paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1087) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -18
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/paddleclas.py +0 -375
  649. PaddleClas/ppcls/__init__.py +0 -20
  650. PaddleClas/ppcls/data/__init__.py +0 -15
  651. PaddleClas/ppcls/data/imaug/__init__.py +0 -94
  652. PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
  653. PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
  654. PaddleClas/ppcls/data/imaug/cutout.py +0 -41
  655. PaddleClas/ppcls/data/imaug/fmix.py +0 -217
  656. PaddleClas/ppcls/data/imaug/grid.py +0 -89
  657. PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
  658. PaddleClas/ppcls/data/imaug/operators.py +0 -244
  659. PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
  660. PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
  661. PaddleClas/ppcls/data/reader.py +0 -318
  662. PaddleClas/ppcls/modeling/__init__.py +0 -20
  663. PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
  664. PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
  665. PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
  666. PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
  667. PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
  668. PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  669. PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
  670. PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
  671. PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
  672. PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
  673. PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
  674. PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
  675. PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
  676. PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
  677. PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  678. PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  679. PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  680. PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
  681. PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
  682. PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
  683. PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
  684. PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
  685. PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
  686. PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
  687. PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
  688. PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
  689. PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  690. PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
  691. PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
  692. PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  693. PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
  694. PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  695. PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  696. PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
  697. PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
  698. PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
  699. PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
  700. PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  701. PaddleClas/ppcls/modeling/loss.py +0 -154
  702. PaddleClas/ppcls/modeling/utils.py +0 -53
  703. PaddleClas/ppcls/optimizer/__init__.py +0 -19
  704. PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
  705. PaddleClas/ppcls/optimizer/optimizer.py +0 -165
  706. PaddleClas/ppcls/utils/__init__.py +0 -27
  707. PaddleClas/ppcls/utils/check.py +0 -151
  708. PaddleClas/ppcls/utils/config.py +0 -201
  709. PaddleClas/ppcls/utils/logger.py +0 -120
  710. PaddleClas/ppcls/utils/metrics.py +0 -107
  711. PaddleClas/ppcls/utils/misc.py +0 -62
  712. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  713. PaddleClas/ppcls/utils/save_load.py +0 -163
  714. PaddleClas/setup.py +0 -55
  715. PaddleClas/tools/__init__.py +0 -15
  716. PaddleClas/tools/download.py +0 -50
  717. PaddleClas/tools/ema.py +0 -58
  718. PaddleClas/tools/eval.py +0 -112
  719. PaddleClas/tools/export_model.py +0 -85
  720. PaddleClas/tools/export_serving_model.py +0 -76
  721. PaddleClas/tools/infer/__init__.py +0 -16
  722. PaddleClas/tools/infer/infer.py +0 -94
  723. PaddleClas/tools/infer/predict.py +0 -117
  724. PaddleClas/tools/infer/utils.py +0 -233
  725. PaddleClas/tools/program.py +0 -444
  726. PaddleClas/tools/test_hubserving.py +0 -113
  727. PaddleClas/tools/train.py +0 -141
  728. paddlex/cls.py +0 -76
  729. paddlex/command.py +0 -215
  730. paddlex/cv/__init__.py +0 -17
  731. paddlex/cv/datasets/__init__.py +0 -18
  732. paddlex/cv/datasets/coco.py +0 -169
  733. paddlex/cv/datasets/imagenet.py +0 -88
  734. paddlex/cv/datasets/seg_dataset.py +0 -91
  735. paddlex/cv/datasets/voc.py +0 -301
  736. paddlex/cv/models/__init__.py +0 -18
  737. paddlex/cv/models/base.py +0 -623
  738. paddlex/cv/models/classifier.py +0 -814
  739. paddlex/cv/models/detector.py +0 -1747
  740. paddlex/cv/models/load_model.py +0 -126
  741. paddlex/cv/models/segmenter.py +0 -673
  742. paddlex/cv/models/slim/__init__.py +0 -13
  743. paddlex/cv/models/slim/prune.py +0 -55
  744. paddlex/cv/models/utils/__init__.py +0 -13
  745. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  746. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
  747. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  748. paddlex/cv/models/utils/ema.py +0 -48
  749. paddlex/cv/models/utils/seg_metrics.py +0 -62
  750. paddlex/cv/models/utils/visualize.py +0 -394
  751. paddlex/cv/transforms/__init__.py +0 -46
  752. paddlex/cv/transforms/batch_operators.py +0 -286
  753. paddlex/cv/transforms/box_utils.py +0 -41
  754. paddlex/cv/transforms/functions.py +0 -193
  755. paddlex/cv/transforms/operators.py +0 -1402
  756. paddlex/det.py +0 -43
  757. paddlex/paddleseg/__init__.py +0 -17
  758. paddlex/paddleseg/core/__init__.py +0 -20
  759. paddlex/paddleseg/core/infer.py +0 -289
  760. paddlex/paddleseg/core/predict.py +0 -145
  761. paddlex/paddleseg/core/train.py +0 -258
  762. paddlex/paddleseg/core/val.py +0 -172
  763. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  764. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  765. paddlex/paddleseg/cvlibs/config.py +0 -359
  766. paddlex/paddleseg/cvlibs/manager.py +0 -142
  767. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  768. paddlex/paddleseg/datasets/__init__.py +0 -21
  769. paddlex/paddleseg/datasets/ade.py +0 -112
  770. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  771. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  772. paddlex/paddleseg/datasets/dataset.py +0 -164
  773. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  774. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  775. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  776. paddlex/paddleseg/datasets/voc.py +0 -113
  777. paddlex/paddleseg/models/__init__.py +0 -39
  778. paddlex/paddleseg/models/ann.py +0 -436
  779. paddlex/paddleseg/models/attention_unet.py +0 -189
  780. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  781. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  782. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  783. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  784. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  785. paddlex/paddleseg/models/bisenet.py +0 -311
  786. paddlex/paddleseg/models/danet.py +0 -220
  787. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  788. paddlex/paddleseg/models/deeplab.py +0 -258
  789. paddlex/paddleseg/models/dnlnet.py +0 -231
  790. paddlex/paddleseg/models/emanet.py +0 -219
  791. paddlex/paddleseg/models/fast_scnn.py +0 -318
  792. paddlex/paddleseg/models/fcn.py +0 -135
  793. paddlex/paddleseg/models/gcnet.py +0 -223
  794. paddlex/paddleseg/models/gscnn.py +0 -357
  795. paddlex/paddleseg/models/hardnet.py +0 -309
  796. paddlex/paddleseg/models/isanet.py +0 -202
  797. paddlex/paddleseg/models/layers/__init__.py +0 -19
  798. paddlex/paddleseg/models/layers/activation.py +0 -73
  799. paddlex/paddleseg/models/layers/attention.py +0 -146
  800. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  801. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  802. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  803. paddlex/paddleseg/models/losses/__init__.py +0 -27
  804. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  805. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  806. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  807. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  808. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  809. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  810. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  811. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  812. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  813. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  814. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  815. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  816. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  817. paddlex/paddleseg/models/ocrnet.py +0 -248
  818. paddlex/paddleseg/models/pspnet.py +0 -147
  819. paddlex/paddleseg/models/sfnet.py +0 -236
  820. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  821. paddlex/paddleseg/models/u2net.py +0 -574
  822. paddlex/paddleseg/models/unet.py +0 -155
  823. paddlex/paddleseg/models/unet_3plus.py +0 -316
  824. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  825. paddlex/paddleseg/transforms/__init__.py +0 -16
  826. paddlex/paddleseg/transforms/functional.py +0 -161
  827. paddlex/paddleseg/transforms/transforms.py +0 -937
  828. paddlex/paddleseg/utils/__init__.py +0 -22
  829. paddlex/paddleseg/utils/config_check.py +0 -60
  830. paddlex/paddleseg/utils/download.py +0 -163
  831. paddlex/paddleseg/utils/env/__init__.py +0 -16
  832. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  833. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  834. paddlex/paddleseg/utils/logger.py +0 -48
  835. paddlex/paddleseg/utils/metrics.py +0 -146
  836. paddlex/paddleseg/utils/progbar.py +0 -212
  837. paddlex/paddleseg/utils/timer.py +0 -53
  838. paddlex/paddleseg/utils/utils.py +0 -120
  839. paddlex/paddleseg/utils/visualize.py +0 -90
  840. paddlex/ppcls/__init__.py +0 -20
  841. paddlex/ppcls/data/__init__.py +0 -15
  842. paddlex/ppcls/data/imaug/__init__.py +0 -94
  843. paddlex/ppcls/data/imaug/autoaugment.py +0 -264
  844. paddlex/ppcls/data/imaug/batch_operators.py +0 -117
  845. paddlex/ppcls/data/imaug/cutout.py +0 -41
  846. paddlex/ppcls/data/imaug/fmix.py +0 -217
  847. paddlex/ppcls/data/imaug/grid.py +0 -89
  848. paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
  849. paddlex/ppcls/data/imaug/operators.py +0 -256
  850. paddlex/ppcls/data/imaug/randaugment.py +0 -106
  851. paddlex/ppcls/data/imaug/random_erasing.py +0 -55
  852. paddlex/ppcls/data/reader.py +0 -318
  853. paddlex/ppcls/modeling/__init__.py +0 -20
  854. paddlex/ppcls/modeling/architectures/__init__.py +0 -51
  855. paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
  856. paddlex/ppcls/modeling/architectures/darknet.py +0 -161
  857. paddlex/ppcls/modeling/architectures/densenet.py +0 -308
  858. paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
  859. paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  860. paddlex/ppcls/modeling/architectures/dpn.py +0 -425
  861. paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
  862. paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
  863. paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
  864. paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
  865. paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
  866. paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
  867. paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
  868. paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  869. paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  870. paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  871. paddlex/ppcls/modeling/architectures/regnet.py +0 -383
  872. paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
  873. paddlex/ppcls/modeling/architectures/res2net.py +0 -272
  874. paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
  875. paddlex/ppcls/modeling/architectures/resnest.py +0 -705
  876. paddlex/ppcls/modeling/architectures/resnet.py +0 -317
  877. paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
  878. paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
  879. paddlex/ppcls/modeling/architectures/resnext.py +0 -259
  880. paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  881. paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
  882. paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
  883. paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  884. paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
  885. paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  886. paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  887. paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
  888. paddlex/ppcls/modeling/architectures/vgg.py +0 -152
  889. paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
  890. paddlex/ppcls/modeling/architectures/xception.py +0 -345
  891. paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  892. paddlex/ppcls/modeling/loss.py +0 -158
  893. paddlex/ppcls/modeling/utils.py +0 -53
  894. paddlex/ppcls/optimizer/__init__.py +0 -19
  895. paddlex/ppcls/optimizer/learning_rate.py +0 -159
  896. paddlex/ppcls/optimizer/optimizer.py +0 -165
  897. paddlex/ppcls/utils/__init__.py +0 -27
  898. paddlex/ppcls/utils/check.py +0 -151
  899. paddlex/ppcls/utils/config.py +0 -201
  900. paddlex/ppcls/utils/logger.py +0 -120
  901. paddlex/ppcls/utils/metrics.py +0 -112
  902. paddlex/ppcls/utils/misc.py +0 -62
  903. paddlex/ppcls/utils/model_zoo.py +0 -213
  904. paddlex/ppcls/utils/save_load.py +0 -163
  905. paddlex/ppdet/__init__.py +0 -16
  906. paddlex/ppdet/core/__init__.py +0 -15
  907. paddlex/ppdet/core/config/__init__.py +0 -13
  908. paddlex/ppdet/core/config/schema.py +0 -248
  909. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  910. paddlex/ppdet/core/workspace.py +0 -279
  911. paddlex/ppdet/data/__init__.py +0 -21
  912. paddlex/ppdet/data/reader.py +0 -304
  913. paddlex/ppdet/data/shm_utils.py +0 -67
  914. paddlex/ppdet/data/source/__init__.py +0 -27
  915. paddlex/ppdet/data/source/category.py +0 -823
  916. paddlex/ppdet/data/source/coco.py +0 -243
  917. paddlex/ppdet/data/source/dataset.py +0 -192
  918. paddlex/ppdet/data/source/keypoint_coco.py +0 -656
  919. paddlex/ppdet/data/source/mot.py +0 -360
  920. paddlex/ppdet/data/source/voc.py +0 -204
  921. paddlex/ppdet/data/source/widerface.py +0 -180
  922. paddlex/ppdet/data/transform/__init__.py +0 -28
  923. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
  924. paddlex/ppdet/data/transform/batch_operators.py +0 -758
  925. paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
  926. paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
  927. paddlex/ppdet/data/transform/mot_operators.py +0 -636
  928. paddlex/ppdet/data/transform/op_helper.py +0 -468
  929. paddlex/ppdet/data/transform/operators.py +0 -2103
  930. paddlex/ppdet/engine/__init__.py +0 -29
  931. paddlex/ppdet/engine/callbacks.py +0 -262
  932. paddlex/ppdet/engine/env.py +0 -47
  933. paddlex/ppdet/engine/export_utils.py +0 -118
  934. paddlex/ppdet/engine/tracker.py +0 -425
  935. paddlex/ppdet/engine/trainer.py +0 -535
  936. paddlex/ppdet/metrics/__init__.py +0 -23
  937. paddlex/ppdet/metrics/coco_utils.py +0 -184
  938. paddlex/ppdet/metrics/json_results.py +0 -151
  939. paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
  940. paddlex/ppdet/metrics/map_utils.py +0 -396
  941. paddlex/ppdet/metrics/metrics.py +0 -300
  942. paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
  943. paddlex/ppdet/metrics/mot_metrics.py +0 -184
  944. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  945. paddlex/ppdet/model_zoo/__init__.py +0 -18
  946. paddlex/ppdet/model_zoo/model_zoo.py +0 -86
  947. paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
  948. paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
  949. paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
  950. paddlex/ppdet/modeling/__init__.py +0 -41
  951. paddlex/ppdet/modeling/architectures/__init__.py +0 -40
  952. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  953. paddlex/ppdet/modeling/architectures/centernet.py +0 -103
  954. paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
  955. paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
  956. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  957. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  958. paddlex/ppdet/modeling/architectures/jde.py +0 -125
  959. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
  960. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
  961. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  962. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
  963. paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
  964. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  965. paddlex/ppdet/modeling/architectures/ssd.py +0 -84
  966. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  967. paddlex/ppdet/modeling/architectures/yolo.py +0 -104
  968. paddlex/ppdet/modeling/backbones/__init__.py +0 -37
  969. paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
  970. paddlex/ppdet/modeling/backbones/darknet.py +0 -341
  971. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  972. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
  973. paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
  974. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
  975. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
  976. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  977. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  978. paddlex/ppdet/modeling/backbones/resnet.py +0 -606
  979. paddlex/ppdet/modeling/backbones/senet.py +0 -140
  980. paddlex/ppdet/modeling/backbones/vgg.py +0 -216
  981. paddlex/ppdet/modeling/bbox_utils.py +0 -464
  982. paddlex/ppdet/modeling/heads/__init__.py +0 -41
  983. paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
  984. paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
  985. paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
  986. paddlex/ppdet/modeling/heads/face_head.py +0 -113
  987. paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
  988. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  989. paddlex/ppdet/modeling/heads/mask_head.py +0 -253
  990. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  991. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
  992. paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
  993. paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
  994. paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
  995. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  996. paddlex/ppdet/modeling/keypoint_utils.py +0 -302
  997. paddlex/ppdet/modeling/layers.py +0 -1142
  998. paddlex/ppdet/modeling/losses/__init__.py +0 -35
  999. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
  1000. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1001. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1002. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
  1003. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1004. paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
  1005. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
  1006. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1007. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
  1008. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1009. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1010. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1011. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1012. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
  1013. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1014. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1015. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1016. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
  1017. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
  1018. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
  1019. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
  1020. paddlex/ppdet/modeling/mot/utils.py +0 -181
  1021. paddlex/ppdet/modeling/mot/visualization.py +0 -130
  1022. paddlex/ppdet/modeling/necks/__init__.py +0 -25
  1023. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
  1024. paddlex/ppdet/modeling/necks/fpn.py +0 -233
  1025. paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
  1026. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
  1027. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
  1028. paddlex/ppdet/modeling/ops.py +0 -1599
  1029. paddlex/ppdet/modeling/post_process.py +0 -449
  1030. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1031. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1032. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
  1033. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
  1034. paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
  1035. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
  1036. paddlex/ppdet/modeling/reid/__init__.py +0 -23
  1037. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
  1038. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
  1039. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
  1040. paddlex/ppdet/modeling/reid/resnet.py +0 -320
  1041. paddlex/ppdet/modeling/shape_spec.py +0 -33
  1042. paddlex/ppdet/modeling/tests/__init__.py +0 -13
  1043. paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
  1044. paddlex/ppdet/modeling/tests/test_base.py +0 -75
  1045. paddlex/ppdet/modeling/tests/test_ops.py +0 -839
  1046. paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
  1047. paddlex/ppdet/optimizer.py +0 -285
  1048. paddlex/ppdet/slim/__init__.py +0 -62
  1049. paddlex/ppdet/slim/distill.py +0 -111
  1050. paddlex/ppdet/slim/prune.py +0 -85
  1051. paddlex/ppdet/slim/quant.py +0 -52
  1052. paddlex/ppdet/utils/__init__.py +0 -13
  1053. paddlex/ppdet/utils/check.py +0 -93
  1054. paddlex/ppdet/utils/checkpoint.py +0 -216
  1055. paddlex/ppdet/utils/cli.py +0 -151
  1056. paddlex/ppdet/utils/colormap.py +0 -56
  1057. paddlex/ppdet/utils/download.py +0 -477
  1058. paddlex/ppdet/utils/logger.py +0 -71
  1059. paddlex/ppdet/utils/stats.py +0 -95
  1060. paddlex/ppdet/utils/visualizer.py +0 -292
  1061. paddlex/ppdet/utils/voc_utils.py +0 -87
  1062. paddlex/seg.py +0 -38
  1063. paddlex/tools/__init__.py +0 -16
  1064. paddlex/tools/convert.py +0 -52
  1065. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1066. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1067. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1068. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1069. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1070. paddlex/tools/dataset_split/__init__.py +0 -23
  1071. paddlex/tools/dataset_split/coco_split.py +0 -69
  1072. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1073. paddlex/tools/dataset_split/seg_split.py +0 -96
  1074. paddlex/tools/dataset_split/utils.py +0 -75
  1075. paddlex/tools/dataset_split/voc_split.py +0 -91
  1076. paddlex/tools/split.py +0 -41
  1077. paddlex/utils/checkpoint.py +0 -439
  1078. paddlex/utils/env.py +0 -71
  1079. paddlex/utils/shm.py +0 -67
  1080. paddlex/utils/stats.py +0 -68
  1081. paddlex/utils/utils.py +0 -140
  1082. paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
  1083. paddlex-2.0.0rc4.dist-info/METADATA +0 -29
  1084. paddlex-2.0.0rc4.dist-info/RECORD +0 -445
  1085. paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
  1086. paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
  1087. paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,2103 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # function:
16
- # operators to process sample,
17
- # eg: decode/resize/crop image
18
-
19
- from __future__ import absolute_import
20
- from __future__ import print_function
21
- from __future__ import division
22
-
23
- try:
24
- from collections.abc import Sequence
25
- except Exception:
26
- from collections import Sequence
27
-
28
- from numbers import Number, Integral
29
-
30
- import uuid
31
- import random
32
- import math
33
- import numpy as np
34
- import os
35
- import copy
36
-
37
- import cv2
38
- from PIL import Image, ImageEnhance, ImageDraw
39
-
40
- from paddlex.ppdet.core.workspace import serializable
41
- from paddlex.ppdet.modeling.layers import AnchorGrid
42
- from paddlex.ppdet.modeling import bbox_utils
43
-
44
- from .op_helper import (
45
- satisfy_sample_constraint, filter_and_process, generate_sample_bbox,
46
- clip_bbox, data_anchor_sampling, satisfy_sample_constraint_coverage,
47
- crop_image_sampling, generate_sample_bbox_square, bbox_area_sampling,
48
- is_poly, gaussian_radius, draw_gaussian)
49
-
50
- from paddlex.ppdet.utils.logger import setup_logger
51
- logger = setup_logger(__name__)
52
-
53
- registered_ops = []
54
-
55
-
56
- def register_op(cls):
57
- registered_ops.append(cls.__name__)
58
- if not hasattr(BaseOperator, cls.__name__):
59
- setattr(BaseOperator, cls.__name__, cls)
60
- else:
61
- raise KeyError("The {} class has been registered.".format(
62
- cls.__name__))
63
- return serializable(cls)
64
-
65
-
66
- class BboxError(ValueError):
67
- pass
68
-
69
-
70
- class ImageError(ValueError):
71
- pass
72
-
73
-
74
- class BaseOperator(object):
75
- def __init__(self, name=None):
76
- if name is None:
77
- name = self.__class__.__name__
78
- self._id = name + '_' + str(uuid.uuid4())[-6:]
79
-
80
- def apply(self, sample, context=None):
81
- """ Process a sample.
82
- Args:
83
- sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
84
- context (dict): info about this sample processing
85
- Returns:
86
- result (dict): a processed sample
87
- """
88
- return sample
89
-
90
- def __call__(self, sample, context=None):
91
- """ Process a sample.
92
- Args:
93
- sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
94
- context (dict): info about this sample processing
95
- Returns:
96
- result (dict): a processed sample
97
- """
98
- if isinstance(sample, Sequence):
99
- for i in range(len(sample)):
100
- sample[i] = self.apply(sample[i], context)
101
- else:
102
- sample = self.apply(sample, context)
103
- return sample
104
-
105
- def __str__(self):
106
- return str(self._id)
107
-
108
-
109
- @register_op
110
- class Decode(BaseOperator):
111
- def __init__(self):
112
- """ Transform the image data to numpy format following the rgb format
113
- """
114
- super(Decode, self).__init__()
115
-
116
- def apply(self, sample, context=None):
117
- """ load image if 'im_file' field is not empty but 'image' is"""
118
- if 'image' not in sample:
119
- with open(sample['im_file'], 'rb') as f:
120
- sample['image'] = f.read()
121
- sample.pop('im_file')
122
-
123
- im = sample['image']
124
- data = np.frombuffer(im, dtype='uint8')
125
- im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
126
- if 'keep_ori_im' in sample and sample['keep_ori_im']:
127
- sample['ori_image'] = im
128
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
129
-
130
- sample['image'] = im
131
- if 'h' not in sample:
132
- sample['h'] = im.shape[0]
133
- elif sample['h'] != im.shape[0]:
134
- logger.warn(
135
- "The actual image height: {} is not equal to the "
136
- "height: {} in annotation, and update sample['h'] by actual "
137
- "image height.".format(im.shape[0], sample['h']))
138
- sample['h'] = im.shape[0]
139
- if 'w' not in sample:
140
- sample['w'] = im.shape[1]
141
- elif sample['w'] != im.shape[1]:
142
- logger.warn(
143
- "The actual image width: {} is not equal to the "
144
- "width: {} in annotation, and update sample['w'] by actual "
145
- "image width.".format(im.shape[1], sample['w']))
146
- sample['w'] = im.shape[1]
147
-
148
- sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
149
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
150
- return sample
151
-
152
-
153
- @register_op
154
- class Permute(BaseOperator):
155
- def __init__(self):
156
- """
157
- Change the channel to be (C, H, W)
158
- """
159
- super(Permute, self).__init__()
160
-
161
- def apply(self, sample, context=None):
162
- im = sample['image']
163
- im = im.transpose((2, 0, 1))
164
- sample['image'] = im
165
- return sample
166
-
167
-
168
- @register_op
169
- class Lighting(BaseOperator):
170
- """
171
- Lighting the image by eigenvalues and eigenvectors
172
- Args:
173
- eigval (list): eigenvalues
174
- eigvec (list): eigenvectors
175
- alphastd (float): random weight of lighting, 0.1 by default
176
- """
177
-
178
- def __init__(self, eigval, eigvec, alphastd=0.1):
179
- super(Lighting, self).__init__()
180
- self.alphastd = alphastd
181
- self.eigval = np.array(eigval).astype('float32')
182
- self.eigvec = np.array(eigvec).astype('float32')
183
-
184
- def apply(self, sample, context=None):
185
- alpha = np.random.normal(scale=self.alphastd, size=(3, ))
186
- sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
187
- return sample
188
-
189
-
190
- @register_op
191
- class RandomErasingImage(BaseOperator):
192
- def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
193
- """
194
- Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
195
- Args:
196
- prob (float): probability to carry out random erasing
197
- lower (float): lower limit of the erasing area ratio
198
- heigher (float): upper limit of the erasing area ratio
199
- aspect_ratio (float): aspect ratio of the erasing region
200
- """
201
- super(RandomErasingImage, self).__init__()
202
- self.prob = prob
203
- self.lower = lower
204
- self.heigher = heigher
205
- self.aspect_ratio = aspect_ratio
206
-
207
- def apply(self, sample):
208
- gt_bbox = sample['gt_bbox']
209
- im = sample['image']
210
- if not isinstance(im, np.ndarray):
211
- raise TypeError("{}: image is not a numpy array.".format(self))
212
- if len(im.shape) != 3:
213
- raise ImageError("{}: image is not 3-dimensional.".format(self))
214
-
215
- for idx in range(gt_bbox.shape[0]):
216
- if self.prob <= np.random.rand():
217
- continue
218
-
219
- x1, y1, x2, y2 = gt_bbox[idx, :]
220
- w_bbox = x2 - x1
221
- h_bbox = y2 - y1
222
- area = w_bbox * h_bbox
223
-
224
- target_area = random.uniform(self.lower, self.higher) * area
225
- aspect_ratio = random.uniform(self.aspect_ratio,
226
- 1 / self.aspect_ratio)
227
-
228
- h = int(round(math.sqrt(target_area * aspect_ratio)))
229
- w = int(round(math.sqrt(target_area / aspect_ratio)))
230
-
231
- if w < w_bbox and h < h_bbox:
232
- off_y1 = random.randint(0, int(h_bbox - h))
233
- off_x1 = random.randint(0, int(w_bbox - w))
234
- im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
235
- x1 + off_x1 + w), :] = 0
236
- sample['image'] = im
237
- return sample
238
-
239
-
240
- @register_op
241
- class NormalizeImage(BaseOperator):
242
- def __init__(self,
243
- mean=[0.485, 0.456, 0.406],
244
- std=[1, 1, 1],
245
- is_scale=True):
246
- """
247
- Args:
248
- mean (list): the pixel mean
249
- std (list): the pixel variance
250
- """
251
- super(NormalizeImage, self).__init__()
252
- self.mean = mean
253
- self.std = std
254
- self.is_scale = is_scale
255
- if not (isinstance(self.mean, list) and isinstance(self.std, list) and
256
- isinstance(self.is_scale, bool)):
257
- raise TypeError("{}: input type is invalid.".format(self))
258
- from functools import reduce
259
- if reduce(lambda x, y: x * y, self.std) == 0:
260
- raise ValueError('{}: std is invalid!'.format(self))
261
-
262
- def apply(self, sample, context=None):
263
- """Normalize the image.
264
- Operators:
265
- 1.(optional) Scale the image to [0,1]
266
- 2. Each pixel minus mean and is divided by std
267
- """
268
- im = sample['image']
269
- im = im.astype(np.float32, copy=False)
270
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
271
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
272
-
273
- if self.is_scale:
274
- im = im / 255.0
275
-
276
- im -= mean
277
- im /= std
278
-
279
- sample['image'] = im
280
- return sample
281
-
282
-
283
- @register_op
284
- class GridMask(BaseOperator):
285
- def __init__(self,
286
- use_h=True,
287
- use_w=True,
288
- rotate=1,
289
- offset=False,
290
- ratio=0.5,
291
- mode=1,
292
- prob=0.7,
293
- upper_iter=360000):
294
- """
295
- GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
296
- Args:
297
- use_h (bool): whether to mask vertically
298
- use_w (boo;): whether to mask horizontally
299
- rotate (float): angle for the mask to rotate
300
- offset (float): mask offset
301
- ratio (float): mask ratio
302
- mode (int): gridmask mode
303
- prob (float): max probability to carry out gridmask
304
- upper_iter (int): suggested to be equal to global max_iter
305
- """
306
- super(GridMask, self).__init__()
307
- self.use_h = use_h
308
- self.use_w = use_w
309
- self.rotate = rotate
310
- self.offset = offset
311
- self.ratio = ratio
312
- self.mode = mode
313
- self.prob = prob
314
- self.upper_iter = upper_iter
315
-
316
- from .gridmask_utils import Gridmask
317
- self.gridmask_op = Gridmask(
318
- use_h,
319
- use_w,
320
- rotate=rotate,
321
- offset=offset,
322
- ratio=ratio,
323
- mode=mode,
324
- prob=prob,
325
- upper_iter=upper_iter)
326
-
327
- def apply(self, sample, context=None):
328
- sample['image'] = self.gridmask_op(sample['image'],
329
- sample['curr_iter'])
330
- return sample
331
-
332
-
333
- @register_op
334
- class RandomDistort(BaseOperator):
335
- """Random color distortion.
336
- Args:
337
- hue (list): hue settings. in [lower, upper, probability] format.
338
- saturation (list): saturation settings. in [lower, upper, probability] format.
339
- contrast (list): contrast settings. in [lower, upper, probability] format.
340
- brightness (list): brightness settings. in [lower, upper, probability] format.
341
- random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
342
- order.
343
- count (int): the number of doing distrot
344
- random_channel (bool): whether to swap channels randomly
345
- """
346
-
347
- def __init__(self,
348
- hue=[-18, 18, 0.5],
349
- saturation=[0.5, 1.5, 0.5],
350
- contrast=[0.5, 1.5, 0.5],
351
- brightness=[0.5, 1.5, 0.5],
352
- random_apply=True,
353
- count=4,
354
- random_channel=False):
355
- super(RandomDistort, self).__init__()
356
- self.hue = hue
357
- self.saturation = saturation
358
- self.contrast = contrast
359
- self.brightness = brightness
360
- self.random_apply = random_apply
361
- self.count = count
362
- self.random_channel = random_channel
363
-
364
- def apply_hue(self, img):
365
- low, high, prob = self.hue
366
- if np.random.uniform(0., 1.) < prob:
367
- return img
368
-
369
- img = img.astype(np.float32)
370
- # it works, but result differ from HSV version
371
- delta = np.random.uniform(low, high)
372
- u = np.cos(delta * np.pi)
373
- w = np.sin(delta * np.pi)
374
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
375
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
376
- [0.211, -0.523, 0.311]])
377
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
378
- [1.0, -1.107, 1.705]])
379
- t = np.dot(np.dot(ityiq, bt), tyiq).T
380
- img = np.dot(img, t)
381
- return img
382
-
383
- def apply_saturation(self, img):
384
- low, high, prob = self.saturation
385
- if np.random.uniform(0., 1.) < prob:
386
- return img
387
- delta = np.random.uniform(low, high)
388
- img = img.astype(np.float32)
389
- # it works, but result differ from HSV version
390
- gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
391
- gray = gray.sum(axis=2, keepdims=True)
392
- gray *= (1.0 - delta)
393
- img *= delta
394
- img += gray
395
- return img
396
-
397
- def apply_contrast(self, img):
398
- low, high, prob = self.contrast
399
- if np.random.uniform(0., 1.) < prob:
400
- return img
401
- delta = np.random.uniform(low, high)
402
- img = img.astype(np.float32)
403
- img *= delta
404
- return img
405
-
406
- def apply_brightness(self, img):
407
- low, high, prob = self.brightness
408
- if np.random.uniform(0., 1.) < prob:
409
- return img
410
- delta = np.random.uniform(low, high)
411
- img = img.astype(np.float32)
412
- img += delta
413
- return img
414
-
415
- def apply(self, sample, context=None):
416
- img = sample['image']
417
- if self.random_apply:
418
- functions = [
419
- self.apply_brightness, self.apply_contrast,
420
- self.apply_saturation, self.apply_hue
421
- ]
422
- distortions = np.random.permutation(functions)[:self.count]
423
- for func in distortions:
424
- img = func(img)
425
- sample['image'] = img
426
- return sample
427
-
428
- img = self.apply_brightness(img)
429
- mode = np.random.randint(0, 2)
430
-
431
- if mode:
432
- img = self.apply_contrast(img)
433
-
434
- img = self.apply_saturation(img)
435
- img = self.apply_hue(img)
436
-
437
- if not mode:
438
- img = self.apply_contrast(img)
439
-
440
- if self.random_channel:
441
- if np.random.randint(0, 2):
442
- img = img[..., np.random.permutation(3)]
443
- sample['image'] = img
444
- return sample
445
-
446
-
447
- @register_op
448
- class AutoAugment(BaseOperator):
449
- def __init__(self, autoaug_type="v1"):
450
- """
451
- Args:
452
- autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
453
- """
454
- super(AutoAugment, self).__init__()
455
- self.autoaug_type = autoaug_type
456
-
457
- def apply(self, sample, context=None):
458
- """
459
- Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
460
- """
461
- im = sample['image']
462
- gt_bbox = sample['gt_bbox']
463
- if not isinstance(im, np.ndarray):
464
- raise TypeError("{}: image is not a numpy array.".format(self))
465
- if len(im.shape) != 3:
466
- raise ImageError("{}: image is not 3-dimensional.".format(self))
467
- if len(gt_bbox) == 0:
468
- return sample
469
-
470
- height, width, _ = im.shape
471
- norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
472
- norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
473
- norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
474
- norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
475
- norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
476
-
477
- from .autoaugment_utils import distort_image_with_autoaugment
478
- im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
479
- self.autoaug_type)
480
-
481
- gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
482
- gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
483
- gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
484
- gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
485
-
486
- sample['image'] = im
487
- sample['gt_bbox'] = gt_bbox
488
- return sample
489
-
490
-
491
- @register_op
492
- class RandomFlip(BaseOperator):
493
- def __init__(self, prob=0.5):
494
- """
495
- Args:
496
- prob (float): the probability of flipping image
497
- """
498
- super(RandomFlip, self).__init__()
499
- self.prob = prob
500
- if not (isinstance(self.prob, float)):
501
- raise TypeError("{}: input type is invalid.".format(self))
502
-
503
- def apply_segm(self, segms, height, width):
504
- def _flip_poly(poly, width):
505
- flipped_poly = np.array(poly)
506
- flipped_poly[0::2] = width - np.array(poly[0::2])
507
- return flipped_poly.tolist()
508
-
509
- def _flip_rle(rle, height, width):
510
- if 'counts' in rle and type(rle['counts']) == list:
511
- rle = mask_util.frPyObjects(rle, height, width)
512
- mask = mask_util.decode(rle)
513
- mask = mask[:, ::-1]
514
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
515
- return rle
516
-
517
- flipped_segms = []
518
- for segm in segms:
519
- if is_poly(segm):
520
- # Polygon format
521
- flipped_segms.append(
522
- [_flip_poly(poly, width) for poly in segm])
523
- else:
524
- # RLE format
525
- import pycocotools.mask as mask_util
526
- flipped_segms.append(_flip_rle(segm, height, width))
527
- return flipped_segms
528
-
529
- def apply_keypoint(self, gt_keypoint, width):
530
- for i in range(gt_keypoint.shape[1]):
531
- if i % 2 == 0:
532
- old_x = gt_keypoint[:, i].copy()
533
- gt_keypoint[:, i] = width - old_x
534
- return gt_keypoint
535
-
536
- def apply_image(self, image):
537
- return image[:, ::-1, :]
538
-
539
- def apply_bbox(self, bbox, width):
540
- oldx1 = bbox[:, 0].copy()
541
- oldx2 = bbox[:, 2].copy()
542
- bbox[:, 0] = width - oldx2
543
- bbox[:, 2] = width - oldx1
544
- return bbox
545
-
546
- def apply_rbox(self, bbox, width):
547
- oldx1 = bbox[:, 0].copy()
548
- oldx2 = bbox[:, 2].copy()
549
- oldx3 = bbox[:, 4].copy()
550
- oldx4 = bbox[:, 6].copy()
551
- bbox[:, 0] = width - oldx1
552
- bbox[:, 2] = width - oldx2
553
- bbox[:, 4] = width - oldx3
554
- bbox[:, 6] = width - oldx4
555
- bbox = [bbox_utils.get_best_begin_point_single(e) for e in bbox]
556
- return bbox
557
-
558
- def apply(self, sample, context=None):
559
- """Filp the image and bounding box.
560
- Operators:
561
- 1. Flip the image numpy.
562
- 2. Transform the bboxes' x coordinates.
563
- (Must judge whether the coordinates are normalized!)
564
- 3. Transform the segmentations' x coordinates.
565
- (Must judge whether the coordinates are normalized!)
566
- Output:
567
- sample: the image, bounding box and segmentation part
568
- in sample are flipped.
569
- """
570
- if np.random.uniform(0, 1) < self.prob:
571
- im = sample['image']
572
- height, width = im.shape[:2]
573
- im = self.apply_image(im)
574
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
575
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
576
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
577
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
578
- width)
579
- if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
580
- sample['gt_keypoint'] = self.apply_keypoint(
581
- sample['gt_keypoint'], width)
582
-
583
- if 'semantic' in sample and sample['semantic']:
584
- sample['semantic'] = sample['semantic'][:, ::-1]
585
-
586
- if 'gt_segm' in sample and sample['gt_segm'].any():
587
- sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]
588
-
589
- if 'gt_rbox2poly' in sample and sample['gt_rbox2poly'].any():
590
- sample['gt_rbox2poly'] = self.apply_rbox(
591
- sample['gt_rbox2poly'], width)
592
-
593
- sample['flipped'] = True
594
- sample['image'] = im
595
- return sample
596
-
597
-
598
- @register_op
599
- class Resize(BaseOperator):
600
- def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
601
- """
602
- Resize image to target size. if keep_ratio is True,
603
- resize the image's long side to the maximum of target_size
604
- if keep_ratio is False, resize the image to target size(h, w)
605
- Args:
606
- target_size (int|list): image target size
607
- keep_ratio (bool): whether keep_ratio or not, default true
608
- interp (int): the interpolation method
609
- """
610
- super(Resize, self).__init__()
611
- self.keep_ratio = keep_ratio
612
- self.interp = interp
613
- if not isinstance(target_size, (Integral, Sequence)):
614
- raise TypeError(
615
- "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
616
- format(type(target_size)))
617
- if isinstance(target_size, Integral):
618
- target_size = [target_size, target_size]
619
- self.target_size = target_size
620
-
621
- def apply_image(self, image, scale):
622
- im_scale_x, im_scale_y = scale
623
-
624
- return cv2.resize(
625
- image,
626
- None,
627
- None,
628
- fx=im_scale_x,
629
- fy=im_scale_y,
630
- interpolation=self.interp)
631
-
632
- def apply_bbox(self, bbox, scale, size):
633
- im_scale_x, im_scale_y = scale
634
- resize_w, resize_h = size
635
- bbox[:, 0::2] *= im_scale_x
636
- bbox[:, 1::2] *= im_scale_y
637
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
638
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
639
- return bbox
640
-
641
- def apply_segm(self, segms, im_size, scale):
642
- def _resize_poly(poly, im_scale_x, im_scale_y):
643
- resized_poly = np.array(poly).astype('float32')
644
- resized_poly[0::2] *= im_scale_x
645
- resized_poly[1::2] *= im_scale_y
646
- return resized_poly.tolist()
647
-
648
- def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
649
- if 'counts' in rle and type(rle['counts']) == list:
650
- rle = mask_util.frPyObjects(rle, im_h, im_w)
651
-
652
- mask = mask_util.decode(rle)
653
- mask = cv2.resize(
654
- image,
655
- None,
656
- None,
657
- fx=im_scale_x,
658
- fy=im_scale_y,
659
- interpolation=self.interp)
660
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
661
- return rle
662
-
663
- im_h, im_w = im_size
664
- im_scale_x, im_scale_y = scale
665
- resized_segms = []
666
- for segm in segms:
667
- if is_poly(segm):
668
- # Polygon format
669
- resized_segms.append([
670
- _resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
671
- ])
672
- else:
673
- # RLE format
674
- import pycocotools.mask as mask_util
675
- resized_segms.append(
676
- _resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
677
-
678
- return resized_segms
679
-
680
- def apply(self, sample, context=None):
681
- """ Resize the image numpy.
682
- """
683
- im = sample['image']
684
- if not isinstance(im, np.ndarray):
685
- raise TypeError("{}: image type is not numpy.".format(self))
686
- if len(im.shape) != 3:
687
- raise ImageError('{}: image is not 3-dimensional.'.format(self))
688
-
689
- # apply image
690
- im_shape = im.shape
691
- if self.keep_ratio:
692
-
693
- im_size_min = np.min(im_shape[0:2])
694
- im_size_max = np.max(im_shape[0:2])
695
-
696
- target_size_min = np.min(self.target_size)
697
- target_size_max = np.max(self.target_size)
698
-
699
- im_scale = min(target_size_min / im_size_min,
700
- target_size_max / im_size_max)
701
-
702
- resize_h = im_scale * float(im_shape[0])
703
- resize_w = im_scale * float(im_shape[1])
704
-
705
- im_scale_x = im_scale
706
- im_scale_y = im_scale
707
- else:
708
- resize_h, resize_w = self.target_size
709
- im_scale_y = resize_h / im_shape[0]
710
- im_scale_x = resize_w / im_shape[1]
711
-
712
- im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
713
- sample['image'] = im
714
- sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
715
- if 'scale_factor' in sample:
716
- scale_factor = sample['scale_factor']
717
- sample['scale_factor'] = np.asarray(
718
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
719
- dtype=np.float32)
720
- else:
721
- sample['scale_factor'] = np.asarray(
722
- [im_scale_y, im_scale_x], dtype=np.float32)
723
-
724
- # apply bbox
725
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
726
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
727
- [im_scale_x, im_scale_y],
728
- [resize_w, resize_h])
729
-
730
- # apply rbox
731
- if 'gt_rbox2poly' in sample:
732
- if np.array(sample['gt_rbox2poly']).shape[1] != 8:
733
- logger.warn(
734
- "gt_rbox2poly's length shoule be 8, but actually is {}".
735
- format(len(sample['gt_rbox2poly'])))
736
- sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'],
737
- [im_scale_x, im_scale_y],
738
- [resize_w, resize_h])
739
-
740
- # apply polygon
741
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
742
- sample['gt_poly'] = self.apply_segm(
743
- sample['gt_poly'], im_shape[:2], [im_scale_x, im_scale_y])
744
-
745
- # apply semantic
746
- if 'semantic' in sample and sample['semantic']:
747
- semantic = sample['semantic']
748
- semantic = cv2.resize(
749
- semantic.astype('float32'),
750
- None,
751
- None,
752
- fx=im_scale_x,
753
- fy=im_scale_y,
754
- interpolation=self.interp)
755
- semantic = np.asarray(semantic).astype('int32')
756
- semantic = np.expand_dims(semantic, 0)
757
- sample['semantic'] = semantic
758
-
759
- # apply gt_segm
760
- if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
761
- masks = [
762
- cv2.resize(
763
- gt_segm,
764
- None,
765
- None,
766
- fx=im_scale_x,
767
- fy=im_scale_y,
768
- interpolation=cv2.INTER_NEAREST)
769
- for gt_segm in sample['gt_segm']
770
- ]
771
- sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
772
-
773
- return sample
774
-
775
-
776
- @register_op
777
- class MultiscaleTestResize(BaseOperator):
778
- def __init__(self,
779
- origin_target_size=[800, 1333],
780
- target_size=[],
781
- interp=cv2.INTER_LINEAR,
782
- use_flip=True):
783
- """
784
- Rescale image to the each size in target size, and capped at max_size.
785
- Args:
786
- origin_target_size (list): origin target size of image
787
- target_size (list): A list of target sizes of image.
788
- interp (int): the interpolation method.
789
- use_flip (bool): whether use flip augmentation.
790
- """
791
- super(MultiscaleTestResize, self).__init__()
792
- self.interp = interp
793
- self.use_flip = use_flip
794
-
795
- if not isinstance(target_size, Sequence):
796
- raise TypeError(
797
- "Type of target_size is invalid. Must be List or Tuple, now is {}".
798
- format(type(target_size)))
799
- self.target_size = target_size
800
-
801
- if not isinstance(origin_target_size, Sequence):
802
- raise TypeError(
803
- "Type of origin_target_size is invalid. Must be List or Tuple, now is {}".
804
- format(type(origin_target_size)))
805
-
806
- self.origin_target_size = origin_target_size
807
-
808
- def apply(self, sample, context=None):
809
- """ Resize the image numpy for multi-scale test.
810
- """
811
- samples = []
812
- resizer = Resize(
813
- self.origin_target_size, keep_ratio=True, interp=self.interp)
814
- samples.append(resizer(sample.copy(), context))
815
- if self.use_flip:
816
- flipper = RandomFlip(1.1)
817
- samples.append(flipper(sample.copy(), context=context))
818
-
819
- for size in self.target_size:
820
- resizer = Resize(size, keep_ratio=True, interp=self.interp)
821
- samples.append(resizer(sample.copy(), context))
822
-
823
- return samples
824
-
825
-
826
- @register_op
827
- class RandomResize(BaseOperator):
828
- def __init__(self,
829
- target_size,
830
- keep_ratio=True,
831
- interp=cv2.INTER_LINEAR,
832
- random_size=True,
833
- random_interp=False):
834
- """
835
- Resize image to target size randomly. random target_size and interpolation method
836
- Args:
837
- target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
838
- keep_ratio (bool): whether keep_raio or not, default true
839
- interp (int): the interpolation method
840
- random_size (bool): whether random select target size of image
841
- random_interp (bool): whether random select interpolation method
842
- """
843
- super(RandomResize, self).__init__()
844
- self.keep_ratio = keep_ratio
845
- self.interp = interp
846
- self.interps = [
847
- cv2.INTER_NEAREST,
848
- cv2.INTER_LINEAR,
849
- cv2.INTER_AREA,
850
- cv2.INTER_CUBIC,
851
- cv2.INTER_LANCZOS4,
852
- ]
853
- assert isinstance(target_size, (
854
- Integral, Sequence)), "target_size must be Integer, List or Tuple"
855
- if random_size and not isinstance(target_size, Sequence):
856
- raise TypeError(
857
- "Type of target_size is invalid when random_size is True. Must be List or Tuple, now is {}".
858
- format(type(target_size)))
859
- self.target_size = target_size
860
- self.random_size = random_size
861
- self.random_interp = random_interp
862
-
863
- def apply(self, sample, context=None):
864
- """ Resize the image numpy.
865
- """
866
- if self.random_size:
867
- target_size = random.choice(self.target_size)
868
- else:
869
- target_size = self.target_size
870
-
871
- if self.random_interp:
872
- interp = random.choice(self.interps)
873
- else:
874
- interp = self.interp
875
-
876
- resizer = Resize(target_size, self.keep_ratio, interp)
877
- return resizer(sample, context=context)
878
-
879
-
880
- @register_op
881
- class RandomExpand(BaseOperator):
882
- """Random expand the canvas.
883
- Args:
884
- ratio (float): maximum expansion ratio.
885
- prob (float): probability to expand.
886
- fill_value (list): color value used to fill the canvas. in RGB order.
887
- """
888
-
889
- def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)):
890
- super(RandomExpand, self).__init__()
891
- assert ratio > 1.01, "expand ratio must be larger than 1.01"
892
- self.ratio = ratio
893
- self.prob = prob
894
- assert isinstance(fill_value, (Number, Sequence)), \
895
- "fill value must be either float or sequence"
896
- if isinstance(fill_value, Number):
897
- fill_value = (fill_value, ) * 3
898
- if not isinstance(fill_value, tuple):
899
- fill_value = tuple(fill_value)
900
- self.fill_value = fill_value
901
-
902
- def apply(self, sample, context=None):
903
- if np.random.uniform(0., 1.) < self.prob:
904
- return sample
905
-
906
- im = sample['image']
907
- height, width = im.shape[:2]
908
- ratio = np.random.uniform(1., self.ratio)
909
- h = int(height * ratio)
910
- w = int(width * ratio)
911
- if not h > height or not w > width:
912
- return sample
913
- y = np.random.randint(0, h - height)
914
- x = np.random.randint(0, w - width)
915
- offsets, size = [x, y], [h, w]
916
-
917
- pad = Pad(size,
918
- pad_mode=-1,
919
- offsets=offsets,
920
- fill_value=self.fill_value)
921
-
922
- return pad(sample, context=context)
923
-
924
-
925
- @register_op
926
- class CropWithSampling(BaseOperator):
927
- def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
928
- """
929
- Args:
930
- batch_sampler (list): Multiple sets of different
931
- parameters for cropping.
932
- satisfy_all (bool): whether all boxes must satisfy.
933
- e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
934
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
935
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
936
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
937
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
938
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
939
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
940
- [max sample, max trial, min scale, max scale,
941
- min aspect ratio, max aspect ratio,
942
- min overlap, max overlap]
943
- avoid_no_bbox (bool): whether to to avoid the
944
- situation where the box does not appear.
945
- """
946
- super(CropWithSampling, self).__init__()
947
- self.batch_sampler = batch_sampler
948
- self.satisfy_all = satisfy_all
949
- self.avoid_no_bbox = avoid_no_bbox
950
-
951
- def apply(self, sample, context):
952
- """
953
- Crop the image and modify bounding box.
954
- Operators:
955
- 1. Scale the image width and height.
956
- 2. Crop the image according to a radom sample.
957
- 3. Rescale the bounding box.
958
- 4. Determine if the new bbox is satisfied in the new image.
959
- Returns:
960
- sample: the image, bounding box are replaced.
961
- """
962
- assert 'image' in sample, "image data not found"
963
- im = sample['image']
964
- gt_bbox = sample['gt_bbox']
965
- gt_class = sample['gt_class']
966
- im_height, im_width = im.shape[:2]
967
- gt_score = None
968
- if 'gt_score' in sample:
969
- gt_score = sample['gt_score']
970
- sampled_bbox = []
971
- gt_bbox = gt_bbox.tolist()
972
- for sampler in self.batch_sampler:
973
- found = 0
974
- for i in range(sampler[1]):
975
- if found >= sampler[0]:
976
- break
977
- sample_bbox = generate_sample_bbox(sampler)
978
- if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
979
- self.satisfy_all):
980
- sampled_bbox.append(sample_bbox)
981
- found = found + 1
982
- im = np.array(im)
983
- while sampled_bbox:
984
- idx = int(np.random.uniform(0, len(sampled_bbox)))
985
- sample_bbox = sampled_bbox.pop(idx)
986
- sample_bbox = clip_bbox(sample_bbox)
987
- crop_bbox, crop_class, crop_score = \
988
- filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score)
989
- if self.avoid_no_bbox:
990
- if len(crop_bbox) < 1:
991
- continue
992
- xmin = int(sample_bbox[0] * im_width)
993
- xmax = int(sample_bbox[2] * im_width)
994
- ymin = int(sample_bbox[1] * im_height)
995
- ymax = int(sample_bbox[3] * im_height)
996
- im = im[ymin:ymax, xmin:xmax]
997
- sample['image'] = im
998
- sample['gt_bbox'] = crop_bbox
999
- sample['gt_class'] = crop_class
1000
- sample['gt_score'] = crop_score
1001
- return sample
1002
- return sample
1003
-
1004
-
1005
- @register_op
1006
- class CropWithDataAchorSampling(BaseOperator):
1007
- def __init__(self,
1008
- batch_sampler,
1009
- anchor_sampler=None,
1010
- target_size=None,
1011
- das_anchor_scales=[16, 32, 64, 128],
1012
- sampling_prob=0.5,
1013
- min_size=8.,
1014
- avoid_no_bbox=True):
1015
- """
1016
- Args:
1017
- anchor_sampler (list): anchor_sampling sets of different
1018
- parameters for cropping.
1019
- batch_sampler (list): Multiple sets of different
1020
- parameters for cropping.
1021
- e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
1022
- [[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
1023
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
1024
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
1025
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
1026
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
1027
- [max sample, max trial, min scale, max scale,
1028
- min aspect ratio, max aspect ratio,
1029
- min overlap, max overlap, min coverage, max coverage]
1030
- target_size (int): target image size.
1031
- das_anchor_scales (list[float]): a list of anchor scales in data
1032
- anchor smapling.
1033
- min_size (float): minimum size of sampled bbox.
1034
- avoid_no_bbox (bool): whether to to avoid the
1035
- situation where the box does not appear.
1036
- """
1037
- super(CropWithDataAchorSampling, self).__init__()
1038
- self.anchor_sampler = anchor_sampler
1039
- self.batch_sampler = batch_sampler
1040
- self.target_size = target_size
1041
- self.sampling_prob = sampling_prob
1042
- self.min_size = min_size
1043
- self.avoid_no_bbox = avoid_no_bbox
1044
- self.das_anchor_scales = np.array(das_anchor_scales)
1045
-
1046
- def apply(self, sample, context):
1047
- """
1048
- Crop the image and modify bounding box.
1049
- Operators:
1050
- 1. Scale the image width and height.
1051
- 2. Crop the image according to a radom sample.
1052
- 3. Rescale the bounding box.
1053
- 4. Determine if the new bbox is satisfied in the new image.
1054
- Returns:
1055
- sample: the image, bounding box are replaced.
1056
- """
1057
- assert 'image' in sample, "image data not found"
1058
- im = sample['image']
1059
- gt_bbox = sample['gt_bbox']
1060
- gt_class = sample['gt_class']
1061
- image_height, image_width = im.shape[:2]
1062
- gt_bbox[:, 0] /= image_width
1063
- gt_bbox[:, 1] /= image_height
1064
- gt_bbox[:, 2] /= image_width
1065
- gt_bbox[:, 3] /= image_height
1066
- gt_score = None
1067
- if 'gt_score' in sample:
1068
- gt_score = sample['gt_score']
1069
- sampled_bbox = []
1070
- gt_bbox = gt_bbox.tolist()
1071
-
1072
- prob = np.random.uniform(0., 1.)
1073
- if prob > self.sampling_prob: # anchor sampling
1074
- assert self.anchor_sampler
1075
- for sampler in self.anchor_sampler:
1076
- found = 0
1077
- for i in range(sampler[1]):
1078
- if found >= sampler[0]:
1079
- break
1080
- sample_bbox = data_anchor_sampling(
1081
- gt_bbox, image_width, image_height,
1082
- self.das_anchor_scales, self.target_size)
1083
- if sample_bbox == 0:
1084
- break
1085
- if satisfy_sample_constraint_coverage(sampler, sample_bbox,
1086
- gt_bbox):
1087
- sampled_bbox.append(sample_bbox)
1088
- found = found + 1
1089
- im = np.array(im)
1090
- while sampled_bbox:
1091
- idx = int(np.random.uniform(0, len(sampled_bbox)))
1092
- sample_bbox = sampled_bbox.pop(idx)
1093
-
1094
- if 'gt_keypoint' in sample.keys():
1095
- keypoints = (sample['gt_keypoint'],
1096
- sample['keypoint_ignore'])
1097
- crop_bbox, crop_class, crop_score, gt_keypoints = \
1098
- filter_and_process(sample_bbox, gt_bbox, gt_class,
1099
- scores=gt_score,
1100
- keypoints=keypoints)
1101
- else:
1102
- crop_bbox, crop_class, crop_score = filter_and_process(
1103
- sample_bbox, gt_bbox, gt_class, scores=gt_score)
1104
- crop_bbox, crop_class, crop_score = bbox_area_sampling(
1105
- crop_bbox, crop_class, crop_score, self.target_size,
1106
- self.min_size)
1107
-
1108
- if self.avoid_no_bbox:
1109
- if len(crop_bbox) < 1:
1110
- continue
1111
- im = crop_image_sampling(im, sample_bbox, image_width,
1112
- image_height, self.target_size)
1113
- height, width = im.shape[:2]
1114
- crop_bbox[:, 0] *= width
1115
- crop_bbox[:, 1] *= height
1116
- crop_bbox[:, 2] *= width
1117
- crop_bbox[:, 3] *= height
1118
- sample['image'] = im
1119
- sample['gt_bbox'] = crop_bbox
1120
- sample['gt_class'] = crop_class
1121
- if 'gt_score' in sample:
1122
- sample['gt_score'] = crop_score
1123
- if 'gt_keypoint' in sample.keys():
1124
- sample['gt_keypoint'] = gt_keypoints[0]
1125
- sample['keypoint_ignore'] = gt_keypoints[1]
1126
- return sample
1127
- return sample
1128
-
1129
- else:
1130
- for sampler in self.batch_sampler:
1131
- found = 0
1132
- for i in range(sampler[1]):
1133
- if found >= sampler[0]:
1134
- break
1135
- sample_bbox = generate_sample_bbox_square(
1136
- sampler, image_width, image_height)
1137
- if satisfy_sample_constraint_coverage(sampler, sample_bbox,
1138
- gt_bbox):
1139
- sampled_bbox.append(sample_bbox)
1140
- found = found + 1
1141
- im = np.array(im)
1142
- while sampled_bbox:
1143
- idx = int(np.random.uniform(0, len(sampled_bbox)))
1144
- sample_bbox = sampled_bbox.pop(idx)
1145
- sample_bbox = clip_bbox(sample_bbox)
1146
-
1147
- if 'gt_keypoint' in sample.keys():
1148
- keypoints = (sample['gt_keypoint'],
1149
- sample['keypoint_ignore'])
1150
- crop_bbox, crop_class, crop_score, gt_keypoints = \
1151
- filter_and_process(sample_bbox, gt_bbox, gt_class,
1152
- scores=gt_score,
1153
- keypoints=keypoints)
1154
- else:
1155
- crop_bbox, crop_class, crop_score = filter_and_process(
1156
- sample_bbox, gt_bbox, gt_class, scores=gt_score)
1157
- # sampling bbox according the bbox area
1158
- crop_bbox, crop_class, crop_score = bbox_area_sampling(
1159
- crop_bbox, crop_class, crop_score, self.target_size,
1160
- self.min_size)
1161
-
1162
- if self.avoid_no_bbox:
1163
- if len(crop_bbox) < 1:
1164
- continue
1165
- xmin = int(sample_bbox[0] * image_width)
1166
- xmax = int(sample_bbox[2] * image_width)
1167
- ymin = int(sample_bbox[1] * image_height)
1168
- ymax = int(sample_bbox[3] * image_height)
1169
- im = im[ymin:ymax, xmin:xmax]
1170
- height, width = im.shape[:2]
1171
- crop_bbox[:, 0] *= width
1172
- crop_bbox[:, 1] *= height
1173
- crop_bbox[:, 2] *= width
1174
- crop_bbox[:, 3] *= height
1175
- sample['image'] = im
1176
- sample['gt_bbox'] = crop_bbox
1177
- sample['gt_class'] = crop_class
1178
- if 'gt_score' in sample:
1179
- sample['gt_score'] = crop_score
1180
- if 'gt_keypoint' in sample.keys():
1181
- sample['gt_keypoint'] = gt_keypoints[0]
1182
- sample['keypoint_ignore'] = gt_keypoints[1]
1183
- return sample
1184
- return sample
1185
-
1186
-
1187
- @register_op
1188
- class RandomCrop(BaseOperator):
1189
- """Random crop image and bboxes.
1190
- Args:
1191
- aspect_ratio (list): aspect ratio of cropped region.
1192
- in [min, max] format.
1193
- thresholds (list): iou thresholds for decide a valid bbox crop.
1194
- scaling (list): ratio between a cropped region and the original image.
1195
- in [min, max] format.
1196
- num_attempts (int): number of tries before giving up.
1197
- allow_no_crop (bool): allow return without actually cropping them.
1198
- cover_all_box (bool): ensure all bboxes are covered in the final crop.
1199
- is_mask_crop(bool): whether crop the segmentation.
1200
- """
1201
-
1202
- def __init__(self,
1203
- aspect_ratio=[.5, 2.],
1204
- thresholds=[.0, .1, .3, .5, .7, .9],
1205
- scaling=[.3, 1.],
1206
- num_attempts=50,
1207
- allow_no_crop=True,
1208
- cover_all_box=False,
1209
- is_mask_crop=False):
1210
- super(RandomCrop, self).__init__()
1211
- self.aspect_ratio = aspect_ratio
1212
- self.thresholds = thresholds
1213
- self.scaling = scaling
1214
- self.num_attempts = num_attempts
1215
- self.allow_no_crop = allow_no_crop
1216
- self.cover_all_box = cover_all_box
1217
- self.is_mask_crop = is_mask_crop
1218
-
1219
- def crop_segms(self, segms, valid_ids, crop, height, width):
1220
- def _crop_poly(segm, crop):
1221
- xmin, ymin, xmax, ymax = crop
1222
- crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
1223
- crop_p = np.array(crop_coord).reshape(4, 2)
1224
- crop_p = Polygon(crop_p)
1225
-
1226
- crop_segm = list()
1227
- for poly in segm:
1228
- poly = np.array(poly).reshape(len(poly) // 2, 2)
1229
- polygon = Polygon(poly)
1230
- if not polygon.is_valid:
1231
- exterior = polygon.exterior
1232
- multi_lines = exterior.intersection(exterior)
1233
- polygons = shapely.ops.polygonize(multi_lines)
1234
- polygon = MultiPolygon(polygons)
1235
- multi_polygon = list()
1236
- if isinstance(polygon, MultiPolygon):
1237
- multi_polygon = copy.deepcopy(polygon)
1238
- else:
1239
- multi_polygon.append(copy.deepcopy(polygon))
1240
- for per_polygon in multi_polygon:
1241
- inter = per_polygon.intersection(crop_p)
1242
- if not inter:
1243
- continue
1244
- if isinstance(inter, (MultiPolygon, GeometryCollection)):
1245
- for part in inter:
1246
- if not isinstance(part, Polygon):
1247
- continue
1248
- part = np.squeeze(
1249
- np.array(part.exterior.coords[:-1]).reshape(
1250
- 1, -1))
1251
- part[0::2] -= xmin
1252
- part[1::2] -= ymin
1253
- crop_segm.append(part.tolist())
1254
- elif isinstance(inter, Polygon):
1255
- crop_poly = np.squeeze(
1256
- np.array(inter.exterior.coords[:-1]).reshape(1,
1257
- -1))
1258
- crop_poly[0::2] -= xmin
1259
- crop_poly[1::2] -= ymin
1260
- crop_segm.append(crop_poly.tolist())
1261
- else:
1262
- continue
1263
- return crop_segm
1264
-
1265
- def _crop_rle(rle, crop, height, width):
1266
- if 'counts' in rle and type(rle['counts']) == list:
1267
- rle = mask_util.frPyObjects(rle, height, width)
1268
- mask = mask_util.decode(rle)
1269
- mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
1270
- rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
1271
- return rle
1272
-
1273
- crop_segms = []
1274
- for id in valid_ids:
1275
- segm = segms[id]
1276
- if is_poly(segm):
1277
- import copy
1278
- import shapely.ops
1279
- from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
1280
- logging.getLogger("shapely").setLevel(logging.WARNING)
1281
- # Polygon format
1282
- crop_segms.append(_crop_poly(segm, crop))
1283
- else:
1284
- # RLE format
1285
- import pycocotools.mask as mask_util
1286
- crop_segms.append(_crop_rle(segm, crop, height, width))
1287
- return crop_segms
1288
-
1289
- def apply(self, sample, context=None):
1290
- if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
1291
- return sample
1292
-
1293
- h, w = sample['image'].shape[:2]
1294
- gt_bbox = sample['gt_bbox']
1295
-
1296
- # NOTE Original method attempts to generate one candidate for each
1297
- # threshold then randomly sample one from the resulting list.
1298
- # Here a short circuit approach is taken, i.e., randomly choose a
1299
- # threshold and attempt to find a valid crop, and simply return the
1300
- # first one found.
1301
- # The probability is not exactly the same, kinda resembling the
1302
- # "Monty Hall" problem. Actually carrying out the attempts will affect
1303
- # observability (just like opening doors in the "Monty Hall" game).
1304
- thresholds = list(self.thresholds)
1305
- if self.allow_no_crop:
1306
- thresholds.append('no_crop')
1307
- np.random.shuffle(thresholds)
1308
-
1309
- for thresh in thresholds:
1310
- if thresh == 'no_crop':
1311
- return sample
1312
-
1313
- found = False
1314
- for i in range(self.num_attempts):
1315
- scale = np.random.uniform(*self.scaling)
1316
- if self.aspect_ratio is not None:
1317
- min_ar, max_ar = self.aspect_ratio
1318
- aspect_ratio = np.random.uniform(
1319
- max(min_ar, scale**2), min(max_ar, scale**-2))
1320
- h_scale = scale / np.sqrt(aspect_ratio)
1321
- w_scale = scale * np.sqrt(aspect_ratio)
1322
- else:
1323
- h_scale = np.random.uniform(*self.scaling)
1324
- w_scale = np.random.uniform(*self.scaling)
1325
- crop_h = h * h_scale
1326
- crop_w = w * w_scale
1327
- if self.aspect_ratio is None:
1328
- if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
1329
- continue
1330
-
1331
- crop_h = int(crop_h)
1332
- crop_w = int(crop_w)
1333
- crop_y = np.random.randint(0, h - crop_h)
1334
- crop_x = np.random.randint(0, w - crop_w)
1335
- crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
1336
- iou = self._iou_matrix(
1337
- gt_bbox, np.array(
1338
- [crop_box], dtype=np.float32))
1339
- if iou.max() < thresh:
1340
- continue
1341
-
1342
- if self.cover_all_box and iou.min() < thresh:
1343
- continue
1344
-
1345
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
1346
- gt_bbox, np.array(
1347
- crop_box, dtype=np.float32))
1348
- if valid_ids.size > 0:
1349
- found = True
1350
- break
1351
-
1352
- if found:
1353
- if self.is_mask_crop and 'gt_poly' in sample and len(sample[
1354
- 'gt_poly']) > 0:
1355
- crop_polys = self.crop_segms(
1356
- sample['gt_poly'],
1357
- valid_ids,
1358
- np.array(
1359
- crop_box, dtype=np.int64),
1360
- h,
1361
- w)
1362
- if [] in crop_polys:
1363
- delete_id = list()
1364
- valid_polys = list()
1365
- for id, crop_poly in enumerate(crop_polys):
1366
- if crop_poly == []:
1367
- delete_id.append(id)
1368
- else:
1369
- valid_polys.append(crop_poly)
1370
- valid_ids = np.delete(valid_ids, delete_id)
1371
- if len(valid_polys) == 0:
1372
- return sample
1373
- sample['gt_poly'] = valid_polys
1374
- else:
1375
- sample['gt_poly'] = crop_polys
1376
-
1377
- if 'gt_segm' in sample:
1378
- sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
1379
- crop_box)
1380
- sample['gt_segm'] = np.take(
1381
- sample['gt_segm'], valid_ids, axis=0)
1382
-
1383
- sample['image'] = self._crop_image(sample['image'], crop_box)
1384
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
1385
- sample['gt_class'] = np.take(
1386
- sample['gt_class'], valid_ids, axis=0)
1387
- if 'gt_score' in sample:
1388
- sample['gt_score'] = np.take(
1389
- sample['gt_score'], valid_ids, axis=0)
1390
-
1391
- if 'is_crowd' in sample:
1392
- sample['is_crowd'] = np.take(
1393
- sample['is_crowd'], valid_ids, axis=0)
1394
- return sample
1395
-
1396
- return sample
1397
-
1398
- def _iou_matrix(self, a, b):
1399
- tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
1400
- br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
1401
-
1402
- area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
1403
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
1404
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
1405
- area_o = (area_a[:, np.newaxis] + area_b - area_i)
1406
- return area_i / (area_o + 1e-10)
1407
-
1408
- def _crop_box_with_center_constraint(self, box, crop):
1409
- cropped_box = box.copy()
1410
-
1411
- cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
1412
- cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
1413
- cropped_box[:, :2] -= crop[:2]
1414
- cropped_box[:, 2:] -= crop[:2]
1415
-
1416
- centers = (box[:, :2] + box[:, 2:]) / 2
1417
- valid = np.logical_and(crop[:2] <= centers,
1418
- centers < crop[2:]).all(axis=1)
1419
- valid = np.logical_and(
1420
- valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
1421
-
1422
- return cropped_box, np.where(valid)[0]
1423
-
1424
- def _crop_image(self, img, crop):
1425
- x1, y1, x2, y2 = crop
1426
- return img[y1:y2, x1:x2, :]
1427
-
1428
- def _crop_segm(self, segm, crop):
1429
- x1, y1, x2, y2 = crop
1430
- return segm[:, y1:y2, x1:x2]
1431
-
1432
-
1433
- @register_op
1434
- class RandomScaledCrop(BaseOperator):
1435
- """Resize image and bbox based on long side (with optional random scaling),
1436
- then crop or pad image to target size.
1437
- Args:
1438
- target_dim (int): target size.
1439
- scale_range (list): random scale range.
1440
- interp (int): interpolation method, default to `cv2.INTER_LINEAR`.
1441
- """
1442
-
1443
- def __init__(self,
1444
- target_dim=512,
1445
- scale_range=[.1, 2.],
1446
- interp=cv2.INTER_LINEAR):
1447
- super(RandomScaledCrop, self).__init__()
1448
- self.target_dim = target_dim
1449
- self.scale_range = scale_range
1450
- self.interp = interp
1451
-
1452
- def apply(self, sample, context=None):
1453
- img = sample['image']
1454
- h, w = img.shape[:2]
1455
- random_scale = np.random.uniform(*self.scale_range)
1456
- dim = self.target_dim
1457
- random_dim = int(dim * random_scale)
1458
- dim_max = max(h, w)
1459
- scale = random_dim / dim_max
1460
- resize_w = w * scale
1461
- resize_h = h * scale
1462
- offset_x = int(max(0, np.random.uniform(0., resize_w - dim)))
1463
- offset_y = int(max(0, np.random.uniform(0., resize_h - dim)))
1464
-
1465
- img = cv2.resize(img, (resize_w, resize_h), interpolation=self.interp)
1466
- img = np.array(img)
1467
- canvas = np.zeros((dim, dim, 3), dtype=img.dtype)
1468
- canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[
1469
- offset_y:offset_y + dim, offset_x:offset_x + dim, :]
1470
- sample['image'] = canvas
1471
- sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
1472
- scale_factor = sample['sacle_factor']
1473
- sample['scale_factor'] = np.asarray(
1474
- [scale_factor[0] * scale, scale_factor[1] * scale],
1475
- dtype=np.float32)
1476
-
1477
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
1478
- scale_array = np.array([scale, scale] * 2, dtype=np.float32)
1479
- shift_array = np.array([offset_x, offset_y] * 2, dtype=np.float32)
1480
- boxes = sample['gt_bbox'] * scale_array - shift_array
1481
- boxes = np.clip(boxes, 0, dim - 1)
1482
- # filter boxes with no area
1483
- area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1)
1484
- valid = (area > 1.).nonzero()[0]
1485
- sample['gt_bbox'] = boxes[valid]
1486
- sample['gt_class'] = sample['gt_class'][valid]
1487
-
1488
- return sample
1489
-
1490
-
1491
- @register_op
1492
- class Cutmix(BaseOperator):
1493
- def __init__(self, alpha=1.5, beta=1.5):
1494
- """
1495
- CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899
1496
- Cutmix image and gt_bbbox/gt_score
1497
- Args:
1498
- alpha (float): alpha parameter of beta distribute
1499
- beta (float): beta parameter of beta distribute
1500
- """
1501
- super(Cutmix, self).__init__()
1502
- self.alpha = alpha
1503
- self.beta = beta
1504
- if self.alpha <= 0.0:
1505
- raise ValueError("alpha shold be positive in {}".format(self))
1506
- if self.beta <= 0.0:
1507
- raise ValueError("beta shold be positive in {}".format(self))
1508
-
1509
- def apply_image(self, img1, img2, factor):
1510
- """ _rand_bbox """
1511
- h = max(img1.shape[0], img2.shape[0])
1512
- w = max(img1.shape[1], img2.shape[1])
1513
- cut_rat = np.sqrt(1. - factor)
1514
-
1515
- cut_w = np.int(w * cut_rat)
1516
- cut_h = np.int(h * cut_rat)
1517
-
1518
- # uniform
1519
- cx = np.random.randint(w)
1520
- cy = np.random.randint(h)
1521
-
1522
- bbx1 = np.clip(cx - cut_w // 2, 0, w - 1)
1523
- bby1 = np.clip(cy - cut_h // 2, 0, h - 1)
1524
- bbx2 = np.clip(cx + cut_w // 2, 0, w - 1)
1525
- bby2 = np.clip(cy + cut_h // 2, 0, h - 1)
1526
-
1527
- img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32')
1528
- img_1_pad[:img1.shape[0], :img1.shape[1], :] = \
1529
- img1.astype('float32')
1530
- img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32')
1531
- img_2_pad[:img2.shape[0], :img2.shape[1], :] = \
1532
- img2.astype('float32')
1533
- img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :]
1534
- return img_1_pad
1535
-
1536
- def __call__(self, sample, context=None):
1537
- if not isinstance(sample, Sequence):
1538
- return sample
1539
-
1540
- assert len(sample) == 2, 'cutmix need two samples'
1541
-
1542
- factor = np.random.beta(self.alpha, self.beta)
1543
- factor = max(0.0, min(1.0, factor))
1544
- if factor >= 1.0:
1545
- return sample[0]
1546
- if factor <= 0.0:
1547
- return sample[1]
1548
- img1 = sample[0]['image']
1549
- img2 = sample[1]['image']
1550
- img = self.apply_image(img1, img2, factor)
1551
- gt_bbox1 = sample[0]['gt_bbox']
1552
- gt_bbox2 = sample[1]['gt_bbox']
1553
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
1554
- gt_class1 = sample[0]['gt_class']
1555
- gt_class2 = sample[1]['gt_class']
1556
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
1557
- gt_score1 = np.ones_like(sample[0]['gt_class'])
1558
- gt_score2 = np.ones_like(sample[1]['gt_class'])
1559
- gt_score = np.concatenate(
1560
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
1561
- result = copy.deepcopy(sample[0])
1562
- result['image'] = img
1563
- result['gt_bbox'] = gt_bbox
1564
- result['gt_score'] = gt_score
1565
- result['gt_class'] = gt_class
1566
- if 'is_crowd' in sample[0]:
1567
- is_crowd1 = sample[0]['is_crowd']
1568
- is_crowd2 = sample[1]['is_crowd']
1569
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
1570
- result['is_crowd'] = is_crowd
1571
- if 'difficult' in sample[0]:
1572
- is_difficult1 = sample[0]['difficult']
1573
- is_difficult2 = sample[1]['difficult']
1574
- is_difficult = np.concatenate(
1575
- (is_difficult1, is_difficult2), axis=0)
1576
- result['difficult'] = is_difficult
1577
- return result
1578
-
1579
-
1580
- @register_op
1581
- class Mixup(BaseOperator):
1582
- def __init__(self, alpha=1.5, beta=1.5):
1583
- """ Mixup image and gt_bbbox/gt_score
1584
- Args:
1585
- alpha (float): alpha parameter of beta distribute
1586
- beta (float): beta parameter of beta distribute
1587
- """
1588
- super(Mixup, self).__init__()
1589
- self.alpha = alpha
1590
- self.beta = beta
1591
- if self.alpha <= 0.0:
1592
- raise ValueError("alpha shold be positive in {}".format(self))
1593
- if self.beta <= 0.0:
1594
- raise ValueError("beta shold be positive in {}".format(self))
1595
-
1596
- def apply_image(self, img1, img2, factor):
1597
- h = max(img1.shape[0], img2.shape[0])
1598
- w = max(img1.shape[1], img2.shape[1])
1599
- img = np.zeros((h, w, img1.shape[2]), 'float32')
1600
- img[:img1.shape[0], :img1.shape[1], :] = \
1601
- img1.astype('float32') * factor
1602
- img[:img2.shape[0], :img2.shape[1], :] += \
1603
- img2.astype('float32') * (1.0 - factor)
1604
- return img.astype('uint8')
1605
-
1606
- def __call__(self, sample, context=None):
1607
- if not isinstance(sample, Sequence):
1608
- return sample
1609
-
1610
- assert len(sample) == 2, 'mixup need two samples'
1611
-
1612
- factor = np.random.beta(self.alpha, self.beta)
1613
- factor = max(0.0, min(1.0, factor))
1614
- if factor >= 1.0:
1615
- return sample[0]
1616
- if factor <= 0.0:
1617
- return sample[1]
1618
- im = self.apply_image(sample[0]['image'], sample[1]['image'], factor)
1619
- result = copy.deepcopy(sample[0])
1620
- result['image'] = im
1621
- # apply bbox and score
1622
- if 'gt_bbox' in sample[0]:
1623
- gt_bbox1 = sample[0]['gt_bbox']
1624
- gt_bbox2 = sample[1]['gt_bbox']
1625
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
1626
- result['gt_bbox'] = gt_bbox
1627
- if 'gt_class' in sample[0]:
1628
- gt_class1 = sample[0]['gt_class']
1629
- gt_class2 = sample[1]['gt_class']
1630
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
1631
- result['gt_class'] = gt_class
1632
-
1633
- gt_score1 = np.ones_like(sample[0]['gt_class'])
1634
- gt_score2 = np.ones_like(sample[1]['gt_class'])
1635
- gt_score = np.concatenate(
1636
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
1637
- result['gt_score'] = gt_score
1638
- if 'is_crowd' in sample[0]:
1639
- is_crowd1 = sample[0]['is_crowd']
1640
- is_crowd2 = sample[1]['is_crowd']
1641
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
1642
- result['is_crowd'] = is_crowd
1643
- if 'difficult' in sample[0]:
1644
- is_difficult1 = sample[0]['difficult']
1645
- is_difficult2 = sample[1]['difficult']
1646
- is_difficult = np.concatenate(
1647
- (is_difficult1, is_difficult2), axis=0)
1648
- result['difficult'] = is_difficult
1649
-
1650
- if 'gt_ide' in sample[0]:
1651
- gt_ide1 = sample[0]['gt_ide']
1652
- gt_ide2 = sample[1]['gt_ide']
1653
- gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0)
1654
- result['gt_ide'] = gt_ide
1655
- return result
1656
-
1657
-
1658
- @register_op
1659
- class NormalizeBox(BaseOperator):
1660
- """Transform the bounding box's coornidates to [0,1]."""
1661
-
1662
- def __init__(self):
1663
- super(NormalizeBox, self).__init__()
1664
-
1665
- def apply(self, sample, context):
1666
- im = sample['image']
1667
- gt_bbox = sample['gt_bbox']
1668
- height, width, _ = im.shape
1669
- for i in range(gt_bbox.shape[0]):
1670
- gt_bbox[i][0] = gt_bbox[i][0] / width
1671
- gt_bbox[i][1] = gt_bbox[i][1] / height
1672
- gt_bbox[i][2] = gt_bbox[i][2] / width
1673
- gt_bbox[i][3] = gt_bbox[i][3] / height
1674
- sample['gt_bbox'] = gt_bbox
1675
-
1676
- if 'gt_keypoint' in sample.keys():
1677
- gt_keypoint = sample['gt_keypoint']
1678
-
1679
- for i in range(gt_keypoint.shape[1]):
1680
- if i % 2:
1681
- gt_keypoint[:, i] = gt_keypoint[:, i] / height
1682
- else:
1683
- gt_keypoint[:, i] = gt_keypoint[:, i] / width
1684
- sample['gt_keypoint'] = gt_keypoint
1685
-
1686
- return sample
1687
-
1688
-
1689
- @register_op
1690
- class BboxXYXY2XYWH(BaseOperator):
1691
- """
1692
- Convert bbox XYXY format to XYWH format.
1693
- """
1694
-
1695
- def __init__(self):
1696
- super(BboxXYXY2XYWH, self).__init__()
1697
-
1698
- def apply(self, sample, context=None):
1699
- assert 'gt_bbox' in sample
1700
- bbox = sample['gt_bbox']
1701
- bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
1702
- bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
1703
- sample['gt_bbox'] = bbox
1704
- return sample
1705
-
1706
-
1707
- @register_op
1708
- class PadBox(BaseOperator):
1709
- def __init__(self, num_max_boxes=50):
1710
- """
1711
- Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
1712
- Args:
1713
- num_max_boxes (int): the max number of bboxes
1714
- """
1715
- self.num_max_boxes = num_max_boxes
1716
- super(PadBox, self).__init__()
1717
-
1718
- def apply(self, sample, context=None):
1719
- assert 'gt_bbox' in sample
1720
- bbox = sample['gt_bbox']
1721
- gt_num = min(self.num_max_boxes, len(bbox))
1722
- num_max = self.num_max_boxes
1723
- # fields = context['fields'] if context else []
1724
- pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
1725
- if gt_num > 0:
1726
- pad_bbox[:gt_num, :] = bbox[:gt_num, :]
1727
- sample['gt_bbox'] = pad_bbox
1728
- if 'gt_class' in sample:
1729
- pad_class = np.zeros((num_max, ), dtype=np.int32)
1730
- if gt_num > 0:
1731
- pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
1732
- sample['gt_class'] = pad_class
1733
- if 'gt_score' in sample:
1734
- pad_score = np.zeros((num_max, ), dtype=np.float32)
1735
- if gt_num > 0:
1736
- pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
1737
- sample['gt_score'] = pad_score
1738
- # in training, for example in op ExpandImage,
1739
- # the bbox and gt_class is expandded, but the difficult is not,
1740
- # so, judging by it's length
1741
- if 'difficult' in sample:
1742
- pad_diff = np.zeros((num_max, ), dtype=np.int32)
1743
- if gt_num > 0:
1744
- pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
1745
- sample['difficult'] = pad_diff
1746
- if 'is_crowd' in sample:
1747
- pad_crowd = np.zeros((num_max, ), dtype=np.int32)
1748
- if gt_num > 0:
1749
- pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
1750
- sample['is_crowd'] = pad_crowd
1751
- if 'gt_ide' in sample:
1752
- pad_ide = np.zeros((num_max, ), dtype=np.int32)
1753
- if gt_num > 0:
1754
- pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
1755
- sample['gt_ide'] = pad_ide
1756
- return sample
1757
-
1758
-
1759
- @register_op
1760
- class DebugVisibleImage(BaseOperator):
1761
- """
1762
- In debug mode, visualize images according to `gt_box`.
1763
- (Currently only supported when not cropping and flipping image.)
1764
- """
1765
-
1766
- def __init__(self, output_dir='output/debug', is_normalized=False):
1767
- super(DebugVisibleImage, self).__init__()
1768
- self.is_normalized = is_normalized
1769
- self.output_dir = output_dir
1770
- if not os.path.isdir(output_dir):
1771
- os.makedirs(output_dir)
1772
- if not isinstance(self.is_normalized, bool):
1773
- raise TypeError("{}: input type is invalid.".format(self))
1774
-
1775
- def apply(self, sample, context=None):
1776
- image = Image.open(sample['im_file']).convert('RGB')
1777
- out_file_name = sample['im_file'].split('/')[-1]
1778
- width = sample['w']
1779
- height = sample['h']
1780
- gt_bbox = sample['gt_bbox']
1781
- gt_class = sample['gt_class']
1782
- draw = ImageDraw.Draw(image)
1783
- for i in range(gt_bbox.shape[0]):
1784
- if self.is_normalized:
1785
- gt_bbox[i][0] = gt_bbox[i][0] * width
1786
- gt_bbox[i][1] = gt_bbox[i][1] * height
1787
- gt_bbox[i][2] = gt_bbox[i][2] * width
1788
- gt_bbox[i][3] = gt_bbox[i][3] * height
1789
-
1790
- xmin, ymin, xmax, ymax = gt_bbox[i]
1791
- draw.line(
1792
- [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
1793
- (xmin, ymin)],
1794
- width=2,
1795
- fill='green')
1796
- # draw label
1797
- text = str(gt_class[i][0])
1798
- tw, th = draw.textsize(text)
1799
- draw.rectangle(
1800
- [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
1801
- draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
1802
-
1803
- if 'gt_keypoint' in sample.keys():
1804
- gt_keypoint = sample['gt_keypoint']
1805
- if self.is_normalized:
1806
- for i in range(gt_keypoint.shape[1]):
1807
- if i % 2:
1808
- gt_keypoint[:, i] = gt_keypoint[:, i] * height
1809
- else:
1810
- gt_keypoint[:, i] = gt_keypoint[:, i] * width
1811
- for i in range(gt_keypoint.shape[0]):
1812
- keypoint = gt_keypoint[i]
1813
- for j in range(int(keypoint.shape[0] / 2)):
1814
- x1 = round(keypoint[2 * j]).astype(np.int32)
1815
- y1 = round(keypoint[2 * j + 1]).astype(np.int32)
1816
- draw.ellipse(
1817
- (x1, y1, x1 + 5, y1 + 5),
1818
- fill='green',
1819
- outline='green')
1820
- save_path = os.path.join(self.output_dir, out_file_name)
1821
- image.save(save_path, quality=95)
1822
- return sample
1823
-
1824
-
1825
- @register_op
1826
- class Pad(BaseOperator):
1827
- def __init__(self,
1828
- size=None,
1829
- size_divisor=32,
1830
- pad_mode=0,
1831
- offsets=None,
1832
- fill_value=(127.5, 127.5, 127.5)):
1833
- """
1834
- Pad image to a specified size or multiple of size_divisor.
1835
- Args:
1836
- size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
1837
- size_divisor (int): size divisor, default 32
1838
- pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
1839
- if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
1840
- offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
1841
- fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
1842
- """
1843
- super(Pad, self).__init__()
1844
-
1845
- if not isinstance(size, (int, Sequence)):
1846
- raise TypeError(
1847
- "Type of target_size is invalid when random_size is True. \
1848
- Must be List, now is {}".format(type(size)))
1849
-
1850
- if isinstance(size, int):
1851
- size = [size, size]
1852
-
1853
- assert pad_mode in [
1854
- -1, 0, 1, 2
1855
- ], 'currently only supports four modes [-1, 0, 1, 2]'
1856
- assert pad_mode == -1 and offsets, 'if pad_mode is -1, offsets should not be None'
1857
-
1858
- self.size = size
1859
- self.size_divisor = size_divisor
1860
- self.pad_mode = pad_mode
1861
- self.fill_value = fill_value
1862
- self.offsets = offsets
1863
-
1864
- def apply_segm(self, segms, offsets, im_size, size):
1865
- def _expand_poly(poly, x, y):
1866
- expanded_poly = np.array(poly)
1867
- expanded_poly[0::2] += x
1868
- expanded_poly[1::2] += y
1869
- return expanded_poly.tolist()
1870
-
1871
- def _expand_rle(rle, x, y, height, width, h, w):
1872
- if 'counts' in rle and type(rle['counts']) == list:
1873
- rle = mask_util.frPyObjects(rle, height, width)
1874
- mask = mask_util.decode(rle)
1875
- expanded_mask = np.full((h, w), 0).astype(mask.dtype)
1876
- expanded_mask[y:y + height, x:x + width] = mask
1877
- rle = mask_util.encode(
1878
- np.array(
1879
- expanded_mask, order='F', dtype=np.uint8))
1880
- return rle
1881
-
1882
- x, y = offsets
1883
- height, width = im_size
1884
- h, w = size
1885
- expanded_segms = []
1886
- for segm in segms:
1887
- if is_poly(segm):
1888
- # Polygon format
1889
- expanded_segms.append(
1890
- [_expand_poly(poly, x, y) for poly in segm])
1891
- else:
1892
- # RLE format
1893
- import pycocotools.mask as mask_util
1894
- expanded_segms.append(
1895
- _expand_rle(segm, x, y, height, width, h, w))
1896
- return expanded_segms
1897
-
1898
- def apply_bbox(self, bbox, offsets):
1899
- return bbox + np.array(offsets * 2, dtype=np.float32)
1900
-
1901
- def apply_keypoint(self, keypoints, offsets):
1902
- n = len(keypoints[0]) // 2
1903
- return keypoints + np.array(offsets * n, dtype=np.float32)
1904
-
1905
- def apply_image(self, image, offsets, im_size, size):
1906
- x, y = offsets
1907
- im_h, im_w = im_size
1908
- h, w = size
1909
- canvas = np.ones((h, w, 3), dtype=np.float32)
1910
- canvas *= np.array(self.fill_value, dtype=np.float32)
1911
- canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
1912
- return canvas
1913
-
1914
- def apply(self, sample, context=None):
1915
- im = sample['image']
1916
- im_h, im_w = im.shape[:2]
1917
- if self.size:
1918
- h, w = self.size
1919
- assert (
1920
- im_h < h and im_w < w
1921
- ), '(h, w) of target size should be greater than (im_h, im_w)'
1922
- else:
1923
- h = np.ceil(im_h // self.size_divisor) * self.size_divisor
1924
- w = np.ceil(im_w / self.size_divisor) * self.size_divisor
1925
-
1926
- if h == im_h and w == im_w:
1927
- return sample
1928
-
1929
- if self.pad_mode == -1:
1930
- offset_x, offset_y = self.offsets
1931
- elif self.pad_mode == 0:
1932
- offset_y, offset_x = 0, 0
1933
- elif self.pad_mode == 1:
1934
- offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
1935
- else:
1936
- offset_y, offset_x = h - im_h, w - im_w
1937
-
1938
- offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
1939
-
1940
- sample['image'] = self.apply_image(im, offsets, im_size, size)
1941
-
1942
- if self.pad_mode == 0:
1943
- return sample
1944
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
1945
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
1946
-
1947
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
1948
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets,
1949
- im_size, size)
1950
-
1951
- if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
1952
- sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'],
1953
- offsets)
1954
-
1955
- return sample
1956
-
1957
-
1958
- @register_op
1959
- class Poly2Mask(BaseOperator):
1960
- """
1961
- gt poly to mask annotations
1962
- """
1963
-
1964
- def __init__(self):
1965
- super(Poly2Mask, self).__init__()
1966
- import pycocotools.mask as maskUtils
1967
- self.maskutils = maskUtils
1968
-
1969
- def _poly2mask(self, mask_ann, img_h, img_w):
1970
- if isinstance(mask_ann, list):
1971
- # polygon -- a single object might consist of multiple parts
1972
- # we merge all parts into one mask rle code
1973
- rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
1974
- rle = self.maskutils.merge(rles)
1975
- elif isinstance(mask_ann['counts'], list):
1976
- # uncompressed RLE
1977
- rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
1978
- else:
1979
- # rle
1980
- rle = mask_ann
1981
- mask = self.maskutils.decode(rle)
1982
- return mask
1983
-
1984
- def apply(self, sample, context=None):
1985
- assert 'gt_poly' in sample
1986
- im_h = sample['h']
1987
- im_w = sample['w']
1988
- masks = [
1989
- self._poly2mask(gt_poly, im_h, im_w)
1990
- for gt_poly in sample['gt_poly']
1991
- ]
1992
- sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
1993
- return sample
1994
-
1995
-
1996
- @register_op
1997
- class Rbox2Poly(BaseOperator):
1998
- """
1999
- Convert rbbox format to poly format.
2000
- """
2001
-
2002
- def __init__(self):
2003
- super(Rbox2Poly, self).__init__()
2004
-
2005
- def apply(self, sample, context=None):
2006
- assert 'gt_rbox' in sample
2007
- assert sample['gt_rbox'].shape[1] == 5
2008
- rrects = sample['gt_rbox']
2009
- x_ctr = rrects[:, 0]
2010
- y_ctr = rrects[:, 1]
2011
- width = rrects[:, 2]
2012
- height = rrects[:, 3]
2013
- x1 = x_ctr - width / 2.0
2014
- y1 = y_ctr - height / 2.0
2015
- x2 = x_ctr + width / 2.0
2016
- y2 = y_ctr + height / 2.0
2017
- sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1)
2018
- polys = bbox_utils.rbox2poly_np(rrects)
2019
- sample['gt_rbox2poly'] = polys
2020
- return sample
2021
-
2022
-
2023
- @register_op
2024
- class AugmentHSV(BaseOperator):
2025
- def __init__(self, fraction=0.50, is_bgr=False):
2026
- """
2027
- Augment the SV channel of image data.
2028
- Args:
2029
- fraction (float): the fraction for augment
2030
- is_bgr (bool): whether the image is BGR mode
2031
- """
2032
- super(AugmentHSV, self).__init__()
2033
- self.fraction = fraction
2034
- self.is_bgr = is_bgr
2035
-
2036
- def apply(self, sample, context=None):
2037
- img = sample['image']
2038
- if self.is_bgr:
2039
- img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
2040
- else:
2041
- img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
2042
- S = img_hsv[:, :, 1].astype(np.float32)
2043
- V = img_hsv[:, :, 2].astype(np.float32)
2044
-
2045
- a = (random.random() * 2 - 1) * self.fraction + 1
2046
- S *= a
2047
- if a > 1:
2048
- np.clip(S, a_min=0, a_max=255, out=S)
2049
-
2050
- a = (random.random() * 2 - 1) * self.fraction + 1
2051
- V *= a
2052
- if a > 1:
2053
- np.clip(V, a_min=0, a_max=255, out=V)
2054
-
2055
- img_hsv[:, :, 1] = S.astype(np.uint8)
2056
- img_hsv[:, :, 2] = V.astype(np.uint8)
2057
- if self.is_bgr:
2058
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
2059
- else:
2060
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img)
2061
-
2062
- sample['image'] = img
2063
- return sample
2064
-
2065
-
2066
- @register_op
2067
- class Norm2PixelBbox(BaseOperator):
2068
- """
2069
- Transform the bounding box's coornidates which is in [0,1] to pixels.
2070
- """
2071
-
2072
- def __init__(self):
2073
- super(Norm2PixelBbox, self).__init__()
2074
-
2075
- def apply(self, sample, context=None):
2076
- assert 'gt_bbox' in sample
2077
- bbox = sample['gt_bbox']
2078
- height, width = sample['image'].shape[:2]
2079
- bbox[:, 0::2] = bbox[:, 0::2] * width
2080
- bbox[:, 1::2] = bbox[:, 1::2] * height
2081
- sample['gt_bbox'] = bbox
2082
- return sample
2083
-
2084
-
2085
- @register_op
2086
- class BboxCXCYWH2XYXY(BaseOperator):
2087
- """
2088
- Convert bbox CXCYWH format to XYXY format.
2089
- [center_x, center_y, width, height] -> [x0, y0, x1, y1]
2090
- """
2091
-
2092
- def __init__(self):
2093
- super(BboxCXCYWH2XYXY, self).__init__()
2094
-
2095
- def apply(self, sample, context=None):
2096
- assert 'gt_bbox' in sample
2097
- bbox0 = sample['gt_bbox']
2098
- bbox = bbox0.copy()
2099
-
2100
- bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2.
2101
- bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2.
2102
- sample['gt_bbox'] = bbox
2103
- return sample