partis-bcr 1.0.8.post1.dev1__py3-none-any.whl → 1.0.9.post1.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/METADATA +1 -1
  2. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/RECORD +95 -95
  3. test/new-results/get-selection-metrics-new-simu.yaml +1 -1
  4. test/new-results/test.log +2 -2
  5. test/paired/new-results/partition-new-simu/fasttree/iclust-0/log +4 -4
  6. test/paired/new-results/partition-new-simu/fasttree/iclust-1/log +4 -4
  7. test/paired/new-results/partition-new-simu/fasttree/iclust-2/log +1 -1
  8. test/paired/new-results/partition-new-simu/igh+igk/partition-igh/fasttree/iclust-1/log +3 -3
  9. test/paired/new-results/partition-new-simu/igh+igl/partition-igl/fasttree/iclust-0/log +1 -1
  10. test/paired/new-results/partition-new-simu-annotation-performance/plots/flcount-matrix.svg +107 -107
  11. test/paired/new-results/partition-new-simu-annotation-performance/plots/func-non-func-per-drop-log.svg +83 -83
  12. test/paired/new-results/partition-new-simu-annotation-performance/plots/func-non-func-per-drop.svg +61 -61
  13. test/paired/new-results/partition-new-simu-annotation-performance/plots/paired-seqs-per-seq-after.svg +18 -18
  14. test/paired/new-results/partition-new-simu-annotation-performance/plots/paired-seqs-per-seq-before.svg +24 -24
  15. test/paired/new-results/partition-new-simu-annotation-performance/plots/pseq-matrix.svg +35 -35
  16. test/paired/new-results/partition-new-simu-annotation-performance/plots/seqs-per-droplet.svg +22 -22
  17. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-correct-family.svg +45 -45
  18. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-correct.svg +45 -45
  19. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-mispaired.svg +45 -45
  20. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-multiple.svg +15 -15
  21. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-near-family.svg +15 -15
  22. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-total.svg +47 -47
  23. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-unpaired.svg +48 -48
  24. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance.svg +27 -27
  25. test/paired/new-results/run-times.csv +6 -6
  26. test/paired/new-results/subset-partition-new-simu/isub-0/partition.log +6 -6
  27. test/paired/new-results/subset-partition-new-simu/isub-1/partition.log +5 -5
  28. test/paired/new-results/subset-partition-new-simu/merged-partition.log +3 -3
  29. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igh/sw-cache.yaml +1 -1
  30. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igk/sw-cache.yaml +1 -1
  31. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igl/sw-cache.yaml +1 -1
  32. test/paired/new-results/test.log +33 -33
  33. test/ref-results/partition-new-simu/iqtree/iclust-0/log +187 -151
  34. test/ref-results/partition-new-simu/iqtree/iclust-0/out.ckp.gz +0 -0
  35. test/ref-results/partition-new-simu/iqtree/iclust-0/out.iqtree +34 -34
  36. test/ref-results/partition-new-simu/iqtree/iclust-0/out.log +187 -151
  37. test/ref-results/partition-new-simu/iqtree/iclust-0/out.model.gz +0 -0
  38. test/ref-results/partition-new-simu/iqtree/iclust-0/out.state +2820 -2820
  39. test/ref-results/partition-new-simu/iqtree/iclust-0/out.treefile +1 -1
  40. test/ref-results/partition-new-simu/iqtree/iclust-1/log +166 -207
  41. test/ref-results/partition-new-simu/iqtree/iclust-1/out.ckp.gz +0 -0
  42. test/ref-results/partition-new-simu/iqtree/iclust-1/out.iqtree +151 -151
  43. test/ref-results/partition-new-simu/iqtree/iclust-1/out.log +166 -207
  44. test/ref-results/partition-new-simu/iqtree/iclust-1/out.model.gz +0 -0
  45. test/ref-results/partition-new-simu/iqtree/iclust-1/out.state +740 -740
  46. test/ref-results/partition-new-simu/iqtree/iclust-1/out.treefile +1 -1
  47. test/ref-results/partition-new-simu/iqtree/iclust-2/log +134 -135
  48. test/ref-results/partition-new-simu/iqtree/iclust-2/out.ckp.gz +0 -0
  49. test/ref-results/partition-new-simu/iqtree/iclust-2/out.iqtree +17 -17
  50. test/ref-results/partition-new-simu/iqtree/iclust-2/out.log +134 -135
  51. test/ref-results/partition-new-simu/iqtree/iclust-2/out.model.gz +0 -0
  52. test/ref-results/partition-new-simu/iqtree/iclust-2/out.state +763 -763
  53. test/ref-results/partition-new-simu/iqtree/iclust-2/out.treefile +1 -1
  54. test/ref-results/partition-new-simu/iqtree-annotations.yaml +1 -1
  55. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralProbs +30 -30
  56. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralStates +7 -7
  57. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralTree +1 -1
  58. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestModel +1 -1
  59. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestTree +1 -1
  60. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  61. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.log +87 -87
  62. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.mlTrees +20 -20
  63. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.startTree +20 -20
  64. test/ref-results/partition-new-simu/raxml/iclust-0/log +198 -197
  65. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.ancestralTree +1 -1
  66. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.bestTree +1 -1
  67. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  68. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.log +54 -54
  69. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.mlTrees +20 -20
  70. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.startTree +20 -20
  71. test/ref-results/partition-new-simu/raxml/iclust-1/log +112 -112
  72. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralProbs +22 -22
  73. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralStates +6 -6
  74. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralTree +1 -1
  75. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestModel +1 -1
  76. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestTree +1 -1
  77. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  78. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.log +84 -84
  79. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.mlTrees +20 -20
  80. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.startTree +20 -20
  81. test/ref-results/partition-new-simu/raxml/iclust-2/log +182 -182
  82. test/ref-results/partition-new-simu/raxml-annotations.yaml +1 -1
  83. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/cf-alleles.py +0 -0
  84. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/cf-germlines.py +0 -0
  85. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/compare-plotdirs.py +0 -0
  86. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/extract-pairing-info.py +0 -0
  87. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/gctree-run.py +0 -0
  88. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/get-naive-probabilities.py +0 -0
  89. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/parse-output.py +0 -0
  90. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/partis-test.py +0 -0
  91. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/split-loci.py +0 -0
  92. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/WHEEL +0 -0
  93. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/entry_points.txt +0 -0
  94. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/licenses/COPYING +0 -0
  95. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/top_level.txt +0 -0
@@ -1 +1 @@
1
- GTR{0.615177/0.198624/0.258666/0.788804/1.245919/1.000000}+FU{0.220278/0.272199/0.286214/0.221308}+G4m{99.846068}, noname = 1-379
1
+ GTR{0.615226/0.198610/0.258677/0.788773/1.245925/1.000000}+FU{0.220278/0.272199/0.286215/0.221308}+G4m{99.846063}, noname = 1-379
@@ -1 +1 @@
1
- (c8a90cc3d7:0.016009,XnaiveX:0.002638,(73d6c6e558:0.007949,((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,((162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,948b83fb4d:0.005308):0.000001):0.002641):0.000001);
1
+ ((((948b83fb4d:0.005308,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.002641,73d6c6e558:0.007949):0.000001,c8a90cc3d7:0.016009,XnaiveX:0.002638);
@@ -1 +1 @@
1
- (c8a90cc3d7:0.016009,XnaiveX:0.002638,73d6c6e558:0.007949,((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,948b83fb4d:0.005308):0.002641);
1
+ (73d6c6e558:0.007949,c8a90cc3d7:0.016009,XnaiveX:0.002638,(948b83fb4d:0.005308,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.002641);
@@ -7,14 +7,14 @@ Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!
7
7
 
8
8
  System: AMD EPYC 7763 64-Core Processor, 2 cores, 15 GB RAM
9
9
 
10
- RAxML-NG was called at 16-Aug-2025 23:08:18 as follows:
10
+ RAxML-NG was called at 18-Aug-2025 15:31:54 as follows:
11
11
 
12
12
  /home/runner/work/partis/partis/bin/raxml-ng-linux --model GTR+G --msa /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa --msa-format FASTA --ancestral --tree /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralTree
13
13
 
14
14
  Analysis options:
15
15
  run mode: Ancestral state reconstruction
16
16
  start tree(s): user
17
- random seed: 1755385698
17
+ random seed: 1755531114
18
18
  tip-inner: ON
19
19
  pattern compression: OFF
20
20
  per-rate scalers: OFF
@@ -47,153 +47,153 @@ Parallel reduction/worker buffer size: 1 KB / 0 KB
47
47
 
48
48
  Starting ML tree search with 20 distinct starting trees
49
49
 
50
- [00:00:00] Tree #1, initial LogLikelihood: -940.256414
50
+ [00:00:00] Tree #1, initial LogLikelihood: -950.326762
51
51
 
52
- [00:00:00 -940.256414] Initial branch length optimization
53
- [00:00:00 -685.977828] Model parameter optimization (eps = 10.000000)
52
+ [00:00:00 -950.326762] Initial branch length optimization
53
+ [00:00:00 -697.593427] Model parameter optimization (eps = 10.000000)
54
54
 
55
- [00:00:00] Tree #1, final logLikelihood: -678.993028
55
+ [00:00:00] Tree #1, final logLikelihood: -688.738075
56
56
 
57
- [00:00:00] Tree #2, initial LogLikelihood: -949.421829
57
+ [00:00:00] Tree #2, initial LogLikelihood: -946.063936
58
58
 
59
- [00:00:00 -949.421829] Initial branch length optimization
60
- [00:00:00 -697.593753] Model parameter optimization (eps = 10.000000)
59
+ [00:00:00 -946.063936] Initial branch length optimization
60
+ [00:00:00 -692.069744] Model parameter optimization (eps = 10.000000)
61
61
 
62
- [00:00:00] Tree #2, final logLikelihood: -688.737800
62
+ [00:00:00] Tree #2, final logLikelihood: -683.141442
63
63
 
64
- [00:00:00] Tree #3, initial LogLikelihood: -950.265446
64
+ [00:00:00] Tree #3, initial LogLikelihood: -950.215964
65
65
 
66
- [00:00:00 -950.265446] Initial branch length optimization
67
- [00:00:00 -697.593380] Model parameter optimization (eps = 10.000000)
66
+ [00:00:00 -950.215964] Initial branch length optimization
67
+ [00:00:00 -697.593352] Model parameter optimization (eps = 10.000000)
68
68
 
69
- [00:00:00] Tree #3, final logLikelihood: -688.738192
69
+ [00:00:00] Tree #3, final logLikelihood: -688.738138
70
70
 
71
- [00:00:00] Tree #4, initial LogLikelihood: -947.570123
71
+ [00:00:00] Tree #4, initial LogLikelihood: -949.699412
72
72
 
73
- [00:00:00 -947.570123] Initial branch length optimization
74
- [00:00:00 -694.573838] Model parameter optimization (eps = 10.000000)
73
+ [00:00:00 -949.699412] Initial branch length optimization
74
+ [00:00:00 -697.593535] Model parameter optimization (eps = 10.000000)
75
75
 
76
- [00:00:00] Tree #4, final logLikelihood: -686.736242
76
+ [00:00:00] Tree #4, final logLikelihood: -688.738021
77
77
 
78
- [00:00:00] Tree #5, initial LogLikelihood: -942.860420
78
+ [00:00:00] Tree #5, initial LogLikelihood: -946.313033
79
79
 
80
- [00:00:00 -942.860420] Initial branch length optimization
81
- [00:00:00 -688.360957] Model parameter optimization (eps = 10.000000)
80
+ [00:00:00 -946.313033] Initial branch length optimization
81
+ [00:00:00 -695.420145] Model parameter optimization (eps = 10.000000)
82
82
 
83
- [00:00:00] Tree #5, final logLikelihood: -680.554813
83
+ [00:00:00] Tree #5, final logLikelihood: -687.553906
84
84
 
85
- [00:00:00] Tree #6, initial LogLikelihood: -950.363794
85
+ [00:00:00] Tree #6, initial LogLikelihood: -945.633568
86
86
 
87
- [00:00:00 -950.363794] Initial branch length optimization
88
- [00:00:00 -697.593306] Model parameter optimization (eps = 10.000000)
87
+ [00:00:00 -945.633568] Initial branch length optimization
88
+ [00:00:00 -693.947960] Model parameter optimization (eps = 10.000000)
89
89
 
90
- [00:00:00] Tree #6, final logLikelihood: -688.738173
90
+ [00:00:00] Tree #6, final logLikelihood: -686.112840
91
91
 
92
- [00:00:00] Tree #7, initial LogLikelihood: -947.813809
92
+ [00:00:00] Tree #7, initial LogLikelihood: -947.519464
93
93
 
94
- [00:00:00 -947.813809] Initial branch length optimization
95
- [00:00:00 -697.592998] Model parameter optimization (eps = 10.000000)
94
+ [00:00:00 -947.519464] Initial branch length optimization
95
+ [00:00:00 -693.948036] Model parameter optimization (eps = 10.000000)
96
96
 
97
- [00:00:00] Tree #7, final logLikelihood: -688.738217
97
+ [00:00:00] Tree #7, final logLikelihood: -686.112815
98
98
 
99
- [00:00:00] Tree #8, initial LogLikelihood: -949.688470
99
+ [00:00:00] Tree #8, initial LogLikelihood: -946.951370
100
100
 
101
- [00:00:00 -949.688470] Initial branch length optimization
102
- [00:00:00 -697.593383] Model parameter optimization (eps = 10.000000)
101
+ [00:00:00 -946.951370] Initial branch length optimization
102
+ [00:00:00 -693.947803] Model parameter optimization (eps = 10.000000)
103
103
 
104
- [00:00:00] Tree #8, final logLikelihood: -688.737968
104
+ [00:00:00] Tree #8, final logLikelihood: -686.112685
105
105
 
106
- [00:00:00] Tree #9, initial LogLikelihood: -947.585600
106
+ [00:00:00] Tree #9, initial LogLikelihood: -950.242456
107
107
 
108
- [00:00:00 -947.585600] Initial branch length optimization
109
- [00:00:00 -695.422647] Model parameter optimization (eps = 10.000000)
108
+ [00:00:00 -950.242456] Initial branch length optimization
109
+ [00:00:00 -697.593476] Model parameter optimization (eps = 10.000000)
110
110
 
111
- [00:00:00] Tree #9, final logLikelihood: -687.554038
111
+ [00:00:00] Tree #9, final logLikelihood: -688.738031
112
112
 
113
- [00:00:00] Tree #10, initial LogLikelihood: -947.781745
113
+ [00:00:00] Tree #10, initial LogLikelihood: -950.473031
114
114
 
115
- [00:00:00 -947.781745] Initial branch length optimization
116
- [00:00:00 -697.592838] Model parameter optimization (eps = 10.000000)
115
+ [00:00:00 -950.473031] Initial branch length optimization
116
+ [00:00:00 -697.593583] Model parameter optimization (eps = 10.000000)
117
117
 
118
- [00:00:00] Tree #10, final logLikelihood: -688.737694
118
+ [00:00:00] Tree #10, final logLikelihood: -688.737991
119
119
 
120
- [00:00:00] Tree #11, initial LogLikelihood: -934.239923
120
+ [00:00:00] Tree #11, initial LogLikelihood: -934.234974
121
121
 
122
- [00:00:00 -934.239923] Initial branch length optimization
123
- [00:00:00 -675.639483] Model parameter optimization (eps = 10.000000)
122
+ [00:00:00 -934.234974] Initial branch length optimization
123
+ [00:00:00 -674.849261] Model parameter optimization (eps = 10.000000)
124
124
 
125
- [00:00:00] Tree #11, final logLikelihood: -668.360350
125
+ [00:00:00] Tree #11, final logLikelihood: -668.362419
126
126
 
127
- [00:00:00] Tree #12, initial LogLikelihood: -934.225153
127
+ [00:00:00] Tree #12, initial LogLikelihood: -934.227552
128
128
 
129
- [00:00:00 -934.225153] Initial branch length optimization
130
- [00:00:00 -674.849075] Model parameter optimization (eps = 10.000000)
129
+ [00:00:00 -934.227552] Initial branch length optimization
130
+ [00:00:00 -674.849503] Model parameter optimization (eps = 10.000000)
131
131
 
132
- [00:00:00] Tree #12, final logLikelihood: -668.362574
132
+ [00:00:00] Tree #12, final logLikelihood: -668.362318
133
133
 
134
- [00:00:00] Tree #13, initial LogLikelihood: -934.232575
134
+ [00:00:00] Tree #13, initial LogLikelihood: -934.239923
135
135
 
136
- [00:00:00 -934.232575] Initial branch length optimization
136
+ [00:00:00 -934.239923] Initial branch length optimization
137
137
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
138
138
 
139
- [00:00:00] Tree #13, final logLikelihood: -668.362653
139
+ [00:00:00] Tree #13, final logLikelihood: -668.362656
140
140
 
141
- [00:00:00] Tree #14, initial LogLikelihood: -934.237524
141
+ [00:00:00] Tree #14, initial LogLikelihood: -934.237570
142
142
 
143
- [00:00:00 -934.237524] Initial branch length optimization
144
- [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
143
+ [00:00:00 -934.237570] Initial branch length optimization
144
+ [00:00:00 -674.849060] Model parameter optimization (eps = 10.000000)
145
145
 
146
- [00:00:00] Tree #14, final logLikelihood: -668.362660
146
+ [00:00:00] Tree #14, final logLikelihood: -668.362613
147
147
 
148
- [00:00:00] Tree #15, initial LogLikelihood: -934.232575
148
+ [00:00:00] Tree #15, initial LogLikelihood: -934.234974
149
149
 
150
- [00:00:00 -934.232575] Initial branch length optimization
150
+ [00:00:00 -934.234974] Initial branch length optimization
151
151
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
152
152
 
153
- [00:00:00] Tree #15, final logLikelihood: -668.362653
153
+ [00:00:00] Tree #15, final logLikelihood: -668.362655
154
154
 
155
- [00:00:00] Tree #16, initial LogLikelihood: -934.239923
155
+ [00:00:00] Tree #16, initial LogLikelihood: -934.225153
156
156
 
157
- [00:00:00 -934.239923] Initial branch length optimization
158
- [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
157
+ [00:00:00 -934.225153] Initial branch length optimization
158
+ [00:00:00 -674.849336] Model parameter optimization (eps = 10.000000)
159
159
 
160
- [00:00:00] Tree #16, final logLikelihood: -668.362655
160
+ [00:00:00] Tree #16, final logLikelihood: -668.362399
161
161
 
162
- [00:00:00] Tree #17, initial LogLikelihood: -934.234974
162
+ [00:00:00] Tree #17, initial LogLikelihood: -934.237570
163
163
 
164
- [00:00:00 -934.234974] Initial branch length optimization
164
+ [00:00:00 -934.237570] Initial branch length optimization
165
165
  [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
166
166
 
167
- [00:00:00] Tree #17, final logLikelihood: -668.362656
167
+ [00:00:00] Tree #17, final logLikelihood: -668.362659
168
168
 
169
- [00:00:00] Tree #18, initial LogLikelihood: -934.232575
169
+ [00:00:00] Tree #18, initial LogLikelihood: -934.239923
170
170
 
171
- [00:00:00 -934.232575] Initial branch length optimization
172
- [00:00:00 -674.849046] Model parameter optimization (eps = 10.000000)
171
+ [00:00:00 -934.239923] Initial branch length optimization
172
+ [00:00:00 -674.849193] Model parameter optimization (eps = 10.000000)
173
173
 
174
- [00:00:00] Tree #18, final logLikelihood: -668.362643
174
+ [00:00:00] Tree #18, final logLikelihood: -668.362454
175
175
 
176
- [00:00:00] Tree #19, initial LogLikelihood: -934.237524
176
+ [00:00:00] Tree #19, initial LogLikelihood: -934.225153
177
177
 
178
- [00:00:00 -934.237524] Initial branch length optimization
179
- [00:00:00 -674.849041] Model parameter optimization (eps = 10.000000)
178
+ [00:00:00 -934.225153] Initial branch length optimization
179
+ [00:00:00 -674.849233] Model parameter optimization (eps = 10.000000)
180
180
 
181
- [00:00:00] Tree #19, final logLikelihood: -668.362658
181
+ [00:00:00] Tree #19, final logLikelihood: -668.362478
182
182
 
183
- [00:00:00] Tree #20, initial LogLikelihood: -934.225153
183
+ [00:00:00] Tree #20, initial LogLikelihood: -934.232961
184
184
 
185
- [00:00:00 -934.225153] Initial branch length optimization
186
- [00:00:00 -674.849340] Model parameter optimization (eps = 10.000000)
185
+ [00:00:00 -934.232961] Initial branch length optimization
186
+ [00:00:00 -674.849080] Model parameter optimization (eps = 10.000000)
187
187
 
188
- [00:00:00] Tree #20, final logLikelihood: -668.362395
188
+ [00:00:00] Tree #20, final logLikelihood: -668.362545
189
189
 
190
190
 
191
191
  Optimized model parameters:
192
192
 
193
193
  Partition 0: noname
194
- Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.862306 (ML), weights&rates: (0.250000,0.875822) (0.250000,0.964713) (0.250000,1.029567) (0.250000,1.129897)
195
- Base frequencies (ML): 0.220277 0.272445 0.285559 0.221719
196
- Substitution rates (ML): 0.584621 0.196468 0.229582 0.860189 1.199731 1.000000
194
+ Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.862356 (ML), weights&rates: (0.250000,0.875822) (0.250000,0.964713) (0.250000,1.029567) (0.250000,1.129897)
195
+ Base frequencies (ML): 0.220521 0.272281 0.285569 0.221629
196
+ Substitution rates (ML): 0.586335 0.197169 0.228769 0.865038 1.202222 1.000000
197
197
 
198
198
  Marginal ancestral probabilities saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralProbs
199
199
  Reconstructed ancestral sequences saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralStates
@@ -201,7 +201,7 @@ Node-labeled tree saved to: /home/runner/work/partis/partis/test/ref-results/par
201
201
 
202
202
  Execution log saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.log
203
203
 
204
- Analysis started: 16-Aug-2025 23:08:18 / finished: 16-Aug-2025 23:08:18
204
+ Analysis started: 18-Aug-2025 15:31:54 / finished: 18-Aug-2025 15:31:55
205
205
 
206
- Elapsed time: 0.358 seconds
206
+ Elapsed time: 0.393 seconds
207
207
 
@@ -1,20 +1,20 @@
1
- ((948b83fb4d:0.005308,((XnaiveX:0.002638,(c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001):0.002641,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001):0.005311,162cb1691f:0.005307,17f57acf2e:0.002632);
2
- (c8a90cc3d7:0.016009,XnaiveX:0.002638,(73d6c6e558:0.007949,(((73431a9b10:0.005285,bf50fa2017:0.000001):0.002645,948b83fb4d:0.005308):0.000001,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.002641):0.000001);
3
- (bf50fa2017:0.000001,73431a9b10:0.005285,(((73d6c6e558:0.007949,(XnaiveX:0.002638,c8a90cc3d7:0.016009):0.000001):0.002641,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001,948b83fb4d:0.005308):0.002645);
4
- (c8a90cc3d7:0.016009,XnaiveX:0.002638,(73d6c6e558:0.007949,((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,((162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,948b83fb4d:0.005308):0.000001):0.002641):0.000001);
5
- (948b83fb4d:0.005308,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311,((XnaiveX:0.002638,(c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001):0.002641,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.000001);
6
- ((73d6c6e558:0.007949,(c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001):0.002641,948b83fb4d:0.005308,((73431a9b10:0.005285,bf50fa2017:0.000001):0.002645,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001);
7
- ((73d6c6e558:0.007949,XnaiveX:0.002638):0.000001,c8a90cc3d7:0.016009,(948b83fb4d:0.005308,((162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001):0.002641);
8
- (c8a90cc3d7:0.016009,XnaiveX:0.002638,(73d6c6e558:0.007949,((73431a9b10:0.005285,bf50fa2017:0.000001):0.002645,(948b83fb4d:0.005308,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.000001):0.002641):0.000001);
9
- (948b83fb4d:0.005308,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,((XnaiveX:0.002638,(c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001):0.002641,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001);
10
- ((c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001,((948b83fb4d:0.005308,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.000001,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.002641,73d6c6e558:0.007949);
11
- ((((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,(948b83fb4d:0.005308,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001):0.002641,XnaiveX:0.002638):0.000001,73d6c6e558:0.007949,c8a90cc3d7:0.016009);
12
- ((73d6c6e558:0.007949,XnaiveX:0.002638):0.000001,c8a90cc3d7:0.016009,(((73431a9b10:0.005285,bf50fa2017:0.000001):0.002645,948b83fb4d:0.005308):0.000001,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.002641);
13
- (((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,948b83fb4d:0.005308):0.000001,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311,((c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001,73d6c6e558:0.007949):0.002641);
14
- (73431a9b10:0.005285,bf50fa2017:0.000001,((((73d6c6e558:0.007949,c8a90cc3d7:0.016009):0.000001,XnaiveX:0.002638):0.002641,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.000001,948b83fb4d:0.005308):0.002645);
15
- (((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,948b83fb4d:0.005308):0.000001,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,((XnaiveX:0.002638,c8a90cc3d7:0.016009):0.000001,73d6c6e558:0.007949):0.002641);
16
- (((73431a9b10:0.005285,bf50fa2017:0.000001):0.002645,((c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001,XnaiveX:0.002638):0.002641):0.000001,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,948b83fb4d:0.005308);
17
- (((((XnaiveX:0.002638,c8a90cc3d7:0.016009):0.000001,73d6c6e558:0.007949):0.002641,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001,948b83fb4d:0.005308):0.005311,162cb1691f:0.005307,17f57acf2e:0.002632);
18
- ((XnaiveX:0.002638,c8a90cc3d7:0.016009):0.000001,73d6c6e558:0.007949,(((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,948b83fb4d:0.005308):0.000001,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.002641);
19
- ((((c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001,XnaiveX:0.002638):0.002641,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001,948b83fb4d:0.005308,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645);
20
- (((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,948b83fb4d:0.005308):0.000001,((73d6c6e558:0.007949,XnaiveX:0.002638):0.000001,c8a90cc3d7:0.016009):0.002641,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311);
1
+ ((c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001,((948b83fb4d:0.005308,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.000001,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.002641,XnaiveX:0.002638);
2
+ (((948b83fb4d:0.005308,((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001):0.002641,c8a90cc3d7:0.016009):0.000001,73d6c6e558:0.007949,XnaiveX:0.002638);
3
+ (XnaiveX:0.002638,(73d6c6e558:0.007949,c8a90cc3d7:0.016009):0.000001,((948b83fb4d:0.005308,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.002641);
4
+ (73431a9b10:0.005285,((((c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001,73d6c6e558:0.007949):0.002641,948b83fb4d:0.005308):0.000001,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.002645,bf50fa2017:0.000001);
5
+ ((73d6c6e558:0.007949,XnaiveX:0.002638):0.000001,c8a90cc3d7:0.016009,((162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,(948b83fb4d:0.005308,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001):0.002641);
6
+ ((73d6c6e558:0.007949,(c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001):0.002641,(948b83fb4d:0.005308,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311);
7
+ ((((948b83fb4d:0.005308,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.002641,73d6c6e558:0.007949):0.000001,c8a90cc3d7:0.016009,XnaiveX:0.002638);
8
+ (XnaiveX:0.002638,(((162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,948b83fb4d:0.005308):0.000001):0.002641,73d6c6e558:0.007949):0.000001,c8a90cc3d7:0.016009);
9
+ ((73431a9b10:0.005285,bf50fa2017:0.000001):0.002645,(((c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001,73d6c6e558:0.007949):0.002641,948b83fb4d:0.005308):0.000001,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311);
10
+ ((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311,(948b83fb4d:0.005308,((c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001,73d6c6e558:0.007949):0.002641):0.000001);
11
+ ((c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001,(((162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,948b83fb4d:0.005308):0.000001,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.002641,73d6c6e558:0.007949);
12
+ (162cb1691f:0.005307,(((c8a90cc3d7:0.016009,(XnaiveX:0.002638,73d6c6e558:0.007949):0.000001):0.002641,(bf50fa2017:0.000001,73431a9b10:0.005285):0.002645):0.000001,948b83fb4d:0.005308):0.005311,17f57acf2e:0.002632);
13
+ ((((73d6c6e558:0.007949,c8a90cc3d7:0.016009):0.000001,XnaiveX:0.002638):0.002641,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311,948b83fb4d:0.005308);
14
+ (162cb1691f:0.005307,17f57acf2e:0.002632,(((XnaiveX:0.002638,(c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001):0.002641,948b83fb4d:0.005308):0.000001,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.005311);
15
+ (((73d6c6e558:0.007949,(XnaiveX:0.002638,c8a90cc3d7:0.016009):0.000001):0.002641,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.000001,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311,948b83fb4d:0.005308);
16
+ (((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,948b83fb4d:0.005308):0.000001,((XnaiveX:0.002638,73d6c6e558:0.007949):0.000001,c8a90cc3d7:0.016009):0.002641,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311);
17
+ (((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.000001,((73d6c6e558:0.007949,c8a90cc3d7:0.016009):0.000001,XnaiveX:0.002638):0.002641,948b83fb4d:0.005308);
18
+ ((c8a90cc3d7:0.016009,73d6c6e558:0.007949):0.000001,XnaiveX:0.002638,(((17f57acf2e:0.002632,162cb1691f:0.005307):0.005311,948b83fb4d:0.005308):0.000001,(73431a9b10:0.005285,bf50fa2017:0.000001):0.002645):0.002641);
19
+ (bf50fa2017:0.000001,(((c8a90cc3d7:0.016009,(73d6c6e558:0.007949,XnaiveX:0.002638):0.000001):0.002641,(162cb1691f:0.005307,17f57acf2e:0.002632):0.005311):0.000001,948b83fb4d:0.005308):0.002645,73431a9b10:0.005285);
20
+ ((c8a90cc3d7:0.016009,XnaiveX:0.002638):0.000001,(((bf50fa2017:0.000001,73431a9b10:0.005285):0.002645,(17f57acf2e:0.002632,162cb1691f:0.005307):0.005311):0.000001,948b83fb4d:0.005308):0.002641,73d6c6e558:0.007949);
@@ -1,20 +1,20 @@
1
- (((948b83fb4d:0.100000,73431a9b10:0.100000):0.100000,(c8a90cc3d7:0.100000,(bf50fa2017:0.100000,(73d6c6e558:0.100000,XnaiveX:0.100000):0.100000):0.100000):0.100000):0.100000,162cb1691f:0.100000,17f57acf2e:0.100000);
2
- (XnaiveX:0.100000,((73d6c6e558:0.100000,(c8a90cc3d7:0.100000,73431a9b10:0.100000):0.100000):0.100000,(bf50fa2017:0.100000,162cb1691f:0.100000):0.100000):0.100000,(948b83fb4d:0.100000,17f57acf2e:0.100000):0.100000);
3
- (XnaiveX:0.100000,(73431a9b10:0.100000,162cb1691f:0.100000):0.100000,(((c8a90cc3d7:0.100000,948b83fb4d:0.100000):0.100000,(bf50fa2017:0.100000,73d6c6e558:0.100000):0.100000):0.100000,17f57acf2e:0.100000):0.100000);
4
- ((c8a90cc3d7:0.100000,XnaiveX:0.100000):0.100000,((bf50fa2017:0.100000,948b83fb4d:0.100000):0.100000,(73d6c6e558:0.100000,(73431a9b10:0.100000,162cb1691f:0.100000):0.100000):0.100000):0.100000,17f57acf2e:0.100000);
5
- ((948b83fb4d:0.100000,(73d6c6e558:0.100000,XnaiveX:0.100000):0.100000):0.100000,162cb1691f:0.100000,((c8a90cc3d7:0.100000,(bf50fa2017:0.100000,73431a9b10:0.100000):0.100000):0.100000,17f57acf2e:0.100000):0.100000);
6
- (XnaiveX:0.100000,((948b83fb4d:0.100000,73d6c6e558:0.100000):0.100000,(73431a9b10:0.100000,(c8a90cc3d7:0.100000,162cb1691f:0.100000):0.100000):0.100000):0.100000,(bf50fa2017:0.100000,17f57acf2e:0.100000):0.100000);
7
- (XnaiveX:0.100000,((bf50fa2017:0.100000,(((c8a90cc3d7:0.100000,948b83fb4d:0.100000):0.100000,73d6c6e558:0.100000):0.100000,73431a9b10:0.100000):0.100000):0.100000,162cb1691f:0.100000):0.100000,17f57acf2e:0.100000);
8
- ((c8a90cc3d7:0.100000,(73431a9b10:0.100000,XnaiveX:0.100000):0.100000):0.100000,162cb1691f:0.100000,((bf50fa2017:0.100000,948b83fb4d:0.100000):0.100000,(73d6c6e558:0.100000,17f57acf2e:0.100000):0.100000):0.100000);
9
- ((948b83fb4d:0.100000,XnaiveX:0.100000):0.100000,(73431a9b10:0.100000,162cb1691f:0.100000):0.100000,((c8a90cc3d7:0.100000,73d6c6e558:0.100000):0.100000,(bf50fa2017:0.100000,17f57acf2e:0.100000):0.100000):0.100000);
10
- (((c8a90cc3d7:0.100000,948b83fb4d:0.100000):0.100000,XnaiveX:0.100000):0.100000,162cb1691f:0.100000,(((bf50fa2017:0.100000,73d6c6e558:0.100000):0.100000,73431a9b10:0.100000):0.100000,17f57acf2e:0.100000):0.100000);
11
- ((((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,(948b83fb4d:0.100000,(162cb1691f:0.100000,17f57acf2e:0.100000):0.100000):0.100000):0.100000,XnaiveX:0.100000):0.100000,73d6c6e558:0.100000,c8a90cc3d7:0.100000);
12
- ((73d6c6e558:0.100000,XnaiveX:0.100000):0.100000,c8a90cc3d7:0.100000,(((73431a9b10:0.100000,bf50fa2017:0.100000):0.100000,948b83fb4d:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000):0.100000);
13
- (((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,948b83fb4d:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000,((c8a90cc3d7:0.100000,XnaiveX:0.100000):0.100000,73d6c6e558:0.100000):0.100000);
14
- (73431a9b10:0.100000,bf50fa2017:0.100000,((((73d6c6e558:0.100000,c8a90cc3d7:0.100000):0.100000,XnaiveX:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000):0.100000,948b83fb4d:0.100000):0.100000);
15
- (((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,948b83fb4d:0.100000):0.100000,(162cb1691f:0.100000,17f57acf2e:0.100000):0.100000,((XnaiveX:0.100000,c8a90cc3d7:0.100000):0.100000,73d6c6e558:0.100000):0.100000);
16
- (((73431a9b10:0.100000,bf50fa2017:0.100000):0.100000,((c8a90cc3d7:0.100000,73d6c6e558:0.100000):0.100000,XnaiveX:0.100000):0.100000):0.100000,(162cb1691f:0.100000,17f57acf2e:0.100000):0.100000,948b83fb4d:0.100000);
17
- (((((XnaiveX:0.100000,c8a90cc3d7:0.100000):0.100000,73d6c6e558:0.100000):0.100000,(73431a9b10:0.100000,bf50fa2017:0.100000):0.100000):0.100000,948b83fb4d:0.100000):0.100000,162cb1691f:0.100000,17f57acf2e:0.100000);
18
- ((XnaiveX:0.100000,c8a90cc3d7:0.100000):0.100000,73d6c6e558:0.100000,(((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,948b83fb4d:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000):0.100000);
19
- ((((c8a90cc3d7:0.100000,73d6c6e558:0.100000):0.100000,XnaiveX:0.100000):0.100000,(162cb1691f:0.100000,17f57acf2e:0.100000):0.100000):0.100000,948b83fb4d:0.100000,(73431a9b10:0.100000,bf50fa2017:0.100000):0.100000);
20
- (((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,948b83fb4d:0.100000):0.100000,((73d6c6e558:0.100000,XnaiveX:0.100000):0.100000,c8a90cc3d7:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000);
1
+ (XnaiveX:0.100000,162cb1691f:0.100000,((c8a90cc3d7:0.100000,948b83fb4d:0.100000):0.100000,((bf50fa2017:0.100000,73d6c6e558:0.100000):0.100000,(73431a9b10:0.100000,17f57acf2e:0.100000):0.100000):0.100000):0.100000);
2
+ (XnaiveX:0.100000,(73d6c6e558:0.100000,(948b83fb4d:0.100000,(c8a90cc3d7:0.100000,((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,162cb1691f:0.100000):0.100000):0.100000):0.100000):0.100000,17f57acf2e:0.100000);
3
+ (XnaiveX:0.100000,((73d6c6e558:0.100000,(948b83fb4d:0.100000,(c8a90cc3d7:0.100000,73431a9b10:0.100000):0.100000):0.100000):0.100000,(bf50fa2017:0.100000,162cb1691f:0.100000):0.100000):0.100000,17f57acf2e:0.100000);
4
+ ((73431a9b10:0.100000,XnaiveX:0.100000):0.100000,162cb1691f:0.100000,(bf50fa2017:0.100000,(c8a90cc3d7:0.100000,(73d6c6e558:0.100000,(948b83fb4d:0.100000,17f57acf2e:0.100000):0.100000):0.100000):0.100000):0.100000);
5
+ (XnaiveX:0.100000,(73431a9b10:0.100000,(bf50fa2017:0.100000,162cb1691f:0.100000):0.100000):0.100000,((c8a90cc3d7:0.100000,73d6c6e558:0.100000):0.100000,(948b83fb4d:0.100000,17f57acf2e:0.100000):0.100000):0.100000);
6
+ (((c8a90cc3d7:0.100000,(948b83fb4d:0.100000,73431a9b10:0.100000):0.100000):0.100000,(73d6c6e558:0.100000,XnaiveX:0.100000):0.100000):0.100000,(bf50fa2017:0.100000,162cb1691f:0.100000):0.100000,17f57acf2e:0.100000);
7
+ ((73d6c6e558:0.100000,XnaiveX:0.100000):0.100000,(((c8a90cc3d7:0.100000,bf50fa2017:0.100000):0.100000,948b83fb4d:0.100000):0.100000,162cb1691f:0.100000):0.100000,(73431a9b10:0.100000,17f57acf2e:0.100000):0.100000);
8
+ ((73d6c6e558:0.100000,XnaiveX:0.100000):0.100000,(73431a9b10:0.100000,(948b83fb4d:0.100000,(bf50fa2017:0.100000,162cb1691f:0.100000):0.100000):0.100000):0.100000,(c8a90cc3d7:0.100000,17f57acf2e:0.100000):0.100000);
9
+ ((bf50fa2017:0.100000,XnaiveX:0.100000):0.100000,((c8a90cc3d7:0.100000,(948b83fb4d:0.100000,73431a9b10:0.100000):0.100000):0.100000,(73d6c6e558:0.100000,162cb1691f:0.100000):0.100000):0.100000,17f57acf2e:0.100000);
10
+ ((73431a9b10:0.100000,XnaiveX:0.100000):0.100000,162cb1691f:0.100000,((c8a90cc3d7:0.100000,948b83fb4d:0.100000):0.100000,(bf50fa2017:0.100000,(73d6c6e558:0.100000,17f57acf2e:0.100000):0.100000):0.100000):0.100000);
11
+ ((c8a90cc3d7:0.100000,XnaiveX:0.100000):0.100000,(((162cb1691f:0.100000,17f57acf2e:0.100000):0.100000,948b83fb4d:0.100000):0.100000,(bf50fa2017:0.100000,73431a9b10:0.100000):0.100000):0.100000,73d6c6e558:0.100000);
12
+ (162cb1691f:0.100000,(((c8a90cc3d7:0.100000,(XnaiveX:0.100000,73d6c6e558:0.100000):0.100000):0.100000,(bf50fa2017:0.100000,73431a9b10:0.100000):0.100000):0.100000,948b83fb4d:0.100000):0.100000,17f57acf2e:0.100000);
13
+ ((((73d6c6e558:0.100000,c8a90cc3d7:0.100000):0.100000,XnaiveX:0.100000):0.100000,(73431a9b10:0.100000,bf50fa2017:0.100000):0.100000):0.100000,(162cb1691f:0.100000,17f57acf2e:0.100000):0.100000,948b83fb4d:0.100000);
14
+ (162cb1691f:0.100000,17f57acf2e:0.100000,(((XnaiveX:0.100000,(c8a90cc3d7:0.100000,73d6c6e558:0.100000):0.100000):0.100000,948b83fb4d:0.100000):0.100000,(73431a9b10:0.100000,bf50fa2017:0.100000):0.100000):0.100000);
15
+ (((73d6c6e558:0.100000,(XnaiveX:0.100000,c8a90cc3d7:0.100000):0.100000):0.100000,(73431a9b10:0.100000,bf50fa2017:0.100000):0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000,948b83fb4d:0.100000);
16
+ (((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,948b83fb4d:0.100000):0.100000,((XnaiveX:0.100000,73d6c6e558:0.100000):0.100000,c8a90cc3d7:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000);
17
+ (((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000):0.100000,((73d6c6e558:0.100000,c8a90cc3d7:0.100000):0.100000,XnaiveX:0.100000):0.100000,948b83fb4d:0.100000);
18
+ ((c8a90cc3d7:0.100000,73d6c6e558:0.100000):0.100000,XnaiveX:0.100000,(((17f57acf2e:0.100000,162cb1691f:0.100000):0.100000,948b83fb4d:0.100000):0.100000,(73431a9b10:0.100000,bf50fa2017:0.100000):0.100000):0.100000);
19
+ (bf50fa2017:0.100000,(((c8a90cc3d7:0.100000,(73d6c6e558:0.100000,XnaiveX:0.100000):0.100000):0.100000,(162cb1691f:0.100000,17f57acf2e:0.100000):0.100000):0.100000,948b83fb4d:0.100000):0.100000,73431a9b10:0.100000);
20
+ ((c8a90cc3d7:0.100000,XnaiveX:0.100000):0.100000,(((bf50fa2017:0.100000,73431a9b10:0.100000):0.100000,(17f57acf2e:0.100000,162cb1691f:0.100000):0.100000):0.100000,948b83fb4d:0.100000):0.100000,73d6c6e558:0.100000);