passagemath-plot 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-plot might be problematic. Click here for more details.
- passagemath_plot-10.6.31rc3.dist-info/METADATA +172 -0
- passagemath_plot-10.6.31rc3.dist-info/RECORD +82 -0
- passagemath_plot-10.6.31rc3.dist-info/WHEEL +6 -0
- passagemath_plot-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_plot.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
- passagemath_plot.libs/libgsl-cda90e79.so.28.0.0 +0 -0
- passagemath_plot.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
- passagemath_plot.libs/libquadmath-2284e583.so.0.0.0 +0 -0
- sage/all__sagemath_plot.py +15 -0
- sage/ext_data/threejs/animation.css +195 -0
- sage/ext_data/threejs/animation.html +85 -0
- sage/ext_data/threejs/animation.js +273 -0
- sage/ext_data/threejs/fat_lines.js +48 -0
- sage/ext_data/threejs/threejs-version.txt +1 -0
- sage/ext_data/threejs/threejs_template.html +597 -0
- sage/interfaces/all__sagemath_plot.py +1 -0
- sage/interfaces/gnuplot.py +196 -0
- sage/interfaces/jmoldata.py +208 -0
- sage/interfaces/povray.py +56 -0
- sage/plot/all.py +42 -0
- sage/plot/animate.py +1796 -0
- sage/plot/arc.py +504 -0
- sage/plot/arrow.py +671 -0
- sage/plot/bar_chart.py +205 -0
- sage/plot/bezier_path.py +400 -0
- sage/plot/circle.py +435 -0
- sage/plot/colors.py +1606 -0
- sage/plot/complex_plot.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/plot/complex_plot.pyx +1446 -0
- sage/plot/contour_plot.py +1792 -0
- sage/plot/density_plot.py +318 -0
- sage/plot/disk.py +373 -0
- sage/plot/ellipse.py +375 -0
- sage/plot/graphics.py +3580 -0
- sage/plot/histogram.py +354 -0
- sage/plot/hyperbolic_arc.py +404 -0
- sage/plot/hyperbolic_polygon.py +416 -0
- sage/plot/hyperbolic_regular_polygon.py +296 -0
- sage/plot/line.py +626 -0
- sage/plot/matrix_plot.py +629 -0
- sage/plot/misc.py +509 -0
- sage/plot/multigraphics.py +1294 -0
- sage/plot/plot.py +4183 -0
- sage/plot/plot3d/all.py +23 -0
- sage/plot/plot3d/base.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/plot/plot3d/base.pxd +12 -0
- sage/plot/plot3d/base.pyx +3378 -0
- sage/plot/plot3d/implicit_plot3d.py +659 -0
- sage/plot/plot3d/implicit_surface.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/plot/plot3d/implicit_surface.pyx +1453 -0
- sage/plot/plot3d/index_face_set.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/plot/plot3d/index_face_set.pxd +32 -0
- sage/plot/plot3d/index_face_set.pyx +1873 -0
- sage/plot/plot3d/introduction.py +131 -0
- sage/plot/plot3d/list_plot3d.py +649 -0
- sage/plot/plot3d/parametric_plot3d.py +1130 -0
- sage/plot/plot3d/parametric_surface.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/plot/plot3d/parametric_surface.pxd +12 -0
- sage/plot/plot3d/parametric_surface.pyx +893 -0
- sage/plot/plot3d/platonic.py +601 -0
- sage/plot/plot3d/plot3d.py +1442 -0
- sage/plot/plot3d/plot_field3d.py +162 -0
- sage/plot/plot3d/point_c.pxi +148 -0
- sage/plot/plot3d/revolution_plot3d.py +309 -0
- sage/plot/plot3d/shapes.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/plot/plot3d/shapes.pxd +22 -0
- sage/plot/plot3d/shapes.pyx +1382 -0
- sage/plot/plot3d/shapes2.py +1512 -0
- sage/plot/plot3d/tachyon.py +1779 -0
- sage/plot/plot3d/texture.py +453 -0
- sage/plot/plot3d/transform.cpython-314-x86_64-linux-gnu.so +0 -0
- sage/plot/plot3d/transform.pxd +21 -0
- sage/plot/plot3d/transform.pyx +268 -0
- sage/plot/plot3d/tri_plot.py +589 -0
- sage/plot/plot_field.py +362 -0
- sage/plot/point.py +624 -0
- sage/plot/polygon.py +562 -0
- sage/plot/primitive.py +249 -0
- sage/plot/scatter_plot.py +199 -0
- sage/plot/step.py +85 -0
- sage/plot/streamline_plot.py +328 -0
- sage/plot/text.py +432 -0
sage/plot/bar_chart.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-plot
|
|
2
|
+
"""
|
|
3
|
+
Bar charts
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
# *****************************************************************************
|
|
7
|
+
# Copyright (C) 2006 Alex Clemesha <clemesha@gmail.com>,
|
|
8
|
+
# William Stein <wstein@gmail.com>,
|
|
9
|
+
# 2008 Mike Hansen <mhansen@gmail.com>,
|
|
10
|
+
#
|
|
11
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
12
|
+
#
|
|
13
|
+
# This code is distributed in the hope that it will be useful,
|
|
14
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
15
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
16
|
+
# General Public License for more details.
|
|
17
|
+
#
|
|
18
|
+
# The full text of the GPL is available at:
|
|
19
|
+
#
|
|
20
|
+
# http://www.gnu.org/licenses/
|
|
21
|
+
# *****************************************************************************
|
|
22
|
+
from sage.plot.primitive import GraphicPrimitive
|
|
23
|
+
from sage.plot.plot import minmax_data
|
|
24
|
+
from sage.plot.graphics import Graphics
|
|
25
|
+
from sage.misc.decorators import options, rename_keyword
|
|
26
|
+
|
|
27
|
+
# TODO: make bar_chart more general
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class BarChart(GraphicPrimitive):
|
|
31
|
+
"""
|
|
32
|
+
Graphics primitive that represents a bar chart.
|
|
33
|
+
|
|
34
|
+
EXAMPLES::
|
|
35
|
+
|
|
36
|
+
sage: from sage.plot.bar_chart import BarChart
|
|
37
|
+
sage: g = BarChart(list(range(4)), [1,3,2,0], {}); g
|
|
38
|
+
BarChart defined by a 4 datalist
|
|
39
|
+
sage: type(g)
|
|
40
|
+
<class 'sage.plot.bar_chart.BarChart'>
|
|
41
|
+
"""
|
|
42
|
+
def __init__(self, ind, datalist, options):
|
|
43
|
+
"""
|
|
44
|
+
Initialize a ``BarChart`` primitive.
|
|
45
|
+
|
|
46
|
+
EXAMPLES::
|
|
47
|
+
|
|
48
|
+
sage: from sage.plot.bar_chart import BarChart
|
|
49
|
+
sage: BarChart(list(range(3)), [10,3,5], {'width':0.7})
|
|
50
|
+
BarChart defined by a 3 datalist
|
|
51
|
+
"""
|
|
52
|
+
self.datalist = datalist
|
|
53
|
+
self.ind = ind
|
|
54
|
+
GraphicPrimitive.__init__(self, options)
|
|
55
|
+
|
|
56
|
+
def get_minmax_data(self):
|
|
57
|
+
"""
|
|
58
|
+
Return a dictionary with the bounding box data.
|
|
59
|
+
|
|
60
|
+
EXAMPLES::
|
|
61
|
+
|
|
62
|
+
sage: b = bar_chart([-2.3,5,-6,12])
|
|
63
|
+
sage: d = b.get_minmax_data()
|
|
64
|
+
sage: d['xmin']
|
|
65
|
+
0
|
|
66
|
+
sage: d['xmax']
|
|
67
|
+
4
|
|
68
|
+
"""
|
|
69
|
+
return minmax_data([0, len(self.datalist)], self.datalist, dict=True)
|
|
70
|
+
|
|
71
|
+
def _allowed_options(self):
|
|
72
|
+
"""
|
|
73
|
+
Return the allowed options with descriptions for this graphics
|
|
74
|
+
primitive. This is used in displaying an error message when the
|
|
75
|
+
user gives an option that doesn't make sense.
|
|
76
|
+
|
|
77
|
+
EXAMPLES::
|
|
78
|
+
|
|
79
|
+
sage: from sage.plot.bar_chart import BarChart
|
|
80
|
+
sage: g = BarChart(list(range(4)), [1,3,2,0], {})
|
|
81
|
+
sage: list(sorted(g._allowed_options().items()))
|
|
82
|
+
[('hue', 'The color given as a hue.'), ('legend_label', 'The label for this item in the legend.'), ('rgbcolor', 'The color as an RGB tuple.'), ('width', 'The width of the bars'), ('zorder', 'The layer level in which to draw')]
|
|
83
|
+
"""
|
|
84
|
+
return {'rgbcolor': 'The color as an RGB tuple.',
|
|
85
|
+
'hue': 'The color given as a hue.',
|
|
86
|
+
'legend_label': 'The label for this item in the legend.',
|
|
87
|
+
'width': 'The width of the bars',
|
|
88
|
+
'zorder': 'The layer level in which to draw'}
|
|
89
|
+
|
|
90
|
+
def _repr_(self):
|
|
91
|
+
"""
|
|
92
|
+
Return text representation of this bar chart graphics primitive.
|
|
93
|
+
|
|
94
|
+
EXAMPLES::
|
|
95
|
+
|
|
96
|
+
sage: from sage.plot.bar_chart import BarChart
|
|
97
|
+
sage: g = BarChart(list(range(4)), [1,3,2,0], {})
|
|
98
|
+
sage: g._repr_()
|
|
99
|
+
'BarChart defined by a 4 datalist'
|
|
100
|
+
"""
|
|
101
|
+
return "BarChart defined by a %s datalist" % (len(self.datalist))
|
|
102
|
+
|
|
103
|
+
def _render_on_subplot(self, subplot):
|
|
104
|
+
"""
|
|
105
|
+
Render this bar chart graphics primitive on a matplotlib subplot
|
|
106
|
+
object.
|
|
107
|
+
|
|
108
|
+
EXAMPLES:
|
|
109
|
+
|
|
110
|
+
This rendering happens implicitly when the following command
|
|
111
|
+
is executed::
|
|
112
|
+
|
|
113
|
+
sage: bar_chart([1,2,10])
|
|
114
|
+
Graphics object consisting of 1 graphics primitive
|
|
115
|
+
"""
|
|
116
|
+
options = self.options()
|
|
117
|
+
color = options['rgbcolor']
|
|
118
|
+
width = float(options['width'])
|
|
119
|
+
# it is critical to make NumPy arrays of type float below,
|
|
120
|
+
# or bar will go boom:
|
|
121
|
+
import numpy
|
|
122
|
+
ind = numpy.array(self.ind, dtype=float)
|
|
123
|
+
datalist = numpy.array(self.datalist, dtype=float)
|
|
124
|
+
subplot.bar(ind, datalist, color=color, width=width, label=options['legend_label'])
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
@rename_keyword(color='rgbcolor')
|
|
128
|
+
@options(width=0.5, rgbcolor=(0, 0, 1), legend_label=None, aspect_ratio='automatic')
|
|
129
|
+
def bar_chart(datalist, **options):
|
|
130
|
+
"""
|
|
131
|
+
A bar chart of (currently) one list of numerical data.
|
|
132
|
+
Support for more data lists in progress.
|
|
133
|
+
|
|
134
|
+
EXAMPLES:
|
|
135
|
+
|
|
136
|
+
A bar_chart with blue bars::
|
|
137
|
+
|
|
138
|
+
sage: bar_chart([1,2,3,4])
|
|
139
|
+
Graphics object consisting of 1 graphics primitive
|
|
140
|
+
|
|
141
|
+
.. PLOT::
|
|
142
|
+
|
|
143
|
+
sphinx_plot(bar_chart([1,2,3,4]))
|
|
144
|
+
|
|
145
|
+
A bar_chart with thinner bars::
|
|
146
|
+
|
|
147
|
+
sage: bar_chart([x^2 for x in range(1,20)], width=0.2)
|
|
148
|
+
Graphics object consisting of 1 graphics primitive
|
|
149
|
+
|
|
150
|
+
.. PLOT::
|
|
151
|
+
|
|
152
|
+
sphinx_plot(bar_chart([x**2 for x in range(1,20)], width=0.2))
|
|
153
|
+
|
|
154
|
+
A bar_chart with negative values and red bars::
|
|
155
|
+
|
|
156
|
+
sage: bar_chart([-3,5,-6,11], rgbcolor=(1,0,0))
|
|
157
|
+
Graphics object consisting of 1 graphics primitive
|
|
158
|
+
|
|
159
|
+
.. PLOT::
|
|
160
|
+
|
|
161
|
+
sphinx_plot(bar_chart([-3,5,-6,11], rgbcolor=(1,0,0)))
|
|
162
|
+
|
|
163
|
+
A bar chart with a legend (it's possible, not necessarily useful)::
|
|
164
|
+
|
|
165
|
+
sage: bar_chart([-1,1,-1,1], legend_label='wave')
|
|
166
|
+
Graphics object consisting of 1 graphics primitive
|
|
167
|
+
|
|
168
|
+
.. PLOT::
|
|
169
|
+
|
|
170
|
+
sphinx_plot(bar_chart([-1,1,-1,1], legend_label='wave'))
|
|
171
|
+
|
|
172
|
+
Extra options will get passed on to show(), as long as they are valid::
|
|
173
|
+
|
|
174
|
+
sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0), axes=False)
|
|
175
|
+
Graphics object consisting of 1 graphics primitive
|
|
176
|
+
sage: bar_chart([-2,8,-7,3], rgbcolor=(1,0,0)).show(axes=False) # These are equivalent
|
|
177
|
+
|
|
178
|
+
.. PLOT::
|
|
179
|
+
|
|
180
|
+
sphinx_plot(bar_chart([-2,8,-7,3], rgbcolor=(1,0,0), axes=False))
|
|
181
|
+
"""
|
|
182
|
+
dl = len(datalist)
|
|
183
|
+
if dl == 3:
|
|
184
|
+
datalist = datalist + [0]
|
|
185
|
+
# bardata = []
|
|
186
|
+
# cnt = 1
|
|
187
|
+
# for pnts in datalist:
|
|
188
|
+
# ind = [i+cnt/dl for i in range(len(pnts))]
|
|
189
|
+
# bardata.append([ind, pnts, xrange, yrange])
|
|
190
|
+
# cnt += 1
|
|
191
|
+
|
|
192
|
+
g = Graphics()
|
|
193
|
+
g._set_extra_kwds(Graphics._extract_kwds_for_show(options))
|
|
194
|
+
# TODO: improve below for multiple data sets!
|
|
195
|
+
# cnt = 1
|
|
196
|
+
# for ind, pnts, xrange, yrange in bardata:
|
|
197
|
+
# options={'rgbcolor':hue(cnt/dl),'width':0.5/dl}
|
|
198
|
+
# g._bar_chart(ind, pnts, xrange, yrange, options=options)
|
|
199
|
+
# cnt += 1
|
|
200
|
+
# else:
|
|
201
|
+
ind = list(range(len(datalist)))
|
|
202
|
+
g.add_primitive(BarChart(ind, datalist, options=options))
|
|
203
|
+
if options['legend_label']:
|
|
204
|
+
g.legend(True)
|
|
205
|
+
return g
|
sage/plot/bezier_path.py
ADDED
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-plot
|
|
2
|
+
r"""
|
|
3
|
+
Bezier paths
|
|
4
|
+
"""
|
|
5
|
+
#*****************************************************************************
|
|
6
|
+
# Copyright (C) 2006 Alex Clemesha <clemesha@gmail.com>,
|
|
7
|
+
# William Stein <wstein@gmail.com>,
|
|
8
|
+
# 2008 Mike Hansen <mhansen@gmail.com>,
|
|
9
|
+
# 2009 Emily Kirkman
|
|
10
|
+
#
|
|
11
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
12
|
+
#
|
|
13
|
+
# This code is distributed in the hope that it will be useful,
|
|
14
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
15
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
16
|
+
# General Public License for more details.
|
|
17
|
+
#
|
|
18
|
+
# The full text of the GPL is available at:
|
|
19
|
+
#
|
|
20
|
+
# http://www.gnu.org/licenses/
|
|
21
|
+
#*****************************************************************************
|
|
22
|
+
from sage.plot.primitive import GraphicPrimitive_xydata
|
|
23
|
+
from sage.misc.decorators import options, rename_keyword
|
|
24
|
+
from sage.plot.colors import to_mpl_color
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class BezierPath(GraphicPrimitive_xydata):
|
|
28
|
+
"""
|
|
29
|
+
Path of Bezier Curves graphics primitive.
|
|
30
|
+
|
|
31
|
+
The input to this constructor is a list of curves, each a list of points,
|
|
32
|
+
along which to create the curves, along with a dict of any options passed.
|
|
33
|
+
|
|
34
|
+
EXAMPLES::
|
|
35
|
+
|
|
36
|
+
sage: from sage.plot.bezier_path import BezierPath
|
|
37
|
+
sage: BezierPath([[(0,0), (.5,.5),(1,0)],[(.5,1),(0,0)]], {'linestyle':'dashed'})
|
|
38
|
+
Bezier path from (0.0, 0.0) to (0.0, 0.0)
|
|
39
|
+
|
|
40
|
+
We use :func:`bezier_path` to actually plot Bezier curves::
|
|
41
|
+
|
|
42
|
+
sage: bezier_path([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]], linestyle='dashed')
|
|
43
|
+
Graphics object consisting of 1 graphics primitive
|
|
44
|
+
|
|
45
|
+
.. PLOT::
|
|
46
|
+
|
|
47
|
+
P = bezier_path([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]], linestyle='dashed')
|
|
48
|
+
sphinx_plot(P)
|
|
49
|
+
"""
|
|
50
|
+
def __init__(self, path, options):
|
|
51
|
+
"""
|
|
52
|
+
Return a graphics primitive of a path of Bezier curves.
|
|
53
|
+
|
|
54
|
+
EXAMPLES::
|
|
55
|
+
|
|
56
|
+
sage: from sage.plot.bezier_path import BezierPath
|
|
57
|
+
sage: BezierPath([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]], {'linestyle':'dashed'})
|
|
58
|
+
Bezier path from (0.0, 0.0) to (0.0, 0.0)
|
|
59
|
+
|
|
60
|
+
sage: BezierPath([[(0,0), (1,2), (3,6), (2,-1), (3,3)]], {})
|
|
61
|
+
Traceback (most recent call last):
|
|
62
|
+
...
|
|
63
|
+
ValueError: invalid input for BezierPath
|
|
64
|
+
|
|
65
|
+
TESTS:
|
|
66
|
+
|
|
67
|
+
Check :issue:`31646`::
|
|
68
|
+
|
|
69
|
+
sage: from sage.plot.bezier_path import BezierPath
|
|
70
|
+
sage: p2d = [[(3,0),(4,1),(2,1),(3,0)], [(2,2),(3,1),(2,1)]]
|
|
71
|
+
sage: P = BezierPath(p2d, {})
|
|
72
|
+
sage: P.path
|
|
73
|
+
[array([[3., 0.], [4., 1.], [2., 1.], [3., 0.]]),
|
|
74
|
+
array([[2., 2.], [3., 1.], [2., 1.]])]
|
|
75
|
+
"""
|
|
76
|
+
import numpy as np
|
|
77
|
+
|
|
78
|
+
self.path = [np.array(l, float) for l in path]
|
|
79
|
+
|
|
80
|
+
# In order to feed later to matplotlib.path.Path we convert in
|
|
81
|
+
# the following form
|
|
82
|
+
# - vertices: an Nx2 float array of vertices
|
|
83
|
+
# - codes: an N-length uint8 array of vertex types, or None
|
|
84
|
+
# where each code could be MOVETO (=1), LINETO (=2), CURVE3 (=3), CURVE4 (=4)
|
|
85
|
+
self.vertices = np.concatenate(self.path)
|
|
86
|
+
N, _ = self.vertices.shape
|
|
87
|
+
codes = np.zeros((N,), np.uint8)
|
|
88
|
+
k = 0
|
|
89
|
+
for i, curve in enumerate(self.path):
|
|
90
|
+
code = len(curve) + (i > 0)
|
|
91
|
+
if code < 2 or code > 4:
|
|
92
|
+
raise ValueError('invalid input for BezierPath')
|
|
93
|
+
codes[k:k+len(curve)] = code
|
|
94
|
+
k += len(curve)
|
|
95
|
+
codes[0] = 1 # MOVETO
|
|
96
|
+
self.codes = codes
|
|
97
|
+
GraphicPrimitive_xydata.__init__(self, options)
|
|
98
|
+
|
|
99
|
+
def _allowed_options(self):
|
|
100
|
+
"""
|
|
101
|
+
Return a dict of allowed options for ``bezier_path``.
|
|
102
|
+
|
|
103
|
+
EXAMPLES::
|
|
104
|
+
|
|
105
|
+
sage: from sage.plot.bezier_path import BezierPath
|
|
106
|
+
sage: list(sorted(BezierPath([[[-1,2], [14,2.3], [17,4]]], {})._allowed_options().items()))
|
|
107
|
+
[('alpha', 'How transparent the line is.'),
|
|
108
|
+
('fill', 'Whether or not to fill the polygon.'),
|
|
109
|
+
('linestyle',
|
|
110
|
+
"The style of the line, which is one of 'dashed', 'dotted', 'solid',
|
|
111
|
+
'dashdot', or '--', ':', '-', '-.', respectively."),
|
|
112
|
+
('rgbcolor', 'The color as an RGB tuple.'),
|
|
113
|
+
('thickness', 'How thick the border of the polygon is.'),
|
|
114
|
+
('zorder', 'The layer level in which to draw')]
|
|
115
|
+
"""
|
|
116
|
+
return {'alpha': 'How transparent the line is.',
|
|
117
|
+
'fill': 'Whether or not to fill the polygon.',
|
|
118
|
+
'thickness': 'How thick the border of the polygon is.',
|
|
119
|
+
'rgbcolor': 'The color as an RGB tuple.',
|
|
120
|
+
'zorder': 'The layer level in which to draw',
|
|
121
|
+
'linestyle': "The style of the line, which is one of 'dashed',"
|
|
122
|
+
" 'dotted', 'solid', 'dashdot', or '--', ':', '-', '-.',"
|
|
123
|
+
" respectively."}
|
|
124
|
+
|
|
125
|
+
def _plot3d_options(self, options=None):
|
|
126
|
+
"""
|
|
127
|
+
Update ``BezierPath`` options to those allowed by 3D implementation.
|
|
128
|
+
|
|
129
|
+
EXAMPLES::
|
|
130
|
+
|
|
131
|
+
sage: from sage.plot.bezier_path import BezierPath
|
|
132
|
+
sage: B = BezierPath([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]], {'linestyle':'dashed'})
|
|
133
|
+
sage: B._plot3d_options()
|
|
134
|
+
Traceback (most recent call last):
|
|
135
|
+
...
|
|
136
|
+
NotImplementedError: invalid 3d line style: 'dashed'
|
|
137
|
+
sage: B = BezierPath([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]], {'fill':False, 'thickness':2})
|
|
138
|
+
sage: B._plot3d_options()
|
|
139
|
+
{'thickness': 2}
|
|
140
|
+
"""
|
|
141
|
+
if options is None:
|
|
142
|
+
options = dict(self.options())
|
|
143
|
+
options_3d = {}
|
|
144
|
+
if 'thickness' in options:
|
|
145
|
+
options_3d['thickness'] = options['thickness']
|
|
146
|
+
del options['thickness']
|
|
147
|
+
if 'fill' in options:
|
|
148
|
+
if options['fill']:
|
|
149
|
+
raise NotImplementedError("invalid 3d fill style; must set fill to False")
|
|
150
|
+
del options['fill']
|
|
151
|
+
if 'linestyle' in options:
|
|
152
|
+
if options['linestyle'] not in ('solid', '-'):
|
|
153
|
+
raise NotImplementedError("invalid 3d line style: '%s'" %
|
|
154
|
+
(options['linestyle']))
|
|
155
|
+
del options['linestyle']
|
|
156
|
+
options_3d.update(GraphicPrimitive_xydata._plot3d_options(self, options))
|
|
157
|
+
return options_3d
|
|
158
|
+
|
|
159
|
+
def plot3d(self, z=0, **kwds):
|
|
160
|
+
"""
|
|
161
|
+
Return a 3D plot (Jmol) of the Bezier path. Since a ``BezierPath``
|
|
162
|
+
primitive contains only `x,y` coordinates, the path will be drawn in
|
|
163
|
+
some plane (default: `z=0`). To create a Bezier path with nonzero
|
|
164
|
+
(and nonidentical) `z` coordinates in the path and control points, use
|
|
165
|
+
the function :func:`~sage.plot.plot3d.shapes2.bezier3d` instead of
|
|
166
|
+
:func:`bezier_path`.
|
|
167
|
+
|
|
168
|
+
EXAMPLES::
|
|
169
|
+
|
|
170
|
+
sage: b = bezier_path([[(0,0),(0,1),(1,0)]])
|
|
171
|
+
sage: A = b.plot3d() # needs sage.symbolic
|
|
172
|
+
sage: B = b.plot3d(z=2) # needs sage.symbolic
|
|
173
|
+
sage: A + B # needs sage.symbolic
|
|
174
|
+
Graphics3d Object
|
|
175
|
+
|
|
176
|
+
.. PLOT::
|
|
177
|
+
|
|
178
|
+
b = bezier_path([[(0,0),(0,1),(1,0)]])
|
|
179
|
+
A = b.plot3d()
|
|
180
|
+
B = b.plot3d(z=2)
|
|
181
|
+
sphinx_plot(A + B)
|
|
182
|
+
|
|
183
|
+
::
|
|
184
|
+
|
|
185
|
+
sage: bezier3d([[(0,0,0),(1,0,0),(0,1,0),(0,1,1)]]) # needs sage.symbolic
|
|
186
|
+
Graphics3d Object
|
|
187
|
+
|
|
188
|
+
.. PLOT::
|
|
189
|
+
|
|
190
|
+
sphinx_plot(bezier3d([[(0,0,0),(1,0,0),(0,1,0),(0,1,1)]]))
|
|
191
|
+
"""
|
|
192
|
+
from sage.plot.plot3d.shapes2 import bezier3d
|
|
193
|
+
options = self._plot3d_options()
|
|
194
|
+
options.update(kwds)
|
|
195
|
+
return bezier3d([[(x,y,0) for x,y in self.path[i]] for i in range(len(self.path))], **options)
|
|
196
|
+
|
|
197
|
+
def _repr_(self):
|
|
198
|
+
"""
|
|
199
|
+
Return text representation of this Bezier path graphics primitive.
|
|
200
|
+
|
|
201
|
+
EXAMPLES::
|
|
202
|
+
|
|
203
|
+
sage: from sage.plot.bezier_path import BezierPath
|
|
204
|
+
sage: B = BezierPath([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]], {'linestyle':'dashed'})
|
|
205
|
+
sage: B._repr_()
|
|
206
|
+
'Bezier path from (0.0, 0.0) to (0.0, 0.0)'
|
|
207
|
+
"""
|
|
208
|
+
x0, y0 = self.vertices[0]
|
|
209
|
+
x1, y1 = self.vertices[-1]
|
|
210
|
+
return f"Bezier path from ({x0}, {y0}) to ({x1}, {y1})"
|
|
211
|
+
|
|
212
|
+
def _render_on_subplot(self, subplot):
|
|
213
|
+
"""
|
|
214
|
+
Render this Bezier path in a subplot. This is the key function that
|
|
215
|
+
defines how this Bezier path graphics primitive is rendered in matplotlib's
|
|
216
|
+
library.
|
|
217
|
+
|
|
218
|
+
TESTS::
|
|
219
|
+
|
|
220
|
+
sage: bezier_path([[(0,1),(.5,0),(1,1)]])
|
|
221
|
+
Graphics object consisting of 1 graphics primitive
|
|
222
|
+
|
|
223
|
+
::
|
|
224
|
+
|
|
225
|
+
sage: bezier_path([[(0,1),(.5,0),(1,1),(-3,5)]])
|
|
226
|
+
Graphics object consisting of 1 graphics primitive
|
|
227
|
+
"""
|
|
228
|
+
from matplotlib.patches import PathPatch
|
|
229
|
+
from matplotlib.path import Path
|
|
230
|
+
from sage.plot.misc import get_matplotlib_linestyle
|
|
231
|
+
|
|
232
|
+
options = dict(self.options())
|
|
233
|
+
|
|
234
|
+
del options['alpha']
|
|
235
|
+
del options['thickness']
|
|
236
|
+
del options['rgbcolor']
|
|
237
|
+
del options['zorder']
|
|
238
|
+
del options['fill']
|
|
239
|
+
del options['linestyle']
|
|
240
|
+
|
|
241
|
+
bpath = Path(self.vertices, self.codes)
|
|
242
|
+
bpatch = PathPatch(bpath, **options)
|
|
243
|
+
options = self.options()
|
|
244
|
+
bpatch.set_linewidth(float(options['thickness']))
|
|
245
|
+
bpatch.set_fill(options['fill'])
|
|
246
|
+
bpatch.set_zorder(options['zorder'])
|
|
247
|
+
a = float(options['alpha'])
|
|
248
|
+
bpatch.set_alpha(a)
|
|
249
|
+
c = to_mpl_color(options['rgbcolor'])
|
|
250
|
+
bpatch.set_edgecolor(c)
|
|
251
|
+
bpatch.set_facecolor(c)
|
|
252
|
+
bpatch.set_linestyle(get_matplotlib_linestyle(options['linestyle'], return_type='long'))
|
|
253
|
+
subplot.add_patch(bpatch)
|
|
254
|
+
|
|
255
|
+
def get_minmax_data(self):
|
|
256
|
+
"""
|
|
257
|
+
Return a dictionary with the bounding box data.
|
|
258
|
+
|
|
259
|
+
EXAMPLES::
|
|
260
|
+
|
|
261
|
+
sage: b = bezier_path([[(0,0),(.5,.5),(1,0)],[(.5,1),(0,0)]])
|
|
262
|
+
sage: d = b.get_minmax_data()
|
|
263
|
+
sage: d['xmin']
|
|
264
|
+
np.float64(0.0)
|
|
265
|
+
sage: d['xmax']
|
|
266
|
+
np.float64(1.0)
|
|
267
|
+
"""
|
|
268
|
+
return {'xmin': self.vertices[:,0].min(),
|
|
269
|
+
'xmax': self.vertices[:,0].max(),
|
|
270
|
+
'ymin': self.vertices[:,1].min(),
|
|
271
|
+
'ymax': self.vertices[:,1].max()}
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
@rename_keyword(color='rgbcolor')
|
|
275
|
+
@options(alpha=1, fill=False, thickness=1, rgbcolor=(0,0,0), zorder=2, linestyle='solid')
|
|
276
|
+
def bezier_path(path, **options):
|
|
277
|
+
"""
|
|
278
|
+
Return a Graphics object of a Bezier path corresponding to the
|
|
279
|
+
path parameter. The path is a list of curves, and each curve is
|
|
280
|
+
a list of points. Each point is a tuple ``(x,y)``.
|
|
281
|
+
|
|
282
|
+
The first curve contains the endpoints as the first and last point
|
|
283
|
+
in the list. All other curves assume a starting point given by the
|
|
284
|
+
last entry in the preceding list, and take the last point in the list
|
|
285
|
+
as their opposite endpoint. A curve can have 0, 1 or 2 control points
|
|
286
|
+
listed between the endpoints. In the input example for path below,
|
|
287
|
+
the first and second curves have 2 control points, the third has one,
|
|
288
|
+
and the fourth has no control points:
|
|
289
|
+
|
|
290
|
+
path = [[p1, c1, c2, p2], [c3, c4, p3], [c5, p4], [p5], ...]
|
|
291
|
+
|
|
292
|
+
In the case of no control points, a straight line will be drawn
|
|
293
|
+
between the two endpoints. If one control point is supplied, then
|
|
294
|
+
the curve at each of the endpoints will be tangent to the line from
|
|
295
|
+
that endpoint to the control point. Similarly, in the case of two
|
|
296
|
+
control points, at each endpoint the curve will be tangent to the line
|
|
297
|
+
connecting that endpoint with the control point immediately after or
|
|
298
|
+
immediately preceding it in the list.
|
|
299
|
+
|
|
300
|
+
.. PLOT::
|
|
301
|
+
|
|
302
|
+
p1 = (0,0)
|
|
303
|
+
c1 = (1,1)
|
|
304
|
+
c2 = (1.5,0.5)
|
|
305
|
+
p2 = (4,-1)
|
|
306
|
+
c3 = (3.5,0)
|
|
307
|
+
c4 = (2,1)
|
|
308
|
+
p3 = (0,2)
|
|
309
|
+
c5 = (0.5,3)
|
|
310
|
+
p4 = (1.5,2)
|
|
311
|
+
p5 = (0,4)
|
|
312
|
+
path = [[p1, c1, c2, p2], [c3, c4, p3], [c5, p4], [p5]]
|
|
313
|
+
P = bezier_path(path)
|
|
314
|
+
P += line([p1,c1], color='red', linestyle='dashed')
|
|
315
|
+
P += line([p2,c2], color='red', linestyle='dashed')
|
|
316
|
+
P += line([p2,c3], color='red', linestyle='dashed')
|
|
317
|
+
P += line([p3,c4], color='red', linestyle='dashed')
|
|
318
|
+
P += line([p3,c5], color='red', linestyle='dashed')
|
|
319
|
+
P += text("c1", c1, horizontal_alignment='left')
|
|
320
|
+
P += text("c2", c2, horizontal_alignment='right')
|
|
321
|
+
P += text("c3", c3, horizontal_alignment='left', vertical_alignment='bottom')
|
|
322
|
+
P += text("c4", c4, horizontal_alignment='left')
|
|
323
|
+
P += text("c5", c5, horizontal_alignment='left')
|
|
324
|
+
P += text("p1", p1, horizontal_alignment='left', vertical_alignment='top')
|
|
325
|
+
P += text("p2", p2, horizontal_alignment='left')
|
|
326
|
+
P += text("p3", p3, horizontal_alignment='right', vertical_alignment='top')
|
|
327
|
+
P += text("p4", p4, horizontal_alignment='left')
|
|
328
|
+
P += text("p5", p5, horizontal_alignment='left', vertical_alignment='bottom')
|
|
329
|
+
P += point([c1, c2, c3, c4, c5])
|
|
330
|
+
sphinx_plot(P)
|
|
331
|
+
|
|
332
|
+
So in our example above, the curve between p1 and p2 is tangent to the
|
|
333
|
+
line through p1 and c1 at p1, and tangent to the line through p2 and c2
|
|
334
|
+
at p2. Similarly, the curve between p2 and p3 is tangent to line(p2,c3)
|
|
335
|
+
at p2 and tangent to line(p3,c4) at p3. Curve(p3,p4) is tangent to
|
|
336
|
+
line(p3,c5) at p3 and tangent to line(p4,c5) at p4. Curve(p4,p5) is a
|
|
337
|
+
straight line.
|
|
338
|
+
|
|
339
|
+
INPUT:
|
|
340
|
+
|
|
341
|
+
- ``path`` -- list of lists of tuples (see above)
|
|
342
|
+
- ``alpha`` -- (default: 1)
|
|
343
|
+
- ``fill`` -- (default: ``False``)
|
|
344
|
+
- ``thickness`` -- (default: 1)
|
|
345
|
+
- ``linestyle`` -- (default: ``'solid'``) the style of the line, which is one
|
|
346
|
+
of ``'dashed'``, ``'dotted'``, ``'solid'``, ``'dashdot'``, or ``'--'``,
|
|
347
|
+
``':'``, ``'-'``, ``'-.'``, respectively
|
|
348
|
+
- ``rgbcolor`` -- (default: (0,0,0))
|
|
349
|
+
- ``zorder`` -- the layer in which to draw
|
|
350
|
+
|
|
351
|
+
EXAMPLES::
|
|
352
|
+
|
|
353
|
+
sage: path = [[(0,0),(.5,.1),(.75,3),(1,0)],[(.5,1),(.5,0)],[(.2,.5)]]
|
|
354
|
+
sage: b = bezier_path(path, linestyle='dashed', rgbcolor='green')
|
|
355
|
+
sage: b
|
|
356
|
+
Graphics object consisting of 1 graphics primitive
|
|
357
|
+
|
|
358
|
+
.. PLOT::
|
|
359
|
+
|
|
360
|
+
path = [[(0,0),(.5,.1),(.75,3),(1,0)],[(.5,1),(.5,0)],[(.2,.5)]]
|
|
361
|
+
b = bezier_path(path, linestyle='dashed', rgbcolor='green')
|
|
362
|
+
sphinx_plot(b)
|
|
363
|
+
|
|
364
|
+
To construct a simple curve, create a list containing a single list::
|
|
365
|
+
|
|
366
|
+
sage: path = [[(0,0),(.5,1),(1,0)]]
|
|
367
|
+
sage: curve = bezier_path(path, linestyle='dashed', rgbcolor='green')
|
|
368
|
+
sage: curve
|
|
369
|
+
Graphics object consisting of 1 graphics primitive
|
|
370
|
+
|
|
371
|
+
.. PLOT::
|
|
372
|
+
|
|
373
|
+
path = [[(0,0),(.5,1),(1,0)]]
|
|
374
|
+
curve = bezier_path(path, linestyle='dashed', rgbcolor='green')
|
|
375
|
+
sphinx_plot(curve)
|
|
376
|
+
|
|
377
|
+
Extra options will get passed on to :meth:`~Graphics.show`, as long as they are valid::
|
|
378
|
+
|
|
379
|
+
sage: bezier_path([[(0,1),(.5,0),(1,1)]], fontsize=50)
|
|
380
|
+
Graphics object consisting of 1 graphics primitive
|
|
381
|
+
sage: bezier_path([[(0,1),(.5,0),(1,1)]]).show(fontsize=50) # These are equivalent
|
|
382
|
+
|
|
383
|
+
.. PLOT::
|
|
384
|
+
|
|
385
|
+
sphinx_plot(bezier_path([[(0,1),(.5,0),(1,1)]], fontsize=50))
|
|
386
|
+
|
|
387
|
+
TESTS:
|
|
388
|
+
|
|
389
|
+
We shouldn't modify our argument, :issue:`13822`::
|
|
390
|
+
|
|
391
|
+
sage: bp = [[(1,1),(2,3),(3,3)], [(4,4),(5,5)]]
|
|
392
|
+
sage: foo = bezier_path(bp)
|
|
393
|
+
sage: bp
|
|
394
|
+
[[(1, 1), (2, 3), (3, 3)], [(4, 4), (5, 5)]]
|
|
395
|
+
"""
|
|
396
|
+
from sage.plot.all import Graphics
|
|
397
|
+
g = Graphics()
|
|
398
|
+
g._set_extra_kwds(g._extract_kwds_for_show(options))
|
|
399
|
+
g.add_primitive(BezierPath(path, options))
|
|
400
|
+
return g
|