partis-bcr 1.0.8.post1.dev1__py3-none-any.whl → 1.0.9.post1.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/METADATA +1 -1
  2. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/RECORD +95 -95
  3. test/new-results/get-selection-metrics-new-simu.yaml +1 -1
  4. test/new-results/test.log +2 -2
  5. test/paired/new-results/partition-new-simu/fasttree/iclust-0/log +4 -4
  6. test/paired/new-results/partition-new-simu/fasttree/iclust-1/log +4 -4
  7. test/paired/new-results/partition-new-simu/fasttree/iclust-2/log +1 -1
  8. test/paired/new-results/partition-new-simu/igh+igk/partition-igh/fasttree/iclust-1/log +3 -3
  9. test/paired/new-results/partition-new-simu/igh+igl/partition-igl/fasttree/iclust-0/log +1 -1
  10. test/paired/new-results/partition-new-simu-annotation-performance/plots/flcount-matrix.svg +107 -107
  11. test/paired/new-results/partition-new-simu-annotation-performance/plots/func-non-func-per-drop-log.svg +83 -83
  12. test/paired/new-results/partition-new-simu-annotation-performance/plots/func-non-func-per-drop.svg +61 -61
  13. test/paired/new-results/partition-new-simu-annotation-performance/plots/paired-seqs-per-seq-after.svg +18 -18
  14. test/paired/new-results/partition-new-simu-annotation-performance/plots/paired-seqs-per-seq-before.svg +24 -24
  15. test/paired/new-results/partition-new-simu-annotation-performance/plots/pseq-matrix.svg +35 -35
  16. test/paired/new-results/partition-new-simu-annotation-performance/plots/seqs-per-droplet.svg +22 -22
  17. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-correct-family.svg +45 -45
  18. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-correct.svg +45 -45
  19. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-mispaired.svg +45 -45
  20. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-multiple.svg +15 -15
  21. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-near-family.svg +15 -15
  22. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-total.svg +47 -47
  23. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-unpaired.svg +48 -48
  24. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance.svg +27 -27
  25. test/paired/new-results/run-times.csv +6 -6
  26. test/paired/new-results/subset-partition-new-simu/isub-0/partition.log +6 -6
  27. test/paired/new-results/subset-partition-new-simu/isub-1/partition.log +5 -5
  28. test/paired/new-results/subset-partition-new-simu/merged-partition.log +3 -3
  29. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igh/sw-cache.yaml +1 -1
  30. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igk/sw-cache.yaml +1 -1
  31. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igl/sw-cache.yaml +1 -1
  32. test/paired/new-results/test.log +33 -33
  33. test/ref-results/partition-new-simu/iqtree/iclust-0/log +187 -151
  34. test/ref-results/partition-new-simu/iqtree/iclust-0/out.ckp.gz +0 -0
  35. test/ref-results/partition-new-simu/iqtree/iclust-0/out.iqtree +34 -34
  36. test/ref-results/partition-new-simu/iqtree/iclust-0/out.log +187 -151
  37. test/ref-results/partition-new-simu/iqtree/iclust-0/out.model.gz +0 -0
  38. test/ref-results/partition-new-simu/iqtree/iclust-0/out.state +2820 -2820
  39. test/ref-results/partition-new-simu/iqtree/iclust-0/out.treefile +1 -1
  40. test/ref-results/partition-new-simu/iqtree/iclust-1/log +166 -207
  41. test/ref-results/partition-new-simu/iqtree/iclust-1/out.ckp.gz +0 -0
  42. test/ref-results/partition-new-simu/iqtree/iclust-1/out.iqtree +151 -151
  43. test/ref-results/partition-new-simu/iqtree/iclust-1/out.log +166 -207
  44. test/ref-results/partition-new-simu/iqtree/iclust-1/out.model.gz +0 -0
  45. test/ref-results/partition-new-simu/iqtree/iclust-1/out.state +740 -740
  46. test/ref-results/partition-new-simu/iqtree/iclust-1/out.treefile +1 -1
  47. test/ref-results/partition-new-simu/iqtree/iclust-2/log +134 -135
  48. test/ref-results/partition-new-simu/iqtree/iclust-2/out.ckp.gz +0 -0
  49. test/ref-results/partition-new-simu/iqtree/iclust-2/out.iqtree +17 -17
  50. test/ref-results/partition-new-simu/iqtree/iclust-2/out.log +134 -135
  51. test/ref-results/partition-new-simu/iqtree/iclust-2/out.model.gz +0 -0
  52. test/ref-results/partition-new-simu/iqtree/iclust-2/out.state +763 -763
  53. test/ref-results/partition-new-simu/iqtree/iclust-2/out.treefile +1 -1
  54. test/ref-results/partition-new-simu/iqtree-annotations.yaml +1 -1
  55. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralProbs +30 -30
  56. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralStates +7 -7
  57. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralTree +1 -1
  58. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestModel +1 -1
  59. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestTree +1 -1
  60. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  61. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.log +87 -87
  62. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.mlTrees +20 -20
  63. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.startTree +20 -20
  64. test/ref-results/partition-new-simu/raxml/iclust-0/log +198 -197
  65. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.ancestralTree +1 -1
  66. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.bestTree +1 -1
  67. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  68. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.log +54 -54
  69. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.mlTrees +20 -20
  70. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.startTree +20 -20
  71. test/ref-results/partition-new-simu/raxml/iclust-1/log +112 -112
  72. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralProbs +22 -22
  73. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralStates +6 -6
  74. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralTree +1 -1
  75. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestModel +1 -1
  76. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestTree +1 -1
  77. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  78. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.log +84 -84
  79. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.mlTrees +20 -20
  80. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.startTree +20 -20
  81. test/ref-results/partition-new-simu/raxml/iclust-2/log +182 -182
  82. test/ref-results/partition-new-simu/raxml-annotations.yaml +1 -1
  83. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/cf-alleles.py +0 -0
  84. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/cf-germlines.py +0 -0
  85. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/compare-plotdirs.py +0 -0
  86. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/extract-pairing-info.py +0 -0
  87. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/gctree-run.py +0 -0
  88. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/get-naive-probabilities.py +0 -0
  89. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/parse-output.py +0 -0
  90. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/partis-test.py +0 -0
  91. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/split-loci.py +0 -0
  92. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/WHEEL +0 -0
  93. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/entry_points.txt +0 -0
  94. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/licenses/COPYING +0 -0
  95. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/top_level.txt +0 -0
@@ -8,14 +8,14 @@ Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!
8
8
 
9
9
  System: AMD EPYC 7763 64-Core Processor, 2 cores, 15 GB RAM
10
10
 
11
- RAxML-NG was called at 16-Aug-2025 23:08:18 as follows:
11
+ RAxML-NG was called at 18-Aug-2025 15:31:54 as follows:
12
12
 
13
13
  /home/runner/work/partis/partis/bin/raxml-ng-linux --model GTR+G --msa /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa --msa-format FASTA
14
14
 
15
15
  Analysis options:
16
16
  run mode: ML tree search
17
17
  start tree(s): random (10) + parsimony (10)
18
- random seed: 1755385698
18
+ random seed: 1755531114
19
19
  tip-inner: OFF
20
20
  pattern compression: ON
21
21
  per-rate scalers: OFF
@@ -54,146 +54,146 @@ Parallel reduction/worker buffer size: 1 KB / 0 KB
54
54
 
55
55
  Starting ML tree search with 20 distinct starting trees
56
56
 
57
- [00:00:00 -940.256414] Initial branch length optimization
58
- [00:00:00 -685.977828] Model parameter optimization (eps = 10.000000)
59
- [00:00:00 -678.993028] AUTODETECT spr round 1 (radius: 5)
60
- [00:00:00 -670.003880] SPR radius for FAST iterations: 5 (autodetect)
61
- [00:00:00 -670.003880] Model parameter optimization (eps = 3.000000)
62
- [00:00:00 -668.336870] FAST spr round 1 (radius: 5)
63
- [00:00:00 -668.336870] Model parameter optimization (eps = 1.000000)
64
- [00:00:00 -668.326800] SLOW spr round 1 (radius: 5)
65
- [00:00:00 -668.326800] Model parameter optimization (eps = 0.100000)
57
+ [00:00:00 -950.326762] Initial branch length optimization
58
+ [00:00:00 -697.593427] Model parameter optimization (eps = 10.000000)
59
+ [00:00:00 -688.738075] AUTODETECT spr round 1 (radius: 5)
60
+ [00:00:00 -670.531564] SPR radius for FAST iterations: 5 (autodetect)
61
+ [00:00:00 -670.531564] Model parameter optimization (eps = 3.000000)
62
+ [00:00:00 -668.343257] FAST spr round 1 (radius: 5)
63
+ [00:00:00 -668.343257] Model parameter optimization (eps = 1.000000)
64
+ [00:00:00 -668.326814] SLOW spr round 1 (radius: 5)
65
+ [00:00:00 -668.326814] Model parameter optimization (eps = 0.100000)
66
+ [00:00:00] [worker #1] ML tree search #2, logLikelihood: -668.326779
66
67
 
67
68
  [00:00:00] [worker #0] ML tree search #1, logLikelihood: -668.326780
68
69
 
69
- [00:00:00 -950.265446] Initial branch length optimization
70
- [00:00:00 -697.593380] Model parameter optimization (eps = 10.000000)
71
- [00:00:00] [worker #1] ML tree search #2, logLikelihood: -668.326779
72
- [00:00:00 -688.738192] AUTODETECT spr round 1 (radius: 5)
73
- [00:00:00 -670.529208] SPR radius for FAST iterations: 5 (autodetect)
74
- [00:00:00 -670.529208] Model parameter optimization (eps = 3.000000)
75
- [00:00:00 -668.342939] FAST spr round 1 (radius: 5)
76
- [00:00:00 -668.342939] Model parameter optimization (eps = 1.000000)
77
- [00:00:00 -668.326813] SLOW spr round 1 (radius: 5)
78
- [00:00:00 -668.326813] Model parameter optimization (eps = 0.100000)
70
+ [00:00:00 -950.215964] Initial branch length optimization
71
+ [00:00:00 -697.593352] Model parameter optimization (eps = 10.000000)
72
+ [00:00:00 -688.738137] AUTODETECT spr round 1 (radius: 5)
73
+ [00:00:00 -670.531577] SPR radius for FAST iterations: 5 (autodetect)
74
+ [00:00:00 -670.531577] Model parameter optimization (eps = 3.000000)
75
+ [00:00:00 -668.343396] FAST spr round 1 (radius: 5)
76
+ [00:00:00 -668.343396] Model parameter optimization (eps = 1.000000)
77
+ [00:00:00 -668.326815] SLOW spr round 1 (radius: 5)
78
+ [00:00:00 -668.326815] Model parameter optimization (eps = 0.100000)
79
79
 
80
- [00:00:00] [worker #0] ML tree search #3, logLikelihood: -668.326779
80
+ [00:00:00] [worker #0] ML tree search #3, logLikelihood: -668.326780
81
81
 
82
- [00:00:00 -942.860420] Initial branch length optimization
83
- [00:00:00 -688.360957] Model parameter optimization (eps = 10.000000)
84
- [00:00:00] [worker #1] ML tree search #4, logLikelihood: -668.326778
85
- [00:00:00 -680.554813] AUTODETECT spr round 1 (radius: 5)
86
- [00:00:00 -670.391658] SPR radius for FAST iterations: 5 (autodetect)
87
- [00:00:00 -670.391658] Model parameter optimization (eps = 3.000000)
88
- [00:00:00 -668.343119] FAST spr round 1 (radius: 5)
89
- [00:00:00 -668.343119] Model parameter optimization (eps = 1.000000)
90
- [00:00:00 -668.326813] SLOW spr round 1 (radius: 5)
91
- [00:00:00 -668.326813] Model parameter optimization (eps = 0.100000)
82
+ [00:00:00] [worker #1] ML tree search #4, logLikelihood: -668.326779
83
+ [00:00:00 -946.313033] Initial branch length optimization
84
+ [00:00:00 -695.420145] Model parameter optimization (eps = 10.000000)
85
+ [00:00:00 -687.553906] AUTODETECT spr round 1 (radius: 5)
86
+ [00:00:00 -670.527039] SPR radius for FAST iterations: 5 (autodetect)
87
+ [00:00:00 -670.527039] Model parameter optimization (eps = 3.000000)
88
+ [00:00:00 -668.343883] FAST spr round 1 (radius: 5)
89
+ [00:00:00 -668.343883] Model parameter optimization (eps = 1.000000)
90
+ [00:00:00 -668.326815] SLOW spr round 1 (radius: 5)
91
+ [00:00:00 -668.326815] Model parameter optimization (eps = 0.100000)
92
92
 
93
93
  [00:00:00] [worker #0] ML tree search #5, logLikelihood: -668.326779
94
94
 
95
- [00:00:00 -947.813809] Initial branch length optimization
96
95
  [00:00:00] [worker #1] ML tree search #6, logLikelihood: -668.326779
97
- [00:00:00 -697.592998] Model parameter optimization (eps = 10.000000)
98
- [00:00:00 -688.738207] AUTODETECT spr round 1 (radius: 5)
99
- [00:00:00 -670.537752] SPR radius for FAST iterations: 5 (autodetect)
100
- [00:00:00 -670.537752] Model parameter optimization (eps = 3.000000)
101
- [00:00:00 -668.343682] FAST spr round 1 (radius: 5)
102
- [00:00:00 -668.343682] Model parameter optimization (eps = 1.000000)
103
- [00:00:00 -668.326816] SLOW spr round 1 (radius: 5)
104
- [00:00:00 -668.326816] Model parameter optimization (eps = 0.100000)
96
+ [00:00:00 -947.519464] Initial branch length optimization
97
+ [00:00:00 -693.948036] Model parameter optimization (eps = 10.000000)
98
+ [00:00:00 -686.112824] AUTODETECT spr round 1 (radius: 5)
99
+ [00:00:00 -670.517086] SPR radius for FAST iterations: 5 (autodetect)
100
+ [00:00:00 -670.517086] Model parameter optimization (eps = 3.000000)
101
+ [00:00:00 -668.343578] FAST spr round 1 (radius: 5)
102
+ [00:00:00 -668.343578] Model parameter optimization (eps = 1.000000)
103
+ [00:00:00 -668.326813] SLOW spr round 1 (radius: 5)
104
+ [00:00:00 -668.326813] Model parameter optimization (eps = 0.100000)
105
105
 
106
106
  [00:00:00] [worker #0] ML tree search #7, logLikelihood: -668.326779
107
107
 
108
- [00:00:00 -947.585600] Initial branch length optimization
109
- [00:00:00 -695.422647] Model parameter optimization (eps = 10.000000)
110
- [00:00:00 -687.554038] AUTODETECT spr round 1 (radius: 5)
111
- [00:00:00 -670.522689] SPR radius for FAST iterations: 5 (autodetect)
112
- [00:00:00 -670.522689] Model parameter optimization (eps = 3.000000)
108
+ [00:00:00 -950.242456] Initial branch length optimization
109
+ [00:00:00 -697.593476] Model parameter optimization (eps = 10.000000)
110
+ [00:00:00 -688.738021] AUTODETECT spr round 1 (radius: 5)
111
+ [00:00:00 -670.530861] SPR radius for FAST iterations: 5 (autodetect)
112
+ [00:00:00 -670.530861] Model parameter optimization (eps = 3.000000)
113
+ [00:00:00 -668.343415] FAST spr round 1 (radius: 5)
114
+ [00:00:00 -668.343415] Model parameter optimization (eps = 1.000000)
115
+ [00:00:00 -668.326813] SLOW spr round 1 (radius: 5)
116
+ [00:00:00 -668.326813] Model parameter optimization (eps = 0.100000)
113
117
  [00:00:00] [worker #1] ML tree search #8, logLikelihood: -668.326779
114
- [00:00:00 -668.343606] FAST spr round 1 (radius: 5)
115
- [00:00:00 -668.343606] Model parameter optimization (eps = 1.000000)
116
- [00:00:00 -668.326815] SLOW spr round 1 (radius: 5)
117
- [00:00:00 -668.326815] Model parameter optimization (eps = 0.100000)
118
-
119
- [00:00:00] [worker #0] ML tree search #9, logLikelihood: -668.326780
120
-
121
- [00:00:00 -934.239923] Initial branch length optimization
122
- [00:00:00 -675.639483] Model parameter optimization (eps = 10.000000)
123
- [00:00:00 -668.360350] AUTODETECT spr round 1 (radius: 5)
124
- [00:00:00 -668.360350] SPR radius for FAST iterations: 5 (autodetect)
125
- [00:00:00 -668.360350] Model parameter optimization (eps = 3.000000)
126
- [00:00:00] [worker #1] ML tree search #10, logLikelihood: -668.326779
127
- [00:00:00 -668.326788] FAST spr round 1 (radius: 5)
128
- [00:00:00 -668.326788] Model parameter optimization (eps = 1.000000)
129
- [00:00:00 -668.326781] SLOW spr round 1 (radius: 5)
130
- [00:00:00 -668.326781] Model parameter optimization (eps = 0.100000)
131
118
 
132
- [00:00:00] [worker #0] ML tree search #11, logLikelihood: -668.326780
119
+ [00:00:00] [worker #0] ML tree search #9, logLikelihood: -668.326779
133
120
 
134
- [00:00:00 -934.232575] Initial branch length optimization
135
- [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
136
- [00:00:00] [worker #1] ML tree search #12, logLikelihood: -668.326780
137
- [00:00:00 -668.362653] AUTODETECT spr round 1 (radius: 5)
138
- [00:00:00 -668.362653] SPR radius for FAST iterations: 5 (autodetect)
139
- [00:00:00 -668.362653] Model parameter optimization (eps = 3.000000)
121
+ [00:00:00 -934.234974] Initial branch length optimization
122
+ [00:00:00 -674.849261] Model parameter optimization (eps = 10.000000)
123
+ [00:00:00 -668.362419] AUTODETECT spr round 1 (radius: 5)
124
+ [00:00:00 -668.362419] SPR radius for FAST iterations: 5 (autodetect)
125
+ [00:00:00 -668.362419] Model parameter optimization (eps = 3.000000)
140
126
  [00:00:00 -668.326788] FAST spr round 1 (radius: 5)
141
127
  [00:00:00 -668.326788] Model parameter optimization (eps = 1.000000)
142
128
  [00:00:00 -668.326780] SLOW spr round 1 (radius: 5)
143
129
  [00:00:00 -668.326780] Model parameter optimization (eps = 0.100000)
144
- [00:00:00] [worker #1] ML tree search #14, logLikelihood: -668.326780
145
130
 
146
- [00:00:00] [worker #0] ML tree search #13, logLikelihood: -668.326779
131
+ [00:00:00] [worker #0] ML tree search #11, logLikelihood: -668.326779
147
132
 
148
- [00:00:00 -934.232575] Initial branch length optimization
133
+ [00:00:00 -934.239923] Initial branch length optimization
149
134
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
150
- [00:00:00 -668.362653] AUTODETECT spr round 1 (radius: 5)
151
- [00:00:00 -668.362653] SPR radius for FAST iterations: 5 (autodetect)
152
- [00:00:00 -668.362653] Model parameter optimization (eps = 3.000000)
153
- [00:00:00 -668.326788] FAST spr round 1 (radius: 5)
154
- [00:00:00 -668.326788] Model parameter optimization (eps = 1.000000)
155
- [00:00:00 -668.326780] SLOW spr round 1 (radius: 5)
156
- [00:00:00] [worker #1] ML tree search #16, logLikelihood: -668.326780
157
- [00:00:00 -668.326780] Model parameter optimization (eps = 0.100000)
135
+ [00:00:00 -668.362656] AUTODETECT spr round 1 (radius: 5)
136
+ [00:00:00 -668.362656] SPR radius for FAST iterations: 5 (autodetect)
137
+ [00:00:00 -668.362656] Model parameter optimization (eps = 3.000000)
138
+ [00:00:00 -668.326789] FAST spr round 1 (radius: 5)
139
+ [00:00:00] [worker #1] ML tree search #10, logLikelihood: -668.326779
140
+ [00:00:00 -668.326789] Model parameter optimization (eps = 1.000000)
141
+ [00:00:00 -668.326781] SLOW spr round 1 (radius: 5)
142
+ [00:00:00 -668.326781] Model parameter optimization (eps = 0.100000)
158
143
 
159
- [00:00:00] [worker #0] ML tree search #15, logLikelihood: -668.326779
144
+ [00:00:00] [worker #0] ML tree search #13, logLikelihood: -668.326780
160
145
 
161
146
  [00:00:00 -934.234974] Initial branch length optimization
162
147
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
163
- [00:00:00 -668.362656] AUTODETECT spr round 1 (radius: 5)
164
- [00:00:00 -668.362656] SPR radius for FAST iterations: 5 (autodetect)
165
- [00:00:00 -668.362656] Model parameter optimization (eps = 3.000000)
148
+ [00:00:00 -668.362655] AUTODETECT spr round 1 (radius: 5)
149
+ [00:00:00 -668.362655] SPR radius for FAST iterations: 5 (autodetect)
150
+ [00:00:00 -668.362655] Model parameter optimization (eps = 3.000000)
166
151
  [00:00:00 -668.326788] FAST spr round 1 (radius: 5)
167
152
  [00:00:00 -668.326788] Model parameter optimization (eps = 1.000000)
168
153
  [00:00:00 -668.326780] SLOW spr round 1 (radius: 5)
169
- [00:00:00] [worker #1] ML tree search #18, logLikelihood: -668.326779
154
+ [00:00:00] [worker #1] ML tree search #12, logLikelihood: -668.326780
170
155
  [00:00:00 -668.326780] Model parameter optimization (eps = 0.100000)
171
156
 
172
- [00:00:00] [worker #0] ML tree search #17, logLikelihood: -668.326779
157
+ [00:00:00] [worker #0] ML tree search #15, logLikelihood: -668.326779
173
158
 
174
- [00:00:00 -934.237524] Initial branch length optimization
159
+ [00:00:00 -934.237570] Initial branch length optimization
175
160
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
176
- [00:00:00 -668.362658] AUTODETECT spr round 1 (radius: 5)
177
- [00:00:00 -668.362658] SPR radius for FAST iterations: 5 (autodetect)
178
- [00:00:00 -668.362658] Model parameter optimization (eps = 3.000000)
161
+ [00:00:00 -668.362659] AUTODETECT spr round 1 (radius: 5)
162
+ [00:00:00 -668.362659] SPR radius for FAST iterations: 5 (autodetect)
163
+ [00:00:00 -668.362659] Model parameter optimization (eps = 3.000000)
179
164
  [00:00:00 -668.326789] FAST spr round 1 (radius: 5)
180
165
  [00:00:00 -668.326789] Model parameter optimization (eps = 1.000000)
181
166
  [00:00:00 -668.326781] SLOW spr round 1 (radius: 5)
182
- [00:00:00] [worker #1] ML tree search #20, logLikelihood: -668.326780
167
+ [00:00:00] [worker #1] ML tree search #14, logLikelihood: -668.326780
183
168
  [00:00:00 -668.326781] Model parameter optimization (eps = 0.100000)
184
169
 
170
+ [00:00:00] [worker #0] ML tree search #17, logLikelihood: -668.326780
171
+
172
+ [00:00:00 -934.225153] Initial branch length optimization
173
+ [00:00:00 -674.849233] Model parameter optimization (eps = 10.000000)
174
+ [00:00:00 -668.362478] AUTODETECT spr round 1 (radius: 5)
175
+ [00:00:00 -668.362478] SPR radius for FAST iterations: 5 (autodetect)
176
+ [00:00:00 -668.362478] Model parameter optimization (eps = 3.000000)
177
+ [00:00:00 -668.326788] FAST spr round 1 (radius: 5)
178
+ [00:00:00] [worker #1] ML tree search #16, logLikelihood: -668.326780
179
+ [00:00:00 -668.326788] Model parameter optimization (eps = 1.000000)
180
+ [00:00:00 -668.326780] SLOW spr round 1 (radius: 5)
181
+ [00:00:00 -668.326780] Model parameter optimization (eps = 0.100000)
182
+
185
183
  [00:00:00] [worker #0] ML tree search #19, logLikelihood: -668.326780
186
184
 
185
+ [00:00:00] [worker #1] ML tree search #18, logLikelihood: -668.326780
186
+ [00:00:00] [worker #1] ML tree search #20, logLikelihood: -668.326779
187
187
 
188
188
  Optimized model parameters:
189
189
 
190
190
  Partition 0: noname
191
- Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.846068 (ML), weights&rates: (0.250000,0.875813) (0.250000,0.964710) (0.250000,1.029570) (0.250000,1.129908)
192
- Base frequencies (ML): 0.220278 0.272199 0.286214 0.221308
193
- Substitution rates (ML): 0.615177 0.198624 0.258666 0.788804 1.245919 1.000000
191
+ Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.846063 (ML), weights&rates: (0.250000,0.875813) (0.250000,0.964710) (0.250000,1.029570) (0.250000,1.129908)
192
+ Base frequencies (ML): 0.220278 0.272199 0.286215 0.221308
193
+ Substitution rates (ML): 0.615226 0.198610 0.258677 0.788773 1.245925 1.000000
194
194
 
195
195
 
196
- Final LogLikelihood: -668.326778
196
+ Final LogLikelihood: -668.326779
197
197
 
198
198
  AIC score: 1380.653557 / AICc score: 1383.496254 / BIC score: 1467.279354
199
199
  Free parameters (model + branch lengths): 22
@@ -207,9 +207,9 @@ Optimized model saved to: /home/runner/work/partis/partis/test/ref-results/parti
207
207
 
208
208
  Execution log saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.log
209
209
 
210
- Analysis started: 16-Aug-2025 23:08:18 / finished: 16-Aug-2025 23:08:18
210
+ Analysis started: 18-Aug-2025 15:31:54 / finished: 18-Aug-2025 15:31:54
211
211
 
212
- Elapsed time: 0.315 seconds
212
+ Elapsed time: 0.331 seconds
213
213
 
214
214
 
215
215
  RAxML-NG v. 1.2.1 released on 22.12.2023 by The Exelixis Lab.
@@ -220,14 +220,14 @@ Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!
220
220
 
221
221
  System: AMD EPYC 7763 64-Core Processor, 2 cores, 15 GB RAM
222
222
 
223
- RAxML-NG was called at 16-Aug-2025 23:08:18 as follows:
223
+ RAxML-NG was called at 18-Aug-2025 15:31:54 as follows:
224
224
 
225
225
  /home/runner/work/partis/partis/bin/raxml-ng-linux --model GTR+G --msa /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa --msa-format FASTA --ancestral --tree /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralTree
226
226
 
227
227
  Analysis options:
228
228
  run mode: Ancestral state reconstruction
229
229
  start tree(s): user
230
- random seed: 1755385698
230
+ random seed: 1755531114
231
231
  tip-inner: ON
232
232
  pattern compression: OFF
233
233
  per-rate scalers: OFF
@@ -260,153 +260,153 @@ Parallel reduction/worker buffer size: 1 KB / 0 KB
260
260
 
261
261
  Starting ML tree search with 20 distinct starting trees
262
262
 
263
- [00:00:00] Tree #1, initial LogLikelihood: -940.256414
263
+ [00:00:00] Tree #1, initial LogLikelihood: -950.326762
264
264
 
265
- [00:00:00 -940.256414] Initial branch length optimization
266
- [00:00:00 -685.977828] Model parameter optimization (eps = 10.000000)
265
+ [00:00:00 -950.326762] Initial branch length optimization
266
+ [00:00:00 -697.593427] Model parameter optimization (eps = 10.000000)
267
267
 
268
- [00:00:00] Tree #1, final logLikelihood: -678.993028
268
+ [00:00:00] Tree #1, final logLikelihood: -688.738075
269
269
 
270
- [00:00:00] Tree #2, initial LogLikelihood: -949.421829
270
+ [00:00:00] Tree #2, initial LogLikelihood: -946.063936
271
271
 
272
- [00:00:00 -949.421829] Initial branch length optimization
273
- [00:00:00 -697.593753] Model parameter optimization (eps = 10.000000)
272
+ [00:00:00 -946.063936] Initial branch length optimization
273
+ [00:00:00 -692.069744] Model parameter optimization (eps = 10.000000)
274
274
 
275
- [00:00:00] Tree #2, final logLikelihood: -688.737800
275
+ [00:00:00] Tree #2, final logLikelihood: -683.141442
276
276
 
277
- [00:00:00] Tree #3, initial LogLikelihood: -950.265446
277
+ [00:00:00] Tree #3, initial LogLikelihood: -950.215964
278
278
 
279
- [00:00:00 -950.265446] Initial branch length optimization
280
- [00:00:00 -697.593380] Model parameter optimization (eps = 10.000000)
279
+ [00:00:00 -950.215964] Initial branch length optimization
280
+ [00:00:00 -697.593352] Model parameter optimization (eps = 10.000000)
281
281
 
282
- [00:00:00] Tree #3, final logLikelihood: -688.738192
282
+ [00:00:00] Tree #3, final logLikelihood: -688.738138
283
283
 
284
- [00:00:00] Tree #4, initial LogLikelihood: -947.570123
284
+ [00:00:00] Tree #4, initial LogLikelihood: -949.699412
285
285
 
286
- [00:00:00 -947.570123] Initial branch length optimization
287
- [00:00:00 -694.573838] Model parameter optimization (eps = 10.000000)
286
+ [00:00:00 -949.699412] Initial branch length optimization
287
+ [00:00:00 -697.593535] Model parameter optimization (eps = 10.000000)
288
288
 
289
- [00:00:00] Tree #4, final logLikelihood: -686.736242
289
+ [00:00:00] Tree #4, final logLikelihood: -688.738021
290
290
 
291
- [00:00:00] Tree #5, initial LogLikelihood: -942.860420
291
+ [00:00:00] Tree #5, initial LogLikelihood: -946.313033
292
292
 
293
- [00:00:00 -942.860420] Initial branch length optimization
294
- [00:00:00 -688.360957] Model parameter optimization (eps = 10.000000)
293
+ [00:00:00 -946.313033] Initial branch length optimization
294
+ [00:00:00 -695.420145] Model parameter optimization (eps = 10.000000)
295
295
 
296
- [00:00:00] Tree #5, final logLikelihood: -680.554813
296
+ [00:00:00] Tree #5, final logLikelihood: -687.553906
297
297
 
298
- [00:00:00] Tree #6, initial LogLikelihood: -950.363794
298
+ [00:00:00] Tree #6, initial LogLikelihood: -945.633568
299
299
 
300
- [00:00:00 -950.363794] Initial branch length optimization
301
- [00:00:00 -697.593306] Model parameter optimization (eps = 10.000000)
300
+ [00:00:00 -945.633568] Initial branch length optimization
301
+ [00:00:00 -693.947960] Model parameter optimization (eps = 10.000000)
302
302
 
303
- [00:00:00] Tree #6, final logLikelihood: -688.738173
303
+ [00:00:00] Tree #6, final logLikelihood: -686.112840
304
304
 
305
- [00:00:00] Tree #7, initial LogLikelihood: -947.813809
305
+ [00:00:00] Tree #7, initial LogLikelihood: -947.519464
306
306
 
307
- [00:00:00 -947.813809] Initial branch length optimization
308
- [00:00:00 -697.592998] Model parameter optimization (eps = 10.000000)
307
+ [00:00:00 -947.519464] Initial branch length optimization
308
+ [00:00:00 -693.948036] Model parameter optimization (eps = 10.000000)
309
309
 
310
- [00:00:00] Tree #7, final logLikelihood: -688.738217
310
+ [00:00:00] Tree #7, final logLikelihood: -686.112815
311
311
 
312
- [00:00:00] Tree #8, initial LogLikelihood: -949.688470
312
+ [00:00:00] Tree #8, initial LogLikelihood: -946.951370
313
313
 
314
- [00:00:00 -949.688470] Initial branch length optimization
315
- [00:00:00 -697.593383] Model parameter optimization (eps = 10.000000)
314
+ [00:00:00 -946.951370] Initial branch length optimization
315
+ [00:00:00 -693.947803] Model parameter optimization (eps = 10.000000)
316
316
 
317
- [00:00:00] Tree #8, final logLikelihood: -688.737968
317
+ [00:00:00] Tree #8, final logLikelihood: -686.112685
318
318
 
319
- [00:00:00] Tree #9, initial LogLikelihood: -947.585600
319
+ [00:00:00] Tree #9, initial LogLikelihood: -950.242456
320
320
 
321
- [00:00:00 -947.585600] Initial branch length optimization
322
- [00:00:00 -695.422647] Model parameter optimization (eps = 10.000000)
321
+ [00:00:00 -950.242456] Initial branch length optimization
322
+ [00:00:00 -697.593476] Model parameter optimization (eps = 10.000000)
323
323
 
324
- [00:00:00] Tree #9, final logLikelihood: -687.554038
324
+ [00:00:00] Tree #9, final logLikelihood: -688.738031
325
325
 
326
- [00:00:00] Tree #10, initial LogLikelihood: -947.781745
326
+ [00:00:00] Tree #10, initial LogLikelihood: -950.473031
327
327
 
328
- [00:00:00 -947.781745] Initial branch length optimization
329
- [00:00:00 -697.592838] Model parameter optimization (eps = 10.000000)
328
+ [00:00:00 -950.473031] Initial branch length optimization
329
+ [00:00:00 -697.593583] Model parameter optimization (eps = 10.000000)
330
330
 
331
- [00:00:00] Tree #10, final logLikelihood: -688.737694
331
+ [00:00:00] Tree #10, final logLikelihood: -688.737991
332
332
 
333
- [00:00:00] Tree #11, initial LogLikelihood: -934.239923
333
+ [00:00:00] Tree #11, initial LogLikelihood: -934.234974
334
334
 
335
- [00:00:00 -934.239923] Initial branch length optimization
336
- [00:00:00 -675.639483] Model parameter optimization (eps = 10.000000)
335
+ [00:00:00 -934.234974] Initial branch length optimization
336
+ [00:00:00 -674.849261] Model parameter optimization (eps = 10.000000)
337
337
 
338
- [00:00:00] Tree #11, final logLikelihood: -668.360350
338
+ [00:00:00] Tree #11, final logLikelihood: -668.362419
339
339
 
340
- [00:00:00] Tree #12, initial LogLikelihood: -934.225153
340
+ [00:00:00] Tree #12, initial LogLikelihood: -934.227552
341
341
 
342
- [00:00:00 -934.225153] Initial branch length optimization
343
- [00:00:00 -674.849075] Model parameter optimization (eps = 10.000000)
342
+ [00:00:00 -934.227552] Initial branch length optimization
343
+ [00:00:00 -674.849503] Model parameter optimization (eps = 10.000000)
344
344
 
345
- [00:00:00] Tree #12, final logLikelihood: -668.362574
345
+ [00:00:00] Tree #12, final logLikelihood: -668.362318
346
346
 
347
- [00:00:00] Tree #13, initial LogLikelihood: -934.232575
347
+ [00:00:00] Tree #13, initial LogLikelihood: -934.239923
348
348
 
349
- [00:00:00 -934.232575] Initial branch length optimization
349
+ [00:00:00 -934.239923] Initial branch length optimization
350
350
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
351
351
 
352
- [00:00:00] Tree #13, final logLikelihood: -668.362653
352
+ [00:00:00] Tree #13, final logLikelihood: -668.362656
353
353
 
354
- [00:00:00] Tree #14, initial LogLikelihood: -934.237524
354
+ [00:00:00] Tree #14, initial LogLikelihood: -934.237570
355
355
 
356
- [00:00:00 -934.237524] Initial branch length optimization
357
- [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
356
+ [00:00:00 -934.237570] Initial branch length optimization
357
+ [00:00:00 -674.849060] Model parameter optimization (eps = 10.000000)
358
358
 
359
- [00:00:00] Tree #14, final logLikelihood: -668.362660
359
+ [00:00:00] Tree #14, final logLikelihood: -668.362613
360
360
 
361
- [00:00:00] Tree #15, initial LogLikelihood: -934.232575
361
+ [00:00:00] Tree #15, initial LogLikelihood: -934.234974
362
362
 
363
- [00:00:00 -934.232575] Initial branch length optimization
363
+ [00:00:00 -934.234974] Initial branch length optimization
364
364
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
365
365
 
366
- [00:00:00] Tree #15, final logLikelihood: -668.362653
366
+ [00:00:00] Tree #15, final logLikelihood: -668.362655
367
367
 
368
- [00:00:00] Tree #16, initial LogLikelihood: -934.239923
368
+ [00:00:00] Tree #16, initial LogLikelihood: -934.225153
369
369
 
370
- [00:00:00 -934.239923] Initial branch length optimization
371
- [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
370
+ [00:00:00 -934.225153] Initial branch length optimization
371
+ [00:00:00 -674.849336] Model parameter optimization (eps = 10.000000)
372
372
 
373
- [00:00:00] Tree #16, final logLikelihood: -668.362655
373
+ [00:00:00] Tree #16, final logLikelihood: -668.362399
374
374
 
375
- [00:00:00] Tree #17, initial LogLikelihood: -934.234974
375
+ [00:00:00] Tree #17, initial LogLikelihood: -934.237570
376
376
 
377
- [00:00:00 -934.234974] Initial branch length optimization
377
+ [00:00:00 -934.237570] Initial branch length optimization
378
378
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
379
379
 
380
- [00:00:00] Tree #17, final logLikelihood: -668.362656
380
+ [00:00:00] Tree #17, final logLikelihood: -668.362659
381
381
 
382
- [00:00:00] Tree #18, initial LogLikelihood: -934.232575
382
+ [00:00:00] Tree #18, initial LogLikelihood: -934.239923
383
383
 
384
- [00:00:00 -934.232575] Initial branch length optimization
385
- [00:00:00 -674.849046] Model parameter optimization (eps = 10.000000)
384
+ [00:00:00 -934.239923] Initial branch length optimization
385
+ [00:00:00 -674.849193] Model parameter optimization (eps = 10.000000)
386
386
 
387
- [00:00:00] Tree #18, final logLikelihood: -668.362643
387
+ [00:00:00] Tree #18, final logLikelihood: -668.362454
388
388
 
389
- [00:00:00] Tree #19, initial LogLikelihood: -934.237524
389
+ [00:00:00] Tree #19, initial LogLikelihood: -934.225153
390
390
 
391
- [00:00:00 -934.237524] Initial branch length optimization
392
- [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
391
+ [00:00:00 -934.225153] Initial branch length optimization
392
+ [00:00:00 -674.849233] Model parameter optimization (eps = 10.000000)
393
393
 
394
- [00:00:00] Tree #19, final logLikelihood: -668.362658
394
+ [00:00:00] Tree #19, final logLikelihood: -668.362478
395
395
 
396
- [00:00:00] Tree #20, initial LogLikelihood: -934.225153
396
+ [00:00:00] Tree #20, initial LogLikelihood: -934.232961
397
397
 
398
- [00:00:00 -934.225153] Initial branch length optimization
399
- [00:00:00 -674.849340] Model parameter optimization (eps = 10.000000)
398
+ [00:00:00 -934.232961] Initial branch length optimization
399
+ [00:00:00 -674.849080] Model parameter optimization (eps = 10.000000)
400
400
 
401
- [00:00:00] Tree #20, final logLikelihood: -668.362395
401
+ [00:00:00] Tree #20, final logLikelihood: -668.362545
402
402
 
403
403
 
404
404
  Optimized model parameters:
405
405
 
406
406
  Partition 0: noname
407
- Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.862306 (ML), weights&rates: (0.250000,0.875822) (0.250000,0.964713) (0.250000,1.029567) (0.250000,1.129897)
408
- Base frequencies (ML): 0.220277 0.272445 0.285559 0.221719
409
- Substitution rates (ML): 0.584621 0.196468 0.229582 0.860189 1.199731 1.000000
407
+ Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.862356 (ML), weights&rates: (0.250000,0.875822) (0.250000,0.964713) (0.250000,1.029567) (0.250000,1.129897)
408
+ Base frequencies (ML): 0.220521 0.272281 0.285569 0.221629
409
+ Substitution rates (ML): 0.586335 0.197169 0.228769 0.865038 1.202222 1.000000
410
410
 
411
411
  Marginal ancestral probabilities saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralProbs
412
412
  Reconstructed ancestral sequences saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralStates
@@ -414,7 +414,7 @@ Node-labeled tree saved to: /home/runner/work/partis/partis/test/ref-results/par
414
414
 
415
415
  Execution log saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.log
416
416
 
417
- Analysis started: 16-Aug-2025 23:08:18 / finished: 16-Aug-2025 23:08:18
417
+ Analysis started: 18-Aug-2025 15:31:54 / finished: 18-Aug-2025 15:31:55
418
418
 
419
- Elapsed time: 0.358 seconds
419
+ Elapsed time: 0.393 seconds
420
420