partis-bcr 1.0.8.post1.dev1__py3-none-any.whl → 1.0.9.post1.dev1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/METADATA +1 -1
  2. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/RECORD +95 -95
  3. test/new-results/get-selection-metrics-new-simu.yaml +1 -1
  4. test/new-results/test.log +2 -2
  5. test/paired/new-results/partition-new-simu/fasttree/iclust-0/log +4 -4
  6. test/paired/new-results/partition-new-simu/fasttree/iclust-1/log +4 -4
  7. test/paired/new-results/partition-new-simu/fasttree/iclust-2/log +1 -1
  8. test/paired/new-results/partition-new-simu/igh+igk/partition-igh/fasttree/iclust-1/log +3 -3
  9. test/paired/new-results/partition-new-simu/igh+igl/partition-igl/fasttree/iclust-0/log +1 -1
  10. test/paired/new-results/partition-new-simu-annotation-performance/plots/flcount-matrix.svg +107 -107
  11. test/paired/new-results/partition-new-simu-annotation-performance/plots/func-non-func-per-drop-log.svg +83 -83
  12. test/paired/new-results/partition-new-simu-annotation-performance/plots/func-non-func-per-drop.svg +61 -61
  13. test/paired/new-results/partition-new-simu-annotation-performance/plots/paired-seqs-per-seq-after.svg +18 -18
  14. test/paired/new-results/partition-new-simu-annotation-performance/plots/paired-seqs-per-seq-before.svg +24 -24
  15. test/paired/new-results/partition-new-simu-annotation-performance/plots/pseq-matrix.svg +35 -35
  16. test/paired/new-results/partition-new-simu-annotation-performance/plots/seqs-per-droplet.svg +22 -22
  17. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-correct-family.svg +45 -45
  18. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-correct.svg +45 -45
  19. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-mispaired.svg +45 -45
  20. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-multiple.svg +15 -15
  21. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-near-family.svg +15 -15
  22. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-total.svg +47 -47
  23. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance-unpaired.svg +48 -48
  24. test/paired/new-results/partition-new-simu-annotation-performance/plots/true-pair-clean-performance.svg +27 -27
  25. test/paired/new-results/run-times.csv +6 -6
  26. test/paired/new-results/subset-partition-new-simu/isub-0/partition.log +6 -6
  27. test/paired/new-results/subset-partition-new-simu/isub-1/partition.log +5 -5
  28. test/paired/new-results/subset-partition-new-simu/merged-partition.log +3 -3
  29. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igh/sw-cache.yaml +1 -1
  30. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igk/sw-cache.yaml +1 -1
  31. test/paired/new-results/subset-partition-new-simu/merged-subsets/parameters/igl/sw-cache.yaml +1 -1
  32. test/paired/new-results/test.log +33 -33
  33. test/ref-results/partition-new-simu/iqtree/iclust-0/log +187 -151
  34. test/ref-results/partition-new-simu/iqtree/iclust-0/out.ckp.gz +0 -0
  35. test/ref-results/partition-new-simu/iqtree/iclust-0/out.iqtree +34 -34
  36. test/ref-results/partition-new-simu/iqtree/iclust-0/out.log +187 -151
  37. test/ref-results/partition-new-simu/iqtree/iclust-0/out.model.gz +0 -0
  38. test/ref-results/partition-new-simu/iqtree/iclust-0/out.state +2820 -2820
  39. test/ref-results/partition-new-simu/iqtree/iclust-0/out.treefile +1 -1
  40. test/ref-results/partition-new-simu/iqtree/iclust-1/log +166 -207
  41. test/ref-results/partition-new-simu/iqtree/iclust-1/out.ckp.gz +0 -0
  42. test/ref-results/partition-new-simu/iqtree/iclust-1/out.iqtree +151 -151
  43. test/ref-results/partition-new-simu/iqtree/iclust-1/out.log +166 -207
  44. test/ref-results/partition-new-simu/iqtree/iclust-1/out.model.gz +0 -0
  45. test/ref-results/partition-new-simu/iqtree/iclust-1/out.state +740 -740
  46. test/ref-results/partition-new-simu/iqtree/iclust-1/out.treefile +1 -1
  47. test/ref-results/partition-new-simu/iqtree/iclust-2/log +134 -135
  48. test/ref-results/partition-new-simu/iqtree/iclust-2/out.ckp.gz +0 -0
  49. test/ref-results/partition-new-simu/iqtree/iclust-2/out.iqtree +17 -17
  50. test/ref-results/partition-new-simu/iqtree/iclust-2/out.log +134 -135
  51. test/ref-results/partition-new-simu/iqtree/iclust-2/out.model.gz +0 -0
  52. test/ref-results/partition-new-simu/iqtree/iclust-2/out.state +763 -763
  53. test/ref-results/partition-new-simu/iqtree/iclust-2/out.treefile +1 -1
  54. test/ref-results/partition-new-simu/iqtree-annotations.yaml +1 -1
  55. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralProbs +30 -30
  56. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralStates +7 -7
  57. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralTree +1 -1
  58. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestModel +1 -1
  59. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestTree +1 -1
  60. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  61. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.log +87 -87
  62. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.mlTrees +20 -20
  63. test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.startTree +20 -20
  64. test/ref-results/partition-new-simu/raxml/iclust-0/log +198 -197
  65. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.ancestralTree +1 -1
  66. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.bestTree +1 -1
  67. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  68. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.log +54 -54
  69. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.mlTrees +20 -20
  70. test/ref-results/partition-new-simu/raxml/iclust-1/input-seqs.fa.raxml.startTree +20 -20
  71. test/ref-results/partition-new-simu/raxml/iclust-1/log +112 -112
  72. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralProbs +22 -22
  73. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralStates +6 -6
  74. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.ancestralTree +1 -1
  75. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestModel +1 -1
  76. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestTree +1 -1
  77. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.bestTreeCollapsed +1 -1
  78. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.log +84 -84
  79. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.mlTrees +20 -20
  80. test/ref-results/partition-new-simu/raxml/iclust-2/input-seqs.fa.raxml.startTree +20 -20
  81. test/ref-results/partition-new-simu/raxml/iclust-2/log +182 -182
  82. test/ref-results/partition-new-simu/raxml-annotations.yaml +1 -1
  83. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/cf-alleles.py +0 -0
  84. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/cf-germlines.py +0 -0
  85. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/compare-plotdirs.py +0 -0
  86. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/extract-pairing-info.py +0 -0
  87. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/gctree-run.py +0 -0
  88. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/get-naive-probabilities.py +0 -0
  89. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/parse-output.py +0 -0
  90. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/partis-test.py +0 -0
  91. {partis_bcr-1.0.8.post1.dev1.data → partis_bcr-1.0.9.post1.dev1.data}/scripts/split-loci.py +0 -0
  92. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/WHEEL +0 -0
  93. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/entry_points.txt +0 -0
  94. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/licenses/COPYING +0 -0
  95. {partis_bcr-1.0.8.post1.dev1.dist-info → partis_bcr-1.0.9.post1.dev1.dist-info}/top_level.txt +0 -0
@@ -8,14 +8,14 @@ Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!
8
8
 
9
9
  System: AMD EPYC 7763 64-Core Processor, 2 cores, 15 GB RAM
10
10
 
11
- RAxML-NG was called at 16-Aug-2025 23:08:18 as follows:
11
+ RAxML-NG was called at 18-Aug-2025 15:31:54 as follows:
12
12
 
13
13
  /home/runner/work/partis/partis/bin/raxml-ng-linux --model GTR+G --msa /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa --msa-format FASTA
14
14
 
15
15
  Analysis options:
16
16
  run mode: ML tree search
17
17
  start tree(s): random (10) + parsimony (10)
18
- random seed: 1755385698
18
+ random seed: 1755531114
19
19
  tip-inner: OFF
20
20
  pattern compression: ON
21
21
  per-rate scalers: OFF
@@ -63,101 +63,103 @@ Parallel reduction/worker buffer size: 1 KB / 0 KB
63
63
 
64
64
  Starting ML tree search with 20 distinct starting trees
65
65
 
66
- [00:00:00 -1045.659744] Initial branch length optimization
67
- [00:00:00 -738.752348] Model parameter optimization (eps = 10.000000)
68
- [00:00:00 -725.000046] AUTODETECT spr round 1 (radius: 5)
69
- [00:00:00 -667.311161] AUTODETECT spr round 2 (radius: 10)
70
- [00:00:00 -667.310248] SPR radius for FAST iterations: 5 (autodetect)
71
- [00:00:00 -667.310248] Model parameter optimization (eps = 3.000000)
66
+ [00:00:00 -1045.799389] Initial branch length optimization
67
+ [00:00:00 -738.757363] Model parameter optimization (eps = 10.000000)
68
+ [00:00:00 -721.513060] AUTODETECT spr round 1 (radius: 5)
69
+ [00:00:00 -667.283457] AUTODETECT spr round 2 (radius: 10)
70
+ [00:00:00 -667.283124] SPR radius for FAST iterations: 5 (autodetect)
71
+ [00:00:00 -667.283124] Model parameter optimization (eps = 3.000000)
72
72
  [00:00:00 -662.791501] FAST spr round 1 (radius: 5)
73
- [00:00:00 -662.791501] Model parameter optimization (eps = 1.000000)
74
- [00:00:00 -662.791471] SLOW spr round 1 (radius: 5)
75
- [00:00:00] [worker #1] ML tree search #2, logLikelihood: -662.791471
76
- [00:00:00 -662.791471] SLOW spr round 2 (radius: 10)
77
- [00:00:00 -662.791471] Model parameter optimization (eps = 0.100000)
78
-
79
- [00:00:00] [worker #0] ML tree search #1, logLikelihood: -662.791470
80
-
81
- [00:00:00 -1042.987303] Initial branch length optimization
82
- [00:00:00 -738.758082] Model parameter optimization (eps = 10.000000)
83
- [00:00:00 -721.511501] AUTODETECT spr round 1 (radius: 5)
84
- [00:00:00 -667.284817] AUTODETECT spr round 2 (radius: 10)
85
- [00:00:00 -667.283378] SPR radius for FAST iterations: 5 (autodetect)
86
- [00:00:00 -667.283378] Model parameter optimization (eps = 3.000000)
87
- [00:00:00 -662.791500] FAST spr round 1 (radius: 5)
88
- [00:00:00 -662.791499] Model parameter optimization (eps = 1.000000)
73
+ [00:00:00 -662.791498] Model parameter optimization (eps = 1.000000)
89
74
  [00:00:00 -662.791473] SLOW spr round 1 (radius: 5)
90
- [00:00:00 -662.791473] SLOW spr round 2 (radius: 10)
91
- [00:00:00 -662.791473] Model parameter optimization (eps = 0.100000)
92
-
93
- [00:00:00] [worker #0] ML tree search #3, logLikelihood: -662.791472
94
-
95
- [00:00:00 -1044.242985] Initial branch length optimization
96
- [00:00:00] [worker #1] ML tree search #4, logLikelihood: -662.791471
97
- [00:00:00 -738.762719] Model parameter optimization (eps = 10.000000)
98
- [00:00:00 -725.000032] AUTODETECT spr round 1 (radius: 5)
99
- [00:00:00 -667.308516] AUTODETECT spr round 2 (radius: 10)
100
- [00:00:00 -667.308409] SPR radius for FAST iterations: 5 (autodetect)
101
- [00:00:00 -667.308409] Model parameter optimization (eps = 3.000000)
102
- [00:00:00 -662.791502] FAST spr round 1 (radius: 5)
103
- [00:00:00 -662.791502] Model parameter optimization (eps = 1.000000)
104
- [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
75
+ [00:00:00] [worker #1] ML tree search #2, logLikelihood: -662.791470
105
76
  [00:00:00 -662.791472] SLOW spr round 2 (radius: 10)
106
77
  [00:00:00 -662.791472] Model parameter optimization (eps = 0.100000)
107
78
 
108
- [00:00:00] [worker #0] ML tree search #5, logLikelihood: -662.791471
79
+ [00:00:00] [worker #0] ML tree search #1, logLikelihood: -662.791470
109
80
 
110
- [00:00:00 -1040.620761] Initial branch length optimization
111
- [00:00:00 -725.746446] Model parameter optimization (eps = 10.000000)
112
- [00:00:00] [worker #1] ML tree search #6, logLikelihood: -662.791471
113
- [00:00:00 -714.021094] AUTODETECT spr round 1 (radius: 5)
114
- [00:00:00 -666.888499] AUTODETECT spr round 2 (radius: 10)
115
- [00:00:00 -666.888395] SPR radius for FAST iterations: 5 (autodetect)
116
- [00:00:00 -666.888395] Model parameter optimization (eps = 3.000000)
117
- [00:00:00 -662.791501] FAST spr round 1 (radius: 5)
118
- [00:00:00 -662.791501] Model parameter optimization (eps = 1.000000)
81
+ [00:00:00 -1044.315152] Initial branch length optimization
82
+ [00:00:00 -738.757558] Model parameter optimization (eps = 10.000000)
83
+ [00:00:00 -725.000038] AUTODETECT spr round 1 (radius: 5)
84
+ [00:00:00 -667.309711] AUTODETECT spr round 2 (radius: 10)
85
+ [00:00:00 -667.309597] SPR radius for FAST iterations: 5 (autodetect)
86
+ [00:00:00 -667.309597] Model parameter optimization (eps = 3.000000)
87
+ [00:00:00 -662.791503] FAST spr round 1 (radius: 5)
88
+ [00:00:00 -662.791503] Model parameter optimization (eps = 1.000000)
89
+ [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
90
+ [00:00:00] [worker #1] ML tree search #4, logLikelihood: -662.791471
91
+ [00:00:00 -662.791471] SLOW spr round 2 (radius: 10)
92
+ [00:00:00 -662.791471] Model parameter optimization (eps = 0.100000)
93
+
94
+ [00:00:00] [worker #0] ML tree search #3, logLikelihood: -662.791470
95
+
96
+ [00:00:00 -1046.752720] Initial branch length optimization
97
+ [00:00:00 -738.764057] Model parameter optimization (eps = 10.000000)
98
+ [00:00:00 -724.999992] AUTODETECT spr round 1 (radius: 5)
99
+ [00:00:00 -681.955819] AUTODETECT spr round 2 (radius: 10)
100
+ [00:00:00 -681.955311] SPR radius for FAST iterations: 5 (autodetect)
101
+ [00:00:00 -681.955311] Model parameter optimization (eps = 3.000000)
102
+ [00:00:00 -680.508761] FAST spr round 1 (radius: 5)
103
+ [00:00:00 -665.976887] FAST spr round 2 (radius: 5)
104
+ [00:00:00 -665.976834] Model parameter optimization (eps = 1.000000)
105
+ [00:00:00] [worker #1] ML tree search #6, logLikelihood: -662.791474
106
+ [00:00:00 -662.791497] SLOW spr round 1 (radius: 5)
107
+ [00:00:00 -662.791497] SLOW spr round 2 (radius: 10)
108
+ [00:00:00 -662.791497] Model parameter optimization (eps = 0.100000)
109
+
110
+ [00:00:00] [worker #0] ML tree search #5, logLikelihood: -662.791474
111
+
112
+ [00:00:00 -1040.657875] Initial branch length optimization
113
+ [00:00:00 -725.750218] Model parameter optimization (eps = 10.000000)
114
+ [00:00:00] [worker #1] ML tree search #8, logLikelihood: -662.791470
115
+ [00:00:00 -714.338581] AUTODETECT spr round 1 (radius: 5)
116
+ [00:00:00 -667.020376] AUTODETECT spr round 2 (radius: 10)
117
+ [00:00:00 -667.019890] SPR radius for FAST iterations: 5 (autodetect)
118
+ [00:00:00 -667.019890] Model parameter optimization (eps = 3.000000)
119
+ [00:00:00 -662.791506] FAST spr round 1 (radius: 5)
120
+ [00:00:00 -662.791506] Model parameter optimization (eps = 1.000000)
119
121
  [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
120
122
  [00:00:00 -662.791472] SLOW spr round 2 (radius: 10)
121
123
  [00:00:00 -662.791472] Model parameter optimization (eps = 0.100000)
122
124
 
123
125
  [00:00:00] [worker #0] ML tree search #7, logLikelihood: -662.791471
124
126
 
125
- [00:00:00 -1046.979195] Initial branch length optimization
126
- [00:00:00 -738.760469] Model parameter optimization (eps = 10.000000)
127
- [00:00:00] [worker #1] ML tree search #8, logLikelihood: -662.791470
128
- [00:00:00 -725.000035] AUTODETECT spr round 1 (radius: 5)
129
- [00:00:00 -667.309427] AUTODETECT spr round 2 (radius: 10)
130
- [00:00:00 -667.309274] SPR radius for FAST iterations: 5 (autodetect)
131
- [00:00:00 -667.309274] Model parameter optimization (eps = 3.000000)
132
- [00:00:00 -662.791502] FAST spr round 1 (radius: 5)
133
- [00:00:00 -662.791502] Model parameter optimization (eps = 1.000000)
134
- [00:00:00 -662.791471] SLOW spr round 1 (radius: 5)
127
+ [00:00:00 -1037.579663] Initial branch length optimization
128
+ [00:00:00 -725.744211] Model parameter optimization (eps = 10.000000)
129
+ [00:00:00] [worker #1] ML tree search #10, logLikelihood: -662.791471
130
+ [00:00:00 -714.338579] AUTODETECT spr round 1 (radius: 5)
131
+ [00:00:00 -674.484047] AUTODETECT spr round 2 (radius: 10)
132
+ [00:00:00 -673.604711] SPR radius for FAST iterations: 10 (autodetect)
133
+ [00:00:00 -673.604711] Model parameter optimization (eps = 3.000000)
134
+ [00:00:00 -672.171392] FAST spr round 1 (radius: 10)
135
+ [00:00:00 -663.832295] Model parameter optimization (eps = 1.000000)
136
+ [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
135
137
  [00:00:00 -662.791471] SLOW spr round 2 (radius: 10)
136
138
  [00:00:00 -662.791471] Model parameter optimization (eps = 0.100000)
137
139
 
138
- [00:00:00] [worker #0] ML tree search #9, logLikelihood: -662.791471
140
+ [00:00:00] [worker #0] ML tree search #9, logLikelihood: -662.791468
139
141
 
140
- [00:00:00 -1004.317870] Initial branch length optimization
141
- [00:00:00 -668.056483] Model parameter optimization (eps = 10.000000)
142
- [00:00:00 -662.853098] AUTODETECT spr round 1 (radius: 5)
143
- [00:00:00] [worker #1] ML tree search #10, logLikelihood: -662.791472
144
- [00:00:00 -662.853095] SPR radius for FAST iterations: 5 (autodetect)
145
- [00:00:00 -662.853095] Model parameter optimization (eps = 3.000000)
146
- [00:00:00 -662.791489] FAST spr round 1 (radius: 5)
147
- [00:00:00 -662.791489] Model parameter optimization (eps = 1.000000)
148
- [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
142
+ [00:00:00] [worker #1] ML tree search #12, logLikelihood: -662.791470
143
+ [00:00:00 -1004.325435] Initial branch length optimization
144
+ [00:00:00 -668.062208] Model parameter optimization (eps = 10.000000)
145
+ [00:00:00 -662.851646] AUTODETECT spr round 1 (radius: 5)
146
+ [00:00:00 -662.851644] SPR radius for FAST iterations: 5 (autodetect)
147
+ [00:00:00 -662.851644] Model parameter optimization (eps = 3.000000)
148
+ [00:00:00 -662.791487] FAST spr round 1 (radius: 5)
149
+ [00:00:00 -662.791487] Model parameter optimization (eps = 1.000000)
150
+ [00:00:00 -662.791471] SLOW spr round 1 (radius: 5)
149
151
  [00:00:00 -662.791471] SLOW spr round 2 (radius: 10)
150
152
  [00:00:00 -662.791471] Model parameter optimization (eps = 0.100000)
151
153
 
152
154
  [00:00:00] [worker #0] ML tree search #11, logLikelihood: -662.791469
153
155
 
154
- [00:00:00 -1004.317937] Initial branch length optimization
155
- [00:00:00 -668.056736] Model parameter optimization (eps = 10.000000)
156
- [00:00:00 -662.852930] AUTODETECT spr round 1 (radius: 5)
157
- [00:00:00 -662.852926] SPR radius for FAST iterations: 5 (autodetect)
158
- [00:00:00 -662.852926] Model parameter optimization (eps = 3.000000)
156
+ [00:00:00 -1004.325143] Initial branch length optimization
157
+ [00:00:00 -668.057580] Model parameter optimization (eps = 10.000000)
158
+ [00:00:00] [worker #1] ML tree search #14, logLikelihood: -662.791470
159
+ [00:00:00 -662.852619] AUTODETECT spr round 1 (radius: 5)
160
+ [00:00:00 -662.852616] SPR radius for FAST iterations: 5 (autodetect)
161
+ [00:00:00 -662.852616] Model parameter optimization (eps = 3.000000)
159
162
  [00:00:00 -662.791488] FAST spr round 1 (radius: 5)
160
- [00:00:00] [worker #1] ML tree search #12, logLikelihood: -662.791470
161
163
  [00:00:00 -662.791488] Model parameter optimization (eps = 1.000000)
162
164
  [00:00:00 -662.791471] SLOW spr round 1 (radius: 5)
163
165
  [00:00:00 -662.791471] SLOW spr round 2 (radius: 10)
@@ -165,61 +167,60 @@ Starting ML tree search with 20 distinct starting trees
165
167
 
166
168
  [00:00:00] [worker #0] ML tree search #13, logLikelihood: -662.791470
167
169
 
168
- [00:00:00 -1004.319559] Initial branch length optimization
169
- [00:00:00 -668.056446] Model parameter optimization (eps = 10.000000)
170
- [00:00:00 -662.853134] AUTODETECT spr round 1 (radius: 5)
171
- [00:00:00 -662.853130] SPR radius for FAST iterations: 5 (autodetect)
172
- [00:00:00 -662.853130] Model parameter optimization (eps = 3.000000)
173
- [00:00:00] [worker #1] ML tree search #14, logLikelihood: -662.791471
174
- [00:00:00 -662.791488] FAST spr round 1 (radius: 5)
175
- [00:00:00 -662.791488] Model parameter optimization (eps = 1.000000)
176
- [00:00:00 -662.791471] SLOW spr round 1 (radius: 5)
170
+ [00:00:00 -1004.317858] Initial branch length optimization
171
+ [00:00:00 -668.057079] Model parameter optimization (eps = 10.000000)
172
+ [00:00:00 -662.852672] AUTODETECT spr round 1 (radius: 5)
173
+ [00:00:00] [worker #1] ML tree search #16, logLikelihood: -662.791470
174
+ [00:00:00 -662.852668] SPR radius for FAST iterations: 5 (autodetect)
175
+ [00:00:00 -662.852668] Model parameter optimization (eps = 3.000000)
176
+ [00:00:00 -662.791489] FAST spr round 1 (radius: 5)
177
+ [00:00:00 -662.791489] Model parameter optimization (eps = 1.000000)
178
+ [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
177
179
  [00:00:00 -662.791471] SLOW spr round 2 (radius: 10)
178
180
  [00:00:00 -662.791471] Model parameter optimization (eps = 0.100000)
179
181
 
180
182
  [00:00:00] [worker #0] ML tree search #15, logLikelihood: -662.791469
181
183
 
182
- [00:00:00 -1004.325322] Initial branch length optimization
183
- [00:00:00 -668.056408] Model parameter optimization (eps = 10.000000)
184
- [00:00:00 -662.853188] AUTODETECT spr round 1 (radius: 5)
185
- [00:00:00 -662.853185] SPR radius for FAST iterations: 5 (autodetect)
186
- [00:00:00 -662.853185] Model parameter optimization (eps = 3.000000)
187
- [00:00:00 -662.791489] FAST spr round 1 (radius: 5)
188
- [00:00:00] [worker #1] ML tree search #16, logLikelihood: -662.791470
189
- [00:00:00 -662.791489] Model parameter optimization (eps = 1.000000)
184
+ [00:00:00 -1004.322276] Initial branch length optimization
185
+ [00:00:00 -668.056467] Model parameter optimization (eps = 10.000000)
186
+ [00:00:00 -662.853119] AUTODETECT spr round 1 (radius: 5)
187
+ [00:00:00 -662.853118] SPR radius for FAST iterations: 5 (autodetect)
188
+ [00:00:00 -662.853118] Model parameter optimization (eps = 3.000000)
189
+ [00:00:00 -662.791488] FAST spr round 1 (radius: 5)
190
+ [00:00:00 -662.791488] Model parameter optimization (eps = 1.000000)
190
191
  [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
191
192
  [00:00:00 -662.791472] SLOW spr round 2 (radius: 10)
192
193
  [00:00:00 -662.791472] Model parameter optimization (eps = 0.100000)
193
194
 
194
195
  [00:00:00] [worker #0] ML tree search #17, logLikelihood: -662.791470
195
196
 
196
- [00:00:00 -1004.322428] Initial branch length optimization
197
- [00:00:00 -668.058423] Model parameter optimization (eps = 10.000000)
198
- [00:00:00 -662.852359] AUTODETECT spr round 1 (radius: 5)
199
- [00:00:00 -662.852357] SPR radius for FAST iterations: 5 (autodetect)
200
- [00:00:00 -662.852357] Model parameter optimization (eps = 3.000000)
201
- [00:00:00 -662.791488] FAST spr round 1 (radius: 5)
202
- [00:00:00 -662.791488] Model parameter optimization (eps = 1.000000)
203
- [00:00:00 -662.791471] SLOW spr round 1 (radius: 5)
204
- [00:00:00 -662.791471] SLOW spr round 2 (radius: 10)
205
- [00:00:00 -662.791471] Model parameter optimization (eps = 0.100000)
197
+ [00:00:00 -1004.319547] Initial branch length optimization
198
+ [00:00:00 -668.056307] Model parameter optimization (eps = 10.000000)
199
+ [00:00:00] [worker #1] ML tree search #18, logLikelihood: -662.791470
200
+ [00:00:00 -662.853237] AUTODETECT spr round 1 (radius: 5)
201
+ [00:00:00 -662.853234] SPR radius for FAST iterations: 5 (autodetect)
202
+ [00:00:00 -662.853234] Model parameter optimization (eps = 3.000000)
203
+ [00:00:00 -662.791489] FAST spr round 1 (radius: 5)
204
+ [00:00:00 -662.791489] Model parameter optimization (eps = 1.000000)
205
+ [00:00:00 -662.791472] SLOW spr round 1 (radius: 5)
206
+ [00:00:00 -662.791472] SLOW spr round 2 (radius: 10)
207
+ [00:00:00 -662.791472] Model parameter optimization (eps = 0.100000)
206
208
 
207
209
  [00:00:00] [worker #0] ML tree search #19, logLikelihood: -662.791470
208
210
 
209
- [00:00:00] [worker #1] ML tree search #18, logLikelihood: -662.791470
210
211
  [00:00:00] [worker #1] ML tree search #20, logLikelihood: -662.791470
211
212
 
212
213
  Optimized model parameters:
213
214
 
214
215
  Partition 0: noname
215
- Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.862254 (ML), weights&rates: (0.250000,0.875822) (0.250000,0.964713) (0.250000,1.029567) (0.250000,1.129897)
216
- Base frequencies (ML): 0.218410 0.257146 0.305095 0.219349
217
- Substitution rates (ML): 0.976979 0.982855 0.461252 0.700964 0.796581 1.000000
216
+ Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.859525 (ML), weights&rates: (0.250000,0.875821) (0.250000,0.964712) (0.250000,1.029568) (0.250000,1.129899)
217
+ Base frequencies (ML): 0.218404 0.257148 0.305098 0.219350
218
+ Substitution rates (ML): 0.977189 0.983302 0.461388 0.701156 0.796913 1.000000
218
219
 
219
220
 
220
- Final LogLikelihood: -662.791469
221
+ Final LogLikelihood: -662.791468
221
222
 
222
- AIC score: 1385.582939 / AICc score: 1391.487701 / BIC score: 1500.976102
223
+ AIC score: 1385.582937 / AICc score: 1391.487699 / BIC score: 1500.976100
223
224
  Free parameters (model + branch lengths): 30
224
225
 
225
226
  WARNING: Best ML tree contains 6 near-zero branches!
@@ -231,9 +232,9 @@ Optimized model saved to: /home/runner/work/partis/partis/test/ref-results/parti
231
232
 
232
233
  Execution log saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.log
233
234
 
234
- Analysis started: 16-Aug-2025 23:08:18 / finished: 16-Aug-2025 23:08:18
235
+ Analysis started: 18-Aug-2025 15:31:54 / finished: 18-Aug-2025 15:31:54
235
236
 
236
- Elapsed time: 0.474 seconds
237
+ Elapsed time: 0.438 seconds
237
238
 
238
239
 
239
240
  RAxML-NG v. 1.2.1 released on 22.12.2023 by The Exelixis Lab.
@@ -244,14 +245,14 @@ Questions/problems/suggestions? Please visit: https://groups.google.com/forum/#!
244
245
 
245
246
  System: AMD EPYC 7763 64-Core Processor, 2 cores, 15 GB RAM
246
247
 
247
- RAxML-NG was called at 16-Aug-2025 23:08:18 as follows:
248
+ RAxML-NG was called at 18-Aug-2025 15:31:54 as follows:
248
249
 
249
250
  /home/runner/work/partis/partis/bin/raxml-ng-linux --model GTR+G --msa /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa --msa-format FASTA --ancestral --tree /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralTree
250
251
 
251
252
  Analysis options:
252
253
  run mode: Ancestral state reconstruction
253
254
  start tree(s): user
254
- random seed: 1755385698
255
+ random seed: 1755531114
255
256
  tip-inner: ON
256
257
  pattern compression: OFF
257
258
  per-rate scalers: OFF
@@ -293,153 +294,153 @@ Parallel reduction/worker buffer size: 1 KB / 0 KB
293
294
 
294
295
  Starting ML tree search with 20 distinct starting trees
295
296
 
296
- [00:00:00] Tree #1, initial LogLikelihood: -1045.659744
297
+ [00:00:00] Tree #1, initial LogLikelihood: -1045.799389
297
298
 
298
- [00:00:00 -1045.659744] Initial branch length optimization
299
- [00:00:00 -738.752348] Model parameter optimization (eps = 10.000000)
299
+ [00:00:00 -1045.799389] Initial branch length optimization
300
+ [00:00:00 -738.757363] Model parameter optimization (eps = 10.000000)
300
301
 
301
- [00:00:00] Tree #1, final logLikelihood: -725.000046
302
+ [00:00:00] Tree #1, final logLikelihood: -721.513060
302
303
 
303
- [00:00:00] Tree #2, initial LogLikelihood: -1046.886052
304
+ [00:00:00] Tree #2, initial LogLikelihood: -1042.991071
304
305
 
305
- [00:00:00 -1046.886052] Initial branch length optimization
306
- [00:00:00 -738.757373] Model parameter optimization (eps = 10.000000)
306
+ [00:00:00 -1042.991071] Initial branch length optimization
307
+ [00:00:00 -738.756586] Model parameter optimization (eps = 10.000000)
307
308
 
308
- [00:00:00] Tree #2, final logLikelihood: -725.000021
309
+ [00:00:00] Tree #2, final logLikelihood: -724.999913
309
310
 
310
- [00:00:00] Tree #3, initial LogLikelihood: -1042.987303
311
+ [00:00:00] Tree #3, initial LogLikelihood: -1044.315152
311
312
 
312
- [00:00:00 -1042.987303] Initial branch length optimization
313
- [00:00:00 -738.758082] Model parameter optimization (eps = 10.000000)
313
+ [00:00:00 -1044.315152] Initial branch length optimization
314
+ [00:00:00 -738.757558] Model parameter optimization (eps = 10.000000)
314
315
 
315
- [00:00:00] Tree #3, final logLikelihood: -721.511501
316
+ [00:00:00] Tree #3, final logLikelihood: -725.000038
316
317
 
317
- [00:00:00] Tree #4, initial LogLikelihood: -1040.663132
318
+ [00:00:00] Tree #4, initial LogLikelihood: -1046.884527
318
319
 
319
- [00:00:00 -1040.663132] Initial branch length optimization
320
- [00:00:00 -725.744207] Model parameter optimization (eps = 10.000000)
320
+ [00:00:00 -1046.884527] Initial branch length optimization
321
+ [00:00:00 -738.762782] Model parameter optimization (eps = 10.000000)
321
322
 
322
- [00:00:00] Tree #4, final logLikelihood: -714.338568
323
+ [00:00:00] Tree #4, final logLikelihood: -724.999994
323
324
 
324
- [00:00:00] Tree #5, initial LogLikelihood: -1044.242985
325
+ [00:00:00] Tree #5, initial LogLikelihood: -1046.752720
325
326
 
326
- [00:00:00 -1044.242985] Initial branch length optimization
327
- [00:00:00 -738.762719] Model parameter optimization (eps = 10.000000)
327
+ [00:00:00 -1046.752720] Initial branch length optimization
328
+ [00:00:00 -738.764057] Model parameter optimization (eps = 10.000000)
328
329
 
329
- [00:00:00] Tree #5, final logLikelihood: -725.000032
330
+ [00:00:00] Tree #5, final logLikelihood: -724.999992
330
331
 
331
- [00:00:00] Tree #6, initial LogLikelihood: -1030.578002
332
+ [00:00:00] Tree #6, initial LogLikelihood: -1045.789923
332
333
 
333
- [00:00:00 -1030.578002] Initial branch length optimization
334
- [00:00:00 -720.999971] Model parameter optimization (eps = 10.000000)
334
+ [00:00:00 -1045.789923] Initial branch length optimization
335
+ [00:00:00 -734.508910] Model parameter optimization (eps = 10.000000)
335
336
 
336
- [00:00:00] Tree #6, final logLikelihood: -706.156329
337
+ [00:00:00] Tree #6, final logLikelihood: -720.053445
337
338
 
338
- [00:00:00] Tree #7, initial LogLikelihood: -1040.620761
339
+ [00:00:00] Tree #7, initial LogLikelihood: -1040.657875
339
340
 
340
- [00:00:00 -1040.620761] Initial branch length optimization
341
- [00:00:00 -725.746446] Model parameter optimization (eps = 10.000000)
341
+ [00:00:00 -1040.657875] Initial branch length optimization
342
+ [00:00:00 -725.750218] Model parameter optimization (eps = 10.000000)
342
343
 
343
- [00:00:00] Tree #7, final logLikelihood: -714.021094
344
+ [00:00:00] Tree #7, final logLikelihood: -714.338581
344
345
 
345
- [00:00:00] Tree #8, initial LogLikelihood: -1045.340747
346
+ [00:00:00] Tree #8, initial LogLikelihood: -1046.739192
346
347
 
347
- [00:00:00 -1045.340747] Initial branch length optimization
348
- [00:00:00 -734.508881] Model parameter optimization (eps = 10.000000)
348
+ [00:00:00 -1046.739192] Initial branch length optimization
349
+ [00:00:00 -738.761728] Model parameter optimization (eps = 10.000000)
349
350
 
350
- [00:00:00] Tree #8, final logLikelihood: -721.148652
351
+ [00:00:00] Tree #8, final logLikelihood: -725.000026
351
352
 
352
- [00:00:00] Tree #9, initial LogLikelihood: -1046.979195
353
+ [00:00:00] Tree #9, initial LogLikelihood: -1037.579663
353
354
 
354
- [00:00:00 -1046.979195] Initial branch length optimization
355
- [00:00:00 -738.760469] Model parameter optimization (eps = 10.000000)
355
+ [00:00:00 -1037.579663] Initial branch length optimization
356
+ [00:00:00 -725.744211] Model parameter optimization (eps = 10.000000)
356
357
 
357
- [00:00:00] Tree #9, final logLikelihood: -725.000035
358
+ [00:00:00] Tree #9, final logLikelihood: -714.338579
358
359
 
359
- [00:00:00] Tree #10, initial LogLikelihood: -1045.773389
360
+ [00:00:00] Tree #10, initial LogLikelihood: -1046.872839
360
361
 
361
- [00:00:00 -1045.773389] Initial branch length optimization
362
- [00:00:00 -738.762327] Model parameter optimization (eps = 10.000000)
362
+ [00:00:00 -1046.872839] Initial branch length optimization
363
+ [00:00:00 -738.760423] Model parameter optimization (eps = 10.000000)
363
364
 
364
- [00:00:00] Tree #10, final logLikelihood: -724.999796
365
+ [00:00:00] Tree #10, final logLikelihood: -725.000023
365
366
 
366
- [00:00:00] Tree #11, initial LogLikelihood: -1004.317870
367
+ [00:00:00] Tree #11, initial LogLikelihood: -1004.325435
367
368
 
368
- [00:00:00 -1004.317870] Initial branch length optimization
369
- [00:00:00 -668.056483] Model parameter optimization (eps = 10.000000)
369
+ [00:00:00 -1004.325435] Initial branch length optimization
370
+ [00:00:00 -668.062208] Model parameter optimization (eps = 10.000000)
370
371
 
371
- [00:00:00] Tree #11, final logLikelihood: -662.853098
372
+ [00:00:00] Tree #11, final logLikelihood: -662.851646
372
373
 
373
- [00:00:00] Tree #12, initial LogLikelihood: -1004.319632
374
+ [00:00:00] Tree #12, initial LogLikelihood: -1004.326377
374
375
 
375
- [00:00:00 -1004.319632] Initial branch length optimization
376
- [00:00:00 -668.056544] Model parameter optimization (eps = 10.000000)
376
+ [00:00:00 -1004.326377] Initial branch length optimization
377
+ [00:00:00 -668.059976] Model parameter optimization (eps = 10.000000)
377
378
 
378
- [00:00:00] Tree #12, final logLikelihood: -662.853087
379
+ [00:00:00] Tree #12, final logLikelihood: -662.852089
379
380
 
380
- [00:00:00] Tree #13, initial LogLikelihood: -1004.317937
381
+ [00:00:00] Tree #13, initial LogLikelihood: -1004.325143
381
382
 
382
- [00:00:00 -1004.317937] Initial branch length optimization
383
- [00:00:00 -668.056736] Model parameter optimization (eps = 10.000000)
383
+ [00:00:00 -1004.325143] Initial branch length optimization
384
+ [00:00:00 -668.057580] Model parameter optimization (eps = 10.000000)
384
385
 
385
- [00:00:00] Tree #13, final logLikelihood: -662.852930
386
+ [00:00:00] Tree #13, final logLikelihood: -662.852619
386
387
 
387
- [00:00:00] Tree #14, initial LogLikelihood: -1004.320321
388
+ [00:00:00] Tree #14, initial LogLikelihood: -1004.317937
388
389
 
389
- [00:00:00 -1004.320321] Initial branch length optimization
390
- [00:00:00 -668.056272] Model parameter optimization (eps = 10.000000)
390
+ [00:00:00 -1004.317937] Initial branch length optimization
391
+ [00:00:00 -668.057282] Model parameter optimization (eps = 10.000000)
391
392
 
392
- [00:00:00] Tree #14, final logLikelihood: -662.853214
393
+ [00:00:00] Tree #14, final logLikelihood: -662.852662
393
394
 
394
- [00:00:00] Tree #15, initial LogLikelihood: -1004.319559
395
+ [00:00:00] Tree #15, initial LogLikelihood: -1004.317858
395
396
 
396
- [00:00:00 -1004.319559] Initial branch length optimization
397
- [00:00:00 -668.056446] Model parameter optimization (eps = 10.000000)
397
+ [00:00:00 -1004.317858] Initial branch length optimization
398
+ [00:00:00 -668.057079] Model parameter optimization (eps = 10.000000)
398
399
 
399
- [00:00:00] Tree #15, final logLikelihood: -662.853134
400
+ [00:00:00] Tree #15, final logLikelihood: -662.852672
400
401
 
401
- [00:00:00] Tree #16, initial LogLikelihood: -1004.326398
402
+ [00:00:00] Tree #16, initial LogLikelihood: -1004.319570
402
403
 
403
- [00:00:00 -1004.326398] Initial branch length optimization
404
- [00:00:00 -668.058705] Model parameter optimization (eps = 10.000000)
404
+ [00:00:00 -1004.319570] Initial branch length optimization
405
+ [00:00:00 -668.056689] Model parameter optimization (eps = 10.000000)
405
406
 
406
- [00:00:00] Tree #16, final logLikelihood: -662.852320
407
+ [00:00:00] Tree #16, final logLikelihood: -662.852976
407
408
 
408
- [00:00:00] Tree #17, initial LogLikelihood: -1004.325322
409
+ [00:00:00] Tree #17, initial LogLikelihood: -1004.322276
409
410
 
410
- [00:00:00 -1004.325322] Initial branch length optimization
411
- [00:00:00 -668.056408] Model parameter optimization (eps = 10.000000)
411
+ [00:00:00 -1004.322276] Initial branch length optimization
412
+ [00:00:00 -668.056467] Model parameter optimization (eps = 10.000000)
412
413
 
413
- [00:00:00] Tree #17, final logLikelihood: -662.853188
414
+ [00:00:00] Tree #17, final logLikelihood: -662.853119
414
415
 
415
- [00:00:00] Tree #18, initial LogLikelihood: -1004.328189
416
+ [00:00:00] Tree #18, initial LogLikelihood: -1004.326038
416
417
 
417
- [00:00:00 -1004.328189] Initial branch length optimization
418
- [00:00:00 -668.057815] Model parameter optimization (eps = 10.000000)
418
+ [00:00:00 -1004.326038] Initial branch length optimization
419
+ [00:00:00 -668.056343] Model parameter optimization (eps = 10.000000)
419
420
 
420
- [00:00:00] Tree #18, final logLikelihood: -662.852694
421
+ [00:00:00] Tree #18, final logLikelihood: -662.853175
421
422
 
422
- [00:00:00] Tree #19, initial LogLikelihood: -1004.322428
423
+ [00:00:00] Tree #19, initial LogLikelihood: -1004.319547
423
424
 
424
- [00:00:00 -1004.322428] Initial branch length optimization
425
- [00:00:00 -668.058423] Model parameter optimization (eps = 10.000000)
425
+ [00:00:00 -1004.319547] Initial branch length optimization
426
+ [00:00:00 -668.056307] Model parameter optimization (eps = 10.000000)
426
427
 
427
- [00:00:00] Tree #19, final logLikelihood: -662.852359
428
+ [00:00:00] Tree #19, final logLikelihood: -662.853237
428
429
 
429
- [00:00:00] Tree #20, initial LogLikelihood: -1004.319412
430
+ [00:00:00] Tree #20, initial LogLikelihood: -1004.326486
430
431
 
431
- [00:00:00 -1004.319412] Initial branch length optimization
432
- [00:00:00 -668.056741] Model parameter optimization (eps = 10.000000)
432
+ [00:00:00 -1004.326486] Initial branch length optimization
433
+ [00:00:00 -668.057933] Model parameter optimization (eps = 10.000000)
433
434
 
434
- [00:00:00] Tree #20, final logLikelihood: -662.852953
435
+ [00:00:00] Tree #20, final logLikelihood: -662.852624
435
436
 
436
437
 
437
438
  Optimized model parameters:
438
439
 
439
440
  Partition 0: noname
440
- Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.862246 (ML), weights&rates: (0.250000,0.875822) (0.250000,0.964713) (0.250000,1.029567) (0.250000,1.129897)
441
- Base frequencies (ML): 0.219082 0.257002 0.304229 0.219686
442
- Substitution rates (ML): 0.897311 0.970592 0.393839 0.763217 0.745304 1.000000
441
+ Rate heterogeneity: GAMMA (4 cats, mean), alpha: 99.862237 (ML), weights&rates: (0.250000,0.875822) (0.250000,0.964713) (0.250000,1.029567) (0.250000,1.129897)
442
+ Base frequencies (ML): 0.219082 0.256999 0.304238 0.219681
443
+ Substitution rates (ML): 0.897660 0.970520 0.394048 0.762800 0.745857 1.000000
443
444
 
444
445
  Marginal ancestral probabilities saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralProbs
445
446
  Reconstructed ancestral sequences saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.ancestralStates
@@ -447,7 +448,7 @@ Node-labeled tree saved to: /home/runner/work/partis/partis/test/ref-results/par
447
448
 
448
449
  Execution log saved to: /home/runner/work/partis/partis/test/ref-results/partition-new-simu/raxml/iclust-0/input-seqs.fa.raxml.log
449
450
 
450
- Analysis started: 16-Aug-2025 23:08:18 / finished: 16-Aug-2025 23:08:19
451
+ Analysis started: 18-Aug-2025 15:31:54 / finished: 18-Aug-2025 15:31:55
451
452
 
452
- Elapsed time: 0.371 seconds
453
+ Elapsed time: 0.427 seconds
453
454
 
@@ -1 +1 @@
1
- ((((((91796617a0:0.000001,XnaiveX:0.000001)Node1:0.000001,31e052ee14:0.000001)Node2:0.000001,97366cf0d8:0.002730)Node3:0.000001,13de8675ec:0.000001)Node4:0.000001,4233d708fe:0.000001)Node5:0.000001,33aaa62e12:0.000001,20a0129b57:0.002730)Node6;
1
+ ((((((97366cf0d8:0.002730,20a0129b57:0.002730)Node1:0.000001,4233d708fe:0.000001)Node2:0.000001,31e052ee14:0.000001)Node3:0.000001,13de8675ec:0.000001)Node4:0.000001,XnaiveX:0.000001)Node5:0.000001,91796617a0:0.000001,33aaa62e12:0.000001)Node6;
@@ -1 +1 @@
1
- (20a0129b57:0.002731,(((((91796617a0:0.000001,31e052ee14:0.000001):0.000001,4233d708fe:0.000001):0.000001,XnaiveX:0.000001):0.000001,13de8675ec:0.000001):0.000001,33aaa62e12:0.000001):0.000001,97366cf0d8:0.002730);
1
+ ((33aaa62e12:0.000001,XnaiveX:0.000001):0.000001,(31e052ee14:0.000001,(4233d708fe:0.000001,(91796617a0:0.000001,13de8675ec:0.000001):0.000001):0.000001):0.000001,(97366cf0d8:0.002730,20a0129b57:0.002731):0.000001);
@@ -1 +1 @@
1
- (20a0129b57:0.002731,91796617a0:0.000001,31e052ee14:0.000001,4233d708fe:0.000001,XnaiveX:0.000001,13de8675ec:0.000001,33aaa62e12:0.000001,97366cf0d8:0.002730);
1
+ (XnaiveX:0.000001,31e052ee14:0.000001,4233d708fe:0.000001,91796617a0:0.000001,13de8675ec:0.000001,97366cf0d8:0.002730,20a0129b57:0.002731,33aaa62e12:0.000001);