--> cos(y)*log(x)
205
+
206
+ Then we have fixed an order of variables and there is no ambiguity
207
+ substituting or evaluating::
208
+
209
+ sage: f(x,y) = log((2-x)/(y+5))
210
+ sage: f(7,t)
211
+ log(-5/(t + 5))
212
+
213
+ Some further examples::
214
+
215
+ sage: f = 5*sin(x)
216
+ sage: f
217
+ 5*sin(x)
218
+ sage: f(x=2)
219
+ 5*sin(2)
220
+ sage: f(x=pi)
221
+ 0
222
+ sage: float(f(x=pi))
223
+ 0.0
224
+
225
+ Another example::
226
+
227
+ sage: f = integrate(1/sqrt(9+x^2), x); f
228
+ arcsinh(1/3*x)
229
+ sage: f(x=3)
230
+ arcsinh(1)
231
+ sage: f.derivative(x)
232
+ 1/sqrt(x^2 + 9)
233
+
234
+ We compute the length of the parabola from 0 to 2::
235
+
236
+ sage: x = var('x')
237
+ sage: y = x^2
238
+ sage: dy = derivative(y,x)
239
+ sage: z = integral(sqrt(1 + dy^2), x, 0, 2)
240
+ sage: z
241
+ sqrt(17) + 1/4*arcsinh(4)
242
+ sage: n(z,200)
243
+ 4.6467837624329358733826155674904591885104869874232887508703
244
+ sage: float(z)
245
+ 4.646783762432936
246
+
247
+ We test pickling::
248
+
249
+ sage: x, y = var('x,y')
250
+ sage: f = -sqrt(pi)*(x^3 + sin(x/cos(y)))
251
+ sage: bool(loads(dumps(f)) == f)
252
+ True
253
+
254
+ Coercion examples:
255
+
256
+ We coerce various symbolic expressions into the complex numbers::
257
+
258
+ sage: CC(I)
259
+ 1.00000000000000*I
260
+ sage: CC(2*I)
261
+ 2.00000000000000*I
262
+ sage: ComplexField(200)(2*I)
263
+ 2.0000000000000000000000000000000000000000000000000000000000*I
264
+ sage: ComplexField(200)(sin(I))
265
+ 1.1752011936438014568823818505956008151557179813340958702296*I
266
+ sage: f = sin(I) + cos(I/2); f
267
+ cosh(1/2) + I*sinh(1)
268
+ sage: CC(f)
269
+ 1.12762596520638 + 1.17520119364380*I
270
+ sage: ComplexField(200)(f)
271
+ 1.1276259652063807852262251614026720125478471180986674836290
272
+ + 1.1752011936438014568823818505956008151557179813340958702296*I
273
+ sage: ComplexField(100)(f)
274
+ 1.1276259652063807852262251614 + 1.1752011936438014568823818506*I
275
+
276
+ We illustrate construction of an inverse sum where each denominator
277
+ has a new variable name::
278
+
279
+ sage: f = sum(1/var('n%s'%i)^i for i in range(10))
280
+ sage: f
281
+ 1/n1 + 1/n2^2 + 1/n3^3 + 1/n4^4 + 1/n5^5 + 1/n6^6 + 1/n7^7 + 1/n8^8 + 1/n9^9 + 1
282
+
283
+ Note that after calling var, the variables are immediately
284
+ available for use::
285
+
286
+ sage: (n1 + n2)^5
287
+ (n1 + n2)^5
288
+
289
+ We can, of course, substitute::
290
+
291
+ sage: f(n9=9, n7=n6)
292
+ 1/n1 + 1/n2^2 + 1/n3^3 + 1/n4^4 + 1/n5^5 + 1/n6^6 + 1/n6^7 + 1/n8^8
293
+ + 387420490/387420489
294
+
295
+ TESTS:
296
+
297
+ Substitution::
298
+
299
+ sage: f = x
300
+ sage: f(x=5)
301
+ 5
302
+
303
+ Simplifying expressions involving scientific notation::
304
+
305
+ sage: k = var('k')
306
+ sage: a0 = 2e-06; a1 = 12
307
+ sage: c = a1 + a0*k; c
308
+ (2.00000000000000e-6)*k + 12
309
+ sage: sqrt(c)
310
+ sqrt((2.00000000000000e-6)*k + 12)
311
+ sage: sqrt(c^3)
312
+ sqrt(((2.00000000000000e-6)*k + 12)^3)
313
+
314
+ The symbolic calculus package uses its own copy of Maxima for
315
+ simplification, etc., which is separate from the default
316
+ system-wide version::
317
+
318
+ sage: maxima.eval('[x,y]: [1,2]')
319
+ '[1,2]'
320
+ sage: maxima.eval('expand((x+y)^3)')
321
+ '27'
322
+
323
+ If the copy of Maxima used by the symbolic calculus package were
324
+ the same as the default one, then the following would return 27,
325
+ which would be very confusing indeed!
326
+
327
+ ::
328
+
329
+ sage: x, y = var('x,y')
330
+ sage: expand((x+y)^3)
331
+ x^3 + 3*x^2*y + 3*x*y^2 + y^3
332
+
333
+ Set x to be 5 in maxima::
334
+
335
+ sage: maxima('x: 5')
336
+ 5
337
+ sage: maxima('x + x + %pi')
338
+ %pi+10
339
+
340
+ Simplifications like these are now done using Pynac::
341
+
342
+ sage: x + x + pi
343
+ pi + 2*x
344
+
345
+ But this still uses Maxima::
346
+
347
+ sage: (x + x + pi).simplify()
348
+ pi + 2*x
349
+
350
+ Note that ``x`` is still ``x``, since the
351
+ maxima used by the calculus package is different than the one in
352
+ the interactive interpreter.
353
+ Clear the maxima variables to avoid interference with other tests::
354
+
355
+ sage: maxima('kill(x,y)')
356
+ done
357
+
358
+ Check to see that the problem with the variables method mentioned
359
+ in :issue:`3779` is actually fixed::
360
+
361
+ sage: f = function('F')(x)
362
+ sage: diff(f*SR(1),x)
363
+ diff(F(x), x)
364
+
365
+ Doubly ensure that :issue:`7479` is working::
366
+
367
+ sage: f(x)=x
368
+ sage: integrate(f,x,0,1)
369
+ 1/2
370
+
371
+ Check that the problem with Taylor expansions of the gamma function
372
+ (:issue:`9217`) is fixed::
373
+
374
+ sage: taylor(gamma(1/3+x),x,0,3)
375
+ -1/432*((72*euler_gamma^3 + 36*euler_gamma^2*(sqrt(3)*pi + 9*log(3)) + ...
376
+ sage: [f[0].n() for f in _.coefficients()] # numerical coefficients to make comparison easier; Maple 12 gives same answer
377
+ [2.6789385347..., -8.3905259853..., 26.662447494..., -80.683148377...]
378
+
379
+ Ensure that :issue:`8582` is fixed::
380
+
381
+ sage: k = var("k")
382
+ sage: sum(1/(1+k^2), k, -oo, oo)
383
+ -1/2*I*psi(I + 1) + 1/2*I*psi(-I + 1) - 1/2*I*psi(I) + 1/2*I*psi(-I)
384
+
385
+ Ensure that :issue:`8624` is fixed::
386
+
387
+ sage: integrate(abs(cos(x)) * sin(x), x, pi/2, pi)
388
+ 1/2
389
+ sage: integrate(sqrt(cos(x)^2 + sin(x)^2), x, 0, 2*pi)
390
+ 2*pi
391
+
392
+ Ensure that :issue:`25626` is fixed. As the form of the answer is dependent of
393
+ the giac version, we simplify it (see :issue:`34037`)::
394
+
395
+ sage: # needs sage.libs.giac
396
+ sage: t = SR.var('t')
397
+ sage: integrate(exp(t)/(t + 1)^2, t, algorithm='giac').full_simplify()
398
+ ((t + 1)*Ei(t + 1) - e^(t + 1))/(t*e + e)
399
+
400
+ Check if maxima has redundant variables defined after initialization,
401
+ see :issue:`9538`::
402
+
403
+ sage: maxima = sage.interfaces.maxima_lib.maxima
404
+ sage: maxima('f1')
405
+ f1
406
+ sage: sage.calculus.calculus.maxima('f1')
407
+ f1
408
+
409
+ To check that :issue:`14821` is fixed::
410
+
411
+ sage: H = exp(-1.0 * x)
412
+ sage: H.integral(x, 0, 1)
413
+ 0.6321205588285577
414
+ sage: result = integral(exp(-300.0/(-0.064*x+14.0)),x,0.0,120.0)
415
+ ...
416
+ sage: result # abs tol 1e-10
417
+ 4.62770039817000e-9
418
+
419
+ To check that :issue:`27092` is fixed::
420
+
421
+ sage: n = var('n')
422
+ sage: sum(binomial(1, n), n, 0, oo)
423
+ 2
424
+ """
425
+
426
+ import re
427
+ from types import FunctionType
428
+
429
+ from sage.arith.misc import algebraic_dependency
430
+ from sage.misc.lazy_import import lazy_import
431
+ lazy_import("sage.interfaces.maxima_lib","maxima")
432
+ from sage.misc.latex import latex
433
+ from sage.misc.parser import LookupNameMaker, Parser
434
+ from sage.rings.cc import CC
435
+ from sage.rings.integer import Integer
436
+ from sage.rings.rational_field import QQ
437
+ from sage.rings.real_double import RealDoubleElement
438
+ from sage.rings.real_mpfr import RR, create_RealNumber
439
+ from sage.structure.element import Expression
440
+ from sage.symbolic.function import Function
441
+ from sage.symbolic.function_factory import function_factory
442
+ from sage.symbolic.integration.integral import definite_integral, indefinite_integral
443
+ from sage.symbolic.ring import SR, var
444
+ from sage.symbolic.symbols import symbol_table
445
+
446
+
447
+ ########################################################
448
+ def symbolic_sum(expression, v, a, b, algorithm='maxima', hold=False):
449
+ r"""
450
+ Return the symbolic sum `\sum_{v = a}^b expression` with respect
451
+ to the variable `v` with endpoints `a` and `b`.
452
+
453
+ INPUT:
454
+
455
+ - ``expression`` -- a symbolic expression
456
+
457
+ - ``v`` -- a variable or variable name
458
+
459
+ - ``a`` -- lower endpoint of the sum
460
+
461
+ - ``b`` -- upper endpoint of the sum
462
+
463
+ - ``algorithm`` -- (default: ``'maxima'``) one of
464
+
465
+ - ``'maxima'`` -- use Maxima (the default)
466
+
467
+ - ``'maple'`` -- (optional) use Maple
468
+
469
+ - ``'mathematica'`` -- (optional) use Mathematica
470
+
471
+ - ``'giac'`` -- (optional) use Giac
472
+
473
+ - ``'sympy'`` -- use SymPy
474
+
475
+ - ``hold`` -- boolean (default: ``False``); if ``True``, don't evaluate
476
+
477
+ EXAMPLES::
478
+
479
+ sage: k, n = var('k,n')
480
+ sage: from sage.calculus.calculus import symbolic_sum
481
+ sage: symbolic_sum(k, k, 1, n).factor()
482
+ 1/2*(n + 1)*n
483
+
484
+ ::
485
+
486
+ sage: symbolic_sum(1/k^4, k, 1, oo)
487
+ 1/90*pi^4
488
+
489
+ ::
490
+
491
+ sage: symbolic_sum(1/k^5, k, 1, oo)
492
+ zeta(5)
493
+
494
+ A well known binomial identity::
495
+
496
+ sage: symbolic_sum(binomial(n,k), k, 0, n)
497
+ 2^n
498
+
499
+ And some truncations thereof::
500
+
501
+ sage: assume(n>1)
502
+ sage: symbolic_sum(binomial(n,k), k, 1, n)
503
+ 2^n - 1
504
+ sage: symbolic_sum(binomial(n,k), k, 2, n)
505
+ 2^n - n - 1
506
+ sage: symbolic_sum(binomial(n,k), k, 0, n-1)
507
+ 2^n - 1
508
+ sage: symbolic_sum(binomial(n,k), k, 1, n-1)
509
+ 2^n - 2
510
+
511
+ The binomial theorem::
512
+
513
+ sage: x, y = var('x, y')
514
+ sage: symbolic_sum(binomial(n,k) * x^k * y^(n-k), k, 0, n)
515
+ (x + y)^n
516
+
517
+ ::
518
+
519
+ sage: symbolic_sum(k * binomial(n, k), k, 1, n)
520
+ 2^(n - 1)*n
521
+
522
+ ::
523
+
524
+ sage: symbolic_sum((-1)^k*binomial(n,k), k, 0, n)
525
+ 0
526
+
527
+ ::
528
+
529
+ sage: symbolic_sum(2^(-k)/(k*(k+1)), k, 1, oo)
530
+ -log(2) + 1
531
+
532
+ Summing a hypergeometric term::
533
+
534
+ sage: symbolic_sum(binomial(n, k) * factorial(k) / factorial(n+1+k), k, 0, n)
535
+ 1/2*sqrt(pi)/factorial(n + 1/2)
536
+
537
+ We check a well known identity::
538
+
539
+ sage: bool(symbolic_sum(k^3, k, 1, n) == symbolic_sum(k, k, 1, n)^2)
540
+ True
541
+
542
+ A geometric sum::
543
+
544
+ sage: a, q = var('a, q')
545
+ sage: symbolic_sum(a*q^k, k, 0, n)
546
+ (a*q^(n + 1) - a)/(q - 1)
547
+
548
+ For the geometric series, we will have to assume
549
+ the right values for the sum to converge::
550
+
551
+ sage: assume(abs(q) < 1)
552
+ sage: symbolic_sum(a*q^k, k, 0, oo)
553
+ -a/(q - 1)
554
+
555
+ A divergent geometric series. Don't forget
556
+ to forget your assumptions::
557
+
558
+ sage: forget()
559
+ sage: assume(q > 1)
560
+ sage: symbolic_sum(a*q^k, k, 0, oo)
561
+ Traceback (most recent call last):
562
+ ...
563
+ ValueError: Sum is divergent.
564
+ sage: forget()
565
+ sage: assumptions() # check the assumptions were really forgotten
566
+ []
567
+
568
+ A summation performed by Mathematica::
569
+
570
+ sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='mathematica') # optional - mathematica
571
+ pi*coth(pi)
572
+
573
+ An example of this summation with Giac::
574
+
575
+ sage: # needs giac
576
+ sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='giac').factor()
577
+ pi*(e^(2*pi) + 1)/((e^pi + 1)*(e^pi - 1))
578
+
579
+ The same summation is solved by SymPy::
580
+
581
+ sage: symbolic_sum(1/(1+k^2), k, -oo, oo, algorithm='sympy')
582
+ pi/tanh(pi)
583
+
584
+ SymPy and Maxima 5.39.0 can do the following (see
585
+ :issue:`22005`)::
586
+
587
+ sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='sympy')
588
+ 1/64*pi^2
589
+ sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity)
590
+ 1/64*pi^2
591
+
592
+ Use Maple as a backend for summation::
593
+
594
+ sage: symbolic_sum(binomial(n,k)*x^k, k, 0, n, algorithm='maple') # optional - maple
595
+ (x + 1)^n
596
+
597
+ If you don't want to evaluate immediately give the ``hold`` keyword::
598
+
599
+ sage: s = sum(n, n, 1, k, hold=True); s
600
+ sum(n, n, 1, k)
601
+ sage: s.unhold()
602
+ 1/2*k^2 + 1/2*k
603
+ sage: s.subs(k == 10)
604
+ sum(n, n, 1, 10)
605
+ sage: s.subs(k == 10).unhold()
606
+ 55
607
+ sage: s.subs(k == 10).n()
608
+ 55.0000000000000
609
+
610
+ TESTS:
611
+
612
+ :issue:`10564` is fixed::
613
+
614
+ sage: sum (n^3 * x^n, n, 0, infinity)
615
+ (x^3 + 4*x^2 + x)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1)
616
+
617
+ .. NOTE::
618
+
619
+ Sage can currently only understand a subset of the output of Maxima,
620
+ Maple and Mathematica, so even if the chosen backend can perform
621
+ the summation the result might not be convertible into a Sage
622
+ expression.
623
+ """
624
+ if not (isinstance(v, Expression) and v.is_symbol()):
625
+ if isinstance(v, str):
626
+ v = var(v)
627
+ else:
628
+ raise TypeError("need a summation variable")
629
+
630
+ if v in SR(a).variables() or v in SR(b).variables():
631
+ raise ValueError("summation limits must not depend on the summation variable")
632
+
633
+ if hold:
634
+ from sage.functions.other import symbolic_sum as ssum
635
+ return ssum(expression, v, a, b)
636
+
637
+ if algorithm == 'maxima':
638
+ return maxima.sr_sum(expression,v,a,b)
639
+
640
+ elif algorithm == 'mathematica':
641
+ try:
642
+ sum = "Sum[%s, {%s, %s, %s}]" % tuple([repr(expr._mathematica_()) for expr in (expression, v, a, b)])
643
+ except TypeError:
644
+ raise ValueError("Mathematica cannot make sense of input")
645
+ from sage.interfaces.mathematica import mathematica
646
+ try:
647
+ result = mathematica(sum)
648
+ except TypeError:
649
+ raise ValueError("Mathematica cannot make sense of: %s" % sum)
650
+ return result.sage()
651
+
652
+ elif algorithm == 'maple':
653
+ sum = "sum(%s, %s=%s..%s)" % tuple([repr(expr._maple_()) for expr in (expression, v, a, b)])
654
+ from sage.interfaces.maple import maple
655
+ try:
656
+ result = maple(sum).simplify()
657
+ except TypeError:
658
+ raise ValueError("Maple cannot make sense of: %s" % sum)
659
+ return result.sage()
660
+
661
+ elif algorithm == 'giac':
662
+ sum = "sum(%s, %s, %s, %s)" % tuple([repr(expr._giac_()) for expr in (expression, v, a, b)])
663
+ from sage.interfaces.giac import giac
664
+ try:
665
+ result = giac(sum)
666
+ except TypeError:
667
+ raise ValueError("Giac cannot make sense of: %s" % sum)
668
+ return result.sage()
669
+
670
+ elif algorithm == 'sympy':
671
+ expression,v,a,b = (expr._sympy_() for expr in (expression, v, a, b))
672
+ from sympy import summation
673
+
674
+ from sage.interfaces.sympy import sympy_init
675
+ sympy_init()
676
+ result = summation(expression, (v, a, b))
677
+ try:
678
+ return result._sage_()
679
+ except AttributeError:
680
+ raise AttributeError("Unable to convert SymPy result (={}) into"
681
+ " Sage".format(result))
682
+
683
+ else:
684
+ raise ValueError("unknown algorithm: %s" % algorithm)
685
+
686
+
687
+ def nintegral(ex, x, a, b,
688
+ desired_relative_error='1e-8',
689
+ maximum_num_subintervals=200):
690
+ r"""
691
+ Return a floating point machine precision numerical approximation
692
+ to the integral of ``self`` from `a` to
693
+ `b`, computed using floating point arithmetic via maxima.
694
+
695
+ INPUT:
696
+
697
+ - ``x`` -- variable to integrate with respect to
698
+
699
+ - ``a`` -- lower endpoint of integration
700
+
701
+ - ``b`` -- upper endpoint of integration
702
+
703
+ - ``desired_relative_error`` -- (default: ``1e-8``) the
704
+ desired relative error
705
+
706
+ - ``maximum_num_subintervals`` -- (default: 200)
707
+ maximal number of subintervals
708
+
709
+ OUTPUT: float; approximation to the integral
710
+
711
+ - float: estimated absolute error of the
712
+ approximation
713
+
714
+ - the number of integrand evaluations
715
+
716
+ - an error code:
717
+
718
+ - ``0`` -- no problems were encountered
719
+
720
+ - ``1`` -- too many subintervals were done
721
+
722
+ - ``2`` -- excessive roundoff error
723
+
724
+ - ``3`` -- extremely bad integrand behavior
725
+
726
+ - ``4`` -- failed to converge
727
+
728
+ - ``5`` -- integral is probably divergent or slowly
729
+ convergent
730
+
731
+ - ``6`` -- the input is invalid; this includes the case of
732
+ ``desired_relative_error`` being too small to be achieved
733
+
734
+ ALIAS: :func:`nintegrate` is the same as :func:`nintegral`
735
+
736
+ REMARK: There is also a function
737
+ :func:`numerical_integral` that implements numerical
738
+ integration using the GSL C library. It is potentially much faster
739
+ and applies to arbitrary user defined functions.
740
+
741
+ Also, there are limits to the precision to which Maxima can compute
742
+ the integral due to limitations in quadpack.
743
+ In the following example, remark that the last value of the returned
744
+ tuple is ``6``, indicating that the input was invalid, in this case
745
+ because of a too high desired precision.
746
+
747
+ ::
748
+
749
+ sage: f = x
750
+ sage: f.nintegral(x, 0, 1, 1e-14)
751
+ (0.0, 0.0, 0, 6)
752
+
753
+ EXAMPLES::
754
+
755
+ sage: f(x) = exp(-sqrt(x))
756
+ sage: f.nintegral(x, 0, 1)
757
+ (0.5284822353142306, 4.163...e-11, 231, 0)
758
+
759
+ We can also use the :func:`numerical_integral` function,
760
+ which calls the GSL C library.
761
+
762
+ ::
763
+
764
+ sage: numerical_integral(f, 0, 1)
765
+ (0.528482232253147, 6.83928460...e-07)
766
+
767
+ Note that in exotic cases where floating point evaluation of the
768
+ expression leads to the wrong value, then the output can be
769
+ completely wrong::
770
+
771
+ sage: f = exp(pi*sqrt(163)) - 262537412640768744
772
+
773
+ Despite appearance, `f` is really very close to 0, but one
774
+ gets a nonzero value since the definition of
775
+ ``float(f)`` is that it makes all constants inside the
776
+ expression floats, then evaluates each function and each arithmetic
777
+ operation using float arithmetic::
778
+
779
+ sage: float(f)
780
+ -480.0
781
+
782
+ Computing to higher precision we see the truth::
783
+
784
+ sage: f.n(200)
785
+ -7.4992740280181431112064614366622348652078895136533593355718e-13
786
+ sage: f.n(300)
787
+ -7.49927402801814311120646143662663009137292462589621789352095066181709095575681963967103004e-13
788
+
789
+ Now numerically integrating, we see why the answer is wrong::
790
+
791
+ sage: f.nintegrate(x,0,1)
792
+ (-480.000000000000..., 5.32907051820075...e-12, 21, 0)
793
+
794
+ It is just because every floating point evaluation of `f` returns `-480.0`
795
+ in floating point.
796
+
797
+ Important note: using PARI/GP one can compute numerical integrals
798
+ to high precision::
799
+
800
+ sage: # needs sage.libs.pari
801
+ sage: gp.eval('intnum(x=17,42,exp(-x^2)*log(x))')
802
+ '2.5657285005610514829176211363206621657 E-127'
803
+ sage: old_prec = gp.set_real_precision(50)
804
+ sage: gp.eval('intnum(x=17,42,exp(-x^2)*log(x))')
805
+ '2.5657285005610514829173563961304957417746108003917 E-127'
806
+ sage: gp.set_real_precision(old_prec)
807
+ 57
808
+
809
+ Note that the input function above is a string in PARI syntax.
810
+ """
811
+ try:
812
+ v = ex._maxima_().quad_qags(x, a, b,
813
+ epsrel=desired_relative_error,
814
+ limit=maximum_num_subintervals)
815
+ except TypeError as err:
816
+ if "ERROR" in str(err):
817
+ raise ValueError("Maxima (via quadpack) cannot compute the integral")
818
+ else:
819
+ raise TypeError(err)
820
+
821
+ # Maxima returns unevaluated expressions when the underlying library fails
822
+ # to perform numerical integration. See:
823
+ # http://www.math.utexas.edu/pipermail/maxima/2008/012975.html
824
+ if 'quad_qags' in str(v):
825
+ raise ValueError("Maxima (via quadpack) cannot compute the integral")
826
+
827
+ return float(v[0]), float(v[1]), Integer(v[2]), Integer(v[3])
828
+
829
+
830
+ nintegrate = nintegral
831
+
832
+
833
+ def symbolic_product(expression, v, a, b, algorithm='maxima', hold=False):
834
+ r"""
835
+ Return the symbolic product `\prod_{v = a}^b expression` with respect
836
+ to the variable `v` with endpoints `a` and `b`.
837
+
838
+ INPUT:
839
+
840
+ - ``expression`` -- a symbolic expression
841
+
842
+ - ``v`` -- a variable or variable name
843
+
844
+ - ``a`` -- lower endpoint of the product
845
+
846
+ - ``b`` -- upper endpoint of the prduct
847
+
848
+ - ``algorithm`` -- (default: ``'maxima'``) one of
849
+
850
+ - ``'maxima'`` -- use Maxima (the default)
851
+
852
+ - ``'giac'`` -- use Giac (optional)
853
+
854
+ - ``'sympy'`` -- use SymPy
855
+
856
+ - ``'mathematica'`` -- (optional) use Mathematica
857
+
858
+ - ``hold`` -- boolean (default: ``False``); if ``True``, don't evaluate
859
+
860
+ EXAMPLES::
861
+
862
+ sage: i, k, n = var('i,k,n')
863
+ sage: from sage.calculus.calculus import symbolic_product
864
+ sage: symbolic_product(k, k, 1, n)
865
+ factorial(n)
866
+ sage: symbolic_product(x + i*(i+1)/2, i, 1, 4)
867
+ x^4 + 20*x^3 + 127*x^2 + 288*x + 180
868
+ sage: symbolic_product(i^2, i, 1, 7)
869
+ 25401600
870
+ sage: f = function('f')
871
+ sage: symbolic_product(f(i), i, 1, 7)
872
+ f(7)*f(6)*f(5)*f(4)*f(3)*f(2)*f(1)
873
+ sage: symbolic_product(f(i), i, 1, n)
874
+ product(f(i), i, 1, n)
875
+ sage: assume(k>0)
876
+ sage: symbolic_product(integrate (x^k, x, 0, 1), k, 1, n)
877
+ 1/factorial(n + 1)
878
+ sage: symbolic_product(f(i), i, 1, n).log().log_expand()
879
+ sum(log(f(i)), i, 1, n)
880
+
881
+ TESTS:
882
+
883
+ Verify that :issue:`30520` is fixed::
884
+
885
+ sage: symbolic_product(-x^2,x,1,n)
886
+ (-1)^n*factorial(n)^2
887
+ """
888
+ if not (isinstance(v, Expression) and v.is_symbol()):
889
+ if isinstance(v, str):
890
+ v = var(v)
891
+ else:
892
+ raise TypeError("need a multiplication variable")
893
+
894
+ if v in SR(a).variables() or v in SR(b).variables():
895
+ raise ValueError("product limits must not depend on the multiplication variable")
896
+
897
+ if hold:
898
+ from sage.functions.other import symbolic_product as sprod
899
+ return sprod(expression, v, a, b)
900
+
901
+ if algorithm == 'maxima':
902
+ return maxima.sr_prod(expression,v,a,b)
903
+
904
+ elif algorithm == 'mathematica':
905
+ try:
906
+ prod = "Product[%s, {%s, %s, %s}]" % tuple([repr(expr._mathematica_()) for expr in (expression, v, a, b)])
907
+ except TypeError:
908
+ raise ValueError("Mathematica cannot make sense of input")
909
+ from sage.interfaces.mathematica import mathematica
910
+ try:
911
+ result = mathematica(prod)
912
+ except TypeError:
913
+ raise ValueError("Mathematica cannot make sense of: %s" % sum)
914
+ return result.sage()
915
+
916
+ elif algorithm == 'giac':
917
+ prod = "product(%s, %s, %s, %s)" % tuple([repr(expr._giac_()) for expr in (expression, v, a, b)])
918
+ from sage.interfaces.giac import giac
919
+ try:
920
+ result = giac(prod)
921
+ except TypeError:
922
+ raise ValueError("Giac cannot make sense of: %s" % sum)
923
+ return result.sage()
924
+
925
+ elif algorithm == 'sympy':
926
+ expression,v,a,b = (expr._sympy_() for expr in (expression, v, a, b))
927
+ from sympy import product as sproduct
928
+
929
+ from sage.interfaces.sympy import sympy_init
930
+ sympy_init()
931
+ result = sproduct(expression, (v, a, b))
932
+ try:
933
+ return result._sage_()
934
+ except AttributeError:
935
+ raise AttributeError("Unable to convert SymPy result (={}) into"
936
+ " Sage".format(result))
937
+
938
+ else:
939
+ raise ValueError("unknown algorithm: %s" % algorithm)
940
+
941
+
942
+ def minpoly(ex, var='x', algorithm=None, bits=None, degree=None, epsilon=0):
943
+ r"""
944
+ Return the minimal polynomial of ``self``, if possible.
945
+
946
+ INPUT:
947
+
948
+ - ``var`` -- polynomial variable name (default: ``'x'``)
949
+
950
+ - ``algorithm`` -- ``'algebraic'`` or ``'numerical'`` (default
951
+ both, but with numerical first)
952
+
953
+ - ``bits`` -- the number of bits to use in numerical
954
+ approx
955
+
956
+ - ``degree`` -- the expected algebraic degree
957
+
958
+ - ``epsilon`` -- return without error as long as
959
+ f(self) epsilon, in the case that the result cannot be proven
960
+
961
+ All of the above parameters are optional, with epsilon=0, ``bits`` and
962
+ ``degree`` tested up to 1000 and 24 by default respectively. The
963
+ numerical algorithm will be faster if bits and/or degree are given
964
+ explicitly. The algebraic algorithm ignores the last three
965
+ parameters.
966
+
967
+ OUTPUT: the minimal polynomial of ``self``. If the numerical algorithm
968
+ is used, then it is proved symbolically when ``epsilon=0`` (default).
969
+
970
+ If the minimal polynomial could not be found, two distinct kinds of
971
+ errors are raised. If no reasonable candidate was found with the
972
+ given ``bits``/``degree`` parameters, a :exc:`ValueError` will be
973
+ raised. If a reasonable candidate was found but (perhaps due to
974
+ limits in the underlying symbolic package) was unable to be proved
975
+ correct, a :exc:`NotImplementedError` will be raised.
976
+
977
+ ALGORITHM: Two distinct algorithms are used, depending on the
978
+ algorithm parameter. By default, the numerical algorithm is
979
+ attempted first, then the algebraic one.
980
+
981
+ Algebraic: Attempt to evaluate this expression in ``QQbar``, using
982
+ cyclotomic fields to resolve exponential and trig functions at
983
+ rational multiples of `\pi`, field extensions to handle roots and
984
+ rational exponents, and computing compositums to represent the full
985
+ expression as an element of a number field where the minimal
986
+ polynomial can be computed exactly. The ``bits``, ``degree``, and ``epsilon``
987
+ parameters are ignored.
988
+
989
+ Numerical: Computes a numerical approximation of
990
+ ``self`` and use PARI's :pari:`algdep` to get a candidate
991
+ minpoly `f`. If `f(\mathtt{self})`,
992
+ evaluated to a higher precision, is close enough to 0 then evaluate
993
+ `f(\mathtt{self})` symbolically, attempting to prove
994
+ vanishing. If this fails, and ``epsilon`` is nonzero,
995
+ return `f` if and only if
996
+ `f(\mathtt{self}) < \mathtt{epsilon}`.
997
+ Otherwise raise a :exc:`ValueError` (if no suitable
998
+ candidate was found) or a :exc:`NotImplementedError` (if a
999
+ likely candidate was found but could not be proved correct).
1000
+
1001
+ EXAMPLES: First some simple examples::
1002
+
1003
+ sage: # needs fpylll
1004
+ sage: sqrt(2).minpoly()
1005
+ x^2 - 2
1006
+ sage: minpoly(2^(1/3))
1007
+ x^3 - 2
1008
+ sage: minpoly(sqrt(2) + sqrt(-1))
1009
+ x^4 - 2*x^2 + 9
1010
+ sage: minpoly(sqrt(2)-3^(1/3))
1011
+ x^6 - 6*x^4 + 6*x^3 + 12*x^2 + 36*x + 1
1012
+
1013
+
1014
+ Works with trig and exponential functions too.
1015
+
1016
+ ::
1017
+
1018
+ sage: # needs fpylll
1019
+ sage: sin(pi/3).minpoly()
1020
+ x^2 - 3/4
1021
+ sage: sin(pi/7).minpoly()
1022
+ x^6 - 7/4*x^4 + 7/8*x^2 - 7/64
1023
+ sage: minpoly(exp(I*pi/17))
1024
+ x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - x^9 + x^8
1025
+ - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
1026
+
1027
+ Here we verify it gives the same result as the abstract number
1028
+ field.
1029
+
1030
+ ::
1031
+
1032
+ sage: # needs fpylll
1033
+ sage: (sqrt(2) + sqrt(3) + sqrt(6)).minpoly()
1034
+ x^4 - 22*x^2 - 48*x - 23
1035
+ sage: K.<a,b> = NumberField([x^2-2, x^2-3])
1036
+ sage: (a+b+a*b).absolute_minpoly()
1037
+ x^4 - 22*x^2 - 48*x - 23
1038
+
1039
+ The :func:`minpoly` function is used implicitly when creating
1040
+ number fields::
1041
+
1042
+ sage: # needs fpylll
1043
+ sage: x = var('x')
1044
+ sage: eqn = x^3 + sqrt(2)*x + 5 == 0
1045
+ sage: a = solve(eqn, x)[0].rhs()
1046
+ sage: QQ[a]
1047
+ Number Field in a with defining polynomial x^6 + 10*x^3 - 2*x^2 + 25
1048
+ with a = 0.7185272465828846? - 1.721353471724806?*I
1049
+
1050
+ Here we solve a cubic and then recover it from its complicated
1051
+ radical expansion.
1052
+
1053
+ ::
1054
+
1055
+ sage: # needs fpylll
1056
+ sage: f = x^3 - x + 1
1057
+ sage: a = f.solve(x)[0].rhs(); a
1058
+ -1/2*(1/18*sqrt(23)*sqrt(3) - 1/2)^(1/3)*(I*sqrt(3) + 1)
1059
+ - 1/6*(-I*sqrt(3) + 1)/(1/18*sqrt(23)*sqrt(3) - 1/2)^(1/3)
1060
+ sage: a.minpoly()
1061
+ x^3 - x + 1
1062
+
1063
+ Note that simplification may be necessary to see that the minimal
1064
+ polynomial is correct.
1065
+
1066
+ ::
1067
+
1068
+ sage: # needs fpylll
1069
+ sage: a = sqrt(2) + sqrt(3) + sqrt(5)
1070
+ sage: f = a.minpoly(); f
1071
+ x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
1072
+ sage: f(a)
1073
+ (sqrt(5) + sqrt(3) + sqrt(2))^8 - 40*(sqrt(5) + sqrt(3) + sqrt(2))^6
1074
+ + 352*(sqrt(5) + sqrt(3) + sqrt(2))^4 - 960*(sqrt(5) + sqrt(3) + sqrt(2))^2
1075
+ + 576
1076
+ sage: f(a).expand()
1077
+ 0
1078
+
1079
+ ::
1080
+
1081
+ sage: # needs fpylll
1082
+ sage: a = sin(pi/7)
1083
+ sage: f = a.minpoly(algorithm='numerical'); f
1084
+ x^6 - 7/4*x^4 + 7/8*x^2 - 7/64
1085
+ sage: f(a).horner(a).numerical_approx(100)
1086
+ 0.00000000000000000000000000000
1087
+
1088
+ The degree must be high enough (default tops out at 24).
1089
+
1090
+ ::
1091
+
1092
+ sage: # needs fpylll
1093
+ sage: a = sqrt(3) + sqrt(2)
1094
+ sage: a.minpoly(algorithm='numerical', bits=100, degree=3)
1095
+ Traceback (most recent call last):
1096
+ ...
1097
+ ValueError: Could not find minimal polynomial (100 bits, degree 3).
1098
+ sage: a.minpoly(algorithm='numerical', bits=100, degree=10)
1099
+ x^4 - 10*x^2 + 1
1100
+
1101
+ ::
1102
+
1103
+ sage: # needs fpylll
1104
+ sage: cos(pi/33).minpoly(algorithm='algebraic')
1105
+ x^10 + 1/2*x^9 - 5/2*x^8 - 5/4*x^7 + 17/8*x^6 + 17/16*x^5
1106
+ - 43/64*x^4 - 43/128*x^3 + 3/64*x^2 + 3/128*x + 1/1024
1107
+ sage: cos(pi/33).minpoly(algorithm='numerical')
1108
+ x^10 + 1/2*x^9 - 5/2*x^8 - 5/4*x^7 + 17/8*x^6 + 17/16*x^5
1109
+ - 43/64*x^4 - 43/128*x^3 + 3/64*x^2 + 3/128*x + 1/1024
1110
+
1111
+ Sometimes it fails, as it must given that some numbers aren't algebraic::
1112
+
1113
+ sage: sin(1).minpoly(algorithm='numerical') # needs fpylll
1114
+ Traceback (most recent call last):
1115
+ ...
1116
+ ValueError: Could not find minimal polynomial (1000 bits, degree 24).
1117
+
1118
+ .. NOTE::
1119
+
1120
+ Of course, failure to produce a minimal polynomial does not
1121
+ necessarily indicate that this number is transcendental.
1122
+ """
1123
+ if algorithm is None or algorithm.startswith('numeric'):
1124
+ bits_list = [bits] if bits else [100,200,500,1000]
1125
+ degree_list = [degree] if degree else [2,4,8,12,24]
1126
+
1127
+ for bits in bits_list:
1128
+ a = ex.numerical_approx(bits)
1129
+ check_bits = int(1.25 * bits + 80)
1130
+ aa = ex.numerical_approx(check_bits)
1131
+
1132
+ for degree in degree_list:
1133
+
1134
+ f = QQ[var](algebraic_dependency(a, degree)) # TODO: use the known_bits parameter?
1135
+ # If indeed we have found a minimal polynomial,
1136
+ # it should be accurate to a much higher precision.
1137
+ error = abs(f(aa))
1138
+ dx = ~RR(Integer(1) << (check_bits - degree - 2))
1139
+ expected_error = abs(f.derivative()(CC(aa))) * dx
1140
+
1141
+ if error < expected_error:
1142
+ # Degree might have been an over-estimate,
1143
+ # factor because we want (irreducible) minpoly.
1144
+ ff = f.factor()
1145
+ for g, e in ff:
1146
+ lead = g.leading_coefficient()
1147
+ if lead != 1:
1148
+ g = g / lead
1149
+ expected_error = abs(g.derivative()(CC(aa))) * dx
1150
+ error = abs(g(aa))
1151
+ if error < expected_error:
1152
+ # See if we can prove equality exactly
1153
+ if g(ex).simplify_trig().canonicalize_radical() == 0:
1154
+ return g
1155
+ # Otherwise fall back to numerical guess
1156
+ elif epsilon and error < epsilon:
1157
+ return g
1158
+ elif algorithm is not None:
1159
+ raise NotImplementedError("Could not prove minimal polynomial %s (epsilon %s)" % (g, RR(error).str(no_sci=False)))
1160
+
1161
+ if algorithm is not None:
1162
+ raise ValueError("Could not find minimal polynomial (%s bits, degree %s)." % (bits, degree))
1163
+
1164
+ if algorithm is None or algorithm == 'algebraic':
1165
+ from sage.rings.qqbar import QQbar
1166
+ return QQ[var](QQbar(ex).minpoly())
1167
+
1168
+ raise ValueError("Unknown algorithm: %s" % algorithm)
1169
+
1170
+
1171
+ ###################################################################
1172
+ # limits
1173
+ ###################################################################
1174
+ def limit(ex, *args, dir=None, taylor=False, algorithm='maxima', **kwargs):
1175
+ r"""
1176
+ Return the limit as the variable `v` approaches `a`
1177
+ from the given direction.
1178
+
1179
+ SYNTAX:
1180
+
1181
+ There are two ways of invoking limit. One can write
1182
+ ``limit(expr, x=a, <keywords>)`` or ``limit(expr, x, a, <keywords>)``.
1183
+ In the first option, ``x`` must be a valid Python identifier. Its
1184
+ string representation is used to create the corresponding symbolic
1185
+ variable with respect to which to take the limit. In the second
1186
+ option, ``x`` can simply be a symbolic variable. For symbolic
1187
+ variables that do not have a string representation that is a valid
1188
+ Python identifier (for instance, if ``x`` is an indexed symbolic
1189
+ variable), the second option is required.
1190
+
1191
+ INPUT:
1192
+
1193
+ - ``ex`` -- the expression whose limit is computed. Must be convertible
1194
+ to a symbolic expression.
1195
+ - ``v`` -- The variable for the limit. Required for the
1196
+ ``limit(expr, v, a)`` syntax. Must be convertible to a symbolic
1197
+ variable.
1198
+ - ``a`` -- The value the variable approaches. Required for the
1199
+ ``limit(expr, v, a)`` syntax. Must be convertible to a symbolic
1200
+ expression.
1201
+ - ``dir`` -- (default: ``None``) direction for the limit:
1202
+ ``'plus'`` (or ``'+'`` or ``'right'`` or ``'above'``) for a limit from above,
1203
+ ``'minus'`` (or ``'-'`` or ``'left'`` or ``'below'``) for a limit from below.
1204
+ Omitted (``None``) implies a two-sided limit.
1205
+ - ``taylor`` -- (default: ``False``) if ``True``, use Taylor
1206
+ series via Maxima (may handle more cases but potentially less stable).
1207
+ Setting this automatically uses the ``'maxima_taylor'`` algorithm.
1208
+ - ``algorithm`` -- (default: ``'maxima'``) the backend algorithm to use.
1209
+ Options include ``'maxima'``, ``'maxima_taylor'``, ``'sympy'``,
1210
+ ``'giac'``, ``'fricas'``, ``'mathematica_free'``.
1211
+ - ``**kwargs`` -- (optional) single named parameter. Required for the
1212
+ ``limit(expr, v=a)`` syntax to specify variable and limit point.
1213
+
1214
+ .. NOTE::
1215
+
1216
+ The output may also use ``und`` (undefined), ``ind``
1217
+ (indefinite but bounded), and ``infinity`` (complex
1218
+ infinity).
1219
+
1220
+ EXAMPLES::
1221
+
1222
+ sage: x = var('x')
1223
+ sage: f = (1 + 1/x)^x
1224
+ sage: limit(f, x=oo)
1225
+ e
1226
+ sage: limit(f, x, oo)
1227
+ e
1228
+ sage: f.limit(x=5)
1229
+ 7776/3125
1230
+ sage: f.limit(x, 5)
1231
+ 7776/3125
1232
+
1233
+ The positional ``limit(expr, v, a)`` syntax is particularly useful
1234
+ when the limit variable ``v`` is an indexed variable or another
1235
+ expression that cannot be used as a keyword argument
1236
+ (fixes :issue:`38761`)::
1237
+
1238
+ sage: y = var('y', n=3)
1239
+ sage: g = sum(y); g
1240
+ y0 + y1 + y2
1241
+ sage: limit(g, y[1], 1)
1242
+ y0 + y2 + 1
1243
+ sage: g.limit(y[0], 5)
1244
+ y1 + y2 + 5
1245
+ sage: limit(y[0]^2 + y[1], y[0], y[2]) # Limit as y0 -> y2
1246
+ y2^2 + y1
1247
+
1248
+ Directional limits work with both syntaxes::
1249
+
1250
+ sage: limit(1/x, x, 0, dir='+')
1251
+ +Infinity
1252
+ sage: limit(1/x, x=0, dir='-')
1253
+ -Infinity
1254
+ sage: limit(exp(-1/x), x, 0, dir='left')
1255
+ +Infinity
1256
+
1257
+ Using different algorithms::
1258
+
1259
+ sage: limit(sin(x)/x, x, 0, algorithm='sympy')
1260
+ 1
1261
+ sage: limit(sin(x)/x, x, 0, algorithm='giac') # needs sage.libs.giac
1262
+ 1
1263
+ sage: limit(x^x, x, 0, dir='+', algorithm='fricas') # optional - fricas
1264
+ 1
1265
+
1266
+ Using Taylor series (can sometimes handle more complex limits)::
1267
+
1268
+ sage: limit((cos(x)-1)/x^2, x, 0, taylor=True)
1269
+ -1/2
1270
+
1271
+ Error handling for incorrect syntax::
1272
+
1273
+ sage: limit(sin(x)/x, x=0, y=1) # Too many keyword args
1274
+ Traceback (most recent call last):
1275
+ ...
1276
+ ValueError: multiple keyword arguments specified
1277
+ sage: limit(sin(x)/x, x, 0, y=1) # Mixed positional (v,a) and keyword variable
1278
+ Traceback (most recent call last):
1279
+ ...
1280
+ ValueError: cannot mix positional specification of limit variable and point with keyword variable arguments
1281
+ sage: limit(sin(x)/x, x) # Not enough positional args
1282
+ Traceback (most recent call last):
1283
+ ...
1284
+ ValueError: three positional arguments (expr, v, a) or one positional and one keyword argument (expr, v=a) required
1285
+ sage: limit(sin(x)/x) # No variable specified
1286
+ Traceback (most recent call last):
1287
+ ...
1288
+ ValueError: invalid limit specification
1289
+ sage: limit(sin(x)/x, x, 0, x=0) # Mixing both syntaxes
1290
+ Traceback (most recent call last):
1291
+ ...
1292
+ ValueError: cannot mix positional specification of limit variable and point with keyword variable arguments
1293
+
1294
+ Domain to real, a regression in 5.46.0, see https://sf.net/p/maxima/bugs/4138 ::
1295
+
1296
+ sage: maxima_calculus.eval("domain:real")
1297
+ ...
1298
+ sage: f = (1 + 1/x)^x
1299
+ sage: f.limit(x=1.2).n()
1300
+ 2.06961575467...
1301
+ sage: maxima_calculus.eval("domain:complex");
1302
+ ...
1303
+
1304
+ Otherwise, it works ::
1305
+
1306
+ sage: f.limit(x=I, taylor=True)
1307
+ (-I + 1)^I
1308
+ sage: f(x=1.2)
1309
+ 2.0696157546720...
1310
+ sage: f(x=I)
1311
+ (-I + 1)^I
1312
+ sage: CDF(f(x=I))
1313
+ 2.0628722350809046 + 0.7450070621797239*I
1314
+ sage: CDF(f.limit(x=I))
1315
+ 2.0628722350809046 + 0.7450070621797239*I
1316
+
1317
+ Notice that Maxima may ask for more information::
1318
+
1319
+ sage: var('a')
1320
+ a
1321
+ sage: limit(x^a,x=0)
1322
+ Traceback (most recent call last):
1323
+ ...
1324
+ ValueError: Computation failed since Maxima requested additional
1325
+ constraints; using the 'assume' command before evaluation
1326
+ *may* help (example of legal syntax is 'assume(a>0)', see
1327
+ `assume?` for more details)
1328
+ Is a positive, negative or zero?
1329
+
1330
+ With this example, Maxima is looking for a LOT of information::
1331
+
1332
+ sage: assume(a>0)
1333
+ sage: limit(x^a,x=0) # random - maxima 5.46.0 does not need extra assumption
1334
+ Traceback (most recent call last):
1335
+ ...
1336
+ ValueError: Computation failed since Maxima requested additional
1337
+ constraints; using the 'assume' command before evaluation *may* help
1338
+ (example of legal syntax is 'assume(a>0)', see `assume?` for
1339
+ more details)
1340
+ Is a an integer?
1341
+ sage: assume(a,'integer')
1342
+ sage: limit(x^a, x=0) # random - maxima 5.46.0 does not need extra assumption
1343
+ Traceback (most recent call last):
1344
+ ...
1345
+ ValueError: Computation failed since Maxima requested additional
1346
+ constraints; using the 'assume' command before evaluation *may* help
1347
+ (example of legal syntax is 'assume(a>0)', see `assume?` for
1348
+ more details)
1349
+ Is a an even number?
1350
+ sage: assume(a, 'even')
1351
+ sage: limit(x^a, x=0)
1352
+ 0
1353
+ sage: forget()
1354
+
1355
+ More examples::
1356
+
1357
+ sage: limit(x*log(x), x=0, dir='+')
1358
+ 0
1359
+ sage: lim((x+1)^(1/x), x=0)
1360
+ e
1361
+ sage: lim(e^x/x, x=oo)
1362
+ +Infinity
1363
+ sage: lim(e^x/x, x=-oo)
1364
+ 0
1365
+ sage: lim(-e^x/x, x=oo)
1366
+ -Infinity
1367
+ sage: lim((cos(x))/(x^2), x=0)
1368
+ +Infinity
1369
+ sage: lim(sqrt(x^2+1) - x, x=oo)
1370
+ 0
1371
+ sage: lim(x^2/(sec(x)-1), x=0)
1372
+ 2
1373
+ sage: lim(cos(x)/(cos(x)-1), x=0)
1374
+ -Infinity
1375
+ sage: lim(x*sin(1/x), x=0)
1376
+ 0
1377
+ sage: limit(e^(-1/x), x=0, dir='right')
1378
+ 0
1379
+ sage: limit(e^(-1/x), x=0, dir='left')
1380
+ +Infinity
1381
+
1382
+ ::
1383
+
1384
+ sage: f = log(log(x)) / log(x)
1385
+ sage: forget(); assume(x < -2); lim(f, x=0, taylor=True)
1386
+ 0
1387
+ sage: forget()
1388
+
1389
+ Here ind means "indefinite but bounded"::
1390
+
1391
+ sage: lim(sin(1/x), x = 0)
1392
+ ind
1393
+
1394
+ We can use other packages than maxima, namely "sympy", "giac", "fricas".
1395
+
1396
+ With the standard package Giac::
1397
+
1398
+ sage: # needs sage.libs.giac
1399
+ sage: (exp(-x)/(2+sin(x))).limit(x=oo, algorithm='giac')
1400
+ 0
1401
+ sage: limit(e^(-1/x), x=0, dir='right', algorithm='giac')
1402
+ 0
1403
+ sage: limit(e^(-1/x), x=0, dir='left', algorithm='giac')
1404
+ +Infinity
1405
+ sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='giac')
1406
+ 1
1407
+
1408
+ With the optional package FriCAS::
1409
+
1410
+ sage: (x / (x+2^x+cos(x))).limit(x=-infinity, algorithm='fricas') # optional - fricas
1411
+ 1
1412
+ sage: limit(e^(-1/x), x=0, dir='right', algorithm='fricas') # optional - fricas
1413
+ 0
1414
+ sage: limit(e^(-1/x), x=0, dir='left', algorithm='fricas') # optional - fricas
1415
+ +Infinity
1416
+
1417
+ One can also call Mathematica's online interface::
1418
+
1419
+ sage: limit(pi+log(x)/x,x=oo, algorithm='mathematica_free') # optional - internet
1420
+ pi
1421
+
1422
+ TESTS::
1423
+
1424
+ sage: lim(x^2, x=2, dir='nugget')
1425
+ Traceback (most recent call last):
1426
+ ...
1427
+ ValueError: dir must be one of None, 'plus', '+', 'above', 'right', 'minus', '-', 'below', 'left'
1428
+
1429
+ sage: x.limit(x=3, algorithm='nugget')
1430
+ Traceback (most recent call last):
1431
+ ...
1432
+ ValueError: Unknown algorithm: nugget
1433
+
1434
+ We check that :issue:`3718` is fixed, so that
1435
+ Maxima gives correct limits for the floor function::
1436
+
1437
+ sage: limit(floor(x), x=0, dir='-')
1438
+ -1
1439
+ sage: limit(floor(x), x=0, dir='+')
1440
+ 0
1441
+ sage: limit(floor(x), x=0)
1442
+ ...nd
1443
+
1444
+ Maxima gives the right answer here, too, showing
1445
+ that :issue:`4142` is fixed::
1446
+
1447
+ sage: f = sqrt(1 - x^2)
1448
+ sage: g = diff(f, x); g
1449
+ -x/sqrt(-x^2 + 1)
1450
+ sage: limit(g, x=1, dir='-')
1451
+ -Infinity
1452
+
1453
+ ::
1454
+
1455
+ sage: limit(1/x, x=0)
1456
+ Infinity
1457
+ sage: limit(1/x, x=0, dir='+')
1458
+ +Infinity
1459
+ sage: limit(1/x, x=0, dir='-')
1460
+ -Infinity
1461
+
1462
+ Check that :issue:`8942` is fixed::
1463
+
1464
+ sage: f(x) = (cos(pi/4 - x) - tan(x)) / (1 - sin(pi/4 + x))
1465
+ sage: limit(f(x), x=pi/4, dir='minus')
1466
+ +Infinity
1467
+ sage: limit(f(x), x=pi/4, dir='plus')
1468
+ -Infinity
1469
+ sage: limit(f(x), x=pi/4)
1470
+ Infinity
1471
+
1472
+ Check that :issue:`12708` is fixed::
1473
+
1474
+ sage: limit(tanh(x), x=0)
1475
+ 0
1476
+
1477
+ Check that :issue:`15386` is fixed::
1478
+
1479
+ sage: n = var('n')
1480
+ sage: assume(n>0)
1481
+ sage: sequence = -(3*n^2 + 1)*(-1)^n / sqrt(n^5 + 8*n^3 + 8)
1482
+ sage: limit(sequence, n=infinity)
1483
+ 0
1484
+ sage: forget() # Clean up assumption
1485
+
1486
+ Check if :issue:`23048` is fixed::
1487
+
1488
+ sage: (1/(x-3)).limit(x=3, dir='below')
1489
+ -Infinity
1490
+
1491
+ From :issue:`14677`::
1492
+
1493
+ sage: f = (x^x - sin(x)^sin(x)) / (x^3*log(x))
1494
+ sage: limit(f, x=0, algorithm='fricas') # optional - fricas
1495
+ und
1496
+
1497
+ sage: limit(f, x=0, dir='right', algorithm='fricas') # optional - fricas
1498
+ 1/6
1499
+
1500
+ From :issue:`26497`::
1501
+
1502
+ sage: mu, y, sigma = var("mu, y, sigma")
1503
+ sage: f = 1/2*sqrt(2)*e^(-1/2*(mu - log(y))^2/sigma^2)/(sqrt(pi)*sigma*y)
1504
+ sage: limit(f, y=0, algorithm='fricas') # optional - fricas
1505
+ 0
1506
+
1507
+ From :issue:`26060`::
1508
+
1509
+ sage: limit(x / (x + 2^x + cos(x)), x=-infinity)
1510
+ 1
1511
+
1512
+ # Added specific tests for argument parsing logic to ensure coverage
1513
+ sage: limit(x+1, x=1)
1514
+ 2
1515
+ sage: limit(x+1, x, 1)
1516
+ 2
1517
+ sage: limit(x+1, 'x', 1)
1518
+ 2
1519
+ sage: limit(x+1, v=x, a=1) # using v=, a= keywords triggers multiple keyword error
1520
+ Traceback (most recent call last):
1521
+ ...
1522
+ ValueError: multiple keyword arguments specified
1523
+ sage: limit(x+1, v=x, a=1, algorithm='sympy') # as above
1524
+ Traceback (most recent call last):
1525
+ ...
1526
+ ValueError: multiple keyword arguments specified
1527
+ sage: limit(x+1, x=1, algorithm='sympy')
1528
+ 2
1529
+ sage: limit(x+1, x, 1, algorithm='sympy')
1530
+ 2
1531
+
1532
+ # Test that var() is not called unnecessarily on symbolic input v
1533
+ sage: y = var('y', n=3)
1534
+ sage: limit(sum(y), y[1], 1) # Should work directly
1535
+ y0 + y2 + 1
1536
+
1537
+ # Test conversion of v if not symbolic
1538
+ sage: limit(x**2, 'x', 3)
1539
+ 9
1540
+ sage: y = var('y')
1541
+ sage: limit(x**2 + y, "y", x) # Need y=var('y') defined for this test
1542
+ x^2 + x
1543
+
1544
+ # Test conversion of a if not symbolic
1545
+ sage: limit(x**2, x, "3")
1546
+ 9
1547
+
1548
+ # Test using a constant number as variable 'v' fails
1549
+ sage: limit(x**2 + 5, 5, 10)
1550
+ Traceback (most recent call last):
1551
+ ...
1552
+ TypeError: limit variable must be a variable, not a constant
1553
+ """
1554
+ # Process expression
1555
+ if not isinstance(ex, Expression):
1556
+ ex = SR(ex)
1557
+
1558
+ # Argument parsing: Determining v and a based on syntax used
1559
+ v = None
1560
+ a = None
1561
+
1562
+ if len(args) == 2: # Syntax: limit(ex, v, a, ...)
1563
+ if kwargs: # Cannot mix positional v, a with keyword args
1564
+ raise ValueError("cannot mix positional specification of limit variable and point with keyword variable arguments")
1565
+ v = args[0]
1566
+ a = args[1]
1567
+ elif len(args) == 1:
1568
+ if kwargs:
1569
+ raise ValueError("cannot mix positional specification of limit variable and point with keyword variable arguments")
1570
+ else:
1571
+ raise ValueError("three positional arguments (expr, v, a) or one positional and one keyword argument (expr, v=a) required")
1572
+ elif len(args) == 0: # Potential syntax: limit(ex, v=a, ...) or limit(ex)
1573
+ if len(kwargs) == 1:
1574
+ k, = kwargs.keys()
1575
+ v = var(k)
1576
+ a = kwargs[k]
1577
+ elif len(kwargs) == 0: # For No variable specified at all
1578
+ raise ValueError("invalid limit specification")
1579
+ else: # For Multiple keyword arguments like x=1, y=2
1580
+ raise ValueError("multiple keyword arguments specified")
1581
+
1582
+ # Ensuring v is a symbolic expression and a valid limit variable
1583
+ if not isinstance(v, Expression):
1584
+ v = SR(v)
1585
+ if not v.is_symbol():
1586
+ raise TypeError("limit variable must be a variable, not a constant")
1587
+
1588
+ # Ensuring a is a symbolic expression
1589
+ if not isinstance(a, Expression):
1590
+ a = SR(a)
1591
+
1592
+ # Processing algorithm and direction options
1593
+ effective_algorithm = algorithm
1594
+ if taylor and algorithm == 'maxima':
1595
+ effective_algorithm = 'maxima_taylor'
1596
+
1597
+ dir_plus = ['plus', '+', 'above', 'right']
1598
+ dir_minus = ['minus', '-', 'below', 'left']
1599
+ dir_both = [None] + dir_plus + dir_minus
1600
+ if dir not in dir_both:
1601
+ raise ValueError("dir must be one of " + ", ".join(map(repr, dir_both)))
1602
+
1603
+ # Calling the appropriate backend based on effective_algorithm
1604
+ l = None
1605
+ if effective_algorithm == 'maxima':
1606
+ if dir is None:
1607
+ l = maxima.sr_limit(ex, v, a)
1608
+ elif dir in dir_plus:
1609
+ l = maxima.sr_limit(ex, v, a, 'plus')
1610
+ elif dir in dir_minus:
1611
+ l = maxima.sr_limit(ex, v, a, 'minus')
1612
+ elif effective_algorithm == 'maxima_taylor':
1613
+ if dir is None:
1614
+ l = maxima.sr_tlimit(ex, v, a)
1615
+ elif dir in dir_plus:
1616
+ l = maxima.sr_tlimit(ex, v, a, 'plus')
1617
+ elif dir in dir_minus:
1618
+ l = maxima.sr_tlimit(ex, v, a, 'minus')
1619
+ elif effective_algorithm == 'sympy':
1620
+ import sympy
1621
+ sympy_dir = '+-'
1622
+ if dir in dir_plus:
1623
+ sympy_dir = '+'
1624
+ elif dir in dir_minus:
1625
+ sympy_dir = '-'
1626
+ l = sympy.limit(ex._sympy_(), v._sympy_(), a._sympy_(), dir=sympy_dir)
1627
+ elif effective_algorithm == 'fricas':
1628
+ from sage.interfaces.fricas import fricas
1629
+ eq = fricas.equation(v._fricas_(), a._fricas_())
1630
+ f = ex._fricas_()
1631
+ fricas_dir_arg = None
1632
+ if dir in dir_plus:
1633
+ fricas_dir_arg = '"right"'
1634
+ elif dir in dir_minus:
1635
+ fricas_dir_arg = '"left"'
1636
+
1637
+ if fricas_dir_arg:
1638
+ l = fricas.limit(f, eq, fricas_dir_arg).sage()
1639
+ else:
1640
+ l_raw = fricas.limit(f, eq).sage()
1641
+ if isinstance(l_raw, dict):
1642
+ l = SR('und')
1643
+ else:
1644
+ l = l_raw
1645
+ elif effective_algorithm == 'giac':
1646
+ from sage.libs.giac.giac import libgiac
1647
+ giac_v = v._giac_init_()
1648
+ giac_a = a._giac_init_()
1649
+ giac_dir_arg = 0 # Default for two-sided
1650
+ if dir in dir_plus:
1651
+ giac_dir_arg = 1
1652
+ elif dir in dir_minus:
1653
+ giac_dir_arg = -1
1654
+ l = libgiac.limit(ex, giac_v, giac_a, giac_dir_arg).sage()
1655
+ elif effective_algorithm == 'mathematica_free':
1656
+ # Ensuring mma_free_limit exists
1657
+ l = mma_free_limit(ex, v, a, dir)
1658
+ else:
1659
+ raise ValueError("Unknown algorithm: %s" % effective_algorithm)
1660
+
1661
+ original_parent = ex.parent()
1662
+
1663
+ return original_parent(l)
1664
+
1665
+
1666
+ # lim is alias for limit
1667
+ lim = limit
1668
+
1669
+
1670
+ def mma_free_limit(expression, v, a, dir=None):
1671
+ """
1672
+ Limit using Mathematica's online interface.
1673
+
1674
+ INPUT:
1675
+
1676
+ - ``expression`` -- symbolic expression
1677
+ - ``v`` -- variable
1678
+ - ``a`` -- value where the variable goes to
1679
+ - ``dir`` -- ``'+'``, ``'-'`` or ``None`` (default: ``None``)
1680
+
1681
+ EXAMPLES::
1682
+
1683
+ sage: from sage.calculus.calculus import mma_free_limit
1684
+ sage: mma_free_limit(sin(x)/x, x, a=0) # optional - internet
1685
+ 1
1686
+
1687
+ Another simple limit::
1688
+
1689
+ sage: mma_free_limit(e^(-x), x, a=oo) # optional - internet
1690
+ 0
1691
+ """
1692
+ from sage.interfaces.mathematica import (
1693
+ parse_moutput_from_json,
1694
+ request_wolfram_alpha,
1695
+ symbolic_expression_from_mathematica_string,
1696
+ )
1697
+ dir_plus = ['plus', '+', 'above', 'right']
1698
+ dir_minus = ['minus', '-', 'below', 'left']
1699
+ math_expr = expression._mathematica_init_()
1700
+ variable = v._mathematica_init_()
1701
+ a = a._mathematica_init_()
1702
+ if dir is None:
1703
+ input = "Limit[{},{} -> {}]".format(math_expr, variable, a)
1704
+ elif dir in dir_plus:
1705
+ dir = 'Direction -> "FromAbove"'
1706
+ input = "Limit[{}, {} -> {}, {}]".format(math_expr, variable, a, dir)
1707
+ elif dir in dir_minus:
1708
+ dir = 'Direction -> "FromBelow"'
1709
+ input = "Limit[{}, {} -> {}, {}]".format(math_expr, variable, a, dir)
1710
+ else:
1711
+ raise ValueError('wrong input for limit')
1712
+ json_page_data = request_wolfram_alpha(input)
1713
+ all_outputs = parse_moutput_from_json(json_page_data)
1714
+ if not all_outputs:
1715
+ raise ValueError("no outputs found in the answer from Wolfram Alpha")
1716
+ first_output = all_outputs[0]
1717
+ return symbolic_expression_from_mathematica_string(first_output)
1718
+
1719
+
1720
+ ###################################################################
1721
+ # Laplace transform
1722
+ ###################################################################
1723
+ def laplace(ex, t, s, algorithm='maxima'):
1724
+ r"""
1725
+ Return the Laplace transform with respect to the variable `t` and
1726
+ transform parameter `s`, if possible.
1727
+
1728
+ If this function cannot find a solution, a formal function is returned.
1729
+ The function that is returned may be viewed as a function of `s`.
1730
+
1731
+ DEFINITION:
1732
+
1733
+ The Laplace transform of a function `f(t)`, defined for all real numbers
1734
+ `t \geq 0`, is the function `F(s)` defined by
1735
+
1736
+ .. MATH::
1737
+
1738
+ F(s) = \int_{0}^{\infty} e^{-st} f(t) dt.
1739
+
1740
+ INPUT:
1741
+
1742
+ - ``ex`` -- a symbolic expression
1743
+
1744
+ - ``t`` -- independent variable
1745
+
1746
+ - ``s`` -- transform parameter
1747
+
1748
+ - ``algorithm`` -- (default: ``'maxima'``) one of
1749
+
1750
+ - ``'maxima'`` -- use Maxima (the default)
1751
+
1752
+ - ``'sympy'`` -- use SymPy
1753
+
1754
+ - ``'giac'`` -- use Giac (optional)
1755
+
1756
+ .. NOTE::
1757
+
1758
+ The ``'sympy'`` algorithm returns the tuple (`F`, `a`, ``cond``)
1759
+ where `F` is the Laplace transform of `f(t)`,
1760
+ `Re(s)>a` is the half-plane of convergence, and ``cond`` are
1761
+ auxiliary convergence conditions.
1762
+
1763
+ .. SEEALSO::
1764
+
1765
+ :func:`inverse_laplace`
1766
+
1767
+ EXAMPLES:
1768
+
1769
+ We compute a few Laplace transforms::
1770
+
1771
+ sage: var('x, s, z, t, t0')
1772
+ (x, s, z, t, t0)
1773
+ sage: sin(x).laplace(x, s)
1774
+ 1/(s^2 + 1)
1775
+ sage: (z + exp(x)).laplace(x, s)
1776
+ z/s + 1/(s - 1)
1777
+ sage: log(t/t0).laplace(t, s)
1778
+ -(euler_gamma + log(s) + log(t0))/s
1779
+
1780
+ We do a formal calculation::
1781
+
1782
+ sage: f = function('f')(x)
1783
+ sage: g = f.diff(x); g
1784
+ diff(f(x), x)
1785
+ sage: g.laplace(x, s)
1786
+ s*laplace(f(x), x, s) - f(0)
1787
+
1788
+ A BATTLE BETWEEN the X-women and the Y-men (by David
1789
+ Joyner): Solve
1790
+
1791
+ .. MATH::
1792
+
1793
+ x' = -16y, x(0)=270, y' = -x + 1, y(0) = 90.
1794
+
1795
+ This models a fight between two sides, the "X-women" and the
1796
+ "Y-men", where the X-women have 270 initially and the Y-men have
1797
+ 90, but the Y-men are better at fighting, because of the higher
1798
+ factor of "-16" vs "-1", and also get an occasional reinforcement,
1799
+ because of the "+1" term.
1800
+
1801
+ ::
1802
+
1803
+ sage: var('t')
1804
+ t
1805
+ sage: t = var('t')
1806
+ sage: x = function('x')(t)
1807
+ sage: y = function('y')(t)
1808
+ sage: de1 = x.diff(t) + 16*y
1809
+ sage: de2 = y.diff(t) + x - 1
1810
+ sage: de1.laplace(t, s)
1811
+ s*laplace(x(t), t, s) + 16*laplace(y(t), t, s) - x(0)
1812
+ sage: de2.laplace(t, s)
1813
+ s*laplace(y(t), t, s) - 1/s + laplace(x(t), t, s) - y(0)
1814
+
1815
+ Next we form the augmented matrix of the above system::
1816
+
1817
+ sage: A = matrix([[s, 16, 270], [1, s, 90+1/s]])
1818
+ sage: E = A.echelon_form()
1819
+ sage: xt = E[0,2].inverse_laplace(s,t)
1820
+ sage: yt = E[1,2].inverse_laplace(s,t)
1821
+ sage: xt
1822
+ -91/2*e^(4*t) + 629/2*e^(-4*t) + 1
1823
+ sage: yt
1824
+ 91/8*e^(4*t) + 629/8*e^(-4*t)
1825
+ sage: p1 = plot(xt, 0, 1/2, rgbcolor=(1,0,0)) # needs sage.plot
1826
+ sage: p2 = plot(yt, 0, 1/2, rgbcolor=(0,1,0)) # needs sage.plot
1827
+ sage: import tempfile
1828
+ sage: with tempfile.NamedTemporaryFile(suffix='.png') as f: # needs sage.plot
1829
+ ....: (p1 + p2).save(f.name)
1830
+
1831
+ Another example::
1832
+
1833
+ sage: var('a,s,t')
1834
+ (a, s, t)
1835
+ sage: f = exp (2*t + a) * sin(t) * t; f
1836
+ t*e^(a + 2*t)*sin(t)
1837
+ sage: L = laplace(f, t, s); L.simplify_rational()
1838
+ 2*(s*e^a - 2*e^a)/(s^4 - 8*s^3 + 26*s^2 - 40*s + 25)
1839
+ sage: inverse_laplace(L, s, t)
1840
+ t*e^(a + 2*t)*sin(t)
1841
+
1842
+ The Laplace transform of the exponential function::
1843
+
1844
+ sage: laplace(exp(x), x, s)
1845
+ 1/(s - 1)
1846
+
1847
+ Dirac's delta distribution is handled (the output of SymPy is
1848
+ related to a choice that has to be made when defining Laplace
1849
+ transforms of distributions)::
1850
+
1851
+ sage: laplace(dirac_delta(t), t, s)
1852
+ 1
1853
+ sage: F, a, cond = laplace(dirac_delta(t), t, s, algorithm='sympy')
1854
+ sage: a, cond # random - sympy <1.10 gives (-oo, True)
1855
+ (0, True)
1856
+ sage: F # random - sympy <1.9 includes undefined heaviside(0) in answer
1857
+ 1
1858
+ sage: laplace(dirac_delta(t), t, s, algorithm='giac') # needs giac
1859
+ 1
1860
+
1861
+ Heaviside step function can be handled with different interfaces.
1862
+ Try with Maxima::
1863
+
1864
+ sage: laplace(heaviside(t-1), t, s)
1865
+ e^(-s)/s
1866
+
1867
+ Try with giac, if it is installed::
1868
+
1869
+ sage: # needs giac
1870
+ sage: laplace(heaviside(t-1), t, s, algorithm='giac')
1871
+ e^(-s)/s
1872
+
1873
+ Try with SymPy::
1874
+
1875
+ sage: laplace(heaviside(t-1), t, s, algorithm='sympy')
1876
+ (e^(-s)/s, 0, True)
1877
+
1878
+ TESTS:
1879
+
1880
+ Testing Giac::
1881
+
1882
+ sage: # needs giac
1883
+ sage: var('t, s')
1884
+ (t, s)
1885
+ sage: laplace(5*cos(3*t-2)*heaviside(t-2), t, s, algorithm='giac')
1886
+ 5*(s*cos(4)*e^(-2*s) - 3*e^(-2*s)*sin(4))/(s^2 + 9)
1887
+
1888
+ Check unevaluated expression from Giac (it is locale-dependent, see
1889
+ :issue:`22833`)::
1890
+
1891
+ sage: # needs giac
1892
+ sage: n = SR.var('n')
1893
+ sage: laplace(t^n, t, s, algorithm='giac')
1894
+ laplace(t^n, t, s)
1895
+
1896
+ Testing SymPy::
1897
+
1898
+ sage: n = SR.var('n')
1899
+ sage: F, a, cond = laplace(t^n, t, s, algorithm='sympy')
1900
+ sage: a, cond
1901
+ (0, re(n) > -1)
1902
+ sage: F.simplify()
1903
+ s^(-n - 1)*gamma(n + 1)
1904
+
1905
+
1906
+ Testing Maxima::
1907
+ sage: n = SR.var('n')
1908
+ sage: assume(n > -1)
1909
+ sage: laplace(t^n, t, s, algorithm='maxima')
1910
+ s^(-n - 1)*gamma(n + 1)
1911
+
1912
+ Check that :issue:`24212` is fixed::
1913
+
1914
+ sage: F, a, cond = laplace(cos(t^2), t, s, algorithm='sympy')
1915
+ sage: a, cond
1916
+ (0, True)
1917
+ sage: F._sympy_().simplify()
1918
+ sqrt(pi)*(sqrt(2)*sin(s**2/4)*fresnelc(sqrt(2)*s/(2*sqrt(pi))) -
1919
+ sqrt(2)*cos(s**2/4)*fresnels(sqrt(2)*s/(2*sqrt(pi))) + cos(s**2/4 + pi/4))/2
1920
+
1921
+ Testing result from SymPy that Sage doesn't know how to handle::
1922
+
1923
+ sage: laplace(cos(-1/t), t, s, algorithm='sympy')
1924
+ Traceback (most recent call last):
1925
+ ...
1926
+ AttributeError: Unable to convert SymPy result (=meijerg(((), ()), ((-1/2, 0, 1/2), (0,)), ...)/4) into Sage
1927
+ """
1928
+ if not isinstance(ex, (Expression, Function)):
1929
+ ex = SR(ex)
1930
+
1931
+ if algorithm == 'maxima':
1932
+ return ex.parent()(ex._maxima_().laplace(var(t), var(s)))
1933
+
1934
+ elif algorithm == 'sympy':
1935
+ ex_sy, t, s = (expr._sympy_() for expr in (ex, t, s))
1936
+ from sympy import laplace_transform
1937
+
1938
+ from sage.interfaces.sympy import sympy_init
1939
+ sympy_init()
1940
+ result = laplace_transform(ex_sy, t, s)
1941
+ if isinstance(result, tuple):
1942
+ try:
1943
+ (result, a, cond) = result
1944
+ return result._sage_(), a, cond
1945
+ except AttributeError:
1946
+ raise AttributeError("Unable to convert SymPy result (={}) into"
1947
+ " Sage".format(result))
1948
+ elif 'LaplaceTransform' in format(result):
1949
+ return dummy_laplace(ex, t, s)
1950
+ else:
1951
+ return result
1952
+
1953
+ elif algorithm == 'giac':
1954
+ from sage.interfaces.giac import giac
1955
+ try:
1956
+ result = giac.laplace(ex, t, s)
1957
+ except TypeError:
1958
+ raise ValueError("Giac cannot make sense of: %s" % ex)
1959
+ if 'integrate' in format(result) or 'integration' in format(result):
1960
+ return dummy_laplace(ex, t, s)
1961
+ else:
1962
+ return result.sage()
1963
+
1964
+ else:
1965
+ raise ValueError("Unknown algorithm: %s" % algorithm)
1966
+
1967
+
1968
+ def inverse_laplace(ex, s, t, algorithm='maxima'):
1969
+ r"""
1970
+ Return the inverse Laplace transform with respect to the variable `t` and
1971
+ transform parameter `s`, if possible.
1972
+
1973
+ If this function cannot find a solution, a formal function is returned.
1974
+ The function that is returned may be viewed as a function of `t`.
1975
+
1976
+ DEFINITION:
1977
+
1978
+ The inverse Laplace transform of a function `F(s)` is the function
1979
+ `f(t)`, defined by
1980
+
1981
+ .. MATH::
1982
+
1983
+ f(t) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma + i\infty} e^{st} F(s) ds,
1984
+
1985
+ where `\gamma` is chosen so that the contour path of
1986
+ integration is in the region of convergence of `F(s)`.
1987
+
1988
+ INPUT:
1989
+
1990
+ - ``ex`` -- a symbolic expression
1991
+
1992
+ - ``s`` -- transform parameter
1993
+
1994
+ - ``t`` -- independent variable
1995
+
1996
+ - ``algorithm`` -- (default: ``'maxima'``) one of
1997
+
1998
+ - ``'maxima'`` -- use Maxima (the default)
1999
+
2000
+ - ``'sympy'`` -- use SymPy
2001
+
2002
+ - ``'giac'`` -- use Giac (optional)
2003
+
2004
+ .. SEEALSO::
2005
+
2006
+ :func:`laplace`
2007
+
2008
+ EXAMPLES::
2009
+
2010
+ sage: var('w, m')
2011
+ (w, m)
2012
+ sage: f = (1/(w^2+10)).inverse_laplace(w, m); f
2013
+ 1/10*sqrt(10)*sin(sqrt(10)*m)
2014
+ sage: laplace(f, m, w)
2015
+ 1/(w^2 + 10)
2016
+
2017
+ sage: f(t) = t*cos(t)
2018
+ sage: s = var('s')
2019
+ sage: L = laplace(f, t, s); L
2020
+ t |--> 2*s^2/(s^2 + 1)^2 - 1/(s^2 + 1)
2021
+ sage: inverse_laplace(L, s, t)
2022
+ t |--> t*cos(t)
2023
+ sage: inverse_laplace(1/(s^3+1), s, t)
2024
+ 1/3*(sqrt(3)*sin(1/2*sqrt(3)*t) - cos(1/2*sqrt(3)*t))*e^(1/2*t) + 1/3*e^(-t)
2025
+
2026
+ No explicit inverse Laplace transform, so one is returned formally a
2027
+ function ``ilt``::
2028
+
2029
+ sage: inverse_laplace(cos(s), s, t)
2030
+ ilt(cos(s), s, t)
2031
+
2032
+ Transform an expression involving a time-shift, via SymPy::
2033
+
2034
+ sage: inverse_laplace(1/s^2*exp(-s), s, t, algorithm='sympy').simplify()
2035
+ (t - 1)*heaviside(t - 1)
2036
+
2037
+ The same instance with Giac::
2038
+
2039
+ sage: # needs giac
2040
+ sage: inverse_laplace(1/s^2*exp(-s), s, t, algorithm='giac')
2041
+ (t - 1)*heaviside(t - 1)
2042
+
2043
+ Transform a rational expression::
2044
+
2045
+ sage: # needs giac
2046
+ sage: inverse_laplace((2*s^2*exp(-2*s) - exp(-s))/(s^3+1), s, t,
2047
+ ....: algorithm='giac')
2048
+ -1/3*(sqrt(3)*e^(1/2*t - 1/2)*sin(1/2*sqrt(3)*(t - 1))
2049
+ - cos(1/2*sqrt(3)*(t - 1))*e^(1/2*t - 1/2) + e^(-t + 1))*heaviside(t - 1)
2050
+ + 2/3*(2*cos(1/2*sqrt(3)*(t - 2))*e^(1/2*t - 1) + e^(-t + 2))*heaviside(t - 2)
2051
+
2052
+ sage: inverse_laplace(1/(s - 1), s, x)
2053
+ e^x
2054
+
2055
+ The inverse Laplace transform of a constant is a delta
2056
+ distribution::
2057
+
2058
+ sage: inverse_laplace(1, s, t)
2059
+ dirac_delta(t)
2060
+ sage: inverse_laplace(1, s, t, algorithm='sympy')
2061
+ dirac_delta(t)
2062
+ sage: inverse_laplace(1, s, t, algorithm='giac') # needs giac
2063
+ dirac_delta(t)
2064
+
2065
+ TESTS:
2066
+
2067
+ Testing unevaluated expression from Maxima::
2068
+
2069
+ sage: var('t, s')
2070
+ (t, s)
2071
+ sage: inverse_laplace(exp(-s)/s, s, t)
2072
+ ilt(e^(-s)/s, s, t)
2073
+
2074
+ Testing Giac::
2075
+
2076
+ sage: # needs giac
2077
+ sage: inverse_laplace(exp(-s)/s, s, t, algorithm='giac')
2078
+ heaviside(t - 1)
2079
+
2080
+ Testing SymPy::
2081
+
2082
+ sage: inverse_laplace(exp(-s)/s, s, t, algorithm='sympy')
2083
+ heaviside(t - 1)
2084
+
2085
+ Testing unevaluated expression from Giac::
2086
+
2087
+ sage: # needs giac
2088
+ sage: n = SR.var('n')
2089
+ sage: inverse_laplace(1/s^n, s, t, algorithm='giac')
2090
+ ilt(1/(s^n), t, s)
2091
+
2092
+ Try with Maxima::
2093
+
2094
+ sage: n = SR.var('n')
2095
+ sage: inverse_laplace(1/s^n, s, t, algorithm='maxima')
2096
+ ilt(1/(s^n), s, t)
2097
+
2098
+ Try with SymPy::
2099
+
2100
+ sage: inverse_laplace(1/s^n, s, t, algorithm='sympy')
2101
+ t^(n - 1)*heaviside(t)/gamma(n)
2102
+
2103
+ Testing unevaluated expression from SymPy::
2104
+
2105
+ sage: inverse_laplace(cos(s), s, t, algorithm='sympy')
2106
+ ilt(cos(s), t, s)
2107
+
2108
+ Testing the same with Giac::
2109
+
2110
+ sage: # needs giac
2111
+ sage: inverse_laplace(cos(s), s, t, algorithm='giac')
2112
+ ilt(cos(s), t, s)
2113
+ """
2114
+ if not isinstance(ex, Expression):
2115
+ ex = SR(ex)
2116
+
2117
+ if algorithm == 'maxima':
2118
+ return ex.parent()(ex._maxima_().ilt(var(s), var(t)))
2119
+
2120
+ elif algorithm == 'sympy':
2121
+ ex_sy, s, t = (expr._sympy_() for expr in (ex, s, t))
2122
+ from sympy import inverse_laplace_transform
2123
+
2124
+ from sage.interfaces.sympy import sympy_init
2125
+ sympy_init()
2126
+ result = inverse_laplace_transform(ex_sy, s, t)
2127
+ try:
2128
+ return result._sage_()
2129
+ except AttributeError:
2130
+ if 'InverseLaplaceTransform' in format(result):
2131
+ return dummy_inverse_laplace(ex, t, s)
2132
+ else:
2133
+ raise AttributeError("Unable to convert SymPy result (={}) into"
2134
+ " Sage".format(result))
2135
+
2136
+ elif algorithm == 'giac':
2137
+ from sage.interfaces.giac import giac
2138
+ try:
2139
+ result = giac.invlaplace(ex, s, t)
2140
+ except TypeError:
2141
+ raise ValueError("Giac cannot make sense of: %s" % ex)
2142
+ if 'ilaplace' in format(result):
2143
+ return dummy_inverse_laplace(ex, t, s)
2144
+ else:
2145
+ return result.sage()
2146
+
2147
+ else:
2148
+ raise ValueError("Unknown algorithm: %s" % algorithm)
2149
+
2150
+
2151
+ ###################################################################
2152
+ # symbolic evaluation "at" a point
2153
+ ###################################################################
2154
+ def at(ex, *args, **kwds):
2155
+ """
2156
+ Parses ``at`` formulations from other systems, such as Maxima.
2157
+ Replaces evaluation 'at' a point with substitution method of
2158
+ a symbolic expression.
2159
+
2160
+ EXAMPLES:
2161
+
2162
+ We do not import ``at`` at the top level, but we can use it
2163
+ as a synonym for substitution if we import it::
2164
+
2165
+ sage: g = x^3 - 3
2166
+ sage: from sage.calculus.calculus import at
2167
+ sage: at(g, x=1)
2168
+ -2
2169
+ sage: g.subs(x=1)
2170
+ -2
2171
+
2172
+ We find a formal Taylor expansion::
2173
+
2174
+ sage: h,x = var('h,x')
2175
+ sage: u = function('u')
2176
+ sage: u(x + h)
2177
+ u(h + x)
2178
+ sage: diff(u(x+h), x)
2179
+ D[0](u)(h + x)
2180
+ sage: taylor(u(x+h), h, 0, 4)
2181
+ 1/24*h^4*diff(u(x), x, x, x, x) + 1/6*h^3*diff(u(x), x, x, x)
2182
+ + 1/2*h^2*diff(u(x), x, x) + h*diff(u(x), x) + u(x)
2183
+
2184
+ We compute a Laplace transform::
2185
+
2186
+ sage: var('s,t')
2187
+ (s, t)
2188
+ sage: f = function('f')(t)
2189
+ sage: f.diff(t, 2)
2190
+ diff(f(t), t, t)
2191
+ sage: f.diff(t,2).laplace(t,s)
2192
+ s^2*laplace(f(t), t, s) - s*f(0) - D[0](f)(0)
2193
+
2194
+ We can also accept a non-keyword list of expression substitutions,
2195
+ like Maxima does (:issue:`12796`)::
2196
+
2197
+ sage: from sage.calculus.calculus import at
2198
+ sage: f = function('f')
2199
+ sage: at(f(x), [x == 1])
2200
+ f(1)
2201
+
2202
+ TESTS:
2203
+
2204
+ Our one non-keyword argument must be a list::
2205
+
2206
+ sage: from sage.calculus.calculus import at
2207
+ sage: f = function('f')
2208
+ sage: at(f(x), x == 1)
2209
+ Traceback (most recent call last):
2210
+ ...
2211
+ TypeError: at can take at most one argument, which must be a list
2212
+
2213
+ We should convert our first argument to a symbolic expression::
2214
+
2215
+ sage: from sage.calculus.calculus import at
2216
+ sage: at(int(1), x=1)
2217
+ 1
2218
+ """
2219
+ if not isinstance(ex, (Expression, Function)):
2220
+ ex = SR(ex)
2221
+ kwds = {(k[10:] if k[:10] == "_SAGE_VAR_" else k): v
2222
+ for k, v in kwds.items()}
2223
+ if len(args) == 1 and isinstance(args[0], list):
2224
+ for c in args[0]:
2225
+ kwds[str(c.lhs())] = c.rhs()
2226
+ elif args:
2227
+ raise TypeError("at can take at most one argument, which must be a list")
2228
+
2229
+ return ex.subs(**kwds)
2230
+
2231
+
2232
+ def dummy_diff(*args):
2233
+ """
2234
+ This function is called when 'diff' appears in a Maxima string.
2235
+
2236
+ EXAMPLES::
2237
+
2238
+ sage: from sage.calculus.calculus import dummy_diff
2239
+ sage: x,y = var('x,y')
2240
+ sage: dummy_diff(sin(x*y), x, SR(2), y, SR(1))
2241
+ -x*y^2*cos(x*y) - 2*y*sin(x*y)
2242
+
2243
+ Here the function is used implicitly::
2244
+
2245
+ sage: a = var('a')
2246
+ sage: f = function('cr')(a)
2247
+ sage: g = f.diff(a); g
2248
+ diff(cr(a), a)
2249
+ """
2250
+ f = args[0]
2251
+ args = list(args[1:])
2252
+ for i in range(1, len(args), 2):
2253
+ args[i] = Integer(args[i])
2254
+ return f.diff(*args)
2255
+
2256
+
2257
+ def dummy_integrate(*args):
2258
+ """
2259
+ This function is called to create formal wrappers of integrals that
2260
+ Maxima can't compute:
2261
+
2262
+ EXAMPLES::
2263
+
2264
+ sage: from sage.calculus.calculus import dummy_integrate
2265
+ sage: f = function('f')
2266
+ sage: dummy_integrate(f(x), x)
2267
+ integrate(f(x), x)
2268
+ sage: a,b = var('a,b')
2269
+ sage: dummy_integrate(f(x), x, a, b)
2270
+ integrate(f(x), x, a, b)
2271
+ """
2272
+ if len(args) == 4:
2273
+ return definite_integral(*args, hold=True)
2274
+ else:
2275
+ return indefinite_integral(*args, hold=True)
2276
+
2277
+
2278
+ def dummy_laplace(*args):
2279
+ """
2280
+ This function is called to create formal wrappers of Laplace transforms
2281
+ that Maxima cannot compute:
2282
+
2283
+ EXAMPLES::
2284
+
2285
+ sage: from sage.calculus.calculus import dummy_laplace
2286
+ sage: s,t = var('s,t')
2287
+ sage: f = function('f')
2288
+ sage: dummy_laplace(f(t), t, s)
2289
+ laplace(f(t), t, s)
2290
+ """
2291
+ return _laplace(args[0], var(repr(args[1])), var(repr(args[2])))
2292
+
2293
+
2294
+ def dummy_inverse_laplace(*args):
2295
+ """
2296
+ This function is called to create formal wrappers of inverse Laplace
2297
+ transforms that Maxima can't compute:
2298
+
2299
+ EXAMPLES::
2300
+
2301
+ sage: from sage.calculus.calculus import dummy_inverse_laplace
2302
+ sage: s,t = var('s,t')
2303
+ sage: F = function('F')
2304
+ sage: dummy_inverse_laplace(F(s), s, t)
2305
+ ilt(F(s), s, t)
2306
+ """
2307
+ return _inverse_laplace(args[0], var(repr(args[1])), var(repr(args[2])))
2308
+
2309
+
2310
+ def dummy_pochhammer(*args):
2311
+ """
2312
+ This function is called to create formal wrappers of Pochhammer symbols.
2313
+
2314
+ EXAMPLES::
2315
+
2316
+ sage: from sage.calculus.calculus import dummy_pochhammer
2317
+ sage: s,t = var('s,t')
2318
+ sage: dummy_pochhammer(s, t)
2319
+ gamma(s + t)/gamma(s)
2320
+ """
2321
+ x, y = args
2322
+ from sage.functions.gamma import gamma
2323
+ return gamma(x + y) / gamma(x)
2324
+
2325
+
2326
+ #######################################################
2327
+ #
2328
+ # Helper functions for printing latex expression
2329
+ #
2330
+ #######################################################
2331
+
2332
+ def _laplace_latex_(self, *args):
2333
+ r"""
2334
+ Return LaTeX expression for Laplace transform of a symbolic function.
2335
+
2336
+ EXAMPLES::
2337
+
2338
+ sage: from sage.calculus.calculus import _laplace_latex_
2339
+ sage: var('s,t')
2340
+ (s, t)
2341
+ sage: f = function('f')(t)
2342
+ sage: _laplace_latex_(0,f,t,s)
2343
+ '\\mathcal{L}\\left(f\\left(t\\right), t, s\\right)'
2344
+ sage: latex(laplace(f, t, s))
2345
+ \mathcal{L}\left(f\left(t\right), t, s\right)
2346
+ """
2347
+ return "\\mathcal{L}\\left(%s\\right)" % (', '.join(latex(x) for x in args))
2348
+
2349
+
2350
+ def _inverse_laplace_latex_(self, *args):
2351
+ r"""
2352
+ Return LaTeX expression for inverse Laplace transform
2353
+ of a symbolic function.
2354
+
2355
+ EXAMPLES::
2356
+
2357
+ sage: from sage.calculus.calculus import _inverse_laplace_latex_
2358
+ sage: var('s,t')
2359
+ (s, t)
2360
+ sage: F = function('F')(s)
2361
+ sage: _inverse_laplace_latex_(0,F,s,t)
2362
+ '\\mathcal{L}^{-1}\\left(F\\left(s\\right), s, t\\right)'
2363
+ sage: latex(inverse_laplace(F,s,t))
2364
+ \mathcal{L}^{-1}\left(F\left(s\right), s, t\right)
2365
+ """
2366
+ return "\\mathcal{L}^{-1}\\left(%s\\right)" % (', '.join(latex(x) for x in args))
2367
+
2368
+
2369
+ # Return un-evaluated expression as instances of NewSymbolicFunction
2370
+ _laplace = function_factory('laplace', print_latex_func=_laplace_latex_)
2371
+ _inverse_laplace = function_factory('ilt',
2372
+ print_latex_func=_inverse_laplace_latex_)
2373
+
2374
+ ######################################i################
2375
+
2376
+
2377
+ # Conversion dict for special maxima objects
2378
+ # c,k1,k2 are from ode2()
2379
+ symtable = {'%pi': 'pi', '%e': 'e', '%i': 'I',
2380
+ '%gamma': 'euler_gamma',
2381
+ '%c': '_C', '%k1': '_K1', '%k2': '_K2',
2382
+ 'e': '_e', 'i': '_i', 'I': '_I'}
2383
+
2384
+
2385
+ maxima_qp = re.compile(r"\?\%[\w]*") # e.g., ?%jacobi_cd
2386
+
2387
+ maxima_var = re.compile(r"[\w\%]*") # e.g., %jacobi_cd
2388
+
2389
+ sci_not = re.compile(r"(-?(?:0|[1-9]\d*))(\.\d+)?([eE][-+]\d+)")
2390
+
2391
+ polylog_ex = re.compile(r'li\[([^\[\]]*)\]\(')
2392
+
2393
+ maxima_polygamma = re.compile(r"psi\[([^\[\]]*)\]\(") # matches psi[n]( where n is a number
2394
+
2395
+ maxima_hyper = re.compile(r"\%f\[\d+,\d+\]") # matches %f[m,n]
2396
+
2397
+
2398
+ def _is_function(v):
2399
+ r"""
2400
+ Return whether a symbolic element is a function, not a variable.
2401
+
2402
+ TESTS::
2403
+
2404
+ sage: from sage.calculus.calculus import _is_function
2405
+ sage: _is_function(x)
2406
+ False
2407
+ sage: _is_function(sin)
2408
+ True
2409
+
2410
+ Check that :issue:`31756` is fixed::
2411
+
2412
+ sage: from sage.symbolic.expression import symbol_table
2413
+ sage: _is_function(symbol_table['mathematica'][('Gamma', 1)])
2414
+ True
2415
+
2416
+ sage: from sage.symbolic.expression import register_symbol
2417
+ sage: foo = lambda x: x^2 + 1
2418
+ sage: register_symbol(foo, dict(mathematica='Foo')) # optional - mathematica
2419
+ sage: mathematica('Foo[x]').sage() # optional - mathematica
2420
+ x^2 + 1
2421
+ """
2422
+ # note that Sage variables are callable, so we only check the type
2423
+ return isinstance(v, (Function, FunctionType))
2424
+
2425
+
2426
+ def symbolic_expression_from_maxima_string(x, equals_sub=False, maxima=maxima):
2427
+ r"""
2428
+ Given a string representation of a Maxima expression, parse it and
2429
+ return the corresponding Sage symbolic expression.
2430
+
2431
+ INPUT:
2432
+
2433
+ - ``x`` -- string
2434
+
2435
+ - ``equals_sub`` -- boolean (default: ``False``); if ``True``, replace
2436
+ '=' by '==' in self
2437
+
2438
+ - ``maxima`` -- (default: the calculus package's copy of
2439
+ Maxima) the Maxima interpreter to use
2440
+
2441
+ EXAMPLES::
2442
+
2443
+ sage: from sage.calculus.calculus import symbolic_expression_from_maxima_string as sefms
2444
+ sage: sefms('x^%e + %e^%pi + %i + sin(0)')
2445
+ x^e + e^pi + I
2446
+ sage: f = function('f')(x)
2447
+ sage: sefms('?%at(f(x),x=2)#1')
2448
+ f(2) != 1
2449
+ sage: a = sage.calculus.calculus.maxima("x#0"); a
2450
+ x # 0
2451
+ sage: a.sage()
2452
+ x != 0
2453
+
2454
+ TESTS:
2455
+
2456
+ :issue:`8459` fixed::
2457
+
2458
+ sage: maxima('3*li[2](u)+8*li[33](exp(u))').sage()
2459
+ 3*dilog(u) + 8*polylog(33, e^u)
2460
+
2461
+ Check if :issue:`8345` is fixed::
2462
+
2463
+ sage: assume(x,'complex')
2464
+ sage: t = x.conjugate()
2465
+ sage: latex(t)
2466
+ \overline{x}
2467
+ sage: latex(t._maxima_()._sage_())
2468
+ \overline{x}
2469
+
2470
+ Check that we can understand maxima's not-equals (:issue:`8969`)::
2471
+
2472
+ sage: from sage.calculus.calculus import symbolic_expression_from_maxima_string as sefms
2473
+ sage: sefms("x!=3") == (factorial(x) == 3)
2474
+ True
2475
+ sage: sefms("x # 3") == SR(x != 3)
2476
+ True
2477
+ sage: solve([x != 5], x) in [[[x - 5 != 0]], [[x < 5], [5 < x]]]
2478
+ True
2479
+ sage: solve([2*x==3, x != 5], x)
2480
+ [[x == (3/2)...
2481
+
2482
+ Make sure that we don't accidentally pick up variables in the maxima namespace (:issue:`8734`)::
2483
+
2484
+ sage: maxima('my_new_var : 2')
2485
+ 2
2486
+ sage: var('my_new_var').full_simplify()
2487
+ my_new_var
2488
+ sage: maxima('kill(my_new_var)')
2489
+ done
2490
+
2491
+ ODE solution constants are treated differently (:issue:`16007`)::
2492
+
2493
+ sage: from sage.calculus.calculus import symbolic_expression_from_maxima_string as sefms
2494
+ sage: sefms('%k1*x + %k2*y + %c')
2495
+ _K1*x + _K2*y + _C
2496
+
2497
+ Check that some hypothetical variables don't end up as special constants (:issue:`6882`)::
2498
+
2499
+ sage: from sage.calculus.calculus import symbolic_expression_from_maxima_string as sefms
2500
+ sage: sefms('%i')^2
2501
+ -1
2502
+ sage: ln(sefms('%e'))
2503
+ 1
2504
+ sage: sefms('i')^2
2505
+ _i^2
2506
+ sage: sefms('I')^2
2507
+ _I^2
2508
+ sage: sefms('ln(e)')
2509
+ ln(_e)
2510
+ sage: sefms('%inf')
2511
+ +Infinity
2512
+ """
2513
+ var_syms = {k[0]: v for k, v in symbol_table.get('maxima', {}).items()
2514
+ if not _is_function(v)}
2515
+ function_syms = {k[0]: v for k, v in symbol_table.get('maxima', {}).items()
2516
+ if _is_function(v)}
2517
+
2518
+ if not x:
2519
+ raise RuntimeError("invalid symbolic expression -- ''")
2520
+ maxima.set('_tmp_', x)
2521
+
2522
+ # This is inefficient since it so rarely is needed:
2523
+ # r = maxima._eval_line('listofvars(_tmp_);')[1:-1]
2524
+
2525
+ s = maxima._eval_line('_tmp_;')
2526
+
2527
+ # We don't actually implement a parser for maxima expressions.
2528
+ # Instead we simply transform the string until it is a valid
2529
+ # sagemath expression and parse that.
2530
+
2531
+ # Remove ticks in front of symbolic functions. You might think
2532
+ # there is a potential very subtle bug if 'foo is in a string
2533
+ # literal -- but string literals should *never* ever be part of a
2534
+ # symbolic expression.
2535
+ s = s.replace("'", "")
2536
+
2537
+ delayed_functions = maxima_qp.findall(s)
2538
+ if delayed_functions:
2539
+ for X in delayed_functions:
2540
+ if X == '?%at': # we will replace Maxima's "at" with symbolic evaluation, not a SymbolicFunction
2541
+ pass
2542
+ else:
2543
+ function_syms[X[2:]] = function_factory(X[2:])
2544
+ s = s.replace("?%", "")
2545
+
2546
+ s = maxima_hyper.sub('hypergeometric', s)
2547
+
2548
+ # Look up every variable in the symtable keys and fill a replacement list.
2549
+ cursor = 0
2550
+ l = []
2551
+ for m in maxima_var.finditer(s):
2552
+ if m.group(0) in symtable:
2553
+ l.append(s[cursor:m.start()])
2554
+ l.append(symtable.get(m.group(0)))
2555
+ cursor = m.end()
2556
+ if cursor > 0:
2557
+ l.append(s[cursor:])
2558
+ s = "".join(l)
2559
+
2560
+ s = s.replace("%","")
2561
+
2562
+ s = s.replace("#","!=") # a lot of this code should be refactored somewhere...
2563
+ # we apply the square-bracket replacing patterns repeatedly
2564
+ # to ensure that nested brackets get handled (from inside to out)
2565
+ while True:
2566
+ olds = s
2567
+ s = polylog_ex.sub('polylog(\\1,', s)
2568
+ s = maxima_polygamma.sub(r'psi(\g<1>,', s) # this replaces psi[n](foo) with psi(n,foo), ensuring that derivatives of the digamma function are parsed properly below
2569
+ if s == olds:
2570
+ break
2571
+
2572
+ if equals_sub:
2573
+ s = s.replace('=', '==')
2574
+ # unfortunately, this will turn != into !==, which we correct
2575
+ s = s.replace("!==", "!=")
2576
+
2577
+ #replace %union from to_poly_solve with a list
2578
+ if s[0:5] == 'union':
2579
+ s = s[5:]
2580
+ s = s[s.find("(") + 1:s.rfind(")")]
2581
+ s = "[" + s + "]" # turn it into a string that looks like a list
2582
+
2583
+ # replace %solve from to_poly_solve with the expressions
2584
+ if s[0:5] == 'solve':
2585
+ s = s[5:]
2586
+ s = s[s.find("(") + 1:s.find("]") + 1]
2587
+
2588
+ # replace all instances of Maxima's scientific notation
2589
+ # with regular notation
2590
+ search = sci_not.search(s)
2591
+ while search is not None:
2592
+ (start, end) = search.span()
2593
+ r = create_RealNumber(s[start:end]).str(no_sci=2, truncate=True)
2594
+ s = s.replace(s[start:end], r)
2595
+ search = sci_not.search(s)
2596
+
2597
+ function_syms['diff'] = dummy_diff
2598
+ function_syms['integrate'] = dummy_integrate
2599
+ function_syms['laplace'] = dummy_laplace
2600
+ function_syms['ilt'] = dummy_inverse_laplace
2601
+ function_syms['at'] = at
2602
+ function_syms['pochhammer'] = dummy_pochhammer
2603
+
2604
+ global is_simplified
2605
+ try:
2606
+ # use a global flag so all expressions obtained via
2607
+ # evaluation of maxima code are assumed pre-simplified
2608
+ is_simplified = True
2609
+ SRM_parser._variable_constructor().set_names(var_syms)
2610
+ SRM_parser._callable_constructor().set_names(function_syms)
2611
+ return SRM_parser.parse_sequence(s)
2612
+ except SyntaxError:
2613
+ raise TypeError("unable to make sense of Maxima expression '%s' in Sage" % s)
2614
+ finally:
2615
+ is_simplified = False
2616
+
2617
+
2618
+ # Comma format options for Maxima
2619
+ def mapped_opts(v):
2620
+ """
2621
+ Used internally when creating a string of options to pass to
2622
+ Maxima.
2623
+
2624
+ INPUT:
2625
+
2626
+ - ``v`` -- an object
2627
+
2628
+ OUTPUT: string
2629
+
2630
+ The main use of this is to turn Python bools into lower case
2631
+ strings.
2632
+
2633
+ EXAMPLES::
2634
+
2635
+ sage: sage.calculus.calculus.mapped_opts(True)
2636
+ 'true'
2637
+ sage: sage.calculus.calculus.mapped_opts(False)
2638
+ 'false'
2639
+ sage: sage.calculus.calculus.mapped_opts('bar')
2640
+ 'bar'
2641
+ """
2642
+ if isinstance(v, bool):
2643
+ return str(v).lower()
2644
+ return str(v)
2645
+
2646
+
2647
+ def maxima_options(**kwds):
2648
+ """
2649
+ Used internally to create a string of options to pass to Maxima.
2650
+
2651
+ EXAMPLES::
2652
+
2653
+ sage: sage.calculus.calculus.maxima_options(an_option=True, another=False, foo='bar')
2654
+ 'an_option=true,another=false,foo=bar'
2655
+ """
2656
+ return ','.join('%s=%s' % (key, mapped_opts(val))
2657
+ for key, val in sorted(kwds.items()))
2658
+
2659
+
2660
+ # Parser for symbolic ring elements
2661
+
2662
+ # We keep two dictionaries syms_cur and syms_default to keep the current symbol
2663
+ # table and the state of the table at startup respectively. These are used by
2664
+ # the restore() function (see sage.misc.reset).
2665
+
2666
+ syms_cur = symbol_table.get('functions', {})
2667
+ syms_default = dict(syms_cur)
2668
+
2669
+
2670
+ def _toplevel_dict():
2671
+ try:
2672
+ import sage.all as toplevel
2673
+ except ImportError:
2674
+ try:
2675
+ import sage.all__sagemath_symbolics as toplevel
2676
+ except ImportError:
2677
+ try:
2678
+ import sage.all__sagemath_modules as toplevel
2679
+ except ImportError:
2680
+ try:
2681
+ import sage.all__sagemath_categories as toplevel
2682
+ except ImportError:
2683
+ import sage.all__sagemath_objects as toplevel
2684
+ return toplevel.__dict__
2685
+
2686
+
2687
+ def _find_var(name, interface=None):
2688
+ """
2689
+ Function to pass to Parser for constructing
2690
+ variables from strings. For internal use.
2691
+
2692
+ EXAMPLES::
2693
+
2694
+ sage: y = SR.var('y')
2695
+ sage: sage.calculus.calculus._find_var('y')
2696
+ y
2697
+ sage: sage.calculus.calculus._find_var('I')
2698
+ I
2699
+ sage: sage.calculus.calculus._find_var(repr(maxima(y)), interface='maxima')
2700
+ y
2701
+
2702
+ ::
2703
+
2704
+ sage: # needs giac
2705
+ sage: y = SR.var('y')
2706
+ sage: sage.calculus.calculus._find_var(repr(giac(y)), interface='giac')
2707
+ y
2708
+ """
2709
+ if interface == 'maxima':
2710
+ if name.startswith("_SAGE_VAR_"):
2711
+ return var(name[10:])
2712
+ elif interface == 'giac':
2713
+ if name.startswith('sageVAR'):
2714
+ return var(name[7:])
2715
+ else:
2716
+ v = SR.symbols.get(name)
2717
+ if v is not None:
2718
+ return v
2719
+
2720
+ # try to find the name in the global namespace
2721
+ # needed for identifiers like 'e', etc.
2722
+ try:
2723
+ return SR(_toplevel_dict()[name])
2724
+ except (KeyError, TypeError):
2725
+ return var(name)
2726
+
2727
+
2728
+ def _find_func(name, create_when_missing=True):
2729
+ """
2730
+ Function to pass to Parser for constructing
2731
+ functions from strings. For internal use.
2732
+
2733
+ EXAMPLES::
2734
+
2735
+ sage: sage.calculus.calculus._find_func('limit')
2736
+ limit
2737
+ sage: sage.calculus.calculus._find_func('zeta_zeros')
2738
+ zeta_zeros
2739
+ sage: f(x)=sin(x)
2740
+ sage: sage.calculus.calculus._find_func('f')
2741
+ f
2742
+ sage: sage.calculus.calculus._find_func('g', create_when_missing=False)
2743
+ sage: s = sage.calculus.calculus._find_func('sin')
2744
+ sage: s(0)
2745
+ 0
2746
+ """
2747
+ f = symbol_table['functions'].get(name)
2748
+ if f is not None:
2749
+ return f
2750
+
2751
+ try:
2752
+ f = SR(_toplevel_dict()[name])
2753
+ if not isinstance(f, Expression):
2754
+ return f
2755
+ except (KeyError, TypeError):
2756
+ if create_when_missing:
2757
+ return function_factory(name)
2758
+ else:
2759
+ return None
2760
+
2761
+
2762
+ parser_make_var = LookupNameMaker({}, fallback=_find_var)
2763
+ parser_make_function = LookupNameMaker({}, fallback=_find_func)
2764
+
2765
+ SR_parser = Parser(make_int=lambda x: SR(Integer(x)),
2766
+ make_float=lambda x: SR(create_RealNumber(x)),
2767
+ make_var=parser_make_var,
2768
+ make_function=parser_make_function)
2769
+
2770
+
2771
+ def symbolic_expression_from_string(s, syms=None, accept_sequence=False, *, parser=None):
2772
+ """
2773
+ Given a string, (attempt to) parse it and return the
2774
+ corresponding Sage symbolic expression. Normally used
2775
+ to return Maxima output to the user.
2776
+
2777
+ INPUT:
2778
+
2779
+ - ``s`` -- string
2780
+
2781
+ - ``syms`` -- (default: ``{}``) dictionary of
2782
+ strings to be regarded as symbols or functions;
2783
+ keys are pairs (string, number of arguments)
2784
+
2785
+ - ``accept_sequence`` -- boolean (default: ``False``); controls whether
2786
+ to allow a (possibly nested) set of lists and tuples
2787
+ as input
2788
+
2789
+ - ``parser`` -- (default: ``SR_parser``) parser for internal use
2790
+
2791
+ EXAMPLES::
2792
+
2793
+ sage: from sage.calculus.calculus import symbolic_expression_from_string
2794
+ sage: y = var('y')
2795
+ sage: symbolic_expression_from_string('[sin(0)*x^2,3*spam+e^pi]',
2796
+ ....: syms={('spam',0): y}, accept_sequence=True)
2797
+ [0, 3*y + e^pi]
2798
+
2799
+ TESTS:
2800
+
2801
+ Check that the precision is preserved (:issue:`28814`)::
2802
+
2803
+ sage: symbolic_expression_from_string(str(RealField(100)(1/3)))
2804
+ 0.3333333333333333333333333333
2805
+ sage: symbolic_expression_from_string(str(RealField(100)(10^-500/3)))
2806
+ 3.333333333333333333333333333e-501
2807
+
2808
+ The Giac interface uses a different parser (:issue:`30133`)::
2809
+
2810
+ sage: # needs giac
2811
+ sage: from sage.calculus.calculus import SR_parser_giac
2812
+ sage: symbolic_expression_from_string(repr(giac(SR.var('e'))), parser=SR_parser_giac)
2813
+ e
2814
+ """
2815
+ if syms is None:
2816
+ syms = {}
2817
+ if parser is None:
2818
+ parser = SR_parser
2819
+ parse_func = parser.parse_sequence if accept_sequence else parser.parse_expression
2820
+ # this assumes that the parser has constructors of type `LookupNameMaker`
2821
+ parser._variable_constructor().set_names({k[0]: v for k, v in syms.items()
2822
+ if not _is_function(v)})
2823
+ parser._callable_constructor().set_names({k[0]: v for k, v in syms.items()
2824
+ if _is_function(v)})
2825
+ return parse_func(s)
2826
+
2827
+
2828
+ parser_make_Mvar = LookupNameMaker({}, fallback=lambda x: _find_var(x, interface='maxima'))
2829
+
2830
+ SRM_parser = Parser(make_int=lambda x: SR(Integer(x)),
2831
+ make_float=lambda x: SR(RealDoubleElement(x)),
2832
+ make_var=parser_make_Mvar,
2833
+ make_function=parser_make_function)
2834
+
2835
+ SR_parser_giac = Parser(make_int=lambda x: SR(Integer(x)),
2836
+ make_float=lambda x: SR(create_RealNumber(x)),
2837
+ make_var=LookupNameMaker({}, fallback=lambda x: _find_var(x, interface='giac')),
2838
+ make_function=parser_make_function)