paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1087) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -18
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/paddleclas.py +0 -375
  649. PaddleClas/ppcls/__init__.py +0 -20
  650. PaddleClas/ppcls/data/__init__.py +0 -15
  651. PaddleClas/ppcls/data/imaug/__init__.py +0 -94
  652. PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
  653. PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
  654. PaddleClas/ppcls/data/imaug/cutout.py +0 -41
  655. PaddleClas/ppcls/data/imaug/fmix.py +0 -217
  656. PaddleClas/ppcls/data/imaug/grid.py +0 -89
  657. PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
  658. PaddleClas/ppcls/data/imaug/operators.py +0 -244
  659. PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
  660. PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
  661. PaddleClas/ppcls/data/reader.py +0 -318
  662. PaddleClas/ppcls/modeling/__init__.py +0 -20
  663. PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
  664. PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
  665. PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
  666. PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
  667. PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
  668. PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  669. PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
  670. PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
  671. PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
  672. PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
  673. PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
  674. PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
  675. PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
  676. PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
  677. PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  678. PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  679. PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  680. PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
  681. PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
  682. PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
  683. PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
  684. PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
  685. PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
  686. PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
  687. PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
  688. PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
  689. PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  690. PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
  691. PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
  692. PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  693. PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
  694. PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  695. PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  696. PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
  697. PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
  698. PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
  699. PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
  700. PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  701. PaddleClas/ppcls/modeling/loss.py +0 -154
  702. PaddleClas/ppcls/modeling/utils.py +0 -53
  703. PaddleClas/ppcls/optimizer/__init__.py +0 -19
  704. PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
  705. PaddleClas/ppcls/optimizer/optimizer.py +0 -165
  706. PaddleClas/ppcls/utils/__init__.py +0 -27
  707. PaddleClas/ppcls/utils/check.py +0 -151
  708. PaddleClas/ppcls/utils/config.py +0 -201
  709. PaddleClas/ppcls/utils/logger.py +0 -120
  710. PaddleClas/ppcls/utils/metrics.py +0 -107
  711. PaddleClas/ppcls/utils/misc.py +0 -62
  712. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  713. PaddleClas/ppcls/utils/save_load.py +0 -163
  714. PaddleClas/setup.py +0 -55
  715. PaddleClas/tools/__init__.py +0 -15
  716. PaddleClas/tools/download.py +0 -50
  717. PaddleClas/tools/ema.py +0 -58
  718. PaddleClas/tools/eval.py +0 -112
  719. PaddleClas/tools/export_model.py +0 -85
  720. PaddleClas/tools/export_serving_model.py +0 -76
  721. PaddleClas/tools/infer/__init__.py +0 -16
  722. PaddleClas/tools/infer/infer.py +0 -94
  723. PaddleClas/tools/infer/predict.py +0 -117
  724. PaddleClas/tools/infer/utils.py +0 -233
  725. PaddleClas/tools/program.py +0 -444
  726. PaddleClas/tools/test_hubserving.py +0 -113
  727. PaddleClas/tools/train.py +0 -141
  728. paddlex/cls.py +0 -76
  729. paddlex/command.py +0 -215
  730. paddlex/cv/__init__.py +0 -17
  731. paddlex/cv/datasets/__init__.py +0 -18
  732. paddlex/cv/datasets/coco.py +0 -169
  733. paddlex/cv/datasets/imagenet.py +0 -88
  734. paddlex/cv/datasets/seg_dataset.py +0 -91
  735. paddlex/cv/datasets/voc.py +0 -301
  736. paddlex/cv/models/__init__.py +0 -18
  737. paddlex/cv/models/base.py +0 -623
  738. paddlex/cv/models/classifier.py +0 -814
  739. paddlex/cv/models/detector.py +0 -1747
  740. paddlex/cv/models/load_model.py +0 -126
  741. paddlex/cv/models/segmenter.py +0 -673
  742. paddlex/cv/models/slim/__init__.py +0 -13
  743. paddlex/cv/models/slim/prune.py +0 -55
  744. paddlex/cv/models/utils/__init__.py +0 -13
  745. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  746. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
  747. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  748. paddlex/cv/models/utils/ema.py +0 -48
  749. paddlex/cv/models/utils/seg_metrics.py +0 -62
  750. paddlex/cv/models/utils/visualize.py +0 -394
  751. paddlex/cv/transforms/__init__.py +0 -46
  752. paddlex/cv/transforms/batch_operators.py +0 -286
  753. paddlex/cv/transforms/box_utils.py +0 -41
  754. paddlex/cv/transforms/functions.py +0 -193
  755. paddlex/cv/transforms/operators.py +0 -1402
  756. paddlex/det.py +0 -43
  757. paddlex/paddleseg/__init__.py +0 -17
  758. paddlex/paddleseg/core/__init__.py +0 -20
  759. paddlex/paddleseg/core/infer.py +0 -289
  760. paddlex/paddleseg/core/predict.py +0 -145
  761. paddlex/paddleseg/core/train.py +0 -258
  762. paddlex/paddleseg/core/val.py +0 -172
  763. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  764. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  765. paddlex/paddleseg/cvlibs/config.py +0 -359
  766. paddlex/paddleseg/cvlibs/manager.py +0 -142
  767. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  768. paddlex/paddleseg/datasets/__init__.py +0 -21
  769. paddlex/paddleseg/datasets/ade.py +0 -112
  770. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  771. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  772. paddlex/paddleseg/datasets/dataset.py +0 -164
  773. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  774. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  775. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  776. paddlex/paddleseg/datasets/voc.py +0 -113
  777. paddlex/paddleseg/models/__init__.py +0 -39
  778. paddlex/paddleseg/models/ann.py +0 -436
  779. paddlex/paddleseg/models/attention_unet.py +0 -189
  780. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  781. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  782. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  783. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  784. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  785. paddlex/paddleseg/models/bisenet.py +0 -311
  786. paddlex/paddleseg/models/danet.py +0 -220
  787. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  788. paddlex/paddleseg/models/deeplab.py +0 -258
  789. paddlex/paddleseg/models/dnlnet.py +0 -231
  790. paddlex/paddleseg/models/emanet.py +0 -219
  791. paddlex/paddleseg/models/fast_scnn.py +0 -318
  792. paddlex/paddleseg/models/fcn.py +0 -135
  793. paddlex/paddleseg/models/gcnet.py +0 -223
  794. paddlex/paddleseg/models/gscnn.py +0 -357
  795. paddlex/paddleseg/models/hardnet.py +0 -309
  796. paddlex/paddleseg/models/isanet.py +0 -202
  797. paddlex/paddleseg/models/layers/__init__.py +0 -19
  798. paddlex/paddleseg/models/layers/activation.py +0 -73
  799. paddlex/paddleseg/models/layers/attention.py +0 -146
  800. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  801. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  802. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  803. paddlex/paddleseg/models/losses/__init__.py +0 -27
  804. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  805. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  806. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  807. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  808. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  809. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  810. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  811. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  812. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  813. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  814. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  815. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  816. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  817. paddlex/paddleseg/models/ocrnet.py +0 -248
  818. paddlex/paddleseg/models/pspnet.py +0 -147
  819. paddlex/paddleseg/models/sfnet.py +0 -236
  820. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  821. paddlex/paddleseg/models/u2net.py +0 -574
  822. paddlex/paddleseg/models/unet.py +0 -155
  823. paddlex/paddleseg/models/unet_3plus.py +0 -316
  824. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  825. paddlex/paddleseg/transforms/__init__.py +0 -16
  826. paddlex/paddleseg/transforms/functional.py +0 -161
  827. paddlex/paddleseg/transforms/transforms.py +0 -937
  828. paddlex/paddleseg/utils/__init__.py +0 -22
  829. paddlex/paddleseg/utils/config_check.py +0 -60
  830. paddlex/paddleseg/utils/download.py +0 -163
  831. paddlex/paddleseg/utils/env/__init__.py +0 -16
  832. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  833. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  834. paddlex/paddleseg/utils/logger.py +0 -48
  835. paddlex/paddleseg/utils/metrics.py +0 -146
  836. paddlex/paddleseg/utils/progbar.py +0 -212
  837. paddlex/paddleseg/utils/timer.py +0 -53
  838. paddlex/paddleseg/utils/utils.py +0 -120
  839. paddlex/paddleseg/utils/visualize.py +0 -90
  840. paddlex/ppcls/__init__.py +0 -20
  841. paddlex/ppcls/data/__init__.py +0 -15
  842. paddlex/ppcls/data/imaug/__init__.py +0 -94
  843. paddlex/ppcls/data/imaug/autoaugment.py +0 -264
  844. paddlex/ppcls/data/imaug/batch_operators.py +0 -117
  845. paddlex/ppcls/data/imaug/cutout.py +0 -41
  846. paddlex/ppcls/data/imaug/fmix.py +0 -217
  847. paddlex/ppcls/data/imaug/grid.py +0 -89
  848. paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
  849. paddlex/ppcls/data/imaug/operators.py +0 -256
  850. paddlex/ppcls/data/imaug/randaugment.py +0 -106
  851. paddlex/ppcls/data/imaug/random_erasing.py +0 -55
  852. paddlex/ppcls/data/reader.py +0 -318
  853. paddlex/ppcls/modeling/__init__.py +0 -20
  854. paddlex/ppcls/modeling/architectures/__init__.py +0 -51
  855. paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
  856. paddlex/ppcls/modeling/architectures/darknet.py +0 -161
  857. paddlex/ppcls/modeling/architectures/densenet.py +0 -308
  858. paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
  859. paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  860. paddlex/ppcls/modeling/architectures/dpn.py +0 -425
  861. paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
  862. paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
  863. paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
  864. paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
  865. paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
  866. paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
  867. paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
  868. paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  869. paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  870. paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  871. paddlex/ppcls/modeling/architectures/regnet.py +0 -383
  872. paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
  873. paddlex/ppcls/modeling/architectures/res2net.py +0 -272
  874. paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
  875. paddlex/ppcls/modeling/architectures/resnest.py +0 -705
  876. paddlex/ppcls/modeling/architectures/resnet.py +0 -317
  877. paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
  878. paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
  879. paddlex/ppcls/modeling/architectures/resnext.py +0 -259
  880. paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  881. paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
  882. paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
  883. paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  884. paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
  885. paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  886. paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  887. paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
  888. paddlex/ppcls/modeling/architectures/vgg.py +0 -152
  889. paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
  890. paddlex/ppcls/modeling/architectures/xception.py +0 -345
  891. paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  892. paddlex/ppcls/modeling/loss.py +0 -158
  893. paddlex/ppcls/modeling/utils.py +0 -53
  894. paddlex/ppcls/optimizer/__init__.py +0 -19
  895. paddlex/ppcls/optimizer/learning_rate.py +0 -159
  896. paddlex/ppcls/optimizer/optimizer.py +0 -165
  897. paddlex/ppcls/utils/__init__.py +0 -27
  898. paddlex/ppcls/utils/check.py +0 -151
  899. paddlex/ppcls/utils/config.py +0 -201
  900. paddlex/ppcls/utils/logger.py +0 -120
  901. paddlex/ppcls/utils/metrics.py +0 -112
  902. paddlex/ppcls/utils/misc.py +0 -62
  903. paddlex/ppcls/utils/model_zoo.py +0 -213
  904. paddlex/ppcls/utils/save_load.py +0 -163
  905. paddlex/ppdet/__init__.py +0 -16
  906. paddlex/ppdet/core/__init__.py +0 -15
  907. paddlex/ppdet/core/config/__init__.py +0 -13
  908. paddlex/ppdet/core/config/schema.py +0 -248
  909. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  910. paddlex/ppdet/core/workspace.py +0 -279
  911. paddlex/ppdet/data/__init__.py +0 -21
  912. paddlex/ppdet/data/reader.py +0 -304
  913. paddlex/ppdet/data/shm_utils.py +0 -67
  914. paddlex/ppdet/data/source/__init__.py +0 -27
  915. paddlex/ppdet/data/source/category.py +0 -823
  916. paddlex/ppdet/data/source/coco.py +0 -243
  917. paddlex/ppdet/data/source/dataset.py +0 -192
  918. paddlex/ppdet/data/source/keypoint_coco.py +0 -656
  919. paddlex/ppdet/data/source/mot.py +0 -360
  920. paddlex/ppdet/data/source/voc.py +0 -204
  921. paddlex/ppdet/data/source/widerface.py +0 -180
  922. paddlex/ppdet/data/transform/__init__.py +0 -28
  923. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
  924. paddlex/ppdet/data/transform/batch_operators.py +0 -758
  925. paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
  926. paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
  927. paddlex/ppdet/data/transform/mot_operators.py +0 -636
  928. paddlex/ppdet/data/transform/op_helper.py +0 -468
  929. paddlex/ppdet/data/transform/operators.py +0 -2103
  930. paddlex/ppdet/engine/__init__.py +0 -29
  931. paddlex/ppdet/engine/callbacks.py +0 -262
  932. paddlex/ppdet/engine/env.py +0 -47
  933. paddlex/ppdet/engine/export_utils.py +0 -118
  934. paddlex/ppdet/engine/tracker.py +0 -425
  935. paddlex/ppdet/engine/trainer.py +0 -535
  936. paddlex/ppdet/metrics/__init__.py +0 -23
  937. paddlex/ppdet/metrics/coco_utils.py +0 -184
  938. paddlex/ppdet/metrics/json_results.py +0 -151
  939. paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
  940. paddlex/ppdet/metrics/map_utils.py +0 -396
  941. paddlex/ppdet/metrics/metrics.py +0 -300
  942. paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
  943. paddlex/ppdet/metrics/mot_metrics.py +0 -184
  944. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  945. paddlex/ppdet/model_zoo/__init__.py +0 -18
  946. paddlex/ppdet/model_zoo/model_zoo.py +0 -86
  947. paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
  948. paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
  949. paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
  950. paddlex/ppdet/modeling/__init__.py +0 -41
  951. paddlex/ppdet/modeling/architectures/__init__.py +0 -40
  952. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  953. paddlex/ppdet/modeling/architectures/centernet.py +0 -103
  954. paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
  955. paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
  956. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  957. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  958. paddlex/ppdet/modeling/architectures/jde.py +0 -125
  959. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
  960. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
  961. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  962. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
  963. paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
  964. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  965. paddlex/ppdet/modeling/architectures/ssd.py +0 -84
  966. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  967. paddlex/ppdet/modeling/architectures/yolo.py +0 -104
  968. paddlex/ppdet/modeling/backbones/__init__.py +0 -37
  969. paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
  970. paddlex/ppdet/modeling/backbones/darknet.py +0 -341
  971. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  972. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
  973. paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
  974. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
  975. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
  976. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  977. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  978. paddlex/ppdet/modeling/backbones/resnet.py +0 -606
  979. paddlex/ppdet/modeling/backbones/senet.py +0 -140
  980. paddlex/ppdet/modeling/backbones/vgg.py +0 -216
  981. paddlex/ppdet/modeling/bbox_utils.py +0 -464
  982. paddlex/ppdet/modeling/heads/__init__.py +0 -41
  983. paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
  984. paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
  985. paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
  986. paddlex/ppdet/modeling/heads/face_head.py +0 -113
  987. paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
  988. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  989. paddlex/ppdet/modeling/heads/mask_head.py +0 -253
  990. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  991. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
  992. paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
  993. paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
  994. paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
  995. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  996. paddlex/ppdet/modeling/keypoint_utils.py +0 -302
  997. paddlex/ppdet/modeling/layers.py +0 -1142
  998. paddlex/ppdet/modeling/losses/__init__.py +0 -35
  999. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
  1000. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1001. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1002. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
  1003. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1004. paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
  1005. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
  1006. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1007. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
  1008. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1009. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1010. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1011. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1012. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
  1013. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1014. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1015. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1016. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
  1017. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
  1018. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
  1019. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
  1020. paddlex/ppdet/modeling/mot/utils.py +0 -181
  1021. paddlex/ppdet/modeling/mot/visualization.py +0 -130
  1022. paddlex/ppdet/modeling/necks/__init__.py +0 -25
  1023. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
  1024. paddlex/ppdet/modeling/necks/fpn.py +0 -233
  1025. paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
  1026. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
  1027. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
  1028. paddlex/ppdet/modeling/ops.py +0 -1599
  1029. paddlex/ppdet/modeling/post_process.py +0 -449
  1030. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1031. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1032. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
  1033. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
  1034. paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
  1035. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
  1036. paddlex/ppdet/modeling/reid/__init__.py +0 -23
  1037. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
  1038. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
  1039. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
  1040. paddlex/ppdet/modeling/reid/resnet.py +0 -320
  1041. paddlex/ppdet/modeling/shape_spec.py +0 -33
  1042. paddlex/ppdet/modeling/tests/__init__.py +0 -13
  1043. paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
  1044. paddlex/ppdet/modeling/tests/test_base.py +0 -75
  1045. paddlex/ppdet/modeling/tests/test_ops.py +0 -839
  1046. paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
  1047. paddlex/ppdet/optimizer.py +0 -285
  1048. paddlex/ppdet/slim/__init__.py +0 -62
  1049. paddlex/ppdet/slim/distill.py +0 -111
  1050. paddlex/ppdet/slim/prune.py +0 -85
  1051. paddlex/ppdet/slim/quant.py +0 -52
  1052. paddlex/ppdet/utils/__init__.py +0 -13
  1053. paddlex/ppdet/utils/check.py +0 -93
  1054. paddlex/ppdet/utils/checkpoint.py +0 -216
  1055. paddlex/ppdet/utils/cli.py +0 -151
  1056. paddlex/ppdet/utils/colormap.py +0 -56
  1057. paddlex/ppdet/utils/download.py +0 -477
  1058. paddlex/ppdet/utils/logger.py +0 -71
  1059. paddlex/ppdet/utils/stats.py +0 -95
  1060. paddlex/ppdet/utils/visualizer.py +0 -292
  1061. paddlex/ppdet/utils/voc_utils.py +0 -87
  1062. paddlex/seg.py +0 -38
  1063. paddlex/tools/__init__.py +0 -16
  1064. paddlex/tools/convert.py +0 -52
  1065. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1066. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1067. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1068. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1069. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1070. paddlex/tools/dataset_split/__init__.py +0 -23
  1071. paddlex/tools/dataset_split/coco_split.py +0 -69
  1072. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1073. paddlex/tools/dataset_split/seg_split.py +0 -96
  1074. paddlex/tools/dataset_split/utils.py +0 -75
  1075. paddlex/tools/dataset_split/voc_split.py +0 -91
  1076. paddlex/tools/split.py +0 -41
  1077. paddlex/utils/checkpoint.py +0 -439
  1078. paddlex/utils/env.py +0 -71
  1079. paddlex/utils/shm.py +0 -67
  1080. paddlex/utils/stats.py +0 -68
  1081. paddlex/utils/utils.py +0 -140
  1082. paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
  1083. paddlex-2.0.0rc4.dist-info/METADATA +0 -29
  1084. paddlex-2.0.0rc4.dist-info/RECORD +0 -445
  1085. paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
  1086. paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
  1087. paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,1402 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import numpy as np
16
- import cv2
17
- import copy
18
- import random
19
- from PIL import Image
20
- import paddlex
21
-
22
- try:
23
- from collections.abc import Sequence
24
- except Exception:
25
- from collections import Sequence
26
- from numbers import Number
27
- from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
28
- horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
29
- crop_rle, expand_poly, expand_rle, resize_poly, resize_rle
30
-
31
- __all__ = [
32
- "Compose", "Decode", "Resize", "RandomResize", "ResizeByShort",
33
- "RandomResizeByShort", "ResizeByLong", "RandomHorizontalFlip",
34
- "RandomVerticalFlip", "Normalize", "CenterCrop", "RandomCrop",
35
- "RandomScaleAspect", "RandomExpand", "Padding", "MixupImage",
36
- "RandomDistort", "RandomBlur", "ArrangeSegmenter", "ArrangeClassifier",
37
- "ArrangeDetector"
38
- ]
39
-
40
- interp_dict = {
41
- 'NEAREST': cv2.INTER_NEAREST,
42
- 'LINEAR': cv2.INTER_LINEAR,
43
- 'CUBIC': cv2.INTER_CUBIC,
44
- 'AREA': cv2.INTER_AREA,
45
- 'LANCZOS4': cv2.INTER_LANCZOS4
46
- }
47
-
48
-
49
- class Transform(object):
50
- """
51
- Parent class of all data augmentation operations
52
- """
53
-
54
- def __init__(self):
55
- pass
56
-
57
- def apply_im(self, image):
58
- pass
59
-
60
- def apply_mask(self, mask):
61
- pass
62
-
63
- def apply_bbox(self, bbox):
64
- pass
65
-
66
- def apply_segm(self, segms):
67
- pass
68
-
69
- def apply(self, sample):
70
- sample['image'] = self.apply_im(sample['image'])
71
- if 'mask' in sample:
72
- sample['mask'] = self.apply_mask(sample['mask'])
73
- if 'gt_bbox' in sample:
74
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
75
-
76
- return sample
77
-
78
- def __call__(self, sample):
79
- if isinstance(sample, Sequence):
80
- sample = [self.apply(s) for s in sample]
81
- else:
82
- sample = self.apply(sample)
83
-
84
- return sample
85
-
86
-
87
- class Compose(Transform):
88
- """
89
- Apply a series of data augmentation to the input.
90
- All input images are in Height-Width-Channel ([H, W, C]) format.
91
-
92
- Args:
93
- transforms (List[paddlex.transforms.Transform]): List of data preprocess or augmentations.
94
- Raises:
95
- TypeError: Invalid type of transforms.
96
- ValueError: Invalid length of transforms.
97
- """
98
-
99
- def __init__(self, transforms):
100
- super(Compose, self).__init__()
101
- if not isinstance(transforms, list):
102
- raise TypeError(
103
- 'Type of transforms is invalid. Must be List, but received is {}'
104
- .format(type(transforms)))
105
- if len(transforms) < 1:
106
- raise ValueError(
107
- 'Length of transforms must not be less than 1, but received is {}'
108
- .format(len(transforms)))
109
- self.transforms = transforms
110
- self.decode_image = Decode()
111
- self.arrange_outputs = None
112
- self.apply_im_only = False
113
-
114
- def __call__(self, sample):
115
- if self.apply_im_only and 'mask' in sample:
116
- mask_backup = copy.deepcopy(sample['mask'])
117
- del sample['mask']
118
-
119
- sample = self.decode_image(sample)
120
-
121
- for op in self.transforms:
122
- # skip batch transforms amd mixup
123
- if isinstance(op, (paddlex.transforms.BatchRandomResize,
124
- paddlex.transforms.BatchRandomResizeByShort,
125
- MixupImage)):
126
- continue
127
- sample = op(sample)
128
-
129
- if self.arrange_outputs is not None:
130
- if self.apply_im_only:
131
- sample['mask'] = mask_backup
132
- sample = self.arrange_outputs(sample)
133
-
134
- return sample
135
-
136
-
137
- class Decode(Transform):
138
- """
139
- Decode image(s) in input.
140
-
141
- Args:
142
- to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True.
143
- """
144
-
145
- def __init__(self, to_rgb=True):
146
- super(Decode, self).__init__()
147
- self.to_rgb = to_rgb
148
-
149
- def read_img(self, img_path):
150
- return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR |
151
- cv2.IMREAD_COLOR)
152
-
153
- def apply_im(self, im_path):
154
- if isinstance(im_path, str):
155
- try:
156
- image = self.read_img(im_path)
157
- except:
158
- raise ValueError('Cannot read the image file {}!'.format(
159
- im_path))
160
- else:
161
- image = im_path
162
-
163
- if self.to_rgb:
164
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
165
-
166
- return image
167
-
168
- def apply_mask(self, mask):
169
- try:
170
- mask = np.asarray(Image.open(mask))
171
- except:
172
- raise ValueError("Cannot read the mask file {}!".format(mask))
173
- if len(mask.shape) != 2:
174
- raise Exception(
175
- "Mask should be a 1-channel image, but recevied is a {}-channel image.".
176
- format(mask.shape[2]))
177
- return mask
178
-
179
- def apply(self, sample):
180
- """
181
-
182
- Args:
183
- sample (dict): Input sample, containing 'image' at least.
184
-
185
- Returns:
186
- dict: Decoded sample.
187
-
188
- """
189
- sample['image'] = self.apply_im(sample['image'])
190
- if 'mask' in sample:
191
- sample['mask'] = self.apply_mask(sample['mask'])
192
- im_height, im_width, _ = sample['image'].shape
193
- se_height, se_width = sample['mask'].shape
194
- if im_height != se_height or im_width != se_width:
195
- raise Exception(
196
- "The height or width of the im is not same as the mask")
197
- sample['im_shape'] = np.array(
198
- sample['image'].shape[:2], dtype=np.float32)
199
- sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
200
- return sample
201
-
202
-
203
- class Resize(Transform):
204
- """
205
- Resize input.
206
-
207
- - If target_size is an int,resize the image(s) to (target_size, target_size).
208
- - If target_size is a list or tuple, resize the image(s) to target_size.
209
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
210
-
211
- Args:
212
- target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
213
- Otherwise, target_size represents [target height, target width].
214
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
215
- Interpolation method of resize. Defaults to 'LINEAR'.
216
- keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater
217
- than target width/height. Defaults to False.
218
-
219
- Raises:
220
- TypeError: Invalid type of target_size.
221
- ValueError: Invalid interpolation method.
222
- """
223
-
224
- def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
225
- super(Resize, self).__init__()
226
- if not (interp == "RANDOM" or interp in interp_dict):
227
- raise ValueError("interp should be one of {}".format(
228
- interp_dict.keys()))
229
- if isinstance(target_size, int):
230
- target_size = (target_size, target_size)
231
- else:
232
- if not (isinstance(target_size,
233
- (list, tuple)) and len(target_size) == 2):
234
- raise TypeError(
235
- "target_size should be an int or a list of length 2, but received {}".
236
- format(target_size))
237
- # (height, width)
238
- self.target_size = target_size
239
- self.interp = interp
240
- self.keep_ratio = keep_ratio
241
-
242
- def apply_im(self, image, interp, target_size):
243
- image = cv2.resize(image, target_size, interpolation=interp)
244
- return image
245
-
246
- def apply_mask(self, mask, target_size):
247
- mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
248
- return mask
249
-
250
- def apply_bbox(self, bbox, scale, target_size):
251
- im_scale_x, im_scale_y = scale
252
- bbox[:, 0::2] *= im_scale_x
253
- bbox[:, 1::2] *= im_scale_y
254
- bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0])
255
- bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1])
256
- return bbox
257
-
258
- def apply_segm(self, segms, im_size, scale):
259
- im_h, im_w = im_size
260
- im_scale_x, im_scale_y = scale
261
- resized_segms = []
262
- for segm in segms:
263
- if is_poly(segm):
264
- # Polygon format
265
- resized_segms.append([
266
- resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
267
- ])
268
- else:
269
- # RLE format
270
- resized_segms.append(
271
- resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
272
-
273
- return resized_segms
274
-
275
- def apply(self, sample):
276
- if self.interp == "RANDOM":
277
- interp = random.choice(list(interp_dict.values()))
278
- else:
279
- interp = interp_dict[self.interp]
280
- im_h, im_w = sample['image'].shape[:2]
281
-
282
- im_scale_y = self.target_size[0] / im_h
283
- im_scale_x = self.target_size[1] / im_w
284
- target_size = (self.target_size[1], self.target_size[0])
285
- if self.keep_ratio:
286
- scale = min(im_scale_y, im_scale_x)
287
- target_w = int(round(im_w * scale))
288
- target_h = int(round(im_h * scale))
289
- target_size = (target_w, target_h)
290
- im_scale_y = target_h / im_h
291
- im_scale_x = target_w / im_w
292
-
293
- sample['image'] = self.apply_im(sample['image'], interp, target_size)
294
-
295
- if 'mask' in sample:
296
- sample['mask'] = self.apply_mask(sample['mask'], target_size)
297
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
298
- sample['gt_bbox'] = self.apply_bbox(
299
- sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
300
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
301
- sample['gt_poly'] = self.apply_segm(
302
- sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
303
- sample['im_shape'] = np.asarray(
304
- sample['image'].shape[:2], dtype=np.float32)
305
- if 'scale_factor' in sample:
306
- scale_factor = sample['scale_factor']
307
- sample['scale_factor'] = np.asarray(
308
- [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
309
- dtype=np.float32)
310
-
311
- return sample
312
-
313
-
314
- class RandomResize(Transform):
315
- """
316
- Resize input to random sizes.
317
-
318
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
319
-
320
- Args:
321
- target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
322
- Multiple target sizes, each target size is an int or list/tuple.
323
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
324
- Interpolation method of resize. Defaults to 'LINEAR'.
325
-
326
- Raises:
327
- TypeError: Invalid type of target_size.
328
- ValueError: Invalid interpolation method.
329
-
330
- See Also:
331
- Resize input to a specific size.
332
- """
333
-
334
- def __init__(self, target_sizes, interp='LINEAR'):
335
- super(RandomResize, self).__init__()
336
- if not (interp == "RANDOM" or interp in interp_dict):
337
- raise ValueError("interp should be one of {}".format(
338
- interp_dict.keys()))
339
- self.interp = interp
340
- assert isinstance(target_sizes, list), \
341
- "target_size must be List"
342
- for i, item in enumerate(target_sizes):
343
- if isinstance(item, int):
344
- target_sizes[i] = (item, item)
345
- self.target_size = target_sizes
346
-
347
- def apply(self, sample):
348
- height, width = random.choice(self.target_size)
349
- resizer = Resize((height, width), interp=self.interp)
350
- sample = resizer(sample)
351
-
352
- return sample
353
-
354
-
355
- class ResizeByShort(Transform):
356
- """
357
- Resize input with keeping the aspect ratio.
358
-
359
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
360
-
361
- Args:
362
- short_size (int): Target size of the shorter side of the image(s).
363
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
364
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
365
-
366
- Raises:
367
- ValueError: Invalid interpolation method.
368
- """
369
-
370
- def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
371
- if not (interp == "RANDOM" or interp in interp_dict):
372
- raise ValueError("interp should be one of {}".format(
373
- interp_dict.keys()))
374
- super(ResizeByShort, self).__init__()
375
- self.short_size = short_size
376
- self.max_size = max_size
377
- self.interp = interp
378
-
379
- def apply(self, sample):
380
- im_h, im_w = sample['image'].shape[:2]
381
- im_short_size = min(im_h, im_w)
382
- im_long_size = max(im_h, im_w)
383
- scale = float(self.short_size) / float(im_short_size)
384
- if 0 < self.max_size < np.round(scale * im_long_size):
385
- scale = float(self.max_size) / float(im_long_size)
386
- target_w = int(round(im_w * scale))
387
- target_h = int(round(im_h * scale))
388
- sample = Resize(
389
- target_size=(target_h, target_w), interp=self.interp)(sample)
390
-
391
- return sample
392
-
393
-
394
- class RandomResizeByShort(Transform):
395
- """
396
- Resize input to random sizes with keeping the aspect ratio.
397
-
398
- Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
399
-
400
- Args:
401
- short_sizes (List[int]): Target size of the shorter side of the image(s).
402
- max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
403
- interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
404
-
405
- Raises:
406
- TypeError: Invalid type of target_size.
407
- ValueError: Invalid interpolation method.
408
-
409
- See Also:
410
- ResizeByShort: Resize image(s) in input with keeping the aspect ratio.
411
- """
412
-
413
- def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
414
- super(RandomResizeByShort, self).__init__()
415
- if not (interp == "RANDOM" or interp in interp_dict):
416
- raise ValueError("interp should be one of {}".format(
417
- interp_dict.keys()))
418
- self.interp = interp
419
- assert isinstance(short_sizes, list), \
420
- "short_sizes must be List"
421
-
422
- self.short_sizes = short_sizes
423
- self.max_size = max_size
424
-
425
- def apply(self, sample):
426
- short_size = random.choice(self.short_sizes)
427
- resizer = ResizeByShort(
428
- short_size=short_size, max_size=self.max_size, interp=self.interp)
429
- sample = resizer(sample)
430
- return sample
431
-
432
-
433
- class ResizeByLong(Transform):
434
- def __init__(self, long_size=256, interp='LINEAR'):
435
- super(ResizeByLong, self).__init__()
436
- self.long_size = long_size
437
- self.interp = interp
438
-
439
- def apply(self, sample):
440
- im_h, im_w = sample['image'].shape[:2]
441
- im_long_size = max(im_h, im_w)
442
- scale = float(self.long_size) / float(im_long_size)
443
- target_h = int(round(im_h * scale))
444
- target_w = int(round(im_w * scale))
445
- sample = Resize(
446
- target_size=(target_h, target_w), interp=self.interp)(sample)
447
-
448
- return sample
449
-
450
-
451
- class RandomHorizontalFlip(Transform):
452
- """
453
- Randomly flip the input horizontally.
454
-
455
- Args:
456
- prob(float, optional): Probability of flipping the input. Defaults to .5.
457
- """
458
-
459
- def __init__(self, prob=0.5):
460
- super(RandomHorizontalFlip, self).__init__()
461
- self.prob = prob
462
-
463
- def apply_im(self, image):
464
- image = horizontal_flip(image)
465
- return image
466
-
467
- def apply_mask(self, mask):
468
- mask = horizontal_flip(mask)
469
- return mask
470
-
471
- def apply_bbox(self, bbox, width):
472
- oldx1 = bbox[:, 0].copy()
473
- oldx2 = bbox[:, 2].copy()
474
- bbox[:, 0] = width - oldx2
475
- bbox[:, 2] = width - oldx1
476
- return bbox
477
-
478
- def apply_segm(self, segms, height, width):
479
- flipped_segms = []
480
- for segm in segms:
481
- if is_poly(segm):
482
- # Polygon format
483
- flipped_segms.append(
484
- [horizontal_flip_poly(poly, width) for poly in segm])
485
- else:
486
- # RLE format
487
- flipped_segms.append(horizontal_flip_rle(segm, height, width))
488
- return flipped_segms
489
-
490
- def apply(self, sample):
491
- if random.random() < self.prob:
492
- im_h, im_w = sample['image'].shape[:2]
493
- sample['image'] = self.apply_im(sample['image'])
494
- if 'mask' in sample:
495
- sample['mask'] = self.apply_mask(sample['mask'])
496
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
497
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
498
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
499
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
500
- im_w)
501
- return sample
502
-
503
-
504
- class RandomVerticalFlip(Transform):
505
- """
506
- Randomly flip the input vertically.
507
-
508
- Args:
509
- prob(float, optional): Probability of flipping the input. Defaults to .5.
510
- """
511
-
512
- def __init__(self, prob=0.5):
513
- super(RandomVerticalFlip, self).__init__()
514
- self.prob = prob
515
-
516
- def apply_im(self, image):
517
- image = vertical_flip(image)
518
- return image
519
-
520
- def apply_mask(self, mask):
521
- mask = vertical_flip(mask)
522
- return mask
523
-
524
- def apply_bbox(self, bbox, height):
525
- oldy1 = bbox[:, 1].copy()
526
- oldy2 = bbox[:, 3].copy()
527
- bbox[:, 0] = height - oldy2
528
- bbox[:, 2] = height - oldy1
529
- return bbox
530
-
531
- def apply_segm(self, segms, height, width):
532
- flipped_segms = []
533
- for segm in segms:
534
- if is_poly(segm):
535
- # Polygon format
536
- flipped_segms.append(
537
- [vertical_flip_poly(poly, height) for poly in segm])
538
- else:
539
- # RLE format
540
- flipped_segms.append(vertical_flip_rle(segm, height, width))
541
- return flipped_segms
542
-
543
- def apply(self, sample):
544
- if random.random() < self.prob:
545
- im_h, im_w = sample['image'].shape[:2]
546
- sample['image'] = self.apply_im(sample['image'])
547
- if 'mask' in sample:
548
- sample['mask'] = self.apply_mask(sample['mask'])
549
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
550
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
551
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
552
- sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
553
- im_w)
554
- return sample
555
-
556
-
557
- class Normalize(Transform):
558
- """
559
- Apply min-max normalization to the image(s) in input.
560
- 1. im = (im - min_value) * 1 / (max_value - min_value)
561
- 2. im = im - mean
562
- 3. im = im / std
563
-
564
- Args:
565
- mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
566
- std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
567
- min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
568
- max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
569
- is_scale(bool, optional): If True, the image pixel values will be divided by 255.
570
- """
571
-
572
- def __init__(self,
573
- mean=[0.485, 0.456, 0.406],
574
- std=[0.229, 0.224, 0.225],
575
- min_val=[0, 0, 0],
576
- max_val=[255., 255., 255.],
577
- is_scale=True):
578
- super(Normalize, self).__init__()
579
- from functools import reduce
580
- if reduce(lambda x, y: x * y, std) == 0:
581
- raise ValueError(
582
- 'Std should not have 0, but received is {}'.format(std))
583
- if is_scale:
584
- if reduce(lambda x, y: x * y,
585
- [a - b for a, b in zip(max_val, min_val)]) == 0:
586
- raise ValueError(
587
- '(max_val - min_val) should not have 0, but received is {}'.
588
- format((np.asarray(max_val) - np.asarray(min_val)).tolist(
589
- )))
590
-
591
- self.mean = mean
592
- self.std = std
593
- self.min_val = min_val
594
- self.max_val = max_val
595
- self.is_scale = is_scale
596
-
597
- def apply_im(self, image):
598
- image = image.astype(np.float32)
599
- mean = np.asarray(
600
- self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
601
- std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
602
- image = normalize(image, mean, std, self.min_val, self.max_val)
603
- return image
604
-
605
- def apply(self, sample):
606
- sample['image'] = self.apply_im(sample['image'])
607
-
608
- return sample
609
-
610
-
611
- class CenterCrop(Transform):
612
- """
613
- Crop the input at the center.
614
- 1. Locate the center of the image.
615
- 2. Crop the sample.
616
-
617
- Args:
618
- crop_size(int, optional): target size of the cropped image(s). Defaults to 224.
619
- """
620
-
621
- def __init__(self, crop_size=224):
622
- super(CenterCrop, self).__init__()
623
- self.crop_size = crop_size
624
-
625
- def apply_im(self, image):
626
- image = center_crop(image, self.crop_size)
627
-
628
- return image
629
-
630
- def apply_mask(self, mask):
631
- mask = center_crop(mask)
632
- return mask
633
-
634
- def apply(self, sample):
635
- sample['image'] = self.apply_im(sample['image'])
636
- if 'mask' in sample:
637
- sample['mask'] = self.apply_mask(sample['mask'])
638
- return sample
639
-
640
-
641
- class RandomCrop(Transform):
642
- """
643
- Randomly crop the input.
644
- 1. Compute the height and width of cropped area according to aspect_ratio and scaling.
645
- 2. Locate the upper left corner of cropped area randomly.
646
- 3. Crop the image(s).
647
- 4. Resize the cropped area to crop_size by crop_size.
648
-
649
- Args:
650
- crop_size(int, List[int] or Tuple[int]): Target size of the cropped area. If None, the cropped area will not be
651
- resized. Defaults to None.
652
- aspect_ratio (List[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.].
653
- thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop.
654
- Defaults to [.0, .1, .3, .5, .7, .9].
655
- scaling (List[float], optional): Ratio between the cropped region and the original image in [min, max] format.
656
- Defaults to [.3, 1.].
657
- num_attempts (int, optional): The number of tries before giving up. Defaults to 50.
658
- allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True.
659
- cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False.
660
- """
661
-
662
- def __init__(self,
663
- crop_size=None,
664
- aspect_ratio=[.5, 2.],
665
- thresholds=[.0, .1, .3, .5, .7, .9],
666
- scaling=[.3, 1.],
667
- num_attempts=50,
668
- allow_no_crop=True,
669
- cover_all_box=False):
670
- super(RandomCrop, self).__init__()
671
- self.crop_size = crop_size
672
- self.aspect_ratio = aspect_ratio
673
- self.thresholds = thresholds
674
- self.scaling = scaling
675
- self.num_attempts = num_attempts
676
- self.allow_no_crop = allow_no_crop
677
- self.cover_all_box = cover_all_box
678
-
679
- def _generate_crop_info(self, sample):
680
- im_h, im_w = sample['image'].shape[:2]
681
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
682
- thresholds = self.thresholds
683
- if self.allow_no_crop:
684
- thresholds.append('no_crop')
685
- np.random.shuffle(thresholds)
686
- for thresh in thresholds:
687
- if thresh == 'no_crop':
688
- return None
689
- for i in range(self.num_attempts):
690
- crop_box = self._get_crop_box(im_h, im_w)
691
- if crop_box is None:
692
- continue
693
- iou = self._iou_matrix(
694
- sample['gt_bbox'],
695
- np.array(
696
- [crop_box], dtype=np.float32))
697
- if iou.max() < thresh:
698
- continue
699
- if self.cover_all_box and iou.min() < thresh:
700
- continue
701
- cropped_box, valid_ids = self._crop_box_with_center_constraint(
702
- sample['gt_bbox'],
703
- np.array(
704
- crop_box, dtype=np.float32))
705
- if valid_ids.size > 0:
706
- return crop_box, cropped_box, valid_ids
707
- else:
708
- for i in range(self.num_attempts):
709
- crop_box = self._get_crop_box(im_h, im_w)
710
- if crop_box is None:
711
- continue
712
- return crop_box, None, None
713
- return None
714
-
715
- def _get_crop_box(self, im_h, im_w):
716
- scale = np.random.uniform(*self.scaling)
717
- if self.aspect_ratio is not None:
718
- min_ar, max_ar = self.aspect_ratio
719
- aspect_ratio = np.random.uniform(
720
- max(min_ar, scale**2), min(max_ar, scale**-2))
721
- h_scale = scale / np.sqrt(aspect_ratio)
722
- w_scale = scale * np.sqrt(aspect_ratio)
723
- else:
724
- h_scale = np.random.uniform(*self.scaling)
725
- w_scale = np.random.uniform(*self.scaling)
726
- crop_h = im_h * h_scale
727
- crop_w = im_w * w_scale
728
- if self.aspect_ratio is None:
729
- if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
730
- return None
731
- crop_h = int(crop_h)
732
- crop_w = int(crop_w)
733
- crop_y = np.random.randint(0, im_h - crop_h)
734
- crop_x = np.random.randint(0, im_w - crop_w)
735
- return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
736
-
737
- def _iou_matrix(self, a, b):
738
- tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
739
- br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
740
-
741
- area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
742
- area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
743
- area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
744
- area_o = (area_a[:, np.newaxis] + area_b - area_i)
745
- return area_i / (area_o + 1e-10)
746
-
747
- def _crop_box_with_center_constraint(self, box, crop):
748
- cropped_box = box.copy()
749
-
750
- cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
751
- cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
752
- cropped_box[:, :2] -= crop[:2]
753
- cropped_box[:, 2:] -= crop[:2]
754
-
755
- centers = (box[:, :2] + box[:, 2:]) / 2
756
- valid = np.logical_and(crop[:2] <= centers,
757
- centers < crop[2:]).all(axis=1)
758
- valid = np.logical_and(
759
- valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
760
-
761
- return cropped_box, np.where(valid)[0]
762
-
763
- def _crop_segm(self, segms, valid_ids, crop, height, width):
764
- crop_segms = []
765
- for id in valid_ids:
766
- segm = segms[id]
767
- if is_poly(segm):
768
- # Polygon format
769
- crop_segms.append(crop_poly(segm, crop))
770
- else:
771
- # RLE format
772
- crop_segms.append(crop_rle(segm, crop, height, width))
773
-
774
- return crop_segms
775
-
776
- def apply_im(self, image, crop):
777
- x1, y1, x2, y2 = crop
778
- return image[y1:y2, x1:x2, :]
779
-
780
- def apply_mask(self, mask, crop):
781
- x1, y1, x2, y2 = crop
782
- return mask[y1:y2, x1:x2, ...]
783
-
784
- def apply(self, sample):
785
- crop_info = self._generate_crop_info(sample)
786
- if crop_info is not None:
787
- crop_box, cropped_box, valid_ids = crop_info
788
- im_h, im_w = sample['image'].shape[:2]
789
- sample['image'] = self.apply_im(sample['image'], crop_box)
790
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
791
- crop_polys = self._crop_segm(
792
- sample['gt_poly'],
793
- valid_ids,
794
- np.array(
795
- crop_box, dtype=np.int64),
796
- im_h,
797
- im_w)
798
- if [] in crop_polys:
799
- delete_id = list()
800
- valid_polys = list()
801
- for idx, poly in enumerate(crop_polys):
802
- if not crop_poly:
803
- delete_id.append(idx)
804
- else:
805
- valid_polys.append(poly)
806
- valid_ids = np.delete(valid_ids, delete_id)
807
- if not valid_polys:
808
- return sample
809
- sample['gt_poly'] = valid_polys
810
- else:
811
- sample['gt_poly'] = crop_polys
812
-
813
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
814
- sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
815
- sample['gt_class'] = np.take(
816
- sample['gt_class'], valid_ids, axis=0)
817
- if 'gt_score' in sample:
818
- sample['gt_score'] = np.take(
819
- sample['gt_score'], valid_ids, axis=0)
820
- if 'is_crowd' in sample:
821
- sample['is_crowd'] = np.take(
822
- sample['is_crowd'], valid_ids, axis=0)
823
-
824
- if 'mask' in sample:
825
- sample['mask'] = self.apply_mask(sample['mask'], crop_box)
826
-
827
- if self.crop_size is not None:
828
- sample = Resize(self.crop_size)(sample)
829
-
830
- return sample
831
-
832
-
833
- class RandomScaleAspect(Transform):
834
- """
835
- Crop input image(s) and resize back to original sizes.
836
- Args:
837
- min_scale (float):Minimum ratio between the cropped region and the original image.
838
- If 0, image(s) will not be cropped. Defaults to .5.
839
- aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
840
- """
841
-
842
- def __init__(self, min_scale=0.5, aspect_ratio=0.33):
843
- super(RandomScaleAspect, self).__init__()
844
- self.min_scale = min_scale
845
- self.aspect_ratio = aspect_ratio
846
-
847
- def apply(self, sample):
848
- if self.min_scale != 0 and self.aspect_ratio != 0:
849
- img_height, img_width = sample['image'].shape[:2]
850
- sample = RandomCrop(
851
- crop_size=(img_height, img_width),
852
- aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio],
853
- scaling=[self.min_scale, 1.],
854
- num_attempts=10,
855
- allow_no_crop=False)(sample)
856
- return sample
857
-
858
-
859
- class RandomExpand(Transform):
860
- """
861
- Randomly expand the input by padding according to random offsets.
862
-
863
- Args:
864
- upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4..
865
- prob(float, optional): The probability of apply expanding. Defaults to .5.
866
- im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
867
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
868
-
869
- See Also:
870
- paddlex.transforms.Padding
871
- """
872
-
873
- def __init__(self,
874
- upper_ratio=4.,
875
- prob=.5,
876
- im_padding_value=(127.5, 127.5, 127.5),
877
- label_padding_value=255):
878
- super(RandomExpand, self).__init__()
879
- assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
880
- self.upper_ratio = upper_ratio
881
- self.prob = prob
882
- assert isinstance(im_padding_value, (Number, Sequence)), \
883
- "fill value must be either float or sequence"
884
- if isinstance(im_padding_value, Number):
885
- im_padding_value = (im_padding_value, ) * 3
886
- if not isinstance(im_padding_value, tuple):
887
- im_padding_value = tuple(im_padding_value)
888
- self.im_padding_value = im_padding_value
889
- self.label_padding_value = label_padding_value
890
-
891
- def apply(self, sample):
892
- if random.random() < self.prob:
893
- im_h, im_w = sample['image'].shape[:2]
894
- ratio = np.random.uniform(1., self.upper_ratio)
895
- h = int(im_h * ratio)
896
- w = int(im_w * ratio)
897
- if h > im_h and w > im_w:
898
- y = np.random.randint(0, h - im_h)
899
- x = np.random.randint(0, w - im_w)
900
- target_size = (h, w)
901
- offsets = (x, y)
902
- sample = Padding(
903
- target_size=target_size,
904
- pad_mode=-1,
905
- offsets=offsets,
906
- im_padding_value=self.im_padding_value,
907
- label_padding_value=self.label_padding_value)(sample)
908
- return sample
909
-
910
-
911
- class Padding(Transform):
912
- def __init__(self,
913
- target_size=None,
914
- pad_mode=0,
915
- offsets=None,
916
- im_padding_value=(127.5, 127.5, 127.5),
917
- label_padding_value=255,
918
- size_divisor=32):
919
- """
920
- Pad image to a specified size or multiple of size_divisor.
921
-
922
- Args:
923
- target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None.
924
- pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
925
- if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
926
- im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5).
927
- label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
928
- size_divisor(int): Image width and height after padding is a multiple of coarsest_stride.
929
- """
930
- super(Padding, self).__init__()
931
- if isinstance(target_size, (list, tuple)):
932
- if len(target_size) != 2:
933
- raise ValueError(
934
- '`target_size` should include 2 elements, but it is {}'.
935
- format(target_size))
936
- if isinstance(target_size, int):
937
- target_size = [target_size] * 2
938
-
939
- assert pad_mode in [
940
- -1, 0, 1, 2
941
- ], 'currently only supports four modes [-1, 0, 1, 2]'
942
- if pad_mode == -1:
943
- assert offsets, 'if pad_mode is -1, offsets should not be None'
944
-
945
- self.target_size = target_size
946
- self.size_divisor = size_divisor
947
- self.pad_mode = pad_mode
948
- self.offsets = offsets
949
- self.im_padding_value = im_padding_value
950
- self.label_padding_value = label_padding_value
951
-
952
- def apply_im(self, image, offsets, target_size):
953
- x, y = offsets
954
- im_h, im_w = image.shape[:2]
955
- h, w = target_size
956
- canvas = np.ones((h, w, 3), dtype=np.float32)
957
- canvas *= np.array(self.im_padding_value, dtype=np.float32)
958
- canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
959
- return canvas
960
-
961
- def apply_mask(self, mask, offsets, target_size):
962
- x, y = offsets
963
- im_h, im_w = mask.shape[:2]
964
- h, w = target_size
965
- canvas = np.ones((h, w), dtype=np.float32)
966
- canvas *= np.array(self.label_padding_value, dtype=np.float32)
967
- canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
968
- return canvas
969
-
970
- def apply_bbox(self, bbox, offsets):
971
- return bbox + np.array(offsets * 2, dtype=np.float32)
972
-
973
- def apply_segm(self, segms, offsets, im_size, size):
974
- x, y = offsets
975
- height, width = im_size
976
- h, w = size
977
- expanded_segms = []
978
- for segm in segms:
979
- if is_poly(segm):
980
- # Polygon format
981
- expanded_segms.append(
982
- [expand_poly(poly, x, y) for poly in segm])
983
- else:
984
- # RLE format
985
- expanded_segms.append(
986
- expand_rle(segm, x, y, height, width, h, w))
987
- return expanded_segms
988
-
989
- def apply(self, sample):
990
- im_h, im_w = sample['image'].shape[:2]
991
- if self.target_size:
992
- h, w = self.target_size
993
- assert (
994
- im_h <= h and im_w <= w
995
- ), 'target size ({}, {}) cannot be less than image size ({}, {})'\
996
- .format(h, w, im_h, im_w)
997
- else:
998
- h = (np.ceil(im_h / self.size_divisor) *
999
- self.size_divisor).astype(int)
1000
- w = (np.ceil(im_w / self.size_divisor) *
1001
- self.size_divisor).astype(int)
1002
-
1003
- if h == im_h and w == im_w:
1004
- return sample
1005
-
1006
- if self.pad_mode == -1:
1007
- offsets = self.offsets
1008
- elif self.pad_mode == 0:
1009
- offsets = [0, 0]
1010
- elif self.pad_mode == 1:
1011
- offsets = [(w - im_w) // 2, (h - im_h) // 2]
1012
- else:
1013
- offsets = [w - im_w, h - im_h]
1014
-
1015
- sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
1016
- if 'mask' in sample:
1017
- sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
1018
- if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
1019
- sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
1020
- if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
1021
- sample['gt_poly'] = self.apply_segm(
1022
- sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
1023
- return sample
1024
-
1025
-
1026
- class MixupImage(Transform):
1027
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
1028
- """
1029
- Mixup two images and their gt_bbbox/gt_score.
1030
-
1031
- Args:
1032
- alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5.
1033
- beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5.
1034
- """
1035
- super(MixupImage, self).__init__()
1036
- if alpha <= 0.0:
1037
- raise ValueError("alpha should be positive in {}".format(self))
1038
- if beta <= 0.0:
1039
- raise ValueError("beta should be positive in {}".format(self))
1040
- self.alpha = alpha
1041
- self.beta = beta
1042
- self.mixup_epoch = mixup_epoch
1043
-
1044
- def apply_im(self, image1, image2, factor):
1045
- h = max(image1.shape[0], image2.shape[0])
1046
- w = max(image1.shape[1], image2.shape[1])
1047
- img = np.zeros((h, w, image1.shape[2]), 'float32')
1048
- img[:image1.shape[0], :image1.shape[1], :] = \
1049
- image1.astype('float32') * factor
1050
- img[:image2.shape[0], :image2.shape[1], :] += \
1051
- image2.astype('float32') * (1.0 - factor)
1052
- return img.astype('uint8')
1053
-
1054
- def __call__(self, sample):
1055
- if not isinstance(sample, Sequence):
1056
- return sample
1057
-
1058
- assert len(sample) == 2, 'mixup need two samples'
1059
-
1060
- factor = np.random.beta(self.alpha, self.beta)
1061
- factor = max(0.0, min(1.0, factor))
1062
- if factor >= 1.0:
1063
- return sample[0]
1064
- if factor <= 0.0:
1065
- return sample[1]
1066
- image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
1067
- result = copy.deepcopy(sample[0])
1068
- result['image'] = image
1069
- # apply bbox and score
1070
- if 'gt_bbox' in sample[0]:
1071
- gt_bbox1 = sample[0]['gt_bbox']
1072
- gt_bbox2 = sample[1]['gt_bbox']
1073
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
1074
- result['gt_bbox'] = gt_bbox
1075
- if 'gt_poly' in sample[0]:
1076
- gt_poly1 = sample[0]['gt_poly']
1077
- gt_poly2 = sample[1]['gt_poly']
1078
- gt_poly = gt_poly1 + gt_poly2
1079
- result['gt_poly'] = gt_poly
1080
- if 'gt_class' in sample[0]:
1081
- gt_class1 = sample[0]['gt_class']
1082
- gt_class2 = sample[1]['gt_class']
1083
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
1084
- result['gt_class'] = gt_class
1085
-
1086
- gt_score1 = np.ones_like(sample[0]['gt_class'])
1087
- gt_score2 = np.ones_like(sample[1]['gt_class'])
1088
- gt_score = np.concatenate(
1089
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
1090
- result['gt_score'] = gt_score
1091
- if 'is_crowd' in sample[0]:
1092
- is_crowd1 = sample[0]['is_crowd']
1093
- is_crowd2 = sample[1]['is_crowd']
1094
- is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
1095
- result['is_crowd'] = is_crowd
1096
- if 'difficult' in sample[0]:
1097
- is_difficult1 = sample[0]['difficult']
1098
- is_difficult2 = sample[1]['difficult']
1099
- is_difficult = np.concatenate(
1100
- (is_difficult1, is_difficult2), axis=0)
1101
- result['difficult'] = is_difficult
1102
-
1103
- return result
1104
-
1105
-
1106
- class RandomDistort(Transform):
1107
- """
1108
- Random color distortion.
1109
-
1110
- Args:
1111
- brightness_range(float, optional): Range of brightness distortion. Defaults to .5.
1112
- brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5.
1113
- contrast_range(float, optional): Range of contrast distortion. Defaults to .5.
1114
- contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5.
1115
- saturation_range(float, optional): Range of saturation distortion. Defaults to .5.
1116
- saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5.
1117
- hue_range(float, optional): Range of hue distortion. Defaults to .5.
1118
- hue_prob(float, optional): Probability of hue distortion. Defaults to .5.
1119
- random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD)
1120
- order. Defaults to True.
1121
- count (int, optional): the number of doing distortion. Defaults to 4.
1122
- shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False.
1123
- """
1124
-
1125
- def __init__(self,
1126
- brightness_range=0.5,
1127
- brightness_prob=0.5,
1128
- contrast_range=0.5,
1129
- contrast_prob=0.5,
1130
- saturation_range=0.5,
1131
- saturation_prob=0.5,
1132
- hue_range=18,
1133
- hue_prob=0.5,
1134
- random_apply=True,
1135
- count=4,
1136
- shuffle_channel=False):
1137
- super(RandomDistort, self).__init__()
1138
- self.brightness_range = [1 - brightness_range, 1 + brightness_range]
1139
- self.brightness_prob = brightness_prob
1140
- self.contrast_range = [1 - contrast_range, 1 + contrast_range]
1141
- self.contrast_prob = contrast_prob
1142
- self.saturation_range = [1 - saturation_range, 1 + saturation_range]
1143
- self.saturation_prob = saturation_prob
1144
- self.hue_range = [1 - hue_range, 1 + hue_range]
1145
- self.hue_prob = hue_prob
1146
- self.random_apply = random_apply
1147
- self.count = count
1148
- self.shuffle_channel = shuffle_channel
1149
-
1150
- def apply_hue(self, image):
1151
- low, high = self.hue_range
1152
- if np.random.uniform(0., 1.) < self.hue_prob:
1153
- return image
1154
-
1155
- image = image.astype(np.float32)
1156
- # it works, but result differ from HSV version
1157
- delta = np.random.uniform(low, high)
1158
- u = np.cos(delta * np.pi)
1159
- w = np.sin(delta * np.pi)
1160
- bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
1161
- tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
1162
- [0.211, -0.523, 0.311]])
1163
- ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
1164
- [1.0, -1.107, 1.705]])
1165
- t = np.dot(np.dot(ityiq, bt), tyiq).T
1166
- image = np.dot(image, t)
1167
- return image
1168
-
1169
- def apply_saturation(self, image):
1170
- low, high = self.saturation_range
1171
- if np.random.uniform(0., 1.) < self.saturation_prob:
1172
- return image
1173
- delta = np.random.uniform(low, high)
1174
- image = image.astype(np.float32)
1175
- # it works, but result differ from HSV version
1176
- gray = image * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
1177
- gray = gray.sum(axis=2, keepdims=True)
1178
- gray *= (1.0 - delta)
1179
- image *= delta
1180
- image += gray
1181
- return image
1182
-
1183
- def apply_contrast(self, image):
1184
- low, high = self.contrast_range
1185
- if np.random.uniform(0., 1.) < self.contrast_prob:
1186
- return image
1187
- delta = np.random.uniform(low, high)
1188
- image = image.astype(np.float32)
1189
- image *= delta
1190
- return image
1191
-
1192
- def apply_brightness(self, image):
1193
- low, high = self.brightness_range
1194
- if np.random.uniform(0., 1.) < self.brightness_prob:
1195
- return image
1196
- delta = np.random.uniform(low, high)
1197
- image = image.astype(np.float32)
1198
- image += delta
1199
- return image
1200
-
1201
- def apply(self, sample):
1202
- if self.random_apply:
1203
- functions = [
1204
- self.apply_brightness, self.apply_contrast,
1205
- self.apply_saturation, self.apply_hue
1206
- ]
1207
- distortions = np.random.permutation(functions)[:self.count]
1208
- for func in distortions:
1209
- sample['image'] = func(sample['image'])
1210
- return sample
1211
-
1212
- sample['image'] = self.apply_brightness(sample['image'])
1213
- mode = np.random.randint(0, 2)
1214
- if mode:
1215
- sample['image'] = self.apply_contrast(sample['image'])
1216
- sample['image'] = self.apply_saturation(sample['image'])
1217
- sample['image'] = self.apply_hue(sample['image'])
1218
- if not mode:
1219
- sample['image'] = self.apply_contrast(sample['image'])
1220
-
1221
- if self.shuffle_channel:
1222
- if np.random.randint(0, 2):
1223
- sample['image'] = sample['image'][..., np.random.permutation(
1224
- 3)]
1225
-
1226
- return sample
1227
-
1228
-
1229
- class RandomBlur(Transform):
1230
- """
1231
- Randomly blur input image(s).
1232
-
1233
- Args:
1234
- prob (float): Probability of blurring.
1235
- """
1236
-
1237
- def __init__(self, prob=0.1):
1238
- super(RandomBlur, self).__init__()
1239
- self.prob = prob
1240
-
1241
- def apply_im(self, image, radius):
1242
- image = cv2.GaussianBlur(image, (radius, radius), 0, 0)
1243
- return image
1244
-
1245
- def apply(self, sample):
1246
- if self.prob <= 0:
1247
- n = 0
1248
- elif self.prob >= 1:
1249
- n = 1
1250
- else:
1251
- n = int(1.0 / self.prob)
1252
- if n > 0:
1253
- if np.random.randint(0, n) == 0:
1254
- radius = np.random.randint(3, 10)
1255
- if radius % 2 != 1:
1256
- radius = radius + 1
1257
- if radius > 9:
1258
- radius = 9
1259
- sample['image'] = self.apply_im(sample['image'], radius)
1260
-
1261
- return sample
1262
-
1263
-
1264
- class _PadBox(Transform):
1265
- def __init__(self, num_max_boxes=50):
1266
- """
1267
- Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
1268
-
1269
- Args:
1270
- num_max_boxes (int, optional): the max number of bboxes. Defaults to 50.
1271
- """
1272
- self.num_max_boxes = num_max_boxes
1273
- super(_PadBox, self).__init__()
1274
-
1275
- def apply(self, sample):
1276
- gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
1277
- num_max = self.num_max_boxes
1278
- pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
1279
- if gt_num > 0:
1280
- pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
1281
- sample['gt_bbox'] = pad_bbox
1282
- if 'gt_class' in sample:
1283
- pad_class = np.zeros((num_max, ), dtype=np.int32)
1284
- if gt_num > 0:
1285
- pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
1286
- sample['gt_class'] = pad_class
1287
- if 'gt_score' in sample:
1288
- pad_score = np.zeros((num_max, ), dtype=np.float32)
1289
- if gt_num > 0:
1290
- pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
1291
- sample['gt_score'] = pad_score
1292
- # in training, for example in op ExpandImage,
1293
- # the bbox and gt_class is expanded, but the difficult is not,
1294
- # so, judging by it's length
1295
- if 'difficult' in sample:
1296
- pad_diff = np.zeros((num_max, ), dtype=np.int32)
1297
- if gt_num > 0:
1298
- pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
1299
- sample['difficult'] = pad_diff
1300
- if 'is_crowd' in sample:
1301
- pad_crowd = np.zeros((num_max, ), dtype=np.int32)
1302
- if gt_num > 0:
1303
- pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
1304
- sample['is_crowd'] = pad_crowd
1305
- return sample
1306
-
1307
-
1308
- class _NormalizeBox(Transform):
1309
- def __init__(self):
1310
- super(_NormalizeBox, self).__init__()
1311
-
1312
- def apply(self, sample):
1313
- height, width = sample['image'].shape[:2]
1314
- for i in range(sample['gt_bbox'].shape[0]):
1315
- sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
1316
- sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
1317
- sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
1318
- sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
1319
-
1320
- return sample
1321
-
1322
-
1323
- class _BboxXYXY2XYWH(Transform):
1324
- """
1325
- Convert bbox XYXY format to XYWH format.
1326
- """
1327
-
1328
- def __init__(self):
1329
- super(_BboxXYXY2XYWH, self).__init__()
1330
-
1331
- def apply(self, sample):
1332
- bbox = sample['gt_bbox']
1333
- bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
1334
- bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
1335
- sample['gt_bbox'] = bbox
1336
- return sample
1337
-
1338
-
1339
- class _Permute(Transform):
1340
- def __init__(self):
1341
- super(_Permute, self).__init__()
1342
-
1343
- def apply(self, sample):
1344
- sample['image'] = permute(sample['image'], False)
1345
- return sample
1346
-
1347
-
1348
- class ArrangeSegmenter(Transform):
1349
- def __init__(self, mode):
1350
- super(ArrangeSegmenter, self).__init__()
1351
- if mode not in ['train', 'eval', 'test', 'quant']:
1352
- raise ValueError(
1353
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1354
- )
1355
- self.mode = mode
1356
-
1357
- def apply(self, sample):
1358
- if 'mask' in sample:
1359
- mask = sample['mask']
1360
-
1361
- image = permute(sample['image'], False)
1362
- if self.mode == 'train':
1363
- mask = mask.astype('int64')
1364
- return image, mask
1365
- if self.mode == 'eval':
1366
- mask = np.asarray(Image.open(mask))
1367
- mask = mask[np.newaxis, :, :].astype('int64')
1368
- return image, mask
1369
- if self.mode == 'test':
1370
- return image,
1371
-
1372
-
1373
- class ArrangeClassifier(Transform):
1374
- def __init__(self, mode):
1375
- super(ArrangeClassifier, self).__init__()
1376
- if mode not in ['train', 'eval', 'test', 'quant']:
1377
- raise ValueError(
1378
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1379
- )
1380
- self.mode = mode
1381
-
1382
- def apply(self, sample):
1383
- image = permute(sample['image'], False)
1384
- if self.mode in ['train', 'eval']:
1385
- return image, sample['label']
1386
- else:
1387
- return image
1388
-
1389
-
1390
- class ArrangeDetector(Transform):
1391
- def __init__(self, mode):
1392
- super(ArrangeDetector, self).__init__()
1393
- if mode not in ['train', 'eval', 'test', 'quant']:
1394
- raise ValueError(
1395
- "mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
1396
- )
1397
- self.mode = mode
1398
-
1399
- def apply(self, sample):
1400
- if self.mode == 'eval' and 'gt_poly' in sample:
1401
- del sample['gt_poly']
1402
- return sample