passagemath-plot 10.6.31rc3__cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-plot might be problematic. Click here for more details.

Files changed (82) hide show
  1. passagemath_plot-10.6.31rc3.dist-info/METADATA +172 -0
  2. passagemath_plot-10.6.31rc3.dist-info/RECORD +82 -0
  3. passagemath_plot-10.6.31rc3.dist-info/WHEEL +6 -0
  4. passagemath_plot-10.6.31rc3.dist-info/top_level.txt +2 -0
  5. passagemath_plot.libs/libgfortran-83c28eba.so.5.0.0 +0 -0
  6. passagemath_plot.libs/libgsl-cda90e79.so.28.0.0 +0 -0
  7. passagemath_plot.libs/libopenblasp-r0-6dcb67f9.3.29.so +0 -0
  8. passagemath_plot.libs/libquadmath-2284e583.so.0.0.0 +0 -0
  9. sage/all__sagemath_plot.py +15 -0
  10. sage/ext_data/threejs/animation.css +195 -0
  11. sage/ext_data/threejs/animation.html +85 -0
  12. sage/ext_data/threejs/animation.js +273 -0
  13. sage/ext_data/threejs/fat_lines.js +48 -0
  14. sage/ext_data/threejs/threejs-version.txt +1 -0
  15. sage/ext_data/threejs/threejs_template.html +597 -0
  16. sage/interfaces/all__sagemath_plot.py +1 -0
  17. sage/interfaces/gnuplot.py +196 -0
  18. sage/interfaces/jmoldata.py +208 -0
  19. sage/interfaces/povray.py +56 -0
  20. sage/plot/all.py +42 -0
  21. sage/plot/animate.py +1796 -0
  22. sage/plot/arc.py +504 -0
  23. sage/plot/arrow.py +671 -0
  24. sage/plot/bar_chart.py +205 -0
  25. sage/plot/bezier_path.py +400 -0
  26. sage/plot/circle.py +435 -0
  27. sage/plot/colors.py +1606 -0
  28. sage/plot/complex_plot.cpython-314-x86_64-linux-gnu.so +0 -0
  29. sage/plot/complex_plot.pyx +1446 -0
  30. sage/plot/contour_plot.py +1792 -0
  31. sage/plot/density_plot.py +318 -0
  32. sage/plot/disk.py +373 -0
  33. sage/plot/ellipse.py +375 -0
  34. sage/plot/graphics.py +3580 -0
  35. sage/plot/histogram.py +354 -0
  36. sage/plot/hyperbolic_arc.py +404 -0
  37. sage/plot/hyperbolic_polygon.py +416 -0
  38. sage/plot/hyperbolic_regular_polygon.py +296 -0
  39. sage/plot/line.py +626 -0
  40. sage/plot/matrix_plot.py +629 -0
  41. sage/plot/misc.py +509 -0
  42. sage/plot/multigraphics.py +1294 -0
  43. sage/plot/plot.py +4183 -0
  44. sage/plot/plot3d/all.py +23 -0
  45. sage/plot/plot3d/base.cpython-314-x86_64-linux-gnu.so +0 -0
  46. sage/plot/plot3d/base.pxd +12 -0
  47. sage/plot/plot3d/base.pyx +3378 -0
  48. sage/plot/plot3d/implicit_plot3d.py +659 -0
  49. sage/plot/plot3d/implicit_surface.cpython-314-x86_64-linux-gnu.so +0 -0
  50. sage/plot/plot3d/implicit_surface.pyx +1453 -0
  51. sage/plot/plot3d/index_face_set.cpython-314-x86_64-linux-gnu.so +0 -0
  52. sage/plot/plot3d/index_face_set.pxd +32 -0
  53. sage/plot/plot3d/index_face_set.pyx +1873 -0
  54. sage/plot/plot3d/introduction.py +131 -0
  55. sage/plot/plot3d/list_plot3d.py +649 -0
  56. sage/plot/plot3d/parametric_plot3d.py +1130 -0
  57. sage/plot/plot3d/parametric_surface.cpython-314-x86_64-linux-gnu.so +0 -0
  58. sage/plot/plot3d/parametric_surface.pxd +12 -0
  59. sage/plot/plot3d/parametric_surface.pyx +893 -0
  60. sage/plot/plot3d/platonic.py +601 -0
  61. sage/plot/plot3d/plot3d.py +1442 -0
  62. sage/plot/plot3d/plot_field3d.py +162 -0
  63. sage/plot/plot3d/point_c.pxi +148 -0
  64. sage/plot/plot3d/revolution_plot3d.py +309 -0
  65. sage/plot/plot3d/shapes.cpython-314-x86_64-linux-gnu.so +0 -0
  66. sage/plot/plot3d/shapes.pxd +22 -0
  67. sage/plot/plot3d/shapes.pyx +1382 -0
  68. sage/plot/plot3d/shapes2.py +1512 -0
  69. sage/plot/plot3d/tachyon.py +1779 -0
  70. sage/plot/plot3d/texture.py +453 -0
  71. sage/plot/plot3d/transform.cpython-314-x86_64-linux-gnu.so +0 -0
  72. sage/plot/plot3d/transform.pxd +21 -0
  73. sage/plot/plot3d/transform.pyx +268 -0
  74. sage/plot/plot3d/tri_plot.py +589 -0
  75. sage/plot/plot_field.py +362 -0
  76. sage/plot/point.py +624 -0
  77. sage/plot/polygon.py +562 -0
  78. sage/plot/primitive.py +249 -0
  79. sage/plot/scatter_plot.py +199 -0
  80. sage/plot/step.py +85 -0
  81. sage/plot/streamline_plot.py +328 -0
  82. sage/plot/text.py +432 -0
@@ -0,0 +1,1512 @@
1
+ # sage_setup: distribution = sagemath-plot
2
+ r"""
3
+ Classes for Lines, Frames, Rulers, Spheres, Points, Dots, and Text
4
+
5
+ AUTHORS:
6
+
7
+ - William Stein (2007-12): initial version
8
+
9
+ - William Stein and Robert Bradshaw (2008-01): Many improvements
10
+ """
11
+ # ****************************************************************************
12
+ # Copyright (C) 2007 William Stein <wstein@gmail.com>
13
+ # Copyright (C) 2008 Robert Bradshaw <robertwb@math.washington.edu>
14
+ #
15
+ # Distributed under the terms of the GNU General Public License (GPL)
16
+ #
17
+ # This code is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
+ # General Public License for more details.
21
+ #
22
+ # The full text of the GPL is available at:
23
+ #
24
+ # https://www.gnu.org/licenses/
25
+ # ****************************************************************************
26
+
27
+ import math
28
+
29
+ from . import shapes
30
+
31
+ from .base import PrimitiveObject, point_list_bounding_box
32
+
33
+ from sage.rings.real_double import RDF
34
+ from sage.modules.free_module_element import vector
35
+ from sage.misc.decorators import options, rename_keyword
36
+ from sage.arith.srange import srange
37
+
38
+ from .texture import Texture
39
+ from .shapes import Text, Sphere
40
+
41
+ TACHYON_PIXEL = 1 / 200.0
42
+
43
+
44
+ @rename_keyword(alpha='opacity')
45
+ def line3d(points, thickness=1, radius=None, arrow_head=False, **kwds):
46
+ r"""
47
+ Draw a 3d line joining a sequence of points.
48
+
49
+ One may specify either a thickness or radius. If a thickness is
50
+ specified, this line will have a constant diameter regardless of
51
+ scaling and zooming. If a radius is specified, it will behave as a
52
+ series of cylinders.
53
+
54
+ INPUT:
55
+
56
+ - ``points`` -- list of at least 2 points
57
+
58
+ - ``thickness`` -- (default: 1)
59
+
60
+ - ``radius`` -- (default: ``None``)
61
+
62
+ - ``arrow_head`` -- (default: ``False``)
63
+
64
+ - ``color`` -- string (``'red'``, ``'green'`` etc)
65
+ or a tuple (r, g, b) with r, g, b numbers between 0 and 1
66
+
67
+ - ``opacity`` -- (default: 1) if less than 1 then is
68
+ transparent
69
+
70
+ EXAMPLES:
71
+
72
+ A line in 3-space::
73
+
74
+ sage: line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)])
75
+ Graphics3d Object
76
+
77
+ .. PLOT::
78
+
79
+ sphinx_plot(line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)]))
80
+
81
+ The same line but red::
82
+
83
+ sage: line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)], color='red')
84
+ Graphics3d Object
85
+
86
+ .. PLOT::
87
+
88
+ sphinx_plot(line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)], color='red'))
89
+
90
+ The points of the line provided as a numpy array::
91
+
92
+ sage: import numpy
93
+ sage: line3d(numpy.array([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)]))
94
+ Graphics3d Object
95
+
96
+ .. PLOT::
97
+
98
+ import numpy
99
+ sphinx_plot(line3d(numpy.array([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)])))
100
+
101
+ A transparent thick green line and a little blue line::
102
+
103
+ sage: line3d([(0,0,0), (1,1,1), (1,0,2)], opacity=0.5, radius=0.1,
104
+ ....: color='green') + line3d([(0,1,0), (1,0,2)])
105
+ Graphics3d Object
106
+
107
+ .. PLOT::
108
+
109
+ sphinx_plot(line3d([(0,0,0), (1,1,1), (1,0,2)], opacity=0.5, radius=0.1, color='green') + line3d([(0,1,0), (1,0,2)]))
110
+
111
+ A Dodecahedral complex of 5 tetrahedra (a more elaborate example
112
+ from Peter Jipsen)::
113
+
114
+ sage: def tetra(col):
115
+ ....: return line3d([(0,0,1), (2*sqrt(2.)/3,0,-1./3), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),\
116
+ ....: (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (0,0,1), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),\
117
+ ....: (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (2*sqrt(2.)/3,0,-1./3)],\
118
+ ....: color=col, thickness=10, aspect_ratio=[1,1,1])
119
+
120
+ sage: from math import pi
121
+ sage: v = (sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3)
122
+ sage: t = acos(sqrt(5.)/3)/2
123
+ sage: t1 = tetra('blue').rotateZ(t)
124
+ sage: t2 = tetra('red').rotateZ(t).rotate(v,2*pi/5)
125
+ sage: t3 = tetra('green').rotateZ(t).rotate(v,4*pi/5)
126
+ sage: t4 = tetra('yellow').rotateZ(t).rotate(v,6*pi/5)
127
+ sage: t5 = tetra('orange').rotateZ(t).rotate(v,8*pi/5)
128
+ sage: show(t1+t2+t3+t4+t5, frame=False)
129
+
130
+ .. PLOT::
131
+
132
+ def tetra(col):
133
+ return line3d([(0,0,1), (2*sqrt(2.)/3,0,-1./3), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),\
134
+ (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (0,0,1), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),\
135
+ (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (2*sqrt(2.)/3,0,-1./3)],\
136
+ color=col, thickness=10, aspect_ratio=[1,1,1])
137
+ v = (sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3)
138
+ t = acos(sqrt(5.)/3)/2
139
+ t1 = tetra('blue').rotateZ(t)
140
+ t2 = tetra('red').rotateZ(t).rotate(v,2*pi/5)
141
+ t3 = tetra('green').rotateZ(t).rotate(v,4*pi/5)
142
+ t4 = tetra('yellow').rotateZ(t).rotate(v,6*pi/5)
143
+ t5 = tetra('orange').rotateZ(t).rotate(v,8*pi/5)
144
+ sphinx_plot(t1+t2+t3+t4+t5)
145
+
146
+ TESTS:
147
+
148
+ Copies are made of the input list, so the input list does not change::
149
+
150
+ sage: mypoints = [vector([1,2,3]), vector([4,5,6])]
151
+ sage: type(mypoints[0])
152
+ <... 'sage.modules.vector_integer_dense.Vector_integer_dense'>
153
+ sage: L = line3d(mypoints)
154
+ sage: type(mypoints[0])
155
+ <... 'sage.modules.vector_integer_dense.Vector_integer_dense'>
156
+
157
+ The copies are converted to a list, so we can pass in immutable objects too::
158
+
159
+ sage: L = line3d(((0,0,0),(1,2,3)))
160
+
161
+ This function should work for anything than can be turned into a
162
+ list, such as iterators and such (see :issue:`10478`)::
163
+
164
+ sage: line3d(iter([(0,0,0), (sqrt(3), 2, 4)])) # needs sage.symbolic
165
+ Graphics3d Object
166
+ sage: line3d((x, x^2, x^3) for x in range(5))
167
+ Graphics3d Object
168
+ sage: from builtins import zip
169
+ sage: line3d(zip([2,3,5,7], [11, 13, 17, 19], [-1, -2, -3, -4]))
170
+ Graphics3d Object
171
+ """
172
+ points = list(points)
173
+ if len(points) < 2:
174
+ raise ValueError("there must be at least 2 points")
175
+ for i in range(len(points)):
176
+ x, y, z = points[i]
177
+ points[i] = float(x), float(y), float(z)
178
+ if radius is None:
179
+ L = Line(points, thickness=thickness, arrow_head=arrow_head, **kwds)
180
+ L._set_extra_kwds(kwds)
181
+ L._extra_kwds['thickness'] = thickness # remove this line if json_repr is defined
182
+ return L
183
+ else:
184
+ v = []
185
+ if 'texture' in kwds:
186
+ kwds = kwds.copy()
187
+ texture = kwds.pop('texture')
188
+ else:
189
+ texture = Texture(kwds)
190
+ for i in range(len(points) - 1):
191
+ line = shapes.arrow3d if i == len(points)-2 and arrow_head else shapes.LineSegment
192
+ v.append(line(points[i], points[i+1], texture=texture, radius=radius, **kwds))
193
+ w = sum(v)
194
+ w._set_extra_kwds(kwds)
195
+ return w
196
+
197
+
198
+ @rename_keyword(alpha='opacity')
199
+ @options(opacity=1, color='blue', aspect_ratio=[1, 1, 1], thickness=2)
200
+ def bezier3d(path, **options):
201
+ """
202
+ Draw a 3-dimensional bezier path.
203
+
204
+ Input is similar to bezier_path, but each point in the path and
205
+ each control point is required to have 3 coordinates.
206
+
207
+ INPUT:
208
+
209
+ - ``path`` -- list of curves, which each is a list of points. See further
210
+ detail below
211
+
212
+ - ``thickness`` -- (default: 2)
213
+
214
+ - ``color`` -- string (``'red'``, ``'green'`` etc)
215
+ or a tuple (r, g, b) with r, g, b numbers between 0 and 1
216
+
217
+ - ``opacity`` -- (default: 1) if less than 1 then is
218
+ transparent
219
+
220
+ - ``aspect_ratio`` -- (default: [1,1,1])
221
+
222
+ The path is a list of curves, and each curve is a list of points.
223
+ Each point is a tuple (x,y,z).
224
+
225
+ The first curve contains the endpoints as the first and last point
226
+ in the list. All other curves assume a starting point given by the
227
+ last entry in the preceding list, and take the last point in the list
228
+ as their opposite endpoint. A curve can have 0, 1 or 2 control points
229
+ listed between the endpoints. In the input example for path below,
230
+ the first and second curves have 2 control points, the third has one,
231
+ and the fourth has no control points::
232
+
233
+ path = [[p1, c1, c2, p2], [c3, c4, p3], [c5, p4], [p5], ...]
234
+
235
+ In the case of no control points, a straight line will be drawn
236
+ between the two endpoints. If one control point is supplied, then
237
+ the curve at each of the endpoints will be tangent to the line from
238
+ that endpoint to the control point. Similarly, in the case of two
239
+ control points, at each endpoint the curve will be tangent to the line
240
+ connecting that endpoint with the control point immediately after or
241
+ immediately preceding it in the list.
242
+
243
+ So in our example above, the curve between p1 and p2 is tangent to the
244
+ line through p1 and c1 at p1, and tangent to the line through p2 and c2
245
+ at p2. Similarly, the curve between p2 and p3 is tangent to line(p2,c3)
246
+ at p2 and tangent to line(p3,c4) at p3. Curve(p3,p4) is tangent to
247
+ line(p3,c5) at p3 and tangent to line(p4,c5) at p4. Curve(p4,p5) is a
248
+ straight line.
249
+
250
+ EXAMPLES::
251
+
252
+ sage: path = [[(0,0,0),(.5,.1,.2),(.75,3,-1),(1,1,0)],
253
+ ....: [(.5,1,.2),(1,.5,0)], [(.7,.2,.5)]]
254
+ sage: b = bezier3d(path, color='green'); b # needs sage.symbolic
255
+ Graphics3d Object
256
+
257
+ .. PLOT::
258
+
259
+ path = [[(0,0,0),(.5,.1,.2),(.75,3,-1),(1,1,0)],[(.5,1,.2),(1,.5,0)],[(.7,.2,.5)]]
260
+ sphinx_plot(bezier3d(path, color='green'))
261
+
262
+ To construct a simple curve, create a list containing a single list::
263
+
264
+ sage: path = [[(0,0,0),(1,0,0),(0,1,0),(0,1,1)]]
265
+ sage: curve = bezier3d(path, thickness=5, color='blue'); curve # needs sage.symbolic
266
+ Graphics3d Object
267
+
268
+ .. PLOT::
269
+
270
+ path = [[(0,0,0),(1,0,0),(0,1,0),(0,1,1)]]
271
+ sphinx_plot(bezier3d(path, thickness=5, color='blue'))
272
+
273
+ TESTS:
274
+
275
+ Check for :issue:`31640`::
276
+
277
+ sage: p2d = [[(3,0.0),(3,0.13),(2,0.2),(2,0.3)],
278
+ ....: [(2.7,0.4),(2.6,0.5),(2.5,0.5)], [(2.3,0.5),(2.2,0.4),(2.1,0.3)]]
279
+ sage: bp = bezier_path(p2d) # needs sage.symbolic
280
+ sage: bp.plot3d() # needs sage.symbolic
281
+ Graphics3d Object
282
+
283
+ sage: p3d = [[(3,0,0),(3,0.1,0),(2.9,0.2,0),(2.8,0.3,0)],
284
+ ....: [(2.7,0.4,0),(2,0.5,0),(2.5,0.5,0)],
285
+ ....: [(2.3,0.5,0),(2.2,0.4,0),(2.1,0.3,0)]]
286
+ sage: bezier3d(p3d) # needs sage.symbolic
287
+ Graphics3d Object
288
+ """
289
+ from . import parametric_plot3d as P3D
290
+ from sage.modules.free_module_element import vector
291
+ from sage.symbolic.ring import SR
292
+
293
+ p0 = vector(path[0][-1])
294
+ t = SR.var('t')
295
+ if len(path[0]) > 2:
296
+ B = (1-t)**3*vector(path[0][0])+3*t*(1-t)**2*vector(path[0][1])+3*t**2*(1-t)*vector(path[0][-2])+t**3*p0
297
+ G = P3D.parametric_plot3d(list(B), (0, 1), color=options['color'], aspect_ratio=options['aspect_ratio'], thickness=options['thickness'], opacity=options['opacity'])
298
+ else:
299
+ G = line3d([path[0][0], p0], color=options['color'], thickness=options['thickness'], opacity=options['opacity'])
300
+
301
+ for curve in path[1:]:
302
+ if len(curve) > 1:
303
+ p1 = vector(curve[0])
304
+ p2 = vector(curve[-2])
305
+ p3 = vector(curve[-1])
306
+ B = (1-t)**3*p0+3*t*(1-t)**2*p1+3*t**2*(1-t)*p2+t**3*p3
307
+ G += P3D.parametric_plot3d(list(B), (0, 1), color=options['color'], aspect_ratio=options['aspect_ratio'], thickness=options['thickness'], opacity=options['opacity'])
308
+ else:
309
+ G += line3d([p0, curve[0]], color=options['color'], thickness=options['thickness'], opacity=options['opacity'])
310
+ p0 = vector(curve[-1])
311
+ return G
312
+
313
+
314
+ @rename_keyword(alpha='opacity')
315
+ @options(opacity=1, color=(0, 0, 1))
316
+ def polygon3d(points, **options):
317
+ """
318
+ Draw a polygon in 3d.
319
+
320
+ INPUT:
321
+
322
+ - ``points`` -- the vertices of the polygon
323
+
324
+ Type ``polygon3d.options`` for a dictionary of the default
325
+ options for polygons. You can change this to change
326
+ the defaults for all future polygons. Use ``polygon3d.reset()``
327
+ to reset to the default options.
328
+
329
+ EXAMPLES:
330
+
331
+ A simple triangle::
332
+
333
+ sage: polygon3d([[0,2,0], [1.5,1,3], [3,0,0]])
334
+ Graphics3d Object
335
+
336
+ .. PLOT::
337
+
338
+ sphinx_plot(polygon3d([[0,2,0], [1.5,1,3], [3,0,0]]))
339
+
340
+ Some modern art -- a random polygon::
341
+
342
+ sage: v = [(randrange(-5,5), randrange(-5,5), randrange(-5, 5))
343
+ ....: for _ in range(10)]
344
+ sage: polygon3d(v)
345
+ Graphics3d Object
346
+
347
+ .. PLOT::
348
+
349
+ v = [(randrange(-5,5), randrange(-5,5), randrange(-5, 5)) for _ in range(10)]
350
+ sphinx_plot(polygon3d(v))
351
+
352
+ A bent transparent green triangle::
353
+
354
+ sage: polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]],
355
+ ....: color=(0,1,0), opacity=0.7)
356
+ Graphics3d Object
357
+
358
+ .. PLOT::
359
+
360
+ sphinx_plot(polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]], color=(0,1,0), opacity=0.7))
361
+
362
+ This is the same as using ``alpha=0.7``::
363
+
364
+ sage: polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]],
365
+ ....: color=(0,1,0), alpha=0.7)
366
+ Graphics3d Object
367
+
368
+ .. PLOT::
369
+
370
+ sphinx_plot(polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]], color=(0,1,0), alpha=0.7))
371
+ """
372
+ from sage.plot.plot3d.index_face_set import IndexFaceSet
373
+ return IndexFaceSet([range(len(points))], points, **options)
374
+
375
+
376
+ @rename_keyword(alpha='opacity')
377
+ @options(opacity=1, color=(0, 0, 1))
378
+ def polygons3d(faces, points, **options):
379
+ """
380
+ Draw the union of several polygons in 3d.
381
+
382
+ Useful to plot a polyhedron as just one :class:`IndexFaceSet`.
383
+
384
+ INPUT:
385
+
386
+ - ``faces`` -- list of faces, every face given by the list
387
+ of indices of its vertices
388
+
389
+ - ``points`` -- coordinates of the vertices in the union
390
+
391
+ EXAMPLES:
392
+
393
+ Two adjacent triangles::
394
+
395
+ sage: f = [[0,1,2],[1,2,3]]
396
+ sage: v = [(-1,0,0),(0,1,1),(0,-1,1),(1,0,0)]
397
+ sage: polygons3d(f, v, color='red')
398
+ Graphics3d Object
399
+
400
+ .. PLOT::
401
+
402
+ f = [[0,1,2],[1,2,3]]
403
+ v = [(-1,0,0),(0,1,1),(0,-1,1),(1,0,0)]
404
+ sphinx_plot(polygons3d(f, v, color='red'))
405
+ """
406
+ from sage.plot.plot3d.index_face_set import IndexFaceSet
407
+ return IndexFaceSet(faces, points, **options)
408
+
409
+
410
+ def frame3d(lower_left, upper_right, **kwds):
411
+ """
412
+ Draw a frame in 3-D.
413
+
414
+ Primarily used as a helper function for creating frames for 3-D
415
+ graphics viewing.
416
+
417
+ INPUT:
418
+
419
+ - ``lower_left`` -- the lower left corner of the frame, as a
420
+ list, tuple, or vector
421
+
422
+ - ``upper_right`` -- the upper right corner of the frame, as a
423
+ list, tuple, or vector
424
+
425
+ EXAMPLES:
426
+
427
+ A frame::
428
+
429
+ sage: from sage.plot.plot3d.shapes2 import frame3d
430
+ sage: frame3d([1,3,2],vector([2,5,4]),color='red')
431
+ Graphics3d Object
432
+
433
+ This is usually used for making an actual plot::
434
+
435
+ sage: y = var('y') # needs sage.symbolic
436
+ sage: plot3d(sin(x^2+y^2), (x,0,pi), (y,0,pi)) # needs sage.symbolic
437
+ Graphics3d Object
438
+ """
439
+ x0, y0, z0 = lower_left
440
+ x1, y1, z1 = upper_right
441
+ L1 = line3d([(x0, y0, z0), (x0, y1, z0), (x1, y1, z0),
442
+ (x1, y0, z0), (x0, y0, z0), # top square
443
+ (x0, y0, z1), (x0, y1, z1), (x1, y1, z1),
444
+ (x1, y0, z1), (x0, y0, z1)], # bottom square
445
+ **kwds)
446
+ # 3 additional lines joining top to bottom
447
+ v2 = line3d([(x0, y1, z0), (x0, y1, z1)], **kwds)
448
+ v3 = line3d([(x1, y0, z0), (x1, y0, z1)], **kwds)
449
+ v4 = line3d([(x1, y1, z0), (x1, y1, z1)], **kwds)
450
+ F = L1 + v2 + v3 + v4
451
+ F._set_extra_kwds(kwds)
452
+ return F
453
+
454
+
455
+ def frame_labels(lower_left, upper_right,
456
+ label_lower_left, label_upper_right, eps=1,
457
+ **kwds):
458
+ """
459
+ Draw correct labels for a given frame in 3-D.
460
+
461
+ Primarily used as a helper function for creating frames for 3-D
462
+ graphics viewing - do not use directly unless you know what you
463
+ are doing!
464
+
465
+ INPUT:
466
+
467
+ - ``lower_left`` -- the lower left corner of the frame, as a
468
+ list, tuple, or vector
469
+
470
+ - ``upper_right`` -- the upper right corner of the frame, as a
471
+ list, tuple, or vector
472
+
473
+ - ``label_lower_left`` -- the label for the lower left corner
474
+ of the frame, as a list, tuple, or vector. This label must actually
475
+ have all coordinates less than the coordinates of the other label.
476
+
477
+ - ``label_upper_right`` -- the label for the upper right corner
478
+ of the frame, as a list, tuple, or vector. This label must actually
479
+ have all coordinates greater than the coordinates of the other label.
480
+
481
+ - ``eps`` -- (default: 1) a parameter for how far away from the frame
482
+ to put the labels
483
+
484
+ EXAMPLES:
485
+
486
+ We can use it directly::
487
+
488
+ sage: from sage.plot.plot3d.shapes2 import frame_labels
489
+ sage: frame_labels([1,2,3],[4,5,6],[1,2,3],[4,5,6])
490
+ Graphics3d Object
491
+
492
+ This is usually used for making an actual plot::
493
+
494
+ sage: # needs sage.symbolic
495
+ sage: y = var('y')
496
+ sage: P = plot3d(sin(x^2+y^2), (x,0,pi), (y,0,pi))
497
+ sage: a,b = P._rescale_for_frame_aspect_ratio_and_zoom(1.0,[1,1,1],1)
498
+ sage: F = frame_labels(a, b, *P._box_for_aspect_ratio("automatic",a,b))
499
+ sage: F.jmol_repr(F.default_render_params())[0]
500
+ [['select atomno = 1', 'color atom [76,76,76]', 'label "0.0"']]
501
+
502
+ TESTS::
503
+
504
+ sage: frame_labels([1,2,3],[4,5,6],[1,2,3],[1,3,4])
505
+ Traceback (most recent call last):
506
+ ...
507
+ ValueError: ensure the upper right labels are above and to the right of the lower left labels
508
+ """
509
+ x0, y0, z0 = lower_left
510
+ x1, y1, z1 = upper_right
511
+ lx0, ly0, lz0 = label_lower_left
512
+ lx1, ly1, lz1 = label_upper_right
513
+ if (lx1 - lx0) <= 0 or (ly1 - ly0) <= 0 or (lz1 - lz0) <= 0:
514
+ raise ValueError("ensure the upper right labels are above "
515
+ "and to the right of the lower left labels")
516
+
517
+ # Helper function for formatting the frame labels
518
+ from math import log
519
+ log10 = log(10)
520
+
521
+ def nd(a):
522
+ return int(log(a) / log10)
523
+
524
+ def fmt_string(a):
525
+ b = a / 2.0
526
+ if b >= 1:
527
+ return "%.1f"
528
+ n = max(0, 2 - nd(a/2.0))
529
+ return "%%.%sf" % n
530
+
531
+ # Slightly faster than mean for this situation
532
+ def avg(a, b):
533
+ return (a + b) / 2.0
534
+
535
+ color = (0.3, 0.3, 0.3)
536
+
537
+ fmt = fmt_string(lx1 - lx0)
538
+ T = Text(fmt % lx0, color=color).translate((x0, y0-eps, z0))
539
+ T += Text(fmt % avg(lx0, lx1), color=color).translate((avg(x0, x1), y0-eps, z0))
540
+ T += Text(fmt % lx1, color=color).translate((x1, y0-eps, z0))
541
+
542
+ fmt = fmt_string(ly1 - ly0)
543
+ T += Text(fmt % ly0, color=color).translate((x1+eps, y0, z0))
544
+ T += Text(fmt % avg(ly0, ly1), color=color).translate((x1+eps, avg(y0, y1), z0))
545
+ T += Text(fmt % ly1, color=color).translate((x1+eps, y1, z0))
546
+
547
+ fmt = fmt_string(lz1 - lz0)
548
+ T += Text(fmt % lz0, color=color).translate((x0-eps, y0, z0))
549
+ T += Text(fmt % avg(lz0, lz1), color=color).translate((x0-eps, y0, avg(z0, z1)))
550
+ T += Text(fmt % lz1, color=color).translate((x0-eps, y0, z1))
551
+ return T
552
+
553
+
554
+ def ruler(start, end, ticks=4, sub_ticks=4, absolute=False, snap=False, **kwds):
555
+ """
556
+ Draw a ruler in 3-D, with major and minor ticks.
557
+
558
+ INPUT:
559
+
560
+ - ``start`` -- the beginning of the ruler, as a list,
561
+ tuple, or vector
562
+
563
+ - ``end`` -- the end of the ruler, as a list, tuple,
564
+ or vector
565
+
566
+ - ``ticks`` -- (default: 4) the number of major ticks
567
+ shown on the ruler
568
+
569
+ - ``sub_ticks`` -- (default: 4) the number of shown
570
+ subdivisions between each major tick
571
+
572
+ - ``absolute`` -- boolean (default: ``False``); if ``True``, makes a huge ruler
573
+ in the direction of an axis
574
+
575
+ - ``snap`` -- boolean (default: ``False``); if ``True``, snaps to an implied
576
+ grid
577
+
578
+ EXAMPLES:
579
+
580
+ A ruler::
581
+
582
+ sage: from sage.plot.plot3d.shapes2 import ruler
583
+ sage: R = ruler([4, 2, 1],vector([3, 3, 2])); R
584
+ Graphics3d Object
585
+
586
+ .. PLOT::
587
+
588
+ from sage.plot.plot3d.shapes2 import ruler
589
+ sphinx_plot(ruler([4, 2, 1],vector([3, 3, 2])))
590
+
591
+ A ruler with some options::
592
+
593
+ sage: R = ruler([4, 2, 1],vector([3, 3, 2]),ticks=6, sub_ticks=2, color='red'); R
594
+ Graphics3d Object
595
+
596
+ .. PLOT::
597
+
598
+ from sage.plot.plot3d.shapes2 import ruler
599
+ sphinx_plot(ruler([4, 2, 1],vector([3, 3, 2]),ticks=6, sub_ticks=2, color='red'))
600
+
601
+ The keyword ``snap`` makes the ticks not necessarily coincide
602
+ with the ruler::
603
+
604
+ sage: ruler([4, 2, 1],vector([3, 3, 2]),snap=True)
605
+ Graphics3d Object
606
+
607
+ .. PLOT::
608
+
609
+ from sage.plot.plot3d.shapes2 import ruler
610
+ sphinx_plot(ruler([4, 2, 1],vector([3, 3, 2]), snap=True))
611
+
612
+ The keyword ``absolute`` makes a huge ruler in one of the axis
613
+ directions::
614
+
615
+ sage: ruler([1,2,3],vector([1,2,4]),absolute=True)
616
+ Graphics3d Object
617
+
618
+ .. PLOT::
619
+
620
+ from sage.plot.plot3d.shapes2 import ruler
621
+ sphinx_plot(ruler([1,2,3],vector([1,2,4]), absolute=True))
622
+
623
+ TESTS::
624
+
625
+ sage: ruler([1,2,3],vector([1,3,4]),absolute=True)
626
+ Traceback (most recent call last):
627
+ ...
628
+ ValueError: absolute rulers only valid for axis-aligned paths
629
+ """
630
+ start = vector(RDF, start)
631
+ end = vector(RDF, end)
632
+ dir = end - start
633
+ dist = math.sqrt(dir.dot_product(dir))
634
+ dir /= dist
635
+
636
+ one_tick = dist/ticks * 1.414
637
+ unit = 10 ** math.floor(math.log(dist/ticks, 10))
638
+ if unit * 5 < one_tick:
639
+ unit *= 5
640
+ elif unit * 2 < one_tick:
641
+ unit *= 2
642
+
643
+ if dir[0]:
644
+ tick = dir.cross_product(vector(RDF, (0, 0, -dist/30)))
645
+ elif dir[1]:
646
+ tick = dir.cross_product(vector(RDF, (0, 0, dist/30)))
647
+ else:
648
+ tick = vector(RDF, (dist/30, 0, 0))
649
+
650
+ if snap:
651
+ for i in range(3):
652
+ start[i] = unit * math.floor(start[i]/unit + 1e-5)
653
+ end[i] = unit * math.ceil(end[i]/unit - 1e-5)
654
+
655
+ if absolute:
656
+ if dir[0]*dir[1] or dir[1]*dir[2] or dir[0]*dir[2]:
657
+ raise ValueError("absolute rulers only valid for axis-aligned paths")
658
+ m = max(dir[0], dir[1], dir[2])
659
+ if dir[0] == m:
660
+ off = start[0]
661
+ elif dir[1] == m:
662
+ off = start[1]
663
+ else:
664
+ off = start[2]
665
+ first_tick = unit * math.ceil(off/unit - 1e-5) - off
666
+ else:
667
+ off = 0
668
+ first_tick = 0
669
+
670
+ ruler = shapes.LineSegment(start, end, **kwds)
671
+ for k in range(1, int(sub_ticks * first_tick/unit)):
672
+ P = start + dir*(k*unit/sub_ticks)
673
+ ruler += shapes.LineSegment(P, P + tick/2, **kwds)
674
+ for d in srange(first_tick, dist + unit/(sub_ticks+1), unit):
675
+ P = start + dir*d
676
+ ruler += shapes.LineSegment(P, P + tick, **kwds)
677
+ ruler += shapes.Text(str(d+off), **kwds).translate(P - tick)
678
+ if dist - d < unit:
679
+ sub_ticks = int(sub_ticks * (dist - d)/unit)
680
+ for k in range(1, sub_ticks):
681
+ P += dir * (unit/sub_ticks)
682
+ ruler += shapes.LineSegment(P, P + tick/2, **kwds)
683
+ return ruler
684
+
685
+
686
+ def ruler_frame(lower_left, upper_right, ticks=4, sub_ticks=4, **kwds):
687
+ """
688
+ Draw a frame made of 3-D rulers, with major and minor ticks.
689
+
690
+ INPUT:
691
+
692
+ - ``lower_left`` -- the lower left corner of the frame, as a
693
+ list, tuple, or vector
694
+
695
+ - ``upper_right`` -- the upper right corner of the frame, as a
696
+ list, tuple, or vector
697
+
698
+ - ``ticks`` -- (default: 4) the number of major ticks
699
+ shown on each ruler
700
+
701
+ - ``sub_ticks`` -- (default: 4) the number of shown
702
+ subdivisions between each major tick
703
+
704
+ EXAMPLES:
705
+
706
+ A ruler frame::
707
+
708
+ sage: from sage.plot.plot3d.shapes2 import ruler_frame
709
+ sage: F = ruler_frame([1,2,3],vector([2,3,4])); F
710
+ Graphics3d Object
711
+
712
+ .. PLOT::
713
+
714
+ from sage.plot.plot3d.shapes2 import ruler_frame
715
+ sphinx_plot(ruler_frame([1,2,3],vector([2,3,4])))
716
+
717
+ A ruler frame with some options::
718
+
719
+ sage: F = ruler_frame([1,2,3],vector([2,3,4]),ticks=6, sub_ticks=2, color='red'); F
720
+ Graphics3d Object
721
+
722
+ .. PLOT::
723
+
724
+ from sage.plot.plot3d.shapes2 import ruler_frame
725
+ sphinx_plot(ruler_frame([1,2,3],vector([2,3,4]),ticks=6, sub_ticks=2, color='red'))
726
+ """
727
+ return ruler(lower_left, (upper_right[0], lower_left[1], lower_left[2]), ticks=ticks, sub_ticks=sub_ticks, absolute=True, **kwds) \
728
+ + ruler(lower_left, (lower_left[0], upper_right[1], lower_left[2]), ticks=ticks, sub_ticks=sub_ticks, absolute=True, **kwds) \
729
+ + ruler(lower_left, (lower_left[0], lower_left[1], upper_right[2]), ticks=ticks, sub_ticks=sub_ticks, absolute=True, **kwds)
730
+
731
+
732
+ ###########################
733
+
734
+ @rename_keyword(alpha='opacity')
735
+ def sphere(center=(0, 0, 0), size=1, **kwds):
736
+ r"""
737
+ Return a plot of a sphere of radius ``size`` centered at
738
+ `(x,y,z)`.
739
+
740
+ INPUT:
741
+
742
+ - `(x,y,z)` -- center (default: (0,0,0))
743
+
744
+ - ``size`` -- the radius (default: 1)
745
+
746
+ EXAMPLES: A simple sphere::
747
+
748
+ sage: sphere()
749
+ Graphics3d Object
750
+
751
+ Two spheres touching::
752
+
753
+ sage: sphere(center=(-1,0,0)) + sphere(center=(1,0,0), aspect_ratio=[1,1,1])
754
+ Graphics3d Object
755
+
756
+ .. PLOT::
757
+
758
+ sphinx_plot(sphere(center=(-1,0,0)) + sphere(center=(1,0,0), aspect_ratio=[1,1,1]))
759
+
760
+ Spheres of radii 1 and 2 one stuck into the other::
761
+
762
+ sage: sphere(color='orange') + sphere(color=(0,0,0.3),
763
+ ....: center=(0,0,-2), size=2, opacity=0.9)
764
+ Graphics3d Object
765
+
766
+ .. PLOT::
767
+
768
+ sphinx_plot(sphere(color='orange') + sphere(color=(0,0,0.3), center=(0,0,-2),size=2,opacity=0.9))
769
+
770
+ We draw a transparent sphere on a saddle. ::
771
+
772
+ sage: u,v = var('u v') # needs sage.symbolic
773
+ sage: saddle = plot3d(u^2 - v^2, (u,-2,2), (v,-2,2)) # needs sage.symbolic
774
+ sage: sphere((0,0,1), color='red', opacity=0.5, aspect_ratio=[1,1,1]) + saddle # needs sage.symbolic
775
+ Graphics3d Object
776
+
777
+ .. PLOT::
778
+
779
+ u,v = var('u v')
780
+ saddle = plot3d(u**2 - v**2, (u,-2,2), (v,-2,2))
781
+ sphinx_plot(sphere((0,0,1), color='red', opacity=0.5, aspect_ratio=[1,1,1]) + saddle)
782
+
783
+ TESTS::
784
+
785
+ sage: T = sage.plot.plot3d.texture.Texture('red')
786
+ sage: S = sphere(texture=T)
787
+ sage: T in S.texture_set()
788
+ True
789
+ """
790
+ kwds['texture'] = Texture(**kwds)
791
+ G = Sphere(size, **kwds)
792
+ H = G.translate(center)
793
+ H._set_extra_kwds(kwds)
794
+ return H
795
+
796
+
797
+ def text3d(txt, x_y_z, **kwds):
798
+ r"""
799
+ Display 3d text.
800
+
801
+ INPUT:
802
+
803
+ - ``txt`` -- some text
804
+
805
+ - ``x_y_z`` -- position tuple `(x,y,z)`
806
+
807
+ - ``**kwds`` -- standard 3d graphics options
808
+
809
+ EXAMPLES:
810
+
811
+ We write the word Sage in red at position (1,2,3)::
812
+
813
+ sage: text3d("Sage", (1,2,3), color=(0.5,0,0))
814
+ Graphics3d Object
815
+
816
+ .. PLOT::
817
+
818
+ sphinx_plot(text3d("Sage", (1,2,3), color=(0.5,0,0)))
819
+
820
+ We draw a multicolor spiral of numbers::
821
+
822
+ sage: sum([text3d('%.1f'%n, (cos(n),sin(n),n), color=(n/2,1-n/2,0))
823
+ ....: for n in [0,0.2,..,8]])
824
+ Graphics3d Object
825
+
826
+ .. PLOT::
827
+
828
+ import numpy
829
+ sphinx_plot(sum([text3d('%.1f'%n, (cos(n),sin(n),n), color=(n/2,1-n/2,0)) for n in numpy.linspace(0,8,40)]))
830
+
831
+ Another example::
832
+
833
+ sage: text3d("Sage is really neat!!",(2,12,1))
834
+ Graphics3d Object
835
+
836
+ .. PLOT::
837
+
838
+ sphinx_plot(text3d("Sage is really neat!!",(2,12,1)))
839
+
840
+ And in 3d in two places::
841
+
842
+ sage: text3d("Sage is...",(2,12,1), color=(1,0,0)) + text3d("quite powerful!!",(4,10,0), color=(0,0,1))
843
+ Graphics3d Object
844
+
845
+ .. PLOT::
846
+
847
+ sphinx_plot(text3d("Sage is...",(2,12,1), color=(1,0,0)) + text3d("quite powerful!!",(4,10,0), color=(0,0,1)))
848
+
849
+ Adjust the font size, family, style, and weight (Three.js viewer only)::
850
+
851
+ sage: t0 = text3d("Pixel size", (0, 0, 0), fontsize=20)
852
+ sage: t1 = text3d("Percentage size", (0, 0, 1), fontsize='300%')
853
+ sage: t2 = text3d("Keyword size", (0, 0, 2), fontsize='x-small')
854
+ sage: t3 = text3d("Single family", (0, 0, 3), fontfamily='serif')
855
+ sage: t4 = text3d("Family fallback", (0, 0, 4), fontfamily=['Consolas', 'Lucida Console', 'monospace'])
856
+ sage: t5 = text3d("Another way", (0, 0, 5), fontfamily='Consolas, Lucida Console, monospace')
857
+ sage: t6 = text3d("Style", (0, 0, 6), fontstyle='italic')
858
+ sage: t7 = text3d("Keyword weight", (0, 0, 7), fontweight='bold')
859
+ sage: t8 = text3d("Integer weight (1-1000)", (0, 0, 8), fontweight=800) # 'extra bold'
860
+ sage: sum([t0, t1, t2, t3, t4, t5, t6, t7, t8]).show(viewer='threejs', frame=False)
861
+
862
+ Adjust the text's opacity (Three.js viewer only)::
863
+
864
+ sage: def echo(o):
865
+ ....: return text3d("Echo!", (0, 0, o), opacity=o)
866
+ sage: show(sum([echo(o) for o in (0.1, 0.2, .., 1)]), viewer='threejs')
867
+ """
868
+ (x, y, z) = x_y_z
869
+ if 'color' not in kwds and 'rgbcolor' not in kwds:
870
+ kwds['color'] = (0, 0, 0)
871
+ G = Text(txt, **kwds).translate((x, y, z))
872
+ G._set_extra_kwds(kwds)
873
+
874
+ return G
875
+
876
+
877
+ class Point(PrimitiveObject):
878
+ """
879
+ Create a position in 3-space, represented by a sphere of fixed
880
+ size.
881
+
882
+ INPUT:
883
+
884
+ - ``center`` -- point (3-tuple)
885
+
886
+ - ``size`` -- (default: 1)
887
+
888
+ EXAMPLES:
889
+
890
+ We normally access this via the ``point3d`` function. Note that extra
891
+ keywords are correctly used::
892
+
893
+ sage: point3d((4,3,2),size=2,color='red',opacity=.5)
894
+ Graphics3d Object
895
+ """
896
+ def __init__(self, center, size=1, **kwds):
897
+ """
898
+ Create the graphics primitive :class:`Point` in 3-D.
899
+
900
+ See the docstring of this class for full documentation.
901
+
902
+ EXAMPLES::
903
+
904
+ sage: from sage.plot.plot3d.shapes2 import Point
905
+ sage: P = Point((1,2,3),2)
906
+ sage: P.loc
907
+ (1.0, 2.0, 3.0)
908
+ """
909
+ PrimitiveObject.__init__(self, **kwds)
910
+ self.loc = (float(center[0]), float(center[1]), float(center[2]))
911
+ self.size = size
912
+ self._set_extra_kwds(kwds)
913
+
914
+ def bounding_box(self):
915
+ """
916
+ Return the lower and upper corners of a 3-D bounding box for ``self``.
917
+
918
+ This is used for rendering and ``self`` should fit entirely within this
919
+ box. In this case, we simply return the center of the point.
920
+
921
+ TESTS::
922
+
923
+ sage: P = point3d((-3,2,10),size=7)
924
+ sage: P.bounding_box()
925
+ ((-3.0, 2.0, 10.0), (-3.0, 2.0, 10.0))
926
+ """
927
+ return self.loc, self.loc
928
+
929
+ def tachyon_repr(self, render_params):
930
+ """
931
+ Return representation of the point suitable for plotting
932
+ using the Tachyon ray tracer.
933
+
934
+ TESTS::
935
+
936
+ sage: P = point3d((1,2,3),size=3,color='purple')
937
+ sage: P.tachyon_repr(P.default_render_params())
938
+ 'Sphere center 1.0 2.0 3.0 Rad 0.015 texture...'
939
+ """
940
+ transform = render_params.transform
941
+ if transform is None:
942
+ cen = self.loc
943
+ else:
944
+ cen = transform.transform_point(self.loc)
945
+
946
+ radius = self.size * TACHYON_PIXEL
947
+ texture = self.texture.id
948
+ return (f"Sphere center {cen[0]!r} {cen[1]!r} {cen[2]!r} "
949
+ f"Rad {radius!r} {texture}")
950
+
951
+ def obj_repr(self, render_params):
952
+ """
953
+ Return complete representation of the point as a sphere.
954
+
955
+ TESTS::
956
+
957
+ sage: P = point3d((1,2,3),size=3,color='purple')
958
+ sage: P.obj_repr(P.default_render_params())[0][0:2]
959
+ ['g obj_1', 'usemtl texture...']
960
+ """
961
+ T = render_params.transform
962
+ if T is None:
963
+ from . import transform
964
+ T = transform.Transformation()
965
+ render_params.push_transform(~T)
966
+ S = shapes.Sphere(self.size / 200.0).translate(T(self.loc))
967
+ cmds = S.obj_repr(render_params)
968
+ render_params.pop_transform()
969
+ return cmds
970
+
971
+ def jmol_repr(self, render_params):
972
+ r"""
973
+ Return representation of the object suitable for plotting
974
+ using Jmol.
975
+
976
+ TESTS::
977
+
978
+ sage: P = point3d((1,2,3),size=3,color='purple')
979
+ sage: P.jmol_repr(P.default_render_params())
980
+ ['draw point_1 DIAMETER 3 {1.0 2.0 3.0}\ncolor $point_1 [128,0,128]']
981
+ """
982
+ name = render_params.unique_name('point')
983
+ transform = render_params.transform
984
+ cen = self.loc if transform is None else transform(self.loc)
985
+ return ["draw {} DIAMETER {} {{{} {} {}}}\n{}".format(name, int(self.size), cen[0], cen[1], cen[2], self.texture.jmol_str('$' + name))]
986
+
987
+ def threejs_repr(self, render_params):
988
+ r"""
989
+ Return representation of the point suitable for plotting with three.js.
990
+
991
+ EXAMPLES::
992
+
993
+ sage: P = point3d((1,2,3), color=(0,1,0), opacity=0.5, size=10)
994
+ sage: P.threejs_repr(P.default_render_params())
995
+ [('point',
996
+ {'color': '#00ff00', 'opacity': 0.5, 'point': (1.0, 2.0, 3.0), 'size': 10.0})]
997
+
998
+ TESTS:
999
+
1000
+ Transformations apply to the point's location::
1001
+
1002
+ sage: P = point3d((1,2,3)).translate(-1, -2, -3)
1003
+ sage: P.threejs_repr(P.default_render_params())
1004
+ [('point',
1005
+ {'color': '#6666ff', 'opacity': 1.0, 'point': (0.0, 0.0, 0.0), 'size': 5.0})]
1006
+ """
1007
+ transform = render_params.transform
1008
+ center = tuple(float(coord) for coord in self.loc)
1009
+ if transform is not None:
1010
+ center = transform(center)
1011
+ color = '#' + str(self.texture.hex_rgb())
1012
+ opacity = float(self.texture.opacity)
1013
+ size = float(self.size)
1014
+ point = {'point': center, 'size': size, 'color': color, 'opacity': opacity}
1015
+ return [('point', point)]
1016
+
1017
+ def stl_binary_repr(self, render_params):
1018
+ """
1019
+ Return an empty list, as this is not useful for STL export.
1020
+
1021
+ EXAMPLES::
1022
+
1023
+ sage: P = point3d((1,2,3)).translate(-1, -2, -3)
1024
+ sage: P.stl_binary_repr(P.default_render_params())
1025
+ []
1026
+ """
1027
+ return []
1028
+
1029
+
1030
+ class Line(PrimitiveObject):
1031
+ r"""
1032
+ Draw a 3d line joining a sequence of points.
1033
+
1034
+ This line has a fixed diameter unaffected by transformations and
1035
+ zooming. It may be smoothed if ``corner_cutoff < 1``.
1036
+
1037
+ INPUT:
1038
+
1039
+ - ``points`` -- list of points to pass through
1040
+
1041
+ - ``thickness`` -- (default: 5) diameter of the line
1042
+
1043
+ - ``corner_cutoff`` -- (default: 0.5) threshold for
1044
+ smoothing (see :meth:`corners`)
1045
+
1046
+ - ``arrow_head`` -- boolean (default: ``False``); if ``True`` make
1047
+ this curve into an arrow
1048
+
1049
+ The parameter ``corner_cutoff`` is a bound for the cosine of the
1050
+ angle made by two successive segments. This angle is close to `0`
1051
+ (and the cosine close to 1) if the two successive segments are
1052
+ almost aligned and close to `\pi` (and the cosine close to -1) if
1053
+ the path has a strong peak. If the cosine is smaller than the
1054
+ bound (which means a sharper peak) then no smoothing is done.
1055
+
1056
+ EXAMPLES::
1057
+
1058
+ sage: from sage.plot.plot3d.shapes2 import Line
1059
+ sage: Line([(i*math.sin(i), i*math.cos(i), i/3) for i in range(30)],
1060
+ ....: arrow_head=True)
1061
+ Graphics3d Object
1062
+
1063
+ Smooth angles less than 90 degrees::
1064
+
1065
+ sage: Line([(0,0,0),(1,0,0),(2,1,0),(0,1,0)], corner_cutoff=0)
1066
+ Graphics3d Object
1067
+
1068
+ Make sure that the ``corner_cutoff`` keyword works (:issue:`3859`)::
1069
+
1070
+ sage: N = 11
1071
+ sage: c = 0.4
1072
+ sage: sum(Line([(i,1,0), (i,0,0), (i,cos(2*pi*i/N), sin(2*pi*i/N))], # needs sage.symbolic
1073
+ ....: corner_cutoff=c,
1074
+ ....: color='red' if -cos(2*pi*i/N)<=c else 'blue')
1075
+ ....: for i in range(N+1))
1076
+ Graphics3d Object
1077
+ """
1078
+ def __init__(self, points, thickness=5, corner_cutoff=0.5,
1079
+ arrow_head=False, **kwds):
1080
+ """
1081
+ Create the graphics primitive :class:`Line` in 3-D.
1082
+
1083
+ See the docstring of this class for full documentation.
1084
+
1085
+ EXAMPLES::
1086
+
1087
+ sage: from sage.plot.plot3d.shapes2 import Line
1088
+ sage: P = Line([(1,2,3),(1,2,2),(-1,2,2),(-1,3,2)],thickness=6,corner_cutoff=.2)
1089
+ sage: P.points, P.arrow_head
1090
+ ([(1, 2, 3), (1, 2, 2), (-1, 2, 2), (-1, 3, 2)], False)
1091
+ """
1092
+ if len(points) < 2:
1093
+ raise ValueError("there must be at least 2 points")
1094
+ PrimitiveObject.__init__(self, **kwds)
1095
+ self.points = points
1096
+ self.thickness = thickness
1097
+ self.corner_cutoff = corner_cutoff
1098
+ self.arrow_head = arrow_head
1099
+
1100
+ def bounding_box(self):
1101
+ """
1102
+ Return the lower and upper corners of a 3-D bounding box for ``self``.
1103
+
1104
+ This is used for rendering and ``self`` should fit entirely within this
1105
+ box. In this case, we return the highest and lowest values of each
1106
+ coordinate among all points.
1107
+
1108
+ TESTS::
1109
+
1110
+ sage: from sage.plot.plot3d.shapes2 import Line
1111
+ sage: L = Line([(i, i^2 - 1, -2*ln(i)) for i in [10,20,30]]) # needs sage.symbolic
1112
+ sage: L.bounding_box() # needs sage.symbolic
1113
+ ((10.0, 99.0, -6.802394763324311),
1114
+ (30.0, 899.0, -4.605170185988092))
1115
+ """
1116
+ try:
1117
+ return self.__bounding_box
1118
+ except AttributeError:
1119
+ self.__bounding_box = point_list_bounding_box(self.points)
1120
+ return self.__bounding_box
1121
+
1122
+ def tachyon_repr(self, render_params):
1123
+ """
1124
+ Return representation of the line suitable for plotting
1125
+ using the Tachyon ray tracer.
1126
+
1127
+ TESTS::
1128
+
1129
+ sage: L = line3d([(cos(i),sin(i),i^2) for i in srange(0,10,.01)], # needs sage.symbolic
1130
+ ....: color='red')
1131
+ sage: L.tachyon_repr(L.default_render_params())[0] # needs sage.symbolic
1132
+ 'FCylinder base 1.0 0.0 0.0 apex 0.9999500004166653 0.009999833334166664 0.0001 rad 0.005 texture...'
1133
+ """
1134
+ T = render_params.transform
1135
+ cmds = []
1136
+ px, py, pz = self.points[0] if T is None else T(self.points[0])
1137
+ radius = self.thickness * TACHYON_PIXEL
1138
+ for P in self.points[1:]:
1139
+ x, y, z = P if T is None else T(P)
1140
+ if self.arrow_head and P is self.points[-1]:
1141
+ A = shapes.arrow3d((px, py, pz), (x, y, z), radius=radius, texture=self.texture)
1142
+ render_params.push_transform(~T)
1143
+ cmds.append(A.tachyon_repr(render_params))
1144
+ render_params.pop_transform()
1145
+ else:
1146
+ cmd = ('FCylinder base {pos[0]!r} {pos[1]!r} {pos[2]!r} '
1147
+ 'apex {apex[0]!r} {apex[1]!r} {apex[2]!r} '
1148
+ 'rad {radius!r} {texture}').format(
1149
+ pos=(px, py, pz), apex=(x, y, z), radius=radius,
1150
+ texture=self.texture.id)
1151
+ cmds.append(cmd)
1152
+ px, py, pz = x, y, z
1153
+ return cmds
1154
+
1155
+ def obj_repr(self, render_params):
1156
+ """
1157
+ Return complete representation of the line as an object.
1158
+
1159
+ TESTS::
1160
+
1161
+ sage: from sage.plot.plot3d.shapes2 import Line
1162
+ sage: L = Line([(cos(i),sin(i),i^2) for i in srange(0,10,.01)], # needs sage.symbolic
1163
+ ....: color='red')
1164
+ sage: L.obj_repr(L.default_render_params())[0][0][0][2][:3] # needs sage.symbolic
1165
+ ['v 0.99995 0.00999983 0.0001',
1166
+ 'v 1.02376 0.010195 -0.00750607',
1167
+ 'v 1.00007 0.0102504 -0.0248984']
1168
+ """
1169
+ T = render_params.transform
1170
+ if T is None:
1171
+ from . import transform
1172
+ T = transform.Transformation()
1173
+ render_params.push_transform(~T)
1174
+ L = line3d([T(P) for P in self.points], radius=self.thickness / 200.0, arrow_head=self.arrow_head, texture=self.texture)
1175
+ cmds = L.obj_repr(render_params)
1176
+ render_params.pop_transform()
1177
+ return cmds
1178
+
1179
+ def jmol_repr(self, render_params):
1180
+ r"""
1181
+ Return representation of the object suitable for plotting
1182
+ using Jmol.
1183
+
1184
+ TESTS::
1185
+
1186
+ sage: L = line3d([(cos(i),sin(i),i^2) for i in srange(0,10,.01)], # needs sage.symbolic
1187
+ ....: color='red')
1188
+ sage: L.jmol_repr(L.default_render_params())[0][:42] # needs sage.symbolic
1189
+ 'draw line_1 diameter 1 curve {1.0 0.0 0.0}'
1190
+ """
1191
+ T = render_params.transform
1192
+ corners = self.corners(max_len=255) # hardcoded limit in jmol
1193
+ last_corner = corners[-1]
1194
+ corners = set(corners)
1195
+ cmds = []
1196
+ cmd = None
1197
+ name = ''
1198
+ for P in self.points:
1199
+ TP = P if T is None else T(P)
1200
+ if P in corners:
1201
+ if cmd:
1202
+ cmds.append(cmd + " {{{} {} {}}} ".format(*TP))
1203
+ cmds.append(self.texture.jmol_str('$' + name))
1204
+ type = 'arrow' if self.arrow_head and P is last_corner else 'curve'
1205
+ name = render_params.unique_name('line')
1206
+ cmd = "draw {} diameter {} {} {{{} {} {}}} ".format(name, int(self.thickness), type, TP[0], TP[1], TP[2])
1207
+ else:
1208
+ cmd += " {{{} {} {}}} ".format(*TP)
1209
+ cmds.append(cmd)
1210
+ cmds.append(self.texture.jmol_str('$' + name))
1211
+ return cmds
1212
+
1213
+ def corners(self, corner_cutoff=None, max_len=None):
1214
+ r"""
1215
+ Figure out where the curve turns too sharply to pretend it is
1216
+ smooth.
1217
+
1218
+ INPUT:
1219
+
1220
+ - ``corner_cutoff`` -- (default: ``None``) if the
1221
+ cosine of the angle between adjacent line segments is smaller than
1222
+ this bound, then there will be a sharp corner in the path.
1223
+ Otherwise, the path is smoothed. If ``None``,
1224
+ then the default value 0.5 is used.
1225
+
1226
+ - ``max_len`` -- (default: ``None``) maximum number
1227
+ of points allowed in a single path. If this is set, this
1228
+ creates corners at smooth points in order to break the path
1229
+ into smaller pieces.
1230
+
1231
+ The parameter ``corner_cutoff`` is a bound for the cosine of the
1232
+ angle made by two successive segments. This angle is close to `0`
1233
+ (and the cosine close to 1) if the two successive segments are
1234
+ almost aligned and close to `\pi` (and the cosine close to -1) if
1235
+ the path has a strong peak. If the cosine is smaller than the
1236
+ bound (which means a sharper peak) then there must be a corner.
1237
+
1238
+ OUTPUT:
1239
+
1240
+ List of points at which to start a new line. This always
1241
+ includes the first point, and never the last.
1242
+
1243
+ EXAMPLES:
1244
+
1245
+ No corners, always smooth::
1246
+
1247
+ sage: from sage.plot.plot3d.shapes2 import Line
1248
+ sage: Line([(0,0,0),(1,0,0),(2,1,0),(0,1,0)], corner_cutoff=-1).corners()
1249
+ [(0, 0, 0)]
1250
+
1251
+ Smooth if the angle is greater than 90 degrees::
1252
+
1253
+ sage: Line([(0,0,0),(1,0,0),(2,1,0),(0,1,0)], corner_cutoff=0).corners()
1254
+ [(0, 0, 0), (2, 1, 0)]
1255
+
1256
+ Every point (corners everywhere)::
1257
+
1258
+ sage: Line([(0,0,0),(1,0,0),(2,1,0),(0,1,0)], corner_cutoff=1).corners()
1259
+ [(0, 0, 0), (1, 0, 0), (2, 1, 0)]
1260
+ """
1261
+ if corner_cutoff is None:
1262
+ corner_cutoff = self.corner_cutoff
1263
+
1264
+ if corner_cutoff >= 1:
1265
+ # corners everywhere
1266
+ return self.points[:-1]
1267
+
1268
+ elif corner_cutoff <= -1:
1269
+ # no corners
1270
+ if max_len is not None:
1271
+ # forced by the maximal number of consecutive smooth points
1272
+ return self.points[:-1][::max_len - 1]
1273
+ else:
1274
+ return [self.points[0]]
1275
+
1276
+ else:
1277
+ if max_len is None:
1278
+ max_len = len(self.points) + 1
1279
+ count = 2
1280
+ # ... -- prev -- cur -- next -- ...
1281
+ cur = self.points[0]
1282
+ next = self.points[1]
1283
+ next_dir = [next[i] - cur[i] for i in range(3)]
1284
+ corners = [cur]
1285
+ cur, prev_dir = next, next_dir
1286
+
1287
+ # quicker than making them vectors first
1288
+ def dot(x0_y0_z0, x1_y1_z1):
1289
+ (x0, y0, z0) = x0_y0_z0
1290
+ (x1, y1, z1) = x1_y1_z1
1291
+ return x0 * x1 + y0 * y1 + z0 * z1
1292
+
1293
+ for next in self.points[2:]:
1294
+ if next == cur:
1295
+ corners.append(cur)
1296
+ cur = next
1297
+ count = 1
1298
+ continue
1299
+ next_dir = [next[i] - cur[i] for i in range(3)]
1300
+ cos_angle = (dot(prev_dir, next_dir) /
1301
+ math.sqrt(dot(prev_dir, prev_dir) *
1302
+ dot(next_dir, next_dir)))
1303
+ if cos_angle <= corner_cutoff or count > max_len - 1:
1304
+ corners.append(cur)
1305
+ count = 1
1306
+ cur, prev_dir = next, next_dir
1307
+ count += 1
1308
+ return corners
1309
+
1310
+ def threejs_repr(self, render_params):
1311
+ r"""
1312
+ Return representation of the line suitable for plotting with three.js.
1313
+
1314
+ EXAMPLES::
1315
+
1316
+ sage: L = line3d([(1,2,3), (4,5,6)], thickness=10, color=(1,0,0), opacity=0.5)
1317
+ sage: L.threejs_repr(L.default_render_params())
1318
+ [('line',
1319
+ {'color': '#ff0000',
1320
+ 'linewidth': 10.0,
1321
+ 'opacity': 0.5,
1322
+ 'points': [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)]})]
1323
+
1324
+ TESTS:
1325
+
1326
+ Transformations apply to the line's vertices::
1327
+
1328
+ sage: L = line3d([(1,2,3), (4,5,6)]).translate(-1, -2, -3)
1329
+ sage: L.threejs_repr(L.default_render_params())
1330
+ [('line',
1331
+ {'color': '#6666ff',
1332
+ 'linewidth': 1.0,
1333
+ 'opacity': 1.0,
1334
+ 'points': [(0.0, 0.0, 0.0), (3.0, 3.0, 3.0)]})]
1335
+
1336
+ When setting ``arrow_head=True``, the last line segment is replaced by
1337
+ an arrow with a width half the thickness of the line::
1338
+
1339
+ sage: L = line3d([(0,0,0), (1,1,1), (2,2,2)], thickness=4, arrow_head=True)
1340
+ sage: L_repr = L.threejs_repr(L.default_render_params())
1341
+ sage: L_repr[-1]
1342
+ ('line',
1343
+ {'color': '#6666ff',
1344
+ 'linewidth': 4.0,
1345
+ 'opacity': 1.0,
1346
+ 'points': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)]})
1347
+ sage: A = arrow3d((1,1,1), (2,2,2), width=2)
1348
+ sage: A_repr = A.threejs_repr(A.default_render_params())
1349
+ sage: A_repr == L_repr[:-1]
1350
+ True
1351
+
1352
+ The arrow shares the transformation, color, and opacity of the line::
1353
+
1354
+ sage: L = line3d([(0,0,0), (1,1,1), (2,2,2)], thickness=4,
1355
+ ....: arrow_head=True, color=(1,0,0), opacity=0.5)
1356
+ sage: L = L.translate(-1, -1, -1)
1357
+ sage: L_repr = L.threejs_repr(L.default_render_params())
1358
+ sage: L_repr[-1]
1359
+ ('line',
1360
+ {'color': '#ff0000',
1361
+ 'linewidth': 4.0,
1362
+ 'opacity': 0.5,
1363
+ 'points': [(-1.0, -1.0, -1.0), (0.0, 0.0, 0.0)]})
1364
+ sage: A = arrow3d((1,1,1), (2,2,2), width=2, color=(1,0,0), opacity=0.5)
1365
+ sage: A = A.translate(-1, -1, -1)
1366
+ sage: A_repr = A.threejs_repr(A.default_render_params())
1367
+ sage: A_repr == L_repr[:-1]
1368
+ True
1369
+
1370
+ If there were only two points to begin with, only the arrow head's
1371
+ representation is returned::
1372
+
1373
+ sage: L = line3d([(0,0,0), (1,1,1)], thickness=2, arrow_head=True)
1374
+ sage: L_repr = L.threejs_repr(L.default_render_params())
1375
+ sage: A = arrow3d((0,0,0), (1,1,1), width=1)
1376
+ sage: A_repr = A.threejs_repr(A.default_render_params())
1377
+ sage: A_repr == L_repr
1378
+ True
1379
+ """
1380
+ reprs = []
1381
+ points = [tuple(float(coord) for coord in p) for p in self.points]
1382
+ color = '#' + str(self.texture.hex_rgb())
1383
+ opacity = float(self.texture.opacity)
1384
+ thickness = float(self.thickness)
1385
+ if self.arrow_head:
1386
+ width = thickness / 2.0
1387
+ arrow = shapes.arrow3d(start=points[-2], end=points[-1], width=width,
1388
+ color=color, opacity=opacity)
1389
+ reprs += arrow.threejs_repr(render_params)
1390
+ points = points[:-1] # The arrow replaces the last line segment.
1391
+ if len(points) > 1:
1392
+ transform = render_params.transform
1393
+ if transform is not None:
1394
+ points = [transform(p) for p in points]
1395
+ line = {'points': points, 'color': color, 'opacity': opacity, 'linewidth': thickness}
1396
+ reprs.append(('line', line))
1397
+ return reprs
1398
+
1399
+ def stl_binary_repr(self, render_params):
1400
+ """
1401
+ Return an empty list, as this is not useful for STL export.
1402
+
1403
+ EXAMPLES::
1404
+
1405
+ sage: L = line3d([(1,2,3), (4,5,6)]).translate(-1, -2, -3)
1406
+ sage: L.stl_binary_repr(L.default_render_params())
1407
+ []
1408
+ """
1409
+ return []
1410
+
1411
+
1412
+ @rename_keyword(alpha='opacity')
1413
+ def point3d(v, size=5, **kwds):
1414
+ """
1415
+ Plot a point or list of points in 3d space.
1416
+
1417
+ INPUT:
1418
+
1419
+ - ``v`` -- a point or list of points
1420
+
1421
+ - ``size`` -- (default: 5) size of the point (or
1422
+ points)
1423
+
1424
+ - ``color`` -- string (``'red'``, ``'green'`` etc)
1425
+ or a tuple (r, g, b) with r, g, b numbers between 0 and 1
1426
+
1427
+ - ``opacity`` -- (default: 1) if less than 1 then is
1428
+ transparent
1429
+
1430
+ EXAMPLES::
1431
+
1432
+ sage: sum(point3d((i,i^2,i^3), size=5) for i in range(10))
1433
+ Graphics3d Object
1434
+
1435
+ .. PLOT::
1436
+
1437
+ sphinx_plot(sum([point3d((i,i^2,i^3), size=5) for i in range(10)]))
1438
+
1439
+ We check to make sure this works with vectors and other iterables::
1440
+
1441
+ sage: pl = point3d([vector(ZZ,(1, 0, 0)), vector(ZZ,(0, 1, 0)), (-1, -1, 0)])
1442
+ sage: print(point(vector((2,3,4))))
1443
+ Graphics3d Object
1444
+
1445
+ sage: c = polytopes.hypercube(3) # needs sage.geometry.polyhedron
1446
+ sage: v = c.vertices()[0]; v # needs sage.geometry.polyhedron
1447
+ A vertex at (1, -1, -1)
1448
+ sage: print(point(v)) # needs sage.geometry.polyhedron
1449
+ Graphics3d Object
1450
+
1451
+ We check to make sure the options work::
1452
+
1453
+ sage: point3d((4,3,2), size=20, color='red', opacity=.5)
1454
+ Graphics3d Object
1455
+
1456
+ .. PLOT::
1457
+
1458
+ sphinx_plot(point3d((4,3,2),size=20,color='red',opacity=.5))
1459
+
1460
+ numpy arrays can be provided as input::
1461
+
1462
+ sage: import numpy
1463
+ sage: point3d(numpy.array([1,2,3]))
1464
+ Graphics3d Object
1465
+
1466
+ .. PLOT::
1467
+
1468
+ import numpy
1469
+ sphinx_plot(point3d(numpy.array([1,2,3])))
1470
+
1471
+ ::
1472
+
1473
+ sage: point3d(numpy.array([[1,2,3], [4,5,6], [7,8,9]]))
1474
+ Graphics3d Object
1475
+
1476
+ .. PLOT::
1477
+
1478
+ import numpy
1479
+ sphinx_plot(point3d(numpy.array([[1,2,3], [4,5,6], [7,8,9]])))
1480
+
1481
+ We check that iterators of points are accepted (:issue:`13890`)::
1482
+
1483
+ sage: point3d(iter([(1,1,2),(2,3,4),(3,5,8)]), size=20, color='red')
1484
+ Graphics3d Object
1485
+
1486
+ TESTS::
1487
+
1488
+ sage: point3d([])
1489
+ Graphics3d Object
1490
+ """
1491
+ try:
1492
+ l = len(v)
1493
+ except TypeError:
1494
+ # argument is an iterator
1495
+ v = list(v)
1496
+ l = len(v)
1497
+
1498
+ if l == 0:
1499
+ from sage.plot.plot3d.base import Graphics3d
1500
+ return Graphics3d()
1501
+
1502
+ if l == 3:
1503
+ try:
1504
+ # check if the first element can be changed to a float
1505
+ RDF(v[0])
1506
+ return Point(v, size, **kwds)
1507
+ except TypeError:
1508
+ pass
1509
+
1510
+ A = sum([Point(z, size, **kwds) for z in v])
1511
+ A._set_extra_kwds(kwds)
1512
+ return A