paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1087) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -18
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/paddleclas.py +0 -375
  649. PaddleClas/ppcls/__init__.py +0 -20
  650. PaddleClas/ppcls/data/__init__.py +0 -15
  651. PaddleClas/ppcls/data/imaug/__init__.py +0 -94
  652. PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
  653. PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
  654. PaddleClas/ppcls/data/imaug/cutout.py +0 -41
  655. PaddleClas/ppcls/data/imaug/fmix.py +0 -217
  656. PaddleClas/ppcls/data/imaug/grid.py +0 -89
  657. PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
  658. PaddleClas/ppcls/data/imaug/operators.py +0 -244
  659. PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
  660. PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
  661. PaddleClas/ppcls/data/reader.py +0 -318
  662. PaddleClas/ppcls/modeling/__init__.py +0 -20
  663. PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
  664. PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
  665. PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
  666. PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
  667. PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
  668. PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  669. PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
  670. PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
  671. PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
  672. PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
  673. PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
  674. PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
  675. PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
  676. PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
  677. PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  678. PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  679. PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  680. PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
  681. PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
  682. PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
  683. PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
  684. PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
  685. PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
  686. PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
  687. PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
  688. PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
  689. PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  690. PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
  691. PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
  692. PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  693. PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
  694. PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  695. PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  696. PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
  697. PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
  698. PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
  699. PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
  700. PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  701. PaddleClas/ppcls/modeling/loss.py +0 -154
  702. PaddleClas/ppcls/modeling/utils.py +0 -53
  703. PaddleClas/ppcls/optimizer/__init__.py +0 -19
  704. PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
  705. PaddleClas/ppcls/optimizer/optimizer.py +0 -165
  706. PaddleClas/ppcls/utils/__init__.py +0 -27
  707. PaddleClas/ppcls/utils/check.py +0 -151
  708. PaddleClas/ppcls/utils/config.py +0 -201
  709. PaddleClas/ppcls/utils/logger.py +0 -120
  710. PaddleClas/ppcls/utils/metrics.py +0 -107
  711. PaddleClas/ppcls/utils/misc.py +0 -62
  712. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  713. PaddleClas/ppcls/utils/save_load.py +0 -163
  714. PaddleClas/setup.py +0 -55
  715. PaddleClas/tools/__init__.py +0 -15
  716. PaddleClas/tools/download.py +0 -50
  717. PaddleClas/tools/ema.py +0 -58
  718. PaddleClas/tools/eval.py +0 -112
  719. PaddleClas/tools/export_model.py +0 -85
  720. PaddleClas/tools/export_serving_model.py +0 -76
  721. PaddleClas/tools/infer/__init__.py +0 -16
  722. PaddleClas/tools/infer/infer.py +0 -94
  723. PaddleClas/tools/infer/predict.py +0 -117
  724. PaddleClas/tools/infer/utils.py +0 -233
  725. PaddleClas/tools/program.py +0 -444
  726. PaddleClas/tools/test_hubserving.py +0 -113
  727. PaddleClas/tools/train.py +0 -141
  728. paddlex/cls.py +0 -76
  729. paddlex/command.py +0 -215
  730. paddlex/cv/__init__.py +0 -17
  731. paddlex/cv/datasets/__init__.py +0 -18
  732. paddlex/cv/datasets/coco.py +0 -169
  733. paddlex/cv/datasets/imagenet.py +0 -88
  734. paddlex/cv/datasets/seg_dataset.py +0 -91
  735. paddlex/cv/datasets/voc.py +0 -301
  736. paddlex/cv/models/__init__.py +0 -18
  737. paddlex/cv/models/base.py +0 -623
  738. paddlex/cv/models/classifier.py +0 -814
  739. paddlex/cv/models/detector.py +0 -1747
  740. paddlex/cv/models/load_model.py +0 -126
  741. paddlex/cv/models/segmenter.py +0 -673
  742. paddlex/cv/models/slim/__init__.py +0 -13
  743. paddlex/cv/models/slim/prune.py +0 -55
  744. paddlex/cv/models/utils/__init__.py +0 -13
  745. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  746. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
  747. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  748. paddlex/cv/models/utils/ema.py +0 -48
  749. paddlex/cv/models/utils/seg_metrics.py +0 -62
  750. paddlex/cv/models/utils/visualize.py +0 -394
  751. paddlex/cv/transforms/__init__.py +0 -46
  752. paddlex/cv/transforms/batch_operators.py +0 -286
  753. paddlex/cv/transforms/box_utils.py +0 -41
  754. paddlex/cv/transforms/functions.py +0 -193
  755. paddlex/cv/transforms/operators.py +0 -1402
  756. paddlex/det.py +0 -43
  757. paddlex/paddleseg/__init__.py +0 -17
  758. paddlex/paddleseg/core/__init__.py +0 -20
  759. paddlex/paddleseg/core/infer.py +0 -289
  760. paddlex/paddleseg/core/predict.py +0 -145
  761. paddlex/paddleseg/core/train.py +0 -258
  762. paddlex/paddleseg/core/val.py +0 -172
  763. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  764. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  765. paddlex/paddleseg/cvlibs/config.py +0 -359
  766. paddlex/paddleseg/cvlibs/manager.py +0 -142
  767. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  768. paddlex/paddleseg/datasets/__init__.py +0 -21
  769. paddlex/paddleseg/datasets/ade.py +0 -112
  770. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  771. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  772. paddlex/paddleseg/datasets/dataset.py +0 -164
  773. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  774. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  775. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  776. paddlex/paddleseg/datasets/voc.py +0 -113
  777. paddlex/paddleseg/models/__init__.py +0 -39
  778. paddlex/paddleseg/models/ann.py +0 -436
  779. paddlex/paddleseg/models/attention_unet.py +0 -189
  780. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  781. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  782. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  783. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  784. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  785. paddlex/paddleseg/models/bisenet.py +0 -311
  786. paddlex/paddleseg/models/danet.py +0 -220
  787. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  788. paddlex/paddleseg/models/deeplab.py +0 -258
  789. paddlex/paddleseg/models/dnlnet.py +0 -231
  790. paddlex/paddleseg/models/emanet.py +0 -219
  791. paddlex/paddleseg/models/fast_scnn.py +0 -318
  792. paddlex/paddleseg/models/fcn.py +0 -135
  793. paddlex/paddleseg/models/gcnet.py +0 -223
  794. paddlex/paddleseg/models/gscnn.py +0 -357
  795. paddlex/paddleseg/models/hardnet.py +0 -309
  796. paddlex/paddleseg/models/isanet.py +0 -202
  797. paddlex/paddleseg/models/layers/__init__.py +0 -19
  798. paddlex/paddleseg/models/layers/activation.py +0 -73
  799. paddlex/paddleseg/models/layers/attention.py +0 -146
  800. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  801. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  802. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  803. paddlex/paddleseg/models/losses/__init__.py +0 -27
  804. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  805. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  806. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  807. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  808. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  809. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  810. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  811. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  812. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  813. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  814. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  815. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  816. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  817. paddlex/paddleseg/models/ocrnet.py +0 -248
  818. paddlex/paddleseg/models/pspnet.py +0 -147
  819. paddlex/paddleseg/models/sfnet.py +0 -236
  820. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  821. paddlex/paddleseg/models/u2net.py +0 -574
  822. paddlex/paddleseg/models/unet.py +0 -155
  823. paddlex/paddleseg/models/unet_3plus.py +0 -316
  824. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  825. paddlex/paddleseg/transforms/__init__.py +0 -16
  826. paddlex/paddleseg/transforms/functional.py +0 -161
  827. paddlex/paddleseg/transforms/transforms.py +0 -937
  828. paddlex/paddleseg/utils/__init__.py +0 -22
  829. paddlex/paddleseg/utils/config_check.py +0 -60
  830. paddlex/paddleseg/utils/download.py +0 -163
  831. paddlex/paddleseg/utils/env/__init__.py +0 -16
  832. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  833. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  834. paddlex/paddleseg/utils/logger.py +0 -48
  835. paddlex/paddleseg/utils/metrics.py +0 -146
  836. paddlex/paddleseg/utils/progbar.py +0 -212
  837. paddlex/paddleseg/utils/timer.py +0 -53
  838. paddlex/paddleseg/utils/utils.py +0 -120
  839. paddlex/paddleseg/utils/visualize.py +0 -90
  840. paddlex/ppcls/__init__.py +0 -20
  841. paddlex/ppcls/data/__init__.py +0 -15
  842. paddlex/ppcls/data/imaug/__init__.py +0 -94
  843. paddlex/ppcls/data/imaug/autoaugment.py +0 -264
  844. paddlex/ppcls/data/imaug/batch_operators.py +0 -117
  845. paddlex/ppcls/data/imaug/cutout.py +0 -41
  846. paddlex/ppcls/data/imaug/fmix.py +0 -217
  847. paddlex/ppcls/data/imaug/grid.py +0 -89
  848. paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
  849. paddlex/ppcls/data/imaug/operators.py +0 -256
  850. paddlex/ppcls/data/imaug/randaugment.py +0 -106
  851. paddlex/ppcls/data/imaug/random_erasing.py +0 -55
  852. paddlex/ppcls/data/reader.py +0 -318
  853. paddlex/ppcls/modeling/__init__.py +0 -20
  854. paddlex/ppcls/modeling/architectures/__init__.py +0 -51
  855. paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
  856. paddlex/ppcls/modeling/architectures/darknet.py +0 -161
  857. paddlex/ppcls/modeling/architectures/densenet.py +0 -308
  858. paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
  859. paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  860. paddlex/ppcls/modeling/architectures/dpn.py +0 -425
  861. paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
  862. paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
  863. paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
  864. paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
  865. paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
  866. paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
  867. paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
  868. paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  869. paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  870. paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  871. paddlex/ppcls/modeling/architectures/regnet.py +0 -383
  872. paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
  873. paddlex/ppcls/modeling/architectures/res2net.py +0 -272
  874. paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
  875. paddlex/ppcls/modeling/architectures/resnest.py +0 -705
  876. paddlex/ppcls/modeling/architectures/resnet.py +0 -317
  877. paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
  878. paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
  879. paddlex/ppcls/modeling/architectures/resnext.py +0 -259
  880. paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  881. paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
  882. paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
  883. paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  884. paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
  885. paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  886. paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  887. paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
  888. paddlex/ppcls/modeling/architectures/vgg.py +0 -152
  889. paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
  890. paddlex/ppcls/modeling/architectures/xception.py +0 -345
  891. paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  892. paddlex/ppcls/modeling/loss.py +0 -158
  893. paddlex/ppcls/modeling/utils.py +0 -53
  894. paddlex/ppcls/optimizer/__init__.py +0 -19
  895. paddlex/ppcls/optimizer/learning_rate.py +0 -159
  896. paddlex/ppcls/optimizer/optimizer.py +0 -165
  897. paddlex/ppcls/utils/__init__.py +0 -27
  898. paddlex/ppcls/utils/check.py +0 -151
  899. paddlex/ppcls/utils/config.py +0 -201
  900. paddlex/ppcls/utils/logger.py +0 -120
  901. paddlex/ppcls/utils/metrics.py +0 -112
  902. paddlex/ppcls/utils/misc.py +0 -62
  903. paddlex/ppcls/utils/model_zoo.py +0 -213
  904. paddlex/ppcls/utils/save_load.py +0 -163
  905. paddlex/ppdet/__init__.py +0 -16
  906. paddlex/ppdet/core/__init__.py +0 -15
  907. paddlex/ppdet/core/config/__init__.py +0 -13
  908. paddlex/ppdet/core/config/schema.py +0 -248
  909. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  910. paddlex/ppdet/core/workspace.py +0 -279
  911. paddlex/ppdet/data/__init__.py +0 -21
  912. paddlex/ppdet/data/reader.py +0 -304
  913. paddlex/ppdet/data/shm_utils.py +0 -67
  914. paddlex/ppdet/data/source/__init__.py +0 -27
  915. paddlex/ppdet/data/source/category.py +0 -823
  916. paddlex/ppdet/data/source/coco.py +0 -243
  917. paddlex/ppdet/data/source/dataset.py +0 -192
  918. paddlex/ppdet/data/source/keypoint_coco.py +0 -656
  919. paddlex/ppdet/data/source/mot.py +0 -360
  920. paddlex/ppdet/data/source/voc.py +0 -204
  921. paddlex/ppdet/data/source/widerface.py +0 -180
  922. paddlex/ppdet/data/transform/__init__.py +0 -28
  923. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
  924. paddlex/ppdet/data/transform/batch_operators.py +0 -758
  925. paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
  926. paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
  927. paddlex/ppdet/data/transform/mot_operators.py +0 -636
  928. paddlex/ppdet/data/transform/op_helper.py +0 -468
  929. paddlex/ppdet/data/transform/operators.py +0 -2103
  930. paddlex/ppdet/engine/__init__.py +0 -29
  931. paddlex/ppdet/engine/callbacks.py +0 -262
  932. paddlex/ppdet/engine/env.py +0 -47
  933. paddlex/ppdet/engine/export_utils.py +0 -118
  934. paddlex/ppdet/engine/tracker.py +0 -425
  935. paddlex/ppdet/engine/trainer.py +0 -535
  936. paddlex/ppdet/metrics/__init__.py +0 -23
  937. paddlex/ppdet/metrics/coco_utils.py +0 -184
  938. paddlex/ppdet/metrics/json_results.py +0 -151
  939. paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
  940. paddlex/ppdet/metrics/map_utils.py +0 -396
  941. paddlex/ppdet/metrics/metrics.py +0 -300
  942. paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
  943. paddlex/ppdet/metrics/mot_metrics.py +0 -184
  944. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  945. paddlex/ppdet/model_zoo/__init__.py +0 -18
  946. paddlex/ppdet/model_zoo/model_zoo.py +0 -86
  947. paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
  948. paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
  949. paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
  950. paddlex/ppdet/modeling/__init__.py +0 -41
  951. paddlex/ppdet/modeling/architectures/__init__.py +0 -40
  952. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  953. paddlex/ppdet/modeling/architectures/centernet.py +0 -103
  954. paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
  955. paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
  956. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  957. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  958. paddlex/ppdet/modeling/architectures/jde.py +0 -125
  959. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
  960. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
  961. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  962. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
  963. paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
  964. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  965. paddlex/ppdet/modeling/architectures/ssd.py +0 -84
  966. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  967. paddlex/ppdet/modeling/architectures/yolo.py +0 -104
  968. paddlex/ppdet/modeling/backbones/__init__.py +0 -37
  969. paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
  970. paddlex/ppdet/modeling/backbones/darknet.py +0 -341
  971. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  972. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
  973. paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
  974. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
  975. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
  976. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  977. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  978. paddlex/ppdet/modeling/backbones/resnet.py +0 -606
  979. paddlex/ppdet/modeling/backbones/senet.py +0 -140
  980. paddlex/ppdet/modeling/backbones/vgg.py +0 -216
  981. paddlex/ppdet/modeling/bbox_utils.py +0 -464
  982. paddlex/ppdet/modeling/heads/__init__.py +0 -41
  983. paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
  984. paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
  985. paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
  986. paddlex/ppdet/modeling/heads/face_head.py +0 -113
  987. paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
  988. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  989. paddlex/ppdet/modeling/heads/mask_head.py +0 -253
  990. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  991. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
  992. paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
  993. paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
  994. paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
  995. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  996. paddlex/ppdet/modeling/keypoint_utils.py +0 -302
  997. paddlex/ppdet/modeling/layers.py +0 -1142
  998. paddlex/ppdet/modeling/losses/__init__.py +0 -35
  999. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
  1000. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1001. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1002. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
  1003. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1004. paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
  1005. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
  1006. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1007. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
  1008. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1009. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1010. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1011. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1012. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
  1013. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1014. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1015. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1016. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
  1017. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
  1018. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
  1019. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
  1020. paddlex/ppdet/modeling/mot/utils.py +0 -181
  1021. paddlex/ppdet/modeling/mot/visualization.py +0 -130
  1022. paddlex/ppdet/modeling/necks/__init__.py +0 -25
  1023. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
  1024. paddlex/ppdet/modeling/necks/fpn.py +0 -233
  1025. paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
  1026. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
  1027. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
  1028. paddlex/ppdet/modeling/ops.py +0 -1599
  1029. paddlex/ppdet/modeling/post_process.py +0 -449
  1030. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1031. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1032. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
  1033. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
  1034. paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
  1035. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
  1036. paddlex/ppdet/modeling/reid/__init__.py +0 -23
  1037. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
  1038. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
  1039. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
  1040. paddlex/ppdet/modeling/reid/resnet.py +0 -320
  1041. paddlex/ppdet/modeling/shape_spec.py +0 -33
  1042. paddlex/ppdet/modeling/tests/__init__.py +0 -13
  1043. paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
  1044. paddlex/ppdet/modeling/tests/test_base.py +0 -75
  1045. paddlex/ppdet/modeling/tests/test_ops.py +0 -839
  1046. paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
  1047. paddlex/ppdet/optimizer.py +0 -285
  1048. paddlex/ppdet/slim/__init__.py +0 -62
  1049. paddlex/ppdet/slim/distill.py +0 -111
  1050. paddlex/ppdet/slim/prune.py +0 -85
  1051. paddlex/ppdet/slim/quant.py +0 -52
  1052. paddlex/ppdet/utils/__init__.py +0 -13
  1053. paddlex/ppdet/utils/check.py +0 -93
  1054. paddlex/ppdet/utils/checkpoint.py +0 -216
  1055. paddlex/ppdet/utils/cli.py +0 -151
  1056. paddlex/ppdet/utils/colormap.py +0 -56
  1057. paddlex/ppdet/utils/download.py +0 -477
  1058. paddlex/ppdet/utils/logger.py +0 -71
  1059. paddlex/ppdet/utils/stats.py +0 -95
  1060. paddlex/ppdet/utils/visualizer.py +0 -292
  1061. paddlex/ppdet/utils/voc_utils.py +0 -87
  1062. paddlex/seg.py +0 -38
  1063. paddlex/tools/__init__.py +0 -16
  1064. paddlex/tools/convert.py +0 -52
  1065. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1066. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1067. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1068. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1069. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1070. paddlex/tools/dataset_split/__init__.py +0 -23
  1071. paddlex/tools/dataset_split/coco_split.py +0 -69
  1072. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1073. paddlex/tools/dataset_split/seg_split.py +0 -96
  1074. paddlex/tools/dataset_split/utils.py +0 -75
  1075. paddlex/tools/dataset_split/voc_split.py +0 -91
  1076. paddlex/tools/split.py +0 -41
  1077. paddlex/utils/checkpoint.py +0 -439
  1078. paddlex/utils/env.py +0 -71
  1079. paddlex/utils/shm.py +0 -67
  1080. paddlex/utils/stats.py +0 -68
  1081. paddlex/utils/utils.py +0 -140
  1082. paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
  1083. paddlex-2.0.0rc4.dist-info/METADATA +0 -29
  1084. paddlex-2.0.0rc4.dist-info/RECORD +0 -445
  1085. paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
  1086. paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
  1087. paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,1747 +0,0 @@
1
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
-
17
- import collections
18
- import copy
19
- import os
20
- import os.path as osp
21
- import six
22
- import numpy as np
23
- import paddle
24
- from paddle.static import InputSpec
25
- import paddlex.ppdet as ppdet
26
- from paddlex.ppdet.modeling.proposal_generator.target_layer import BBoxAssigner, MaskAssigner
27
- import paddlex
28
- import paddlex.utils.logging as logging
29
- from paddlex.cv.transforms.operators import _NormalizeBox, _PadBox, _BboxXYXY2XYWH, Resize, Padding
30
- from paddlex.cv.transforms.batch_operators import BatchCompose, BatchRandomResize, BatchRandomResizeByShort, _BatchPadding, _Gt2YoloTarget
31
- from paddlex.cv.transforms import arrange_transforms
32
- from .base import BaseModel
33
- from .utils.det_metrics import VOCMetric, COCOMetric
34
- from .utils.ema import ExponentialMovingAverage
35
- from paddlex.utils.checkpoint import det_pretrain_weights_dict
36
-
37
- __all__ = [
38
- "YOLOv3", "FasterRCNN", "PPYOLO", "PPYOLOTiny", "PPYOLOv2", "MaskRCNN"
39
- ]
40
-
41
-
42
- class BaseDetector(BaseModel):
43
- def __init__(self, model_name, num_classes=80, **params):
44
- self.init_params.update(locals())
45
- super(BaseDetector, self).__init__('detector')
46
- if not hasattr(ppdet.modeling, model_name):
47
- raise Exception("ERROR: There's no model named {}.".format(
48
- model_name))
49
-
50
- self.model_name = model_name
51
- self.num_classes = num_classes
52
- self.labels = None
53
- self.net = self.build_net(**params)
54
-
55
- def build_net(self, **params):
56
- with paddle.utils.unique_name.guard():
57
- net = ppdet.modeling.__dict__[self.model_name](**params)
58
- return net
59
-
60
- def _fix_transforms_shape(self, image_shape):
61
- raise NotImplementedError("_fix_transforms_shape: not implemented!")
62
-
63
- def _define_input_spec(self, image_shape):
64
- input_spec = [{
65
- "image": InputSpec(
66
- shape=image_shape, name='image', dtype='float32'),
67
- "im_shape": InputSpec(
68
- shape=[image_shape[0], 2], name='im_shape', dtype='float32'),
69
- "scale_factor": InputSpec(
70
- shape=[image_shape[0], 2],
71
- name='scale_factor',
72
- dtype='float32')
73
- }]
74
- return input_spec
75
-
76
- def _check_image_shape(self, image_shape):
77
- if len(image_shape) == 2:
78
- image_shape = [1, 3] + image_shape
79
- if image_shape[-2] % 32 > 0 or image_shape[-1] % 32 > 0:
80
- raise Exception(
81
- "Height and width in fixed_input_shape must be a multiple of 32, but received {}.".
82
- format(image_shape[-2:]))
83
- return image_shape
84
-
85
- def _get_test_inputs(self, image_shape):
86
- if image_shape is not None:
87
- image_shape = self._check_image_shape(image_shape)
88
- self._fix_transforms_shape(image_shape[-2:])
89
- else:
90
- image_shape = [None, 3, -1, -1]
91
- self.fixed_input_shape = image_shape
92
-
93
- return self._define_input_spec(image_shape)
94
-
95
- def _get_backbone(self, backbone_name, **params):
96
- backbone = getattr(ppdet.modeling, backbone_name)(**params)
97
- return backbone
98
-
99
- def run(self, net, inputs, mode):
100
- net_out = net(inputs)
101
- if mode in ['train', 'eval']:
102
- outputs = net_out
103
- else:
104
- for key in ['im_shape', 'scale_factor']:
105
- net_out[key] = inputs[key]
106
- outputs = dict()
107
- for key in net_out:
108
- outputs[key] = net_out[key].numpy()
109
-
110
- return outputs
111
-
112
- def default_optimizer(self, parameters, learning_rate, warmup_steps,
113
- warmup_start_lr, lr_decay_epochs, lr_decay_gamma,
114
- num_steps_each_epoch):
115
- boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
116
- values = [(lr_decay_gamma**i) * learning_rate
117
- for i in range(len(lr_decay_epochs) + 1)]
118
- scheduler = paddle.optimizer.lr.PiecewiseDecay(
119
- boundaries=boundaries, values=values)
120
- if warmup_steps > 0:
121
- if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
122
- logging.error(
123
- "In function train(), parameters should satisfy: "
124
- "warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
125
- exit=False)
126
- logging.error(
127
- "See this doc for more information: "
128
- "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
129
- exit=False)
130
-
131
- scheduler = paddle.optimizer.lr.LinearWarmup(
132
- learning_rate=scheduler,
133
- warmup_steps=warmup_steps,
134
- start_lr=warmup_start_lr,
135
- end_lr=learning_rate)
136
- optimizer = paddle.optimizer.Momentum(
137
- scheduler,
138
- momentum=.9,
139
- weight_decay=paddle.regularizer.L2Decay(coeff=1e-04),
140
- parameters=parameters)
141
- return optimizer
142
-
143
- def train(self,
144
- num_epochs,
145
- train_dataset,
146
- train_batch_size=64,
147
- eval_dataset=None,
148
- optimizer=None,
149
- save_interval_epochs=1,
150
- log_interval_steps=10,
151
- save_dir='output',
152
- pretrain_weights='IMAGENET',
153
- learning_rate=.001,
154
- warmup_steps=0,
155
- warmup_start_lr=0.0,
156
- lr_decay_epochs=(216, 243),
157
- lr_decay_gamma=0.1,
158
- metric=None,
159
- use_ema=False,
160
- early_stop=False,
161
- early_stop_patience=5,
162
- use_vdl=True,
163
- resume_checkpoint=None):
164
- """
165
- Train the model.
166
- Args:
167
- num_epochs(int): The number of epochs.
168
- train_dataset(paddlex.dataset): Training dataset.
169
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
170
- eval_dataset(paddlex.dataset, optional):
171
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
172
- optimizer(paddle.optimizer.Optimizer or None, optional):
173
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
174
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
175
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
176
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
177
- pretrain_weights(str or None, optional):
178
- None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'IMAGENET'.
179
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
180
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
181
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
182
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
183
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
184
- metric({'VOC', 'COCO', None}, optional):
185
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
186
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
187
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
188
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
189
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
190
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
191
- If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
192
- `pretrain_weights` can be set simultaneously. Defaults to None.
193
-
194
- """
195
- if pretrain_weights is not None and resume_checkpoint is not None:
196
- logging.error(
197
- "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
198
- exit=True)
199
- if train_dataset.__class__.__name__ == 'VOCDetection':
200
- train_dataset.data_fields = {
201
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
202
- 'difficult'
203
- }
204
- elif train_dataset.__class__.__name__ == 'CocoDetection':
205
- if self.__class__.__name__ == 'MaskRCNN':
206
- train_dataset.data_fields = {
207
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
208
- 'gt_poly', 'is_crowd'
209
- }
210
- else:
211
- train_dataset.data_fields = {
212
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
213
- 'is_crowd'
214
- }
215
-
216
- if metric is None:
217
- if eval_dataset.__class__.__name__ == 'VOCDetection':
218
- self.metric = 'voc'
219
- elif eval_dataset.__class__.__name__ == 'CocoDetection':
220
- self.metric = 'coco'
221
- else:
222
- assert metric.lower() in ['coco', 'voc'], \
223
- "Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
224
- self.metric = metric.lower()
225
-
226
- self.labels = train_dataset.labels
227
- self.num_max_boxes = train_dataset.num_max_boxes
228
- train_dataset.batch_transforms = self._compose_batch_transform(
229
- train_dataset.transforms, mode='train')
230
-
231
- # build optimizer if not defined
232
- if optimizer is None:
233
- num_steps_each_epoch = len(train_dataset) // train_batch_size
234
- self.optimizer = self.default_optimizer(
235
- parameters=self.net.parameters(),
236
- learning_rate=learning_rate,
237
- warmup_steps=warmup_steps,
238
- warmup_start_lr=warmup_start_lr,
239
- lr_decay_epochs=lr_decay_epochs,
240
- lr_decay_gamma=lr_decay_gamma,
241
- num_steps_each_epoch=num_steps_each_epoch)
242
- else:
243
- self.optimizer = optimizer
244
-
245
- # initiate weights
246
- if pretrain_weights is not None and not osp.exists(pretrain_weights):
247
- if pretrain_weights not in det_pretrain_weights_dict['_'.join(
248
- [self.model_name, self.backbone_name])]:
249
- logging.warning(
250
- "Path of pretrain_weights('{}') does not exist!".format(
251
- pretrain_weights))
252
- pretrain_weights = det_pretrain_weights_dict['_'.join(
253
- [self.model_name, self.backbone_name])][0]
254
- logging.warning("Pretrain_weights is forcibly set to '{}'. "
255
- "If you don't want to use pretrain weights, "
256
- "set pretrain_weights to be None.".format(
257
- pretrain_weights))
258
- elif pretrain_weights is not None and osp.exists(pretrain_weights):
259
- if osp.splitext(pretrain_weights)[-1] != '.pdparams':
260
- logging.error(
261
- "Invalid pretrain weights. Please specify a '.pdparams' file.",
262
- exit=True)
263
- pretrained_dir = osp.join(save_dir, 'pretrain')
264
- self.net_initialize(
265
- pretrain_weights=pretrain_weights,
266
- save_dir=pretrained_dir,
267
- resume_checkpoint=resume_checkpoint)
268
-
269
- if use_ema:
270
- ema = ExponentialMovingAverage(
271
- decay=.9998, model=self.net, use_thres_step=True)
272
- else:
273
- ema = None
274
- # start train loop
275
- self.train_loop(
276
- num_epochs=num_epochs,
277
- train_dataset=train_dataset,
278
- train_batch_size=train_batch_size,
279
- eval_dataset=eval_dataset,
280
- save_interval_epochs=save_interval_epochs,
281
- log_interval_steps=log_interval_steps,
282
- save_dir=save_dir,
283
- ema=ema,
284
- early_stop=early_stop,
285
- early_stop_patience=early_stop_patience,
286
- use_vdl=use_vdl)
287
-
288
- def quant_aware_train(self,
289
- num_epochs,
290
- train_dataset,
291
- train_batch_size=64,
292
- eval_dataset=None,
293
- optimizer=None,
294
- save_interval_epochs=1,
295
- log_interval_steps=10,
296
- save_dir='output',
297
- learning_rate=.00001,
298
- warmup_steps=0,
299
- warmup_start_lr=0.0,
300
- lr_decay_epochs=(216, 243),
301
- lr_decay_gamma=0.1,
302
- metric=None,
303
- use_ema=False,
304
- early_stop=False,
305
- early_stop_patience=5,
306
- use_vdl=True,
307
- resume_checkpoint=None,
308
- quant_config=None):
309
- """
310
- Quantization-aware training.
311
- Args:
312
- num_epochs(int): The number of epochs.
313
- train_dataset(paddlex.dataset): Training dataset.
314
- train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 64.
315
- eval_dataset(paddlex.dataset, optional):
316
- Evaluation dataset. If None, the model will not be evaluated during training process. Defaults to None.
317
- optimizer(paddle.optimizer.Optimizer or None, optional):
318
- Optimizer used for training. If None, a default optimizer is used. Defaults to None.
319
- save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
320
- log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
321
- save_dir(str, optional): Directory to save the model. Defaults to 'output'.
322
- learning_rate(float, optional): Learning rate for training. Defaults to .001.
323
- warmup_steps(int, optional): The number of steps of warm-up training. Defaults to 0.
324
- warmup_start_lr(float, optional): Start learning rate of warm-up training. Defaults to 0..
325
- lr_decay_epochs(list or tuple, optional): Epoch milestones for learning rate decay. Defaults to (216, 243).
326
- lr_decay_gamma(float, optional): Gamma coefficient of learning rate decay. Defaults to .1.
327
- metric({'VOC', 'COCO', None}, optional):
328
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
329
- use_ema(bool, optional): Whether to use exponential moving average strategy. Defaults to False.
330
- early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
331
- early_stop_patience(int, optional): Early stop patience. Defaults to 5.
332
- use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
333
- quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
334
- configuration will be used. Defaults to None.
335
- resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
336
- from. If None, no training checkpoint will be resumed. Defaults to None.
337
-
338
- """
339
- self._prepare_qat(quant_config)
340
- self.train(
341
- num_epochs=num_epochs,
342
- train_dataset=train_dataset,
343
- train_batch_size=train_batch_size,
344
- eval_dataset=eval_dataset,
345
- optimizer=optimizer,
346
- save_interval_epochs=save_interval_epochs,
347
- log_interval_steps=log_interval_steps,
348
- save_dir=save_dir,
349
- pretrain_weights=None,
350
- learning_rate=learning_rate,
351
- warmup_steps=warmup_steps,
352
- warmup_start_lr=warmup_start_lr,
353
- lr_decay_epochs=lr_decay_epochs,
354
- lr_decay_gamma=lr_decay_gamma,
355
- metric=metric,
356
- use_ema=use_ema,
357
- early_stop=early_stop,
358
- early_stop_patience=early_stop_patience,
359
- use_vdl=use_vdl,
360
- resume_checkpoint=resume_checkpoint)
361
-
362
- def evaluate(self,
363
- eval_dataset,
364
- batch_size=1,
365
- metric=None,
366
- return_details=False):
367
- """
368
- Evaluate the model.
369
- Args:
370
- eval_dataset(paddlex.dataset): Evaluation dataset.
371
- batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
372
- metric({'VOC', 'COCO', None}, optional):
373
- Evaluation metric. If None, determine the metric according to the dataset format. Defaults to None.
374
- return_details(bool, optional): Whether to return evaluation details. Defaults to False.
375
-
376
- Returns:
377
- collections.OrderedDict with key-value pairs: {"mAP(0.50, 11point)":`mean average precision`}.
378
-
379
- """
380
-
381
- if metric is None:
382
- if not hasattr(self, 'metric'):
383
- if eval_dataset.__class__.__name__ == 'VOCDetection':
384
- self.metric = 'voc'
385
- elif eval_dataset.__class__.__name__ == 'CocoDetection':
386
- self.metric = 'coco'
387
- else:
388
- assert metric.lower() in ['coco', 'voc'], \
389
- "Evaluation metric {} is not supported, please choose form 'COCO' and 'VOC'"
390
- self.metric = metric.lower()
391
-
392
- if self.metric == 'voc':
393
- eval_dataset.data_fields = {
394
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
395
- 'difficult'
396
- }
397
- elif self.metric == 'coco':
398
- if self.__class__.__name__ == 'MaskRCNN':
399
- eval_dataset.data_fields = {
400
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
401
- 'gt_poly', 'is_crowd'
402
- }
403
- else:
404
- eval_dataset.data_fields = {
405
- 'im_id', 'image_shape', 'image', 'gt_bbox', 'gt_class',
406
- 'is_crowd'
407
- }
408
- eval_dataset.batch_transforms = self._compose_batch_transform(
409
- eval_dataset.transforms, mode='eval')
410
- arrange_transforms(
411
- model_type=self.model_type,
412
- transforms=eval_dataset.transforms,
413
- mode='eval')
414
-
415
- self.net.eval()
416
- nranks = paddle.distributed.get_world_size()
417
- local_rank = paddle.distributed.get_rank()
418
- if nranks > 1:
419
- # Initialize parallel environment if not done.
420
- if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
421
- ):
422
- paddle.distributed.init_parallel_env()
423
-
424
- if batch_size > 1:
425
- logging.warning(
426
- "Detector only supports single card evaluation with batch_size=1 "
427
- "during evaluation, so batch_size is forcibly set to 1.")
428
- batch_size = 1
429
-
430
- if nranks < 2 or local_rank == 0:
431
- self.eval_data_loader = self.build_data_loader(
432
- eval_dataset, batch_size=batch_size, mode='eval')
433
- is_bbox_normalized = False
434
- if eval_dataset.batch_transforms is not None:
435
- is_bbox_normalized = any(
436
- isinstance(t, _NormalizeBox)
437
- for t in eval_dataset.batch_transforms.batch_transforms)
438
- if self.metric == 'voc':
439
- eval_metric = VOCMetric(
440
- labels=eval_dataset.labels,
441
- coco_gt=copy.deepcopy(eval_dataset.coco_gt),
442
- is_bbox_normalized=is_bbox_normalized,
443
- classwise=False)
444
- else:
445
- eval_metric = COCOMetric(
446
- coco_gt=copy.deepcopy(eval_dataset.coco_gt),
447
- classwise=False)
448
- scores = collections.OrderedDict()
449
- logging.info(
450
- "Start to evaluate(total_samples={}, total_steps={})...".
451
- format(eval_dataset.num_samples, eval_dataset.num_samples))
452
- with paddle.no_grad():
453
- for step, data in enumerate(self.eval_data_loader):
454
- outputs = self.run(self.net, data, 'eval')
455
- eval_metric.update(data, outputs)
456
- eval_metric.accumulate()
457
- self.eval_details = eval_metric.details
458
- scores.update(eval_metric.get())
459
- eval_metric.reset()
460
-
461
- if return_details:
462
- return scores, self.eval_details
463
- return scores
464
-
465
- def predict(self, img_file, transforms=None):
466
- """
467
- Do inference.
468
- Args:
469
- img_file(List[np.ndarray or str], str or np.ndarray): img_file(list or str or np.array):
470
- Image path or decoded image data in a BGR format, which also could constitute a list,
471
- meaning all images to be predicted as a mini-batch.
472
- transforms(paddlex.transforms.Compose or None, optional):
473
- Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
474
-
475
- Returns:
476
- If img_file is a string or np.array, the result is a list of dict with key-value pairs:
477
- {"category_id": `category_id`, "category": `category`, "bbox": `[x, y, w, h]`, "score": `score`}.
478
- If img_file is a list, the result is a list composed of dicts with the corresponding fields:
479
- category_id(int): the predicted category ID. 0 represents the first category in the dataset, and so on.
480
- category(str): category name
481
- bbox(list): bounding box in [x, y, w, h] format
482
- score(str): confidence
483
- mask(dict): Only for instance segmentation task. Mask of the object in RLE format
484
-
485
- """
486
- if transforms is None and not hasattr(self, 'test_transforms'):
487
- raise Exception("transforms need to be defined, now is None.")
488
- if transforms is None:
489
- transforms = self.test_transforms
490
- if isinstance(img_file, (str, np.ndarray)):
491
- images = [img_file]
492
- else:
493
- images = img_file
494
-
495
- batch_samples = self._preprocess(images, transforms)
496
- self.net.eval()
497
- outputs = self.run(self.net, batch_samples, 'test')
498
- prediction = self._postprocess(outputs)
499
-
500
- if isinstance(img_file, (str, np.ndarray)):
501
- prediction = prediction[0]
502
- return prediction
503
-
504
- def _preprocess(self, images, transforms):
505
- arrange_transforms(
506
- model_type=self.model_type, transforms=transforms, mode='test')
507
- batch_samples = list()
508
- for im in images:
509
- sample = {'image': im}
510
- batch_samples.append(transforms(sample))
511
- batch_transforms = self._compose_batch_transform(transforms, 'test')
512
- batch_samples = batch_transforms(batch_samples)
513
- for k, v in batch_samples.items():
514
- batch_samples[k] = paddle.to_tensor(v)
515
- return batch_samples
516
-
517
- def _postprocess(self, batch_pred):
518
- infer_result = {}
519
- if 'bbox' in batch_pred:
520
- bboxes = batch_pred['bbox']
521
- bbox_nums = batch_pred['bbox_num']
522
- det_res = []
523
- k = 0
524
- for i in range(len(bbox_nums)):
525
- det_nums = bbox_nums[i]
526
- for j in range(det_nums):
527
- dt = bboxes[k]
528
- k = k + 1
529
- num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
530
- if int(num_id) < 0:
531
- continue
532
- category = self.labels[int(num_id)]
533
- w = xmax - xmin
534
- h = ymax - ymin
535
- bbox = [xmin, ymin, w, h]
536
- dt_res = {
537
- 'category_id': int(num_id),
538
- 'category': category,
539
- 'bbox': bbox,
540
- 'score': score
541
- }
542
- det_res.append(dt_res)
543
- infer_result['bbox'] = det_res
544
-
545
- if 'mask' in batch_pred:
546
- masks = batch_pred['mask']
547
- bboxes = batch_pred['bbox']
548
- mask_nums = batch_pred['bbox_num']
549
- seg_res = []
550
- k = 0
551
- for i in range(len(mask_nums)):
552
- det_nums = mask_nums[i]
553
- for j in range(det_nums):
554
- mask = masks[k].astype(np.uint8)
555
- score = float(bboxes[k][1])
556
- label = int(bboxes[k][0])
557
- k = k + 1
558
- if label == -1:
559
- continue
560
- category = self.labels[int(label)]
561
- import pycocotools.mask as mask_util
562
- rle = mask_util.encode(
563
- np.array(
564
- mask[:, :, None], order="F", dtype="uint8"))[0]
565
- if six.PY3:
566
- if 'counts' in rle:
567
- rle['counts'] = rle['counts'].decode("utf8")
568
- sg_res = {
569
- 'category_id': int(label),
570
- 'category': category,
571
- 'mask': rle,
572
- 'score': score
573
- }
574
- seg_res.append(sg_res)
575
- infer_result['mask'] = seg_res
576
-
577
- bbox_num = batch_pred['bbox_num']
578
- results = []
579
- start = 0
580
- for num in bbox_num:
581
- end = start + num
582
- curr_res = infer_result['bbox'][start:end]
583
- if 'mask' in infer_result:
584
- mask_res = infer_result['mask'][start:end]
585
- for box, mask in zip(curr_res, mask_res):
586
- box.update(mask)
587
- results.append(curr_res)
588
- start = end
589
-
590
- return results
591
-
592
-
593
- class YOLOv3(BaseDetector):
594
- def __init__(self,
595
- num_classes=80,
596
- backbone='MobileNetV1',
597
- anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
598
- [59, 119], [116, 90], [156, 198], [373, 326]],
599
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
600
- ignore_threshold=0.7,
601
- nms_score_threshold=0.01,
602
- nms_topk=1000,
603
- nms_keep_topk=100,
604
- nms_iou_threshold=0.45,
605
- label_smooth=False):
606
- self.init_params = locals()
607
- if backbone not in [
608
- 'MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3',
609
- 'MobileNetV3_ssld', 'DarkNet53', 'ResNet50_vd_dcn', 'ResNet34'
610
- ]:
611
- raise ValueError(
612
- "backbone: {} is not supported. Please choose one of "
613
- "('MobileNetV1', 'MobileNetV1_ssld', 'MobileNetV3', 'MobileNetV3_ssld', 'DarkNet53', 'ResNet50_vd_dcn', 'ResNet34')".
614
- format(backbone))
615
-
616
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
617
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
618
- norm_type = 'sync_bn'
619
- else:
620
- norm_type = 'bn'
621
-
622
- self.backbone_name = backbone
623
- if 'MobileNetV1' in backbone:
624
- norm_type = 'bn'
625
- backbone = self._get_backbone('MobileNet', norm_type=norm_type)
626
- elif 'MobileNetV3' in backbone:
627
- backbone = self._get_backbone(
628
- 'MobileNetV3', norm_type=norm_type, feature_maps=[7, 13, 16])
629
- elif backbone == 'ResNet50_vd_dcn':
630
- backbone = self._get_backbone(
631
- 'ResNet',
632
- norm_type=norm_type,
633
- variant='d',
634
- return_idx=[1, 2, 3],
635
- dcn_v2_stages=[3],
636
- freeze_at=-1,
637
- freeze_norm=False)
638
- elif backbone == 'ResNet34':
639
- backbone = self._get_backbone(
640
- 'ResNet',
641
- depth=34,
642
- norm_type=norm_type,
643
- return_idx=[1, 2, 3],
644
- freeze_at=-1,
645
- freeze_norm=False,
646
- norm_decay=0.)
647
- else:
648
- backbone = self._get_backbone('DarkNet', norm_type=norm_type)
649
-
650
- neck = ppdet.modeling.YOLOv3FPN(
651
- norm_type=norm_type,
652
- in_channels=[i.channels for i in backbone.out_shape])
653
- loss = ppdet.modeling.YOLOv3Loss(
654
- num_classes=num_classes,
655
- ignore_thresh=ignore_threshold,
656
- label_smooth=label_smooth)
657
- yolo_head = ppdet.modeling.YOLOv3Head(
658
- in_channels=[i.channels for i in neck.out_shape],
659
- anchors=anchors,
660
- anchor_masks=anchor_masks,
661
- num_classes=num_classes,
662
- loss=loss)
663
- post_process = ppdet.modeling.BBoxPostProcess(
664
- decode=ppdet.modeling.YOLOBox(num_classes=num_classes),
665
- nms=ppdet.modeling.MultiClassNMS(
666
- score_threshold=nms_score_threshold,
667
- nms_top_k=nms_topk,
668
- keep_top_k=nms_keep_topk,
669
- nms_threshold=nms_iou_threshold))
670
- params = {
671
- 'backbone': backbone,
672
- 'neck': neck,
673
- 'yolo_head': yolo_head,
674
- 'post_process': post_process
675
- }
676
- super(YOLOv3, self).__init__(
677
- model_name='YOLOv3', num_classes=num_classes, **params)
678
- self.anchors = anchors
679
- self.anchor_masks = anchor_masks
680
-
681
- def _compose_batch_transform(self, transforms, mode='train'):
682
- if mode == 'train':
683
- default_batch_transforms = [
684
- _BatchPadding(pad_to_stride=-1), _NormalizeBox(),
685
- _PadBox(getattr(self, 'num_max_boxes', 50)), _BboxXYXY2XYWH(),
686
- _Gt2YoloTarget(
687
- anchor_masks=self.anchor_masks,
688
- anchors=self.anchors,
689
- downsample_ratios=getattr(self, 'downsample_ratios',
690
- [32, 16, 8]),
691
- num_classes=self.num_classes)
692
- ]
693
- else:
694
- default_batch_transforms = [_BatchPadding(pad_to_stride=-1)]
695
- if mode == 'eval' and self.metric == 'voc':
696
- collate_batch = False
697
- else:
698
- collate_batch = True
699
-
700
- custom_batch_transforms = []
701
- for i, op in enumerate(transforms.transforms):
702
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
703
- if mode != 'train':
704
- raise Exception(
705
- "{} cannot be present in the {} transforms. ".format(
706
- op.__class__.__name__, mode) +
707
- "Please check the {} transforms.".format(mode))
708
- custom_batch_transforms.insert(0, copy.deepcopy(op))
709
-
710
- batch_transforms = BatchCompose(
711
- custom_batch_transforms + default_batch_transforms,
712
- collate_batch=collate_batch)
713
-
714
- return batch_transforms
715
-
716
- def _fix_transforms_shape(self, image_shape):
717
- if hasattr(self, 'test_transforms'):
718
- if self.test_transforms is not None:
719
- has_resize_op = False
720
- resize_op_idx = -1
721
- normalize_op_idx = len(self.test_transforms.transforms)
722
- for idx, op in enumerate(self.test_transforms.transforms):
723
- name = op.__class__.__name__
724
- if name == 'Resize':
725
- has_resize_op = True
726
- resize_op_idx = idx
727
- if name == 'Normalize':
728
- normalize_op_idx = idx
729
-
730
- if not has_resize_op:
731
- self.test_transforms.transforms.insert(
732
- normalize_op_idx,
733
- Resize(
734
- target_size=image_shape, interp='CUBIC'))
735
- else:
736
- self.test_transforms.transforms[
737
- resize_op_idx].target_size = image_shape
738
-
739
-
740
- class FasterRCNN(BaseDetector):
741
- def __init__(self,
742
- num_classes=80,
743
- backbone='ResNet50',
744
- with_fpn=True,
745
- with_dcn=False,
746
- aspect_ratios=[0.5, 1.0, 2.0],
747
- anchor_sizes=[[32], [64], [128], [256], [512]],
748
- keep_top_k=100,
749
- nms_threshold=0.5,
750
- score_threshold=0.05,
751
- fpn_num_channels=256,
752
- rpn_batch_size_per_im=256,
753
- rpn_fg_fraction=0.5,
754
- test_pre_nms_top_n=None,
755
- test_post_nms_top_n=1000):
756
- self.init_params = locals()
757
- if backbone not in [
758
- 'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34',
759
- 'ResNet34_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18'
760
- ]:
761
- raise ValueError(
762
- "backbone: {} is not supported. Please choose one of "
763
- "('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet34', 'ResNet34_vd', "
764
- "'ResNet101', 'ResNet101_vd', 'HRNet_W18')".format(backbone))
765
- self.backbone_name = backbone
766
- dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
767
- if backbone == 'HRNet_W18':
768
- if not with_fpn:
769
- logging.warning(
770
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
771
- format(backbone))
772
- with_fpn = True
773
- if with_dcn:
774
- logging.warning(
775
- "Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
776
- format(backbone))
777
- backbone = self._get_backbone(
778
- 'HRNet', width=18, freeze_at=0, return_idx=[0, 1, 2, 3])
779
- elif backbone == 'ResNet50_vd_ssld':
780
- if not with_fpn:
781
- logging.warning(
782
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
783
- format(backbone))
784
- with_fpn = True
785
- backbone = self._get_backbone(
786
- 'ResNet',
787
- variant='d',
788
- norm_type='bn',
789
- freeze_at=0,
790
- return_idx=[0, 1, 2, 3],
791
- num_stages=4,
792
- lr_mult_list=[0.05, 0.05, 0.1, 0.15],
793
- dcn_v2_stages=dcn_v2_stages)
794
- elif 'ResNet50' in backbone:
795
- if with_fpn:
796
- backbone = self._get_backbone(
797
- 'ResNet',
798
- variant='d' if '_vd' in backbone else 'b',
799
- norm_type='bn',
800
- freeze_at=0,
801
- return_idx=[0, 1, 2, 3],
802
- num_stages=4,
803
- dcn_v2_stages=dcn_v2_stages)
804
- else:
805
- if with_dcn:
806
- logging.warning(
807
- "Backbone {} without fpn should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
808
- format(backbone))
809
- backbone = self._get_backbone(
810
- 'ResNet',
811
- variant='d' if '_vd' in backbone else 'b',
812
- norm_type='bn',
813
- freeze_at=0,
814
- return_idx=[2],
815
- num_stages=3)
816
- elif 'ResNet34' in backbone:
817
- if not with_fpn:
818
- logging.warning(
819
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
820
- format(backbone))
821
- with_fpn = True
822
- backbone = self._get_backbone(
823
- 'ResNet',
824
- depth=34,
825
- variant='d' if 'vd' in backbone else 'b',
826
- norm_type='bn',
827
- freeze_at=0,
828
- return_idx=[0, 1, 2, 3],
829
- num_stages=4,
830
- dcn_v2_stages=dcn_v2_stages)
831
- else:
832
- if not with_fpn:
833
- logging.warning(
834
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
835
- format(backbone))
836
- with_fpn = True
837
- backbone = self._get_backbone(
838
- 'ResNet',
839
- depth=101,
840
- variant='d' if 'vd' in backbone else 'b',
841
- norm_type='bn',
842
- freeze_at=0,
843
- return_idx=[0, 1, 2, 3],
844
- num_stages=4,
845
- dcn_v2_stages=dcn_v2_stages)
846
-
847
- rpn_in_channel = backbone.out_shape[0].channels
848
-
849
- if with_fpn:
850
- self.backbone_name = self.backbone_name + '_fpn'
851
-
852
- if 'HRNet' in self.backbone_name:
853
- neck = ppdet.modeling.HRFPN(
854
- in_channels=[i.channels for i in backbone.out_shape],
855
- out_channel=fpn_num_channels,
856
- spatial_scales=[
857
- 1.0 / i.stride for i in backbone.out_shape
858
- ],
859
- share_conv=False)
860
- else:
861
- neck = ppdet.modeling.FPN(
862
- in_channels=[i.channels for i in backbone.out_shape],
863
- out_channel=fpn_num_channels,
864
- spatial_scales=[
865
- 1.0 / i.stride for i in backbone.out_shape
866
- ])
867
- rpn_in_channel = neck.out_shape[0].channels
868
- anchor_generator_cfg = {
869
- 'aspect_ratios': aspect_ratios,
870
- 'anchor_sizes': anchor_sizes,
871
- 'strides': [4, 8, 16, 32, 64]
872
- }
873
- train_proposal_cfg = {
874
- 'min_size': 0.0,
875
- 'nms_thresh': .7,
876
- 'pre_nms_top_n': 2000,
877
- 'post_nms_top_n': 1000,
878
- 'topk_after_collect': True
879
- }
880
- test_proposal_cfg = {
881
- 'min_size': 0.0,
882
- 'nms_thresh': .7,
883
- 'pre_nms_top_n': 1000
884
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
885
- 'post_nms_top_n': test_post_nms_top_n
886
- }
887
- head = ppdet.modeling.TwoFCHead(
888
- in_channel=neck.out_shape[0].channels, out_channel=1024)
889
- roi_extractor_cfg = {
890
- 'resolution': 7,
891
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
892
- 'sampling_ratio': 0,
893
- 'aligned': True
894
- }
895
- with_pool = False
896
-
897
- else:
898
- neck = None
899
- anchor_generator_cfg = {
900
- 'aspect_ratios': aspect_ratios,
901
- 'anchor_sizes': anchor_sizes,
902
- 'strides': [16]
903
- }
904
- train_proposal_cfg = {
905
- 'min_size': 0.0,
906
- 'nms_thresh': .7,
907
- 'pre_nms_top_n': 12000,
908
- 'post_nms_top_n': 2000,
909
- 'topk_after_collect': False
910
- }
911
- test_proposal_cfg = {
912
- 'min_size': 0.0,
913
- 'nms_thresh': .7,
914
- 'pre_nms_top_n': 6000
915
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
916
- 'post_nms_top_n': test_post_nms_top_n
917
- }
918
- head = ppdet.modeling.Res5Head()
919
- roi_extractor_cfg = {
920
- 'resolution': 14,
921
- 'spatial_scale': [1. / i.stride for i in backbone.out_shape],
922
- 'sampling_ratio': 0,
923
- 'aligned': True
924
- }
925
- with_pool = True
926
-
927
- rpn_target_assign_cfg = {
928
- 'batch_size_per_im': rpn_batch_size_per_im,
929
- 'fg_fraction': rpn_fg_fraction,
930
- 'negative_overlap': .3,
931
- 'positive_overlap': .7,
932
- 'use_random': True
933
- }
934
-
935
- rpn_head = ppdet.modeling.RPNHead(
936
- anchor_generator=anchor_generator_cfg,
937
- rpn_target_assign=rpn_target_assign_cfg,
938
- train_proposal=train_proposal_cfg,
939
- test_proposal=test_proposal_cfg,
940
- in_channel=rpn_in_channel)
941
-
942
- bbox_assigner = BBoxAssigner(num_classes=num_classes)
943
-
944
- bbox_head = ppdet.modeling.BBoxHead(
945
- head=head,
946
- in_channel=head.out_shape[0].channels,
947
- roi_extractor=roi_extractor_cfg,
948
- with_pool=with_pool,
949
- bbox_assigner=bbox_assigner,
950
- num_classes=num_classes)
951
-
952
- bbox_post_process = ppdet.modeling.BBoxPostProcess(
953
- num_classes=num_classes,
954
- decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
955
- nms=ppdet.modeling.MultiClassNMS(
956
- score_threshold=score_threshold,
957
- keep_top_k=keep_top_k,
958
- nms_threshold=nms_threshold))
959
-
960
- params = {
961
- 'backbone': backbone,
962
- 'neck': neck,
963
- 'rpn_head': rpn_head,
964
- 'bbox_head': bbox_head,
965
- 'bbox_post_process': bbox_post_process
966
- }
967
-
968
- self.with_fpn = with_fpn
969
- super(FasterRCNN, self).__init__(
970
- model_name='FasterRCNN', num_classes=num_classes, **params)
971
-
972
- def _compose_batch_transform(self, transforms, mode='train'):
973
- if mode == 'train':
974
- default_batch_transforms = [
975
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
976
- ]
977
- collate_batch = False
978
- else:
979
- default_batch_transforms = [
980
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
981
- ]
982
- collate_batch = True
983
- custom_batch_transforms = []
984
- for i, op in enumerate(transforms.transforms):
985
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
986
- if mode != 'train':
987
- raise Exception(
988
- "{} cannot be present in the {} transforms. ".format(
989
- op.__class__.__name__, mode) +
990
- "Please check the {} transforms.".format(mode))
991
- custom_batch_transforms.insert(0, copy.deepcopy(op))
992
-
993
- batch_transforms = BatchCompose(
994
- custom_batch_transforms + default_batch_transforms,
995
- collate_batch=collate_batch)
996
-
997
- return batch_transforms
998
-
999
- def _fix_transforms_shape(self, image_shape):
1000
- if hasattr(self, 'test_transforms'):
1001
- if self.test_transforms is not None:
1002
- has_resize_op = False
1003
- resize_op_idx = -1
1004
- normalize_op_idx = len(self.test_transforms.transforms)
1005
- for idx, op in enumerate(self.test_transforms.transforms):
1006
- name = op.__class__.__name__
1007
- if name == 'ResizeByShort':
1008
- has_resize_op = True
1009
- resize_op_idx = idx
1010
- if name == 'Normalize':
1011
- normalize_op_idx = idx
1012
-
1013
- if not has_resize_op:
1014
- self.test_transforms.transforms.insert(
1015
- normalize_op_idx,
1016
- Resize(
1017
- target_size=image_shape,
1018
- keep_ratio=True,
1019
- interp='CUBIC'))
1020
- else:
1021
- self.test_transforms.transforms[resize_op_idx] = Resize(
1022
- target_size=image_shape,
1023
- keep_ratio=True,
1024
- interp='CUBIC')
1025
- self.test_transforms.transforms.append(
1026
- Padding(im_padding_value=[0., 0., 0.]))
1027
-
1028
- def _get_test_inputs(self, image_shape):
1029
- if image_shape is not None:
1030
- image_shape = self._check_image_shape(image_shape)
1031
- self._fix_transforms_shape(image_shape[-2:])
1032
- else:
1033
- image_shape = [None, 3, -1, -1]
1034
- if self.with_fpn:
1035
- self.test_transforms.transforms.append(
1036
- Padding(im_padding_value=[0., 0., 0.]))
1037
-
1038
- self.fixed_input_shape = image_shape
1039
- return self._define_input_spec(image_shape)
1040
-
1041
-
1042
- class PPYOLO(YOLOv3):
1043
- def __init__(self,
1044
- num_classes=80,
1045
- backbone='ResNet50_vd_dcn',
1046
- anchors=None,
1047
- anchor_masks=None,
1048
- use_coord_conv=True,
1049
- use_iou_aware=True,
1050
- use_spp=True,
1051
- use_drop_block=True,
1052
- scale_x_y=1.05,
1053
- ignore_threshold=0.7,
1054
- label_smooth=False,
1055
- use_iou_loss=True,
1056
- use_matrix_nms=True,
1057
- nms_score_threshold=0.01,
1058
- nms_topk=-1,
1059
- nms_keep_topk=100,
1060
- nms_iou_threshold=0.45):
1061
- self.init_params = locals()
1062
- if backbone not in [
1063
- 'ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large',
1064
- 'MobileNetV3_small'
1065
- ]:
1066
- raise ValueError(
1067
- "backbone: {} is not supported. Please choose one of "
1068
- "('ResNet50_vd_dcn', 'ResNet18_vd', 'MobileNetV3_large', 'MobileNetV3_small')".
1069
- format(backbone))
1070
- self.backbone_name = backbone
1071
-
1072
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1073
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1074
- norm_type = 'sync_bn'
1075
- else:
1076
- norm_type = 'bn'
1077
- if anchors is None and anchor_masks is None:
1078
- if 'MobileNetV3' in backbone:
1079
- anchors = [[11, 18], [34, 47], [51, 126], [115, 71],
1080
- [120, 195], [254, 235]]
1081
- anchor_masks = [[3, 4, 5], [0, 1, 2]]
1082
- elif backbone == 'ResNet50_vd_dcn':
1083
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
1084
- [59, 119], [116, 90], [156, 198], [373, 326]]
1085
- anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
1086
- else:
1087
- anchors = [[10, 14], [23, 27], [37, 58], [81, 82], [135, 169],
1088
- [344, 319]]
1089
- anchor_masks = [[3, 4, 5], [0, 1, 2]]
1090
- elif anchors is None or anchor_masks is None:
1091
- raise ValueError("Please define both anchors and anchor_masks.")
1092
-
1093
- if backbone == 'ResNet50_vd_dcn':
1094
- backbone = self._get_backbone(
1095
- 'ResNet',
1096
- variant='d',
1097
- norm_type=norm_type,
1098
- return_idx=[1, 2, 3],
1099
- dcn_v2_stages=[3],
1100
- freeze_at=-1,
1101
- freeze_norm=False,
1102
- norm_decay=0.)
1103
- downsample_ratios = [32, 16, 8]
1104
-
1105
- elif backbone == 'ResNet18_vd':
1106
- backbone = self._get_backbone(
1107
- 'ResNet',
1108
- depth=18,
1109
- variant='d',
1110
- norm_type=norm_type,
1111
- return_idx=[2, 3],
1112
- freeze_at=-1,
1113
- freeze_norm=False,
1114
- norm_decay=0.)
1115
- downsample_ratios = [32, 16, 8]
1116
-
1117
- elif backbone == 'MobileNetV3_large':
1118
- backbone = self._get_backbone(
1119
- 'MobileNetV3',
1120
- model_name='large',
1121
- norm_type=norm_type,
1122
- scale=1,
1123
- with_extra_blocks=False,
1124
- extra_block_filters=[],
1125
- feature_maps=[13, 16])
1126
- downsample_ratios = [32, 16]
1127
-
1128
- elif backbone == 'MobileNetV3_small':
1129
- backbone = self._get_backbone(
1130
- 'MobileNetV3',
1131
- model_name='small',
1132
- norm_type=norm_type,
1133
- scale=1,
1134
- with_extra_blocks=False,
1135
- extra_block_filters=[],
1136
- feature_maps=[9, 12])
1137
- downsample_ratios = [32, 16]
1138
-
1139
- neck = ppdet.modeling.PPYOLOFPN(
1140
- norm_type=norm_type,
1141
- in_channels=[i.channels for i in backbone.out_shape],
1142
- coord_conv=use_coord_conv,
1143
- drop_block=use_drop_block,
1144
- spp=use_spp,
1145
- conv_block_num=0 if ('MobileNetV3' in self.backbone_name or
1146
- self.backbone_name == 'ResNet18_vd') else 2)
1147
-
1148
- loss = ppdet.modeling.YOLOv3Loss(
1149
- num_classes=num_classes,
1150
- ignore_thresh=ignore_threshold,
1151
- downsample=downsample_ratios,
1152
- label_smooth=label_smooth,
1153
- scale_x_y=scale_x_y,
1154
- iou_loss=ppdet.modeling.IouLoss(
1155
- loss_weight=2.5, loss_square=True) if use_iou_loss else None,
1156
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1157
- if use_iou_aware else None)
1158
-
1159
- yolo_head = ppdet.modeling.YOLOv3Head(
1160
- in_channels=[i.channels for i in neck.out_shape],
1161
- anchors=anchors,
1162
- anchor_masks=anchor_masks,
1163
- num_classes=num_classes,
1164
- loss=loss,
1165
- iou_aware=use_iou_aware)
1166
-
1167
- if use_matrix_nms:
1168
- nms = ppdet.modeling.MatrixNMS(
1169
- keep_top_k=nms_keep_topk,
1170
- score_threshold=nms_score_threshold,
1171
- post_threshold=.05
1172
- if 'MobileNetV3' in self.backbone_name else .01,
1173
- nms_top_k=nms_topk,
1174
- background_label=-1)
1175
- else:
1176
- nms = ppdet.modeling.MultiClassNMS(
1177
- score_threshold=nms_score_threshold,
1178
- nms_top_k=nms_topk,
1179
- keep_top_k=nms_keep_topk,
1180
- nms_threshold=nms_iou_threshold)
1181
-
1182
- post_process = ppdet.modeling.BBoxPostProcess(
1183
- decode=ppdet.modeling.YOLOBox(
1184
- num_classes=num_classes,
1185
- conf_thresh=.005
1186
- if 'MobileNetV3' in self.backbone_name else .01,
1187
- scale_x_y=scale_x_y),
1188
- nms=nms)
1189
-
1190
- params = {
1191
- 'backbone': backbone,
1192
- 'neck': neck,
1193
- 'yolo_head': yolo_head,
1194
- 'post_process': post_process
1195
- }
1196
-
1197
- super(YOLOv3, self).__init__(
1198
- model_name='YOLOv3', num_classes=num_classes, **params)
1199
- self.anchors = anchors
1200
- self.anchor_masks = anchor_masks
1201
- self.downsample_ratios = downsample_ratios
1202
- self.model_name = 'PPYOLO'
1203
-
1204
-
1205
- class PPYOLOTiny(YOLOv3):
1206
- def __init__(self,
1207
- num_classes=80,
1208
- backbone='MobileNetV3',
1209
- anchors=[[10, 15], [24, 36], [72, 42], [35, 87], [102, 96],
1210
- [60, 170], [220, 125], [128, 222], [264, 266]],
1211
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
1212
- use_iou_aware=False,
1213
- use_spp=True,
1214
- use_drop_block=True,
1215
- scale_x_y=1.05,
1216
- ignore_threshold=0.5,
1217
- label_smooth=False,
1218
- use_iou_loss=True,
1219
- use_matrix_nms=False,
1220
- nms_score_threshold=0.005,
1221
- nms_topk=1000,
1222
- nms_keep_topk=100,
1223
- nms_iou_threshold=0.45):
1224
- self.init_params = locals()
1225
- if backbone != 'MobileNetV3':
1226
- logging.warning(
1227
- "PPYOLOTiny only supports MobileNetV3 as backbone. "
1228
- "Backbone is forcibly set to MobileNetV3.")
1229
- self.backbone_name = 'MobileNetV3'
1230
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1231
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1232
- norm_type = 'sync_bn'
1233
- else:
1234
- norm_type = 'bn'
1235
-
1236
- backbone = self._get_backbone(
1237
- 'MobileNetV3',
1238
- model_name='large',
1239
- norm_type=norm_type,
1240
- scale=.5,
1241
- with_extra_blocks=False,
1242
- extra_block_filters=[],
1243
- feature_maps=[7, 13, 16])
1244
- downsample_ratios = [32, 16, 8]
1245
-
1246
- neck = ppdet.modeling.PPYOLOTinyFPN(
1247
- detection_block_channels=[160, 128, 96],
1248
- in_channels=[i.channels for i in backbone.out_shape],
1249
- spp=use_spp,
1250
- drop_block=use_drop_block)
1251
-
1252
- loss = ppdet.modeling.YOLOv3Loss(
1253
- num_classes=num_classes,
1254
- ignore_thresh=ignore_threshold,
1255
- downsample=downsample_ratios,
1256
- label_smooth=label_smooth,
1257
- scale_x_y=scale_x_y,
1258
- iou_loss=ppdet.modeling.IouLoss(
1259
- loss_weight=2.5, loss_square=True) if use_iou_loss else None,
1260
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1261
- if use_iou_aware else None)
1262
-
1263
- yolo_head = ppdet.modeling.YOLOv3Head(
1264
- in_channels=[i.channels for i in neck.out_shape],
1265
- anchors=anchors,
1266
- anchor_masks=anchor_masks,
1267
- num_classes=num_classes,
1268
- loss=loss,
1269
- iou_aware=use_iou_aware)
1270
-
1271
- if use_matrix_nms:
1272
- nms = ppdet.modeling.MatrixNMS(
1273
- keep_top_k=nms_keep_topk,
1274
- score_threshold=nms_score_threshold,
1275
- post_threshold=.05,
1276
- nms_top_k=nms_topk,
1277
- background_label=-1)
1278
- else:
1279
- nms = ppdet.modeling.MultiClassNMS(
1280
- score_threshold=nms_score_threshold,
1281
- nms_top_k=nms_topk,
1282
- keep_top_k=nms_keep_topk,
1283
- nms_threshold=nms_iou_threshold)
1284
-
1285
- post_process = ppdet.modeling.BBoxPostProcess(
1286
- decode=ppdet.modeling.YOLOBox(
1287
- num_classes=num_classes,
1288
- conf_thresh=.005,
1289
- downsample_ratio=32,
1290
- clip_bbox=True,
1291
- scale_x_y=scale_x_y),
1292
- nms=nms)
1293
-
1294
- params = {
1295
- 'backbone': backbone,
1296
- 'neck': neck,
1297
- 'yolo_head': yolo_head,
1298
- 'post_process': post_process
1299
- }
1300
-
1301
- super(YOLOv3, self).__init__(
1302
- model_name='YOLOv3', num_classes=num_classes, **params)
1303
- self.anchors = anchors
1304
- self.anchor_masks = anchor_masks
1305
- self.downsample_ratios = downsample_ratios
1306
- self.model_name = 'PPYOLOTiny'
1307
-
1308
-
1309
- class PPYOLOv2(YOLOv3):
1310
- def __init__(self,
1311
- num_classes=80,
1312
- backbone='ResNet50_vd_dcn',
1313
- anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
1314
- [59, 119], [116, 90], [156, 198], [373, 326]],
1315
- anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
1316
- use_iou_aware=True,
1317
- use_spp=True,
1318
- use_drop_block=True,
1319
- scale_x_y=1.05,
1320
- ignore_threshold=0.7,
1321
- label_smooth=False,
1322
- use_iou_loss=True,
1323
- use_matrix_nms=True,
1324
- nms_score_threshold=0.01,
1325
- nms_topk=-1,
1326
- nms_keep_topk=100,
1327
- nms_iou_threshold=0.45):
1328
- self.init_params = locals()
1329
- if backbone not in ['ResNet50_vd_dcn', 'ResNet101_vd_dcn']:
1330
- raise ValueError(
1331
- "backbone: {} is not supported. Please choose one of "
1332
- "('ResNet50_vd_dcn', 'ResNet18_vd')".format(backbone))
1333
- self.backbone_name = backbone
1334
-
1335
- if paddlex.env_info['place'] == 'gpu' and paddlex.env_info[
1336
- 'num'] > 1 and not os.environ.get('PADDLEX_EXPORT_STAGE'):
1337
- norm_type = 'sync_bn'
1338
- else:
1339
- norm_type = 'bn'
1340
-
1341
- if backbone == 'ResNet50_vd_dcn':
1342
- backbone = self._get_backbone(
1343
- 'ResNet',
1344
- variant='d',
1345
- norm_type=norm_type,
1346
- return_idx=[1, 2, 3],
1347
- dcn_v2_stages=[3],
1348
- freeze_at=-1,
1349
- freeze_norm=False,
1350
- norm_decay=0.)
1351
- downsample_ratios = [32, 16, 8]
1352
-
1353
- elif backbone == 'ResNet101_vd_dcn':
1354
- backbone = self._get_backbone(
1355
- 'ResNet',
1356
- depth=101,
1357
- variant='d',
1358
- norm_type=norm_type,
1359
- return_idx=[1, 2, 3],
1360
- dcn_v2_stages=[3],
1361
- freeze_at=-1,
1362
- freeze_norm=False,
1363
- norm_decay=0.)
1364
- downsample_ratios = [32, 16, 8]
1365
-
1366
- neck = ppdet.modeling.PPYOLOPAN(
1367
- norm_type=norm_type,
1368
- in_channels=[i.channels for i in backbone.out_shape],
1369
- drop_block=use_drop_block,
1370
- block_size=3,
1371
- keep_prob=.9,
1372
- spp=use_spp)
1373
-
1374
- loss = ppdet.modeling.YOLOv3Loss(
1375
- num_classes=num_classes,
1376
- ignore_thresh=ignore_threshold,
1377
- downsample=downsample_ratios,
1378
- label_smooth=label_smooth,
1379
- scale_x_y=scale_x_y,
1380
- iou_loss=ppdet.modeling.IouLoss(
1381
- loss_weight=2.5, loss_square=True) if use_iou_loss else None,
1382
- iou_aware_loss=ppdet.modeling.IouAwareLoss(loss_weight=1.0)
1383
- if use_iou_aware else None)
1384
-
1385
- yolo_head = ppdet.modeling.YOLOv3Head(
1386
- in_channels=[i.channels for i in neck.out_shape],
1387
- anchors=anchors,
1388
- anchor_masks=anchor_masks,
1389
- num_classes=num_classes,
1390
- loss=loss,
1391
- iou_aware=use_iou_aware,
1392
- iou_aware_factor=.5)
1393
-
1394
- if use_matrix_nms:
1395
- nms = ppdet.modeling.MatrixNMS(
1396
- keep_top_k=nms_keep_topk,
1397
- score_threshold=nms_score_threshold,
1398
- post_threshold=.01,
1399
- nms_top_k=nms_topk,
1400
- background_label=-1)
1401
- else:
1402
- nms = ppdet.modeling.MultiClassNMS(
1403
- score_threshold=nms_score_threshold,
1404
- nms_top_k=nms_topk,
1405
- keep_top_k=nms_keep_topk,
1406
- nms_threshold=nms_iou_threshold)
1407
-
1408
- post_process = ppdet.modeling.BBoxPostProcess(
1409
- decode=ppdet.modeling.YOLOBox(
1410
- num_classes=num_classes,
1411
- conf_thresh=.01,
1412
- downsample_ratio=32,
1413
- clip_bbox=True,
1414
- scale_x_y=scale_x_y),
1415
- nms=nms)
1416
-
1417
- params = {
1418
- 'backbone': backbone,
1419
- 'neck': neck,
1420
- 'yolo_head': yolo_head,
1421
- 'post_process': post_process
1422
- }
1423
-
1424
- super(YOLOv3, self).__init__(
1425
- model_name='YOLOv3', num_classes=num_classes, **params)
1426
- self.anchors = anchors
1427
- self.anchor_masks = anchor_masks
1428
- self.downsample_ratios = downsample_ratios
1429
- self.model_name = 'PPYOLOv2'
1430
-
1431
- def _get_test_inputs(self, image_shape):
1432
- if image_shape is not None:
1433
- image_shape = self._check_image_shape(image_shape)
1434
- self._fix_transforms_shape(image_shape[-2:])
1435
- else:
1436
- image_shape = [None, 3, 608, 608]
1437
- logging.warning(
1438
- '[Important!!!] When exporting inference model for {},'.format(
1439
- self.__class__.__name__) +
1440
- ' if fixed_input_shape is not set, it will be forcibly set to [None, 3, 608, 608]. '
1441
- +
1442
- 'Please check image shape after transforms is [3, 608, 608], if not, fixed_input_shape '
1443
- + 'should be specified manually.')
1444
-
1445
- self.fixed_input_shape = image_shape
1446
- return self._define_input_spec(image_shape)
1447
-
1448
-
1449
- class MaskRCNN(BaseDetector):
1450
- def __init__(self,
1451
- num_classes=80,
1452
- backbone='ResNet50_vd',
1453
- with_fpn=True,
1454
- with_dcn=False,
1455
- aspect_ratios=[0.5, 1.0, 2.0],
1456
- anchor_sizes=[[32], [64], [128], [256], [512]],
1457
- keep_top_k=100,
1458
- nms_threshold=0.5,
1459
- score_threshold=0.05,
1460
- fpn_num_channels=256,
1461
- rpn_batch_size_per_im=256,
1462
- rpn_fg_fraction=0.5,
1463
- test_pre_nms_top_n=None,
1464
- test_post_nms_top_n=1000):
1465
- self.init_params = locals()
1466
- if backbone not in [
1467
- 'ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101',
1468
- 'ResNet101_vd'
1469
- ]:
1470
- raise ValueError(
1471
- "backbone: {} is not supported. Please choose one of "
1472
- "('ResNet50', 'ResNet50_vd', 'ResNet50_vd_ssld', 'ResNet101', 'ResNet101_vd')".
1473
- format(backbone))
1474
-
1475
- self.backbone_name = backbone + '_fpn' if with_fpn else backbone
1476
- dcn_v2_stages = [1, 2, 3] if with_dcn else [-1]
1477
-
1478
- if backbone == 'ResNet50':
1479
- if with_fpn:
1480
- backbone = self._get_backbone(
1481
- 'ResNet',
1482
- norm_type='bn',
1483
- freeze_at=0,
1484
- return_idx=[0, 1, 2, 3],
1485
- num_stages=4,
1486
- dcn_v2_stages=dcn_v2_stages)
1487
- else:
1488
- if with_dcn:
1489
- logging.warning(
1490
- "Backbone {} should be used along with dcn disabled, 'with_dcn' is forcibly set to False".
1491
- format(backbone))
1492
- backbone = self._get_backbone(
1493
- 'ResNet',
1494
- norm_type='bn',
1495
- freeze_at=0,
1496
- return_idx=[2],
1497
- num_stages=3)
1498
-
1499
- elif 'ResNet50_vd' in backbone:
1500
- if not with_fpn:
1501
- logging.warning(
1502
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1503
- format(backbone))
1504
- with_fpn = True
1505
- backbone = self._get_backbone(
1506
- 'ResNet',
1507
- variant='d',
1508
- norm_type='bn',
1509
- freeze_at=0,
1510
- return_idx=[0, 1, 2, 3],
1511
- num_stages=4,
1512
- lr_mult_list=[0.05, 0.05, 0.1, 0.15]
1513
- if '_ssld' in backbone else [1.0, 1.0, 1.0, 1.0],
1514
- dcn_v2_stages=dcn_v2_stages)
1515
-
1516
- else:
1517
- if not with_fpn:
1518
- logging.warning(
1519
- "Backbone {} should be used along with fpn enabled, 'with_fpn' is forcibly set to True".
1520
- format(backbone))
1521
- with_fpn = True
1522
- backbone = self._get_backbone(
1523
- 'ResNet',
1524
- variant='d' if '_vd' in backbone else 'b',
1525
- depth=101,
1526
- norm_type='bn',
1527
- freeze_at=0,
1528
- return_idx=[0, 1, 2, 3],
1529
- num_stages=4,
1530
- dcn_v2_stages=dcn_v2_stages)
1531
-
1532
- rpn_in_channel = backbone.out_shape[0].channels
1533
-
1534
- if with_fpn:
1535
- neck = ppdet.modeling.FPN(
1536
- in_channels=[i.channels for i in backbone.out_shape],
1537
- out_channel=fpn_num_channels,
1538
- spatial_scales=[1.0 / i.stride for i in backbone.out_shape])
1539
- rpn_in_channel = neck.out_shape[0].channels
1540
- anchor_generator_cfg = {
1541
- 'aspect_ratios': aspect_ratios,
1542
- 'anchor_sizes': anchor_sizes,
1543
- 'strides': [4, 8, 16, 32, 64]
1544
- }
1545
- train_proposal_cfg = {
1546
- 'min_size': 0.0,
1547
- 'nms_thresh': .7,
1548
- 'pre_nms_top_n': 2000,
1549
- 'post_nms_top_n': 1000,
1550
- 'topk_after_collect': True
1551
- }
1552
- test_proposal_cfg = {
1553
- 'min_size': 0.0,
1554
- 'nms_thresh': .7,
1555
- 'pre_nms_top_n': 1000
1556
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
1557
- 'post_nms_top_n': test_post_nms_top_n
1558
- }
1559
- bb_head = ppdet.modeling.TwoFCHead(
1560
- in_channel=neck.out_shape[0].channels, out_channel=1024)
1561
- bb_roi_extractor_cfg = {
1562
- 'resolution': 7,
1563
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
1564
- 'sampling_ratio': 0,
1565
- 'aligned': True
1566
- }
1567
- with_pool = False
1568
- m_head = ppdet.modeling.MaskFeat(
1569
- in_channel=neck.out_shape[0].channels,
1570
- out_channel=256,
1571
- num_convs=4)
1572
- m_roi_extractor_cfg = {
1573
- 'resolution': 14,
1574
- 'spatial_scale': [1. / i.stride for i in neck.out_shape],
1575
- 'sampling_ratio': 0,
1576
- 'aligned': True
1577
- }
1578
- mask_assigner = MaskAssigner(
1579
- num_classes=num_classes, mask_resolution=28)
1580
- share_bbox_feat = False
1581
-
1582
- else:
1583
- neck = None
1584
- anchor_generator_cfg = {
1585
- 'aspect_ratios': aspect_ratios,
1586
- 'anchor_sizes': anchor_sizes,
1587
- 'strides': [16]
1588
- }
1589
- train_proposal_cfg = {
1590
- 'min_size': 0.0,
1591
- 'nms_thresh': .7,
1592
- 'pre_nms_top_n': 12000,
1593
- 'post_nms_top_n': 2000,
1594
- 'topk_after_collect': False
1595
- }
1596
- test_proposal_cfg = {
1597
- 'min_size': 0.0,
1598
- 'nms_thresh': .7,
1599
- 'pre_nms_top_n': 6000
1600
- if test_pre_nms_top_n is None else test_pre_nms_top_n,
1601
- 'post_nms_top_n': test_post_nms_top_n
1602
- }
1603
- bb_head = ppdet.modeling.Res5Head()
1604
- bb_roi_extractor_cfg = {
1605
- 'resolution': 14,
1606
- 'spatial_scale': [1. / i.stride for i in backbone.out_shape],
1607
- 'sampling_ratio': 0,
1608
- 'aligned': True
1609
- }
1610
- with_pool = True
1611
- m_head = ppdet.modeling.MaskFeat(
1612
- in_channel=bb_head.out_shape[0].channels,
1613
- out_channel=256,
1614
- num_convs=0)
1615
- m_roi_extractor_cfg = {
1616
- 'resolution': 14,
1617
- 'spatial_scale': [1. / i.stride for i in backbone.out_shape],
1618
- 'sampling_ratio': 0,
1619
- 'aligned': True
1620
- }
1621
- mask_assigner = MaskAssigner(
1622
- num_classes=num_classes, mask_resolution=14)
1623
- share_bbox_feat = True
1624
-
1625
- rpn_target_assign_cfg = {
1626
- 'batch_size_per_im': rpn_batch_size_per_im,
1627
- 'fg_fraction': rpn_fg_fraction,
1628
- 'negative_overlap': .3,
1629
- 'positive_overlap': .7,
1630
- 'use_random': True
1631
- }
1632
-
1633
- rpn_head = ppdet.modeling.RPNHead(
1634
- anchor_generator=anchor_generator_cfg,
1635
- rpn_target_assign=rpn_target_assign_cfg,
1636
- train_proposal=train_proposal_cfg,
1637
- test_proposal=test_proposal_cfg,
1638
- in_channel=rpn_in_channel)
1639
-
1640
- bbox_assigner = BBoxAssigner(num_classes=num_classes)
1641
-
1642
- bbox_head = ppdet.modeling.BBoxHead(
1643
- head=bb_head,
1644
- in_channel=bb_head.out_shape[0].channels,
1645
- roi_extractor=bb_roi_extractor_cfg,
1646
- with_pool=with_pool,
1647
- bbox_assigner=bbox_assigner,
1648
- num_classes=num_classes)
1649
-
1650
- mask_head = ppdet.modeling.MaskHead(
1651
- head=m_head,
1652
- roi_extractor=m_roi_extractor_cfg,
1653
- mask_assigner=mask_assigner,
1654
- share_bbox_feat=share_bbox_feat,
1655
- num_classes=num_classes)
1656
-
1657
- bbox_post_process = ppdet.modeling.BBoxPostProcess(
1658
- num_classes=num_classes,
1659
- decode=ppdet.modeling.RCNNBox(num_classes=num_classes),
1660
- nms=ppdet.modeling.MultiClassNMS(
1661
- score_threshold=score_threshold,
1662
- keep_top_k=keep_top_k,
1663
- nms_threshold=nms_threshold))
1664
-
1665
- mask_post_process = ppdet.modeling.MaskPostProcess(binary_thresh=.5)
1666
-
1667
- params = {
1668
- 'backbone': backbone,
1669
- 'neck': neck,
1670
- 'rpn_head': rpn_head,
1671
- 'bbox_head': bbox_head,
1672
- 'mask_head': mask_head,
1673
- 'bbox_post_process': bbox_post_process,
1674
- 'mask_post_process': mask_post_process
1675
- }
1676
- self.with_fpn = with_fpn
1677
- super(MaskRCNN, self).__init__(
1678
- model_name='MaskRCNN', num_classes=num_classes, **params)
1679
-
1680
- def _compose_batch_transform(self, transforms, mode='train'):
1681
- if mode == 'train':
1682
- default_batch_transforms = [
1683
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
1684
- ]
1685
- collate_batch = False
1686
- else:
1687
- default_batch_transforms = [
1688
- _BatchPadding(pad_to_stride=32 if self.with_fpn else -1)
1689
- ]
1690
- collate_batch = True
1691
- custom_batch_transforms = []
1692
- for i, op in enumerate(transforms.transforms):
1693
- if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
1694
- if mode != 'train':
1695
- raise Exception(
1696
- "{} cannot be present in the {} transforms. ".format(
1697
- op.__class__.__name__, mode) +
1698
- "Please check the {} transforms.".format(mode))
1699
- custom_batch_transforms.insert(0, copy.deepcopy(op))
1700
-
1701
- batch_transforms = BatchCompose(
1702
- custom_batch_transforms + default_batch_transforms,
1703
- collate_batch=collate_batch)
1704
-
1705
- return batch_transforms
1706
-
1707
- def _fix_transforms_shape(self, image_shape):
1708
- if hasattr(self, 'test_transforms'):
1709
- if self.test_transforms is not None:
1710
- has_resize_op = False
1711
- resize_op_idx = -1
1712
- normalize_op_idx = len(self.test_transforms.transforms)
1713
- for idx, op in enumerate(self.test_transforms.transforms):
1714
- name = op.__class__.__name__
1715
- if name == 'ResizeByShort':
1716
- has_resize_op = True
1717
- resize_op_idx = idx
1718
- if name == 'Normalize':
1719
- normalize_op_idx = idx
1720
-
1721
- if not has_resize_op:
1722
- self.test_transforms.transforms.insert(
1723
- normalize_op_idx,
1724
- Resize(
1725
- target_size=image_shape,
1726
- keep_ratio=True,
1727
- interp='CUBIC'))
1728
- else:
1729
- self.test_transforms.transforms[resize_op_idx] = Resize(
1730
- target_size=image_shape,
1731
- keep_ratio=True,
1732
- interp='CUBIC')
1733
- self.test_transforms.transforms.append(
1734
- Padding(im_padding_value=[0., 0., 0.]))
1735
-
1736
- def _get_test_inputs(self, image_shape):
1737
- if image_shape is not None:
1738
- image_shape = self._check_image_shape(image_shape)
1739
- self._fix_transforms_shape(image_shape[-2:])
1740
- else:
1741
- image_shape = [None, 3, -1, -1]
1742
- if self.with_fpn:
1743
- self.test_transforms.transforms.append(
1744
- Padding(im_padding_value=[0., 0., 0.]))
1745
- self.fixed_input_shape = image_shape
1746
-
1747
- return self._define_input_spec(image_shape)