paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0b2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -0
- paddlex/__init__.py +51 -18
- paddlex/__main__.py +40 -0
- paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
- paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
- paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
- paddlex/configs/face_detection/BlazeFace.yaml +40 -0
- paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
- paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
- paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
- paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
- paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
- paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
- paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
- paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
- paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
- paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
- paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
- paddlex/configs/image_classification/ResNet101.yaml +41 -0
- paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet152.yaml +41 -0
- paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet18.yaml +41 -0
- paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet34.yaml +41 -0
- paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet50.yaml +41 -0
- paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
- paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
- paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
- paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
- paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
- paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
- paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
- paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
- paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
- paddlex/configs/object_detection/DETR-R50.yaml +42 -0
- paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
- paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
- paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
- paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
- paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
- paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
- paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
- paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
- paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
- paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
- paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
- paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
- paddlex/configs/table_recognition/SLANet.yaml +39 -0
- paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
- paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
- paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
- paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
- paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
- paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
- paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
- paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
- paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
- paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
- paddlex/configs/ts_forecast/DLinear.yaml +38 -0
- paddlex/configs/ts_forecast/NLinear.yaml +38 -0
- paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
- paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
- paddlex/configs/ts_forecast/RLinear.yaml +38 -0
- paddlex/configs/ts_forecast/TiDE.yaml +38 -0
- paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
- paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
- paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
- paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
- paddlex/engine.py +54 -0
- paddlex/inference/__init__.py +17 -0
- paddlex/inference/components/__init__.py +18 -0
- paddlex/inference/components/base.py +292 -0
- paddlex/inference/components/llm/__init__.py +25 -0
- paddlex/inference/components/llm/base.py +65 -0
- paddlex/inference/components/llm/erniebot.py +212 -0
- paddlex/inference/components/paddle_predictor/__init__.py +20 -0
- paddlex/inference/components/paddle_predictor/predictor.py +332 -0
- paddlex/inference/components/retrieval/__init__.py +15 -0
- paddlex/inference/components/retrieval/faiss.py +359 -0
- paddlex/inference/components/task_related/__init__.py +33 -0
- paddlex/inference/components/task_related/clas.py +124 -0
- paddlex/inference/components/task_related/det.py +284 -0
- paddlex/inference/components/task_related/instance_seg.py +89 -0
- paddlex/inference/components/task_related/seal_det_warp.py +940 -0
- paddlex/inference/components/task_related/seg.py +40 -0
- paddlex/inference/components/task_related/table_rec.py +191 -0
- paddlex/inference/components/task_related/text_det.py +895 -0
- paddlex/inference/components/task_related/text_rec.py +353 -0
- paddlex/inference/components/task_related/warp.py +43 -0
- paddlex/inference/components/transforms/__init__.py +16 -0
- paddlex/inference/components/transforms/image/__init__.py +15 -0
- paddlex/inference/components/transforms/image/common.py +598 -0
- paddlex/inference/components/transforms/image/funcs.py +58 -0
- paddlex/inference/components/transforms/read_data.py +67 -0
- paddlex/inference/components/transforms/ts/__init__.py +15 -0
- paddlex/inference/components/transforms/ts/common.py +393 -0
- paddlex/inference/components/transforms/ts/funcs.py +424 -0
- paddlex/inference/models/__init__.py +106 -0
- paddlex/inference/models/anomaly_detection.py +87 -0
- paddlex/inference/models/base/__init__.py +16 -0
- paddlex/inference/models/base/base_predictor.py +76 -0
- paddlex/inference/models/base/basic_predictor.py +122 -0
- paddlex/inference/models/face_recognition.py +21 -0
- paddlex/inference/models/formula_recognition.py +55 -0
- paddlex/inference/models/general_recognition.py +99 -0
- paddlex/inference/models/image_classification.py +101 -0
- paddlex/inference/models/image_unwarping.py +43 -0
- paddlex/inference/models/instance_segmentation.py +66 -0
- paddlex/inference/models/multilabel_classification.py +33 -0
- paddlex/inference/models/object_detection.py +129 -0
- paddlex/inference/models/semantic_segmentation.py +86 -0
- paddlex/inference/models/table_recognition.py +106 -0
- paddlex/inference/models/text_detection.py +105 -0
- paddlex/inference/models/text_recognition.py +78 -0
- paddlex/inference/models/ts_ad.py +68 -0
- paddlex/inference/models/ts_cls.py +57 -0
- paddlex/inference/models/ts_fc.py +73 -0
- paddlex/inference/pipelines/__init__.py +127 -0
- paddlex/inference/pipelines/attribute_recognition.py +92 -0
- paddlex/inference/pipelines/base.py +86 -0
- paddlex/inference/pipelines/face_recognition.py +49 -0
- paddlex/inference/pipelines/formula_recognition.py +102 -0
- paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
- paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
- paddlex/inference/pipelines/ocr.py +80 -0
- paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
- paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
- paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
- paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
- paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
- paddlex/inference/pipelines/seal_recognition.py +152 -0
- paddlex/inference/pipelines/serving/__init__.py +17 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
- paddlex/inference/pipelines/serving/app.py +164 -0
- paddlex/inference/pipelines/serving/models.py +30 -0
- paddlex/inference/pipelines/serving/server.py +25 -0
- paddlex/inference/pipelines/serving/storage.py +161 -0
- paddlex/inference/pipelines/serving/utils.py +190 -0
- paddlex/inference/pipelines/single_model_pipeline.py +76 -0
- paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
- paddlex/inference/pipelines/table_recognition/utils.py +457 -0
- paddlex/inference/results/__init__.py +31 -0
- paddlex/inference/results/attribute_rec.py +89 -0
- paddlex/inference/results/base.py +43 -0
- paddlex/inference/results/chat_ocr.py +158 -0
- paddlex/inference/results/clas.py +133 -0
- paddlex/inference/results/det.py +86 -0
- paddlex/inference/results/face_rec.py +34 -0
- paddlex/inference/results/formula_rec.py +363 -0
- paddlex/inference/results/instance_seg.py +152 -0
- paddlex/inference/results/ocr.py +157 -0
- paddlex/inference/results/seal_rec.py +50 -0
- paddlex/inference/results/seg.py +72 -0
- paddlex/inference/results/shitu.py +35 -0
- paddlex/inference/results/table_rec.py +109 -0
- paddlex/inference/results/text_det.py +33 -0
- paddlex/inference/results/text_rec.py +66 -0
- paddlex/inference/results/ts.py +37 -0
- paddlex/inference/results/utils/__init__.py +13 -0
- paddlex/inference/results/utils/mixin.py +204 -0
- paddlex/inference/results/warp.py +31 -0
- paddlex/inference/utils/__init__.py +13 -0
- paddlex/inference/utils/benchmark.py +214 -0
- paddlex/inference/utils/color_map.py +123 -0
- paddlex/inference/utils/get_pipeline_path.py +26 -0
- paddlex/inference/utils/io/__init__.py +33 -0
- paddlex/inference/utils/io/readers.py +353 -0
- paddlex/inference/utils/io/style.py +374 -0
- paddlex/inference/utils/io/tablepyxl.py +149 -0
- paddlex/inference/utils/io/writers.py +376 -0
- paddlex/inference/utils/new_ir_blacklist.py +22 -0
- paddlex/inference/utils/official_models.py +286 -0
- paddlex/inference/utils/pp_option.py +236 -0
- paddlex/inference/utils/process_hook.py +54 -0
- paddlex/model.py +106 -0
- paddlex/modules/__init__.py +105 -0
- paddlex/modules/anomaly_detection/__init__.py +18 -0
- paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
- paddlex/modules/anomaly_detection/evaluator.py +58 -0
- paddlex/modules/anomaly_detection/exportor.py +22 -0
- paddlex/modules/anomaly_detection/model_list.py +16 -0
- paddlex/modules/anomaly_detection/trainer.py +71 -0
- paddlex/modules/base/__init__.py +18 -0
- paddlex/modules/base/build_model.py +34 -0
- paddlex/modules/base/dataset_checker/__init__.py +16 -0
- paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
- paddlex/modules/base/dataset_checker/utils.py +110 -0
- paddlex/modules/base/evaluator.py +154 -0
- paddlex/modules/base/exportor.py +121 -0
- paddlex/modules/base/trainer.py +111 -0
- paddlex/modules/face_recognition/__init__.py +18 -0
- paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
- paddlex/modules/face_recognition/evaluator.py +52 -0
- paddlex/modules/face_recognition/exportor.py +22 -0
- paddlex/modules/face_recognition/model_list.py +15 -0
- paddlex/modules/face_recognition/trainer.py +97 -0
- paddlex/modules/formula_recognition/__init__.py +13 -0
- paddlex/modules/formula_recognition/model_list.py +17 -0
- paddlex/modules/general_recognition/__init__.py +18 -0
- paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
- paddlex/modules/general_recognition/evaluator.py +31 -0
- paddlex/modules/general_recognition/exportor.py +22 -0
- paddlex/modules/general_recognition/model_list.py +19 -0
- paddlex/modules/general_recognition/trainer.py +52 -0
- paddlex/modules/image_classification/__init__.py +18 -0
- paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
- paddlex/modules/image_classification/evaluator.py +43 -0
- paddlex/modules/image_classification/exportor.py +22 -0
- paddlex/modules/image_classification/model_list.py +97 -0
- paddlex/modules/image_classification/trainer.py +82 -0
- paddlex/modules/image_unwarping/__init__.py +13 -0
- paddlex/modules/image_unwarping/model_list.py +17 -0
- paddlex/modules/instance_segmentation/__init__.py +18 -0
- paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
- paddlex/modules/instance_segmentation/evaluator.py +32 -0
- paddlex/modules/instance_segmentation/exportor.py +22 -0
- paddlex/modules/instance_segmentation/model_list.py +33 -0
- paddlex/modules/instance_segmentation/trainer.py +31 -0
- paddlex/modules/multilabel_classification/__init__.py +18 -0
- paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
- paddlex/modules/multilabel_classification/evaluator.py +43 -0
- paddlex/modules/multilabel_classification/exportor.py +22 -0
- paddlex/modules/multilabel_classification/model_list.py +24 -0
- paddlex/modules/multilabel_classification/trainer.py +85 -0
- paddlex/modules/object_detection/__init__.py +18 -0
- paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
- paddlex/modules/object_detection/evaluator.py +41 -0
- paddlex/modules/object_detection/exportor.py +22 -0
- paddlex/modules/object_detection/model_list.py +74 -0
- paddlex/modules/object_detection/trainer.py +85 -0
- paddlex/modules/semantic_segmentation/__init__.py +18 -0
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
- paddlex/modules/semantic_segmentation/evaluator.py +58 -0
- paddlex/modules/semantic_segmentation/exportor.py +22 -0
- paddlex/modules/semantic_segmentation/model_list.py +35 -0
- paddlex/modules/semantic_segmentation/trainer.py +71 -0
- paddlex/modules/table_recognition/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
- paddlex/modules/table_recognition/evaluator.py +43 -0
- paddlex/modules/table_recognition/exportor.py +22 -0
- paddlex/modules/table_recognition/model_list.py +19 -0
- paddlex/modules/table_recognition/trainer.py +70 -0
- paddlex/modules/text_detection/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
- paddlex/modules/text_detection/evaluator.py +41 -0
- paddlex/modules/text_detection/exportor.py +22 -0
- paddlex/modules/text_detection/model_list.py +22 -0
- paddlex/modules/text_detection/trainer.py +68 -0
- paddlex/modules/text_recognition/__init__.py +18 -0
- paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/text_recognition/evaluator.py +63 -0
- paddlex/modules/text_recognition/exportor.py +25 -0
- paddlex/modules/text_recognition/model_list.py +20 -0
- paddlex/modules/text_recognition/trainer.py +105 -0
- paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
- paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
- paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
- paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
- paddlex/modules/ts_classification/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
- paddlex/modules/ts_classification/evaluator.py +66 -0
- paddlex/modules/ts_classification/exportor.py +45 -0
- paddlex/modules/ts_classification/model_list.py +18 -0
- paddlex/modules/ts_classification/trainer.py +92 -0
- paddlex/modules/ts_forecast/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_forecast/evaluator.py +66 -0
- paddlex/modules/ts_forecast/exportor.py +45 -0
- paddlex/modules/ts_forecast/model_list.py +24 -0
- paddlex/modules/ts_forecast/trainer.py +92 -0
- paddlex/paddlex_cli.py +197 -0
- paddlex/pipelines/OCR.yaml +8 -0
- paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
- paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
- paddlex/pipelines/anomaly_detection.yaml +7 -0
- paddlex/pipelines/face_recognition.yaml +13 -0
- paddlex/pipelines/formula_recognition.yaml +8 -0
- paddlex/pipelines/image_classification.yaml +7 -0
- paddlex/pipelines/instance_segmentation.yaml +7 -0
- paddlex/pipelines/layout_parsing.yaml +14 -0
- paddlex/pipelines/multi_label_image_classification.yaml +7 -0
- paddlex/pipelines/object_detection.yaml +7 -0
- paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
- paddlex/pipelines/seal_recognition.yaml +10 -0
- paddlex/pipelines/semantic_segmentation.yaml +7 -0
- paddlex/pipelines/small_object_detection.yaml +7 -0
- paddlex/pipelines/table_recognition.yaml +12 -0
- paddlex/pipelines/ts_ad.yaml +7 -0
- paddlex/pipelines/ts_cls.yaml +7 -0
- paddlex/pipelines/ts_fc.yaml +7 -0
- paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
- paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
- paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
- paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
- paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
- paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
- paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
- paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
- paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
- paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
- paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
- paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
- paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
- paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
- paddlex/repo_apis/__init__.py +13 -0
- paddlex/repo_apis/base/__init__.py +23 -0
- paddlex/repo_apis/base/config.py +238 -0
- paddlex/repo_apis/base/model.py +571 -0
- paddlex/repo_apis/base/register.py +135 -0
- paddlex/repo_apis/base/runner.py +390 -0
- paddlex/repo_apis/base/utils/__init__.py +13 -0
- paddlex/repo_apis/base/utils/arg.py +64 -0
- paddlex/repo_apis/base/utils/subprocess.py +107 -0
- paddlex/repo_manager/__init__.py +24 -0
- paddlex/repo_manager/core.py +271 -0
- paddlex/repo_manager/meta.py +143 -0
- paddlex/repo_manager/repo.py +396 -0
- paddlex/repo_manager/requirements.txt +18 -0
- paddlex/repo_manager/utils.py +298 -0
- paddlex/utils/__init__.py +1 -12
- paddlex/utils/cache.py +148 -0
- paddlex/utils/config.py +214 -0
- paddlex/utils/device.py +103 -0
- paddlex/utils/download.py +168 -182
- paddlex/utils/errors/__init__.py +17 -0
- paddlex/utils/errors/dataset_checker.py +78 -0
- paddlex/utils/errors/others.py +152 -0
- paddlex/utils/file_interface.py +212 -0
- paddlex/utils/flags.py +61 -0
- paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
- paddlex/utils/fonts/__init__.py +24 -0
- paddlex/utils/func_register.py +41 -0
- paddlex/utils/interactive_get_pipeline.py +55 -0
- paddlex/utils/lazy_loader.py +66 -0
- paddlex/utils/logging.py +132 -33
- paddlex/utils/misc.py +201 -0
- paddlex/utils/result_saver.py +59 -0
- paddlex/utils/subclass_register.py +101 -0
- paddlex/version.py +54 -0
- paddlex-3.0.0b2.dist-info/LICENSE +169 -0
- paddlex-3.0.0b2.dist-info/METADATA +760 -0
- paddlex-3.0.0b2.dist-info/RECORD +646 -0
- paddlex-3.0.0b2.dist-info/WHEEL +5 -0
- paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
- paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
- PaddleClas/__init__.py +0 -16
- PaddleClas/paddleclas.py +0 -375
- PaddleClas/ppcls/__init__.py +0 -20
- PaddleClas/ppcls/data/__init__.py +0 -15
- PaddleClas/ppcls/data/imaug/__init__.py +0 -94
- PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
- PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
- PaddleClas/ppcls/data/imaug/cutout.py +0 -41
- PaddleClas/ppcls/data/imaug/fmix.py +0 -217
- PaddleClas/ppcls/data/imaug/grid.py +0 -89
- PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
- PaddleClas/ppcls/data/imaug/operators.py +0 -244
- PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
- PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
- PaddleClas/ppcls/data/reader.py +0 -318
- PaddleClas/ppcls/modeling/__init__.py +0 -20
- PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
- PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
- PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
- PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
- PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
- PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
- PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
- PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
- PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
- PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
- PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
- PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
- PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
- PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
- PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
- PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
- PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
- PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
- PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
- PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
- PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
- PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
- PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
- PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
- PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
- PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
- PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
- PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
- PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
- PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
- PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
- PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
- PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
- PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
- PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
- PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
- PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
- PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
- PaddleClas/ppcls/modeling/loss.py +0 -154
- PaddleClas/ppcls/modeling/utils.py +0 -53
- PaddleClas/ppcls/optimizer/__init__.py +0 -19
- PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
- PaddleClas/ppcls/optimizer/optimizer.py +0 -165
- PaddleClas/ppcls/utils/__init__.py +0 -27
- PaddleClas/ppcls/utils/check.py +0 -151
- PaddleClas/ppcls/utils/config.py +0 -201
- PaddleClas/ppcls/utils/logger.py +0 -120
- PaddleClas/ppcls/utils/metrics.py +0 -107
- PaddleClas/ppcls/utils/misc.py +0 -62
- PaddleClas/ppcls/utils/model_zoo.py +0 -213
- PaddleClas/ppcls/utils/save_load.py +0 -163
- PaddleClas/setup.py +0 -55
- PaddleClas/tools/__init__.py +0 -15
- PaddleClas/tools/download.py +0 -50
- PaddleClas/tools/ema.py +0 -58
- PaddleClas/tools/eval.py +0 -112
- PaddleClas/tools/export_model.py +0 -85
- PaddleClas/tools/export_serving_model.py +0 -76
- PaddleClas/tools/infer/__init__.py +0 -16
- PaddleClas/tools/infer/infer.py +0 -94
- PaddleClas/tools/infer/predict.py +0 -117
- PaddleClas/tools/infer/utils.py +0 -233
- PaddleClas/tools/program.py +0 -444
- PaddleClas/tools/test_hubserving.py +0 -113
- PaddleClas/tools/train.py +0 -141
- paddlex/cls.py +0 -76
- paddlex/command.py +0 -215
- paddlex/cv/__init__.py +0 -17
- paddlex/cv/datasets/__init__.py +0 -18
- paddlex/cv/datasets/coco.py +0 -169
- paddlex/cv/datasets/imagenet.py +0 -88
- paddlex/cv/datasets/seg_dataset.py +0 -91
- paddlex/cv/datasets/voc.py +0 -301
- paddlex/cv/models/__init__.py +0 -18
- paddlex/cv/models/base.py +0 -623
- paddlex/cv/models/classifier.py +0 -814
- paddlex/cv/models/detector.py +0 -1747
- paddlex/cv/models/load_model.py +0 -126
- paddlex/cv/models/segmenter.py +0 -673
- paddlex/cv/models/slim/__init__.py +0 -13
- paddlex/cv/models/slim/prune.py +0 -55
- paddlex/cv/models/utils/__init__.py +0 -13
- paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
- paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
- paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
- paddlex/cv/models/utils/ema.py +0 -48
- paddlex/cv/models/utils/seg_metrics.py +0 -62
- paddlex/cv/models/utils/visualize.py +0 -394
- paddlex/cv/transforms/__init__.py +0 -46
- paddlex/cv/transforms/batch_operators.py +0 -286
- paddlex/cv/transforms/box_utils.py +0 -41
- paddlex/cv/transforms/functions.py +0 -193
- paddlex/cv/transforms/operators.py +0 -1402
- paddlex/det.py +0 -43
- paddlex/paddleseg/__init__.py +0 -17
- paddlex/paddleseg/core/__init__.py +0 -20
- paddlex/paddleseg/core/infer.py +0 -289
- paddlex/paddleseg/core/predict.py +0 -145
- paddlex/paddleseg/core/train.py +0 -258
- paddlex/paddleseg/core/val.py +0 -172
- paddlex/paddleseg/cvlibs/__init__.py +0 -17
- paddlex/paddleseg/cvlibs/callbacks.py +0 -279
- paddlex/paddleseg/cvlibs/config.py +0 -359
- paddlex/paddleseg/cvlibs/manager.py +0 -142
- paddlex/paddleseg/cvlibs/param_init.py +0 -91
- paddlex/paddleseg/datasets/__init__.py +0 -21
- paddlex/paddleseg/datasets/ade.py +0 -112
- paddlex/paddleseg/datasets/cityscapes.py +0 -86
- paddlex/paddleseg/datasets/cocostuff.py +0 -79
- paddlex/paddleseg/datasets/dataset.py +0 -164
- paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
- paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
- paddlex/paddleseg/datasets/pascal_context.py +0 -80
- paddlex/paddleseg/datasets/voc.py +0 -113
- paddlex/paddleseg/models/__init__.py +0 -39
- paddlex/paddleseg/models/ann.py +0 -436
- paddlex/paddleseg/models/attention_unet.py +0 -189
- paddlex/paddleseg/models/backbones/__init__.py +0 -18
- paddlex/paddleseg/models/backbones/hrnet.py +0 -815
- paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
- paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
- paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
- paddlex/paddleseg/models/bisenet.py +0 -311
- paddlex/paddleseg/models/danet.py +0 -220
- paddlex/paddleseg/models/decoupled_segnet.py +0 -233
- paddlex/paddleseg/models/deeplab.py +0 -258
- paddlex/paddleseg/models/dnlnet.py +0 -231
- paddlex/paddleseg/models/emanet.py +0 -219
- paddlex/paddleseg/models/fast_scnn.py +0 -318
- paddlex/paddleseg/models/fcn.py +0 -135
- paddlex/paddleseg/models/gcnet.py +0 -223
- paddlex/paddleseg/models/gscnn.py +0 -357
- paddlex/paddleseg/models/hardnet.py +0 -309
- paddlex/paddleseg/models/isanet.py +0 -202
- paddlex/paddleseg/models/layers/__init__.py +0 -19
- paddlex/paddleseg/models/layers/activation.py +0 -73
- paddlex/paddleseg/models/layers/attention.py +0 -146
- paddlex/paddleseg/models/layers/layer_libs.py +0 -168
- paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
- paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
- paddlex/paddleseg/models/losses/__init__.py +0 -27
- paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
- paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
- paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
- paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
- paddlex/paddleseg/models/losses/dice_loss.py +0 -61
- paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
- paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
- paddlex/paddleseg/models/losses/l1_loss.py +0 -76
- paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
- paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
- paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
- paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
- paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
- paddlex/paddleseg/models/ocrnet.py +0 -248
- paddlex/paddleseg/models/pspnet.py +0 -147
- paddlex/paddleseg/models/sfnet.py +0 -236
- paddlex/paddleseg/models/shufflenet_slim.py +0 -268
- paddlex/paddleseg/models/u2net.py +0 -574
- paddlex/paddleseg/models/unet.py +0 -155
- paddlex/paddleseg/models/unet_3plus.py +0 -316
- paddlex/paddleseg/models/unet_plusplus.py +0 -237
- paddlex/paddleseg/transforms/__init__.py +0 -16
- paddlex/paddleseg/transforms/functional.py +0 -161
- paddlex/paddleseg/transforms/transforms.py +0 -937
- paddlex/paddleseg/utils/__init__.py +0 -22
- paddlex/paddleseg/utils/config_check.py +0 -60
- paddlex/paddleseg/utils/download.py +0 -163
- paddlex/paddleseg/utils/env/__init__.py +0 -16
- paddlex/paddleseg/utils/env/seg_env.py +0 -56
- paddlex/paddleseg/utils/env/sys_env.py +0 -122
- paddlex/paddleseg/utils/logger.py +0 -48
- paddlex/paddleseg/utils/metrics.py +0 -146
- paddlex/paddleseg/utils/progbar.py +0 -212
- paddlex/paddleseg/utils/timer.py +0 -53
- paddlex/paddleseg/utils/utils.py +0 -120
- paddlex/paddleseg/utils/visualize.py +0 -90
- paddlex/ppcls/__init__.py +0 -20
- paddlex/ppcls/data/__init__.py +0 -15
- paddlex/ppcls/data/imaug/__init__.py +0 -94
- paddlex/ppcls/data/imaug/autoaugment.py +0 -264
- paddlex/ppcls/data/imaug/batch_operators.py +0 -117
- paddlex/ppcls/data/imaug/cutout.py +0 -41
- paddlex/ppcls/data/imaug/fmix.py +0 -217
- paddlex/ppcls/data/imaug/grid.py +0 -89
- paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
- paddlex/ppcls/data/imaug/operators.py +0 -256
- paddlex/ppcls/data/imaug/randaugment.py +0 -106
- paddlex/ppcls/data/imaug/random_erasing.py +0 -55
- paddlex/ppcls/data/reader.py +0 -318
- paddlex/ppcls/modeling/__init__.py +0 -20
- paddlex/ppcls/modeling/architectures/__init__.py +0 -51
- paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
- paddlex/ppcls/modeling/architectures/darknet.py +0 -161
- paddlex/ppcls/modeling/architectures/densenet.py +0 -308
- paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
- paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
- paddlex/ppcls/modeling/architectures/dpn.py +0 -425
- paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
- paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
- paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
- paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
- paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
- paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
- paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
- paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
- paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
- paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
- paddlex/ppcls/modeling/architectures/regnet.py +0 -383
- paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
- paddlex/ppcls/modeling/architectures/res2net.py +0 -272
- paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
- paddlex/ppcls/modeling/architectures/resnest.py +0 -705
- paddlex/ppcls/modeling/architectures/resnet.py +0 -317
- paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
- paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
- paddlex/ppcls/modeling/architectures/resnext.py +0 -259
- paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
- paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
- paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
- paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
- paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
- paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
- paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
- paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
- paddlex/ppcls/modeling/architectures/vgg.py +0 -152
- paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
- paddlex/ppcls/modeling/architectures/xception.py +0 -345
- paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
- paddlex/ppcls/modeling/loss.py +0 -158
- paddlex/ppcls/modeling/utils.py +0 -53
- paddlex/ppcls/optimizer/__init__.py +0 -19
- paddlex/ppcls/optimizer/learning_rate.py +0 -159
- paddlex/ppcls/optimizer/optimizer.py +0 -165
- paddlex/ppcls/utils/__init__.py +0 -27
- paddlex/ppcls/utils/check.py +0 -151
- paddlex/ppcls/utils/config.py +0 -201
- paddlex/ppcls/utils/logger.py +0 -120
- paddlex/ppcls/utils/metrics.py +0 -112
- paddlex/ppcls/utils/misc.py +0 -62
- paddlex/ppcls/utils/model_zoo.py +0 -213
- paddlex/ppcls/utils/save_load.py +0 -163
- paddlex/ppdet/__init__.py +0 -16
- paddlex/ppdet/core/__init__.py +0 -15
- paddlex/ppdet/core/config/__init__.py +0 -13
- paddlex/ppdet/core/config/schema.py +0 -248
- paddlex/ppdet/core/config/yaml_helpers.py +0 -118
- paddlex/ppdet/core/workspace.py +0 -279
- paddlex/ppdet/data/__init__.py +0 -21
- paddlex/ppdet/data/reader.py +0 -304
- paddlex/ppdet/data/shm_utils.py +0 -67
- paddlex/ppdet/data/source/__init__.py +0 -27
- paddlex/ppdet/data/source/category.py +0 -823
- paddlex/ppdet/data/source/coco.py +0 -243
- paddlex/ppdet/data/source/dataset.py +0 -192
- paddlex/ppdet/data/source/keypoint_coco.py +0 -656
- paddlex/ppdet/data/source/mot.py +0 -360
- paddlex/ppdet/data/source/voc.py +0 -204
- paddlex/ppdet/data/source/widerface.py +0 -180
- paddlex/ppdet/data/transform/__init__.py +0 -28
- paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
- paddlex/ppdet/data/transform/batch_operators.py +0 -758
- paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
- paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
- paddlex/ppdet/data/transform/mot_operators.py +0 -636
- paddlex/ppdet/data/transform/op_helper.py +0 -468
- paddlex/ppdet/data/transform/operators.py +0 -2103
- paddlex/ppdet/engine/__init__.py +0 -29
- paddlex/ppdet/engine/callbacks.py +0 -262
- paddlex/ppdet/engine/env.py +0 -47
- paddlex/ppdet/engine/export_utils.py +0 -118
- paddlex/ppdet/engine/tracker.py +0 -425
- paddlex/ppdet/engine/trainer.py +0 -535
- paddlex/ppdet/metrics/__init__.py +0 -23
- paddlex/ppdet/metrics/coco_utils.py +0 -184
- paddlex/ppdet/metrics/json_results.py +0 -151
- paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
- paddlex/ppdet/metrics/map_utils.py +0 -396
- paddlex/ppdet/metrics/metrics.py +0 -300
- paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
- paddlex/ppdet/metrics/mot_metrics.py +0 -184
- paddlex/ppdet/metrics/widerface_utils.py +0 -393
- paddlex/ppdet/model_zoo/__init__.py +0 -18
- paddlex/ppdet/model_zoo/model_zoo.py +0 -86
- paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
- paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
- paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
- paddlex/ppdet/modeling/__init__.py +0 -41
- paddlex/ppdet/modeling/architectures/__init__.py +0 -40
- paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
- paddlex/ppdet/modeling/architectures/centernet.py +0 -103
- paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
- paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
- paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
- paddlex/ppdet/modeling/architectures/fcos.py +0 -105
- paddlex/ppdet/modeling/architectures/jde.py +0 -125
- paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
- paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
- paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
- paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
- paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
- paddlex/ppdet/modeling/architectures/solov2.py +0 -110
- paddlex/ppdet/modeling/architectures/ssd.py +0 -84
- paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
- paddlex/ppdet/modeling/architectures/yolo.py +0 -104
- paddlex/ppdet/modeling/backbones/__init__.py +0 -37
- paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
- paddlex/ppdet/modeling/backbones/darknet.py +0 -341
- paddlex/ppdet/modeling/backbones/dla.py +0 -244
- paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
- paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
- paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
- paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
- paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
- paddlex/ppdet/modeling/backbones/res2net.py +0 -358
- paddlex/ppdet/modeling/backbones/resnet.py +0 -606
- paddlex/ppdet/modeling/backbones/senet.py +0 -140
- paddlex/ppdet/modeling/backbones/vgg.py +0 -216
- paddlex/ppdet/modeling/bbox_utils.py +0 -464
- paddlex/ppdet/modeling/heads/__init__.py +0 -41
- paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
- paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
- paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
- paddlex/ppdet/modeling/heads/face_head.py +0 -113
- paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
- paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
- paddlex/ppdet/modeling/heads/mask_head.py +0 -253
- paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
- paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
- paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
- paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
- paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
- paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
- paddlex/ppdet/modeling/keypoint_utils.py +0 -302
- paddlex/ppdet/modeling/layers.py +0 -1142
- paddlex/ppdet/modeling/losses/__init__.py +0 -35
- paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
- paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
- paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
- paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
- paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
- paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
- paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
- paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
- paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
- paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
- paddlex/ppdet/modeling/mot/__init__.py +0 -25
- paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
- paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
- paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
- paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
- paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
- paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
- paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
- paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
- paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
- paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
- paddlex/ppdet/modeling/mot/utils.py +0 -181
- paddlex/ppdet/modeling/mot/visualization.py +0 -130
- paddlex/ppdet/modeling/necks/__init__.py +0 -25
- paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
- paddlex/ppdet/modeling/necks/fpn.py +0 -233
- paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
- paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
- paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
- paddlex/ppdet/modeling/ops.py +0 -1599
- paddlex/ppdet/modeling/post_process.py +0 -449
- paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
- paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
- paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
- paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
- paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
- paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
- paddlex/ppdet/modeling/reid/__init__.py +0 -23
- paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
- paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
- paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
- paddlex/ppdet/modeling/reid/resnet.py +0 -320
- paddlex/ppdet/modeling/shape_spec.py +0 -33
- paddlex/ppdet/modeling/tests/__init__.py +0 -13
- paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
- paddlex/ppdet/modeling/tests/test_base.py +0 -75
- paddlex/ppdet/modeling/tests/test_ops.py +0 -839
- paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
- paddlex/ppdet/optimizer.py +0 -285
- paddlex/ppdet/slim/__init__.py +0 -62
- paddlex/ppdet/slim/distill.py +0 -111
- paddlex/ppdet/slim/prune.py +0 -85
- paddlex/ppdet/slim/quant.py +0 -52
- paddlex/ppdet/utils/__init__.py +0 -13
- paddlex/ppdet/utils/check.py +0 -93
- paddlex/ppdet/utils/checkpoint.py +0 -216
- paddlex/ppdet/utils/cli.py +0 -151
- paddlex/ppdet/utils/colormap.py +0 -56
- paddlex/ppdet/utils/download.py +0 -477
- paddlex/ppdet/utils/logger.py +0 -71
- paddlex/ppdet/utils/stats.py +0 -95
- paddlex/ppdet/utils/visualizer.py +0 -292
- paddlex/ppdet/utils/voc_utils.py +0 -87
- paddlex/seg.py +0 -38
- paddlex/tools/__init__.py +0 -16
- paddlex/tools/convert.py +0 -52
- paddlex/tools/dataset_conversion/__init__.py +0 -24
- paddlex/tools/dataset_conversion/x2coco.py +0 -379
- paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
- paddlex/tools/dataset_conversion/x2seg.py +0 -343
- paddlex/tools/dataset_conversion/x2voc.py +0 -230
- paddlex/tools/dataset_split/__init__.py +0 -23
- paddlex/tools/dataset_split/coco_split.py +0 -69
- paddlex/tools/dataset_split/imagenet_split.py +0 -75
- paddlex/tools/dataset_split/seg_split.py +0 -96
- paddlex/tools/dataset_split/utils.py +0 -75
- paddlex/tools/dataset_split/voc_split.py +0 -91
- paddlex/tools/split.py +0 -41
- paddlex/utils/checkpoint.py +0 -439
- paddlex/utils/env.py +0 -71
- paddlex/utils/shm.py +0 -67
- paddlex/utils/stats.py +0 -68
- paddlex/utils/utils.py +0 -140
- paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
- paddlex-2.0.0rc4.dist-info/METADATA +0 -29
- paddlex-2.0.0rc4.dist-info/RECORD +0 -445
- paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
- paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
- paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,1402 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
import numpy as np
|
16
|
-
import cv2
|
17
|
-
import copy
|
18
|
-
import random
|
19
|
-
from PIL import Image
|
20
|
-
import paddlex
|
21
|
-
|
22
|
-
try:
|
23
|
-
from collections.abc import Sequence
|
24
|
-
except Exception:
|
25
|
-
from collections import Sequence
|
26
|
-
from numbers import Number
|
27
|
-
from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
|
28
|
-
horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
|
29
|
-
crop_rle, expand_poly, expand_rle, resize_poly, resize_rle
|
30
|
-
|
31
|
-
__all__ = [
|
32
|
-
"Compose", "Decode", "Resize", "RandomResize", "ResizeByShort",
|
33
|
-
"RandomResizeByShort", "ResizeByLong", "RandomHorizontalFlip",
|
34
|
-
"RandomVerticalFlip", "Normalize", "CenterCrop", "RandomCrop",
|
35
|
-
"RandomScaleAspect", "RandomExpand", "Padding", "MixupImage",
|
36
|
-
"RandomDistort", "RandomBlur", "ArrangeSegmenter", "ArrangeClassifier",
|
37
|
-
"ArrangeDetector"
|
38
|
-
]
|
39
|
-
|
40
|
-
interp_dict = {
|
41
|
-
'NEAREST': cv2.INTER_NEAREST,
|
42
|
-
'LINEAR': cv2.INTER_LINEAR,
|
43
|
-
'CUBIC': cv2.INTER_CUBIC,
|
44
|
-
'AREA': cv2.INTER_AREA,
|
45
|
-
'LANCZOS4': cv2.INTER_LANCZOS4
|
46
|
-
}
|
47
|
-
|
48
|
-
|
49
|
-
class Transform(object):
|
50
|
-
"""
|
51
|
-
Parent class of all data augmentation operations
|
52
|
-
"""
|
53
|
-
|
54
|
-
def __init__(self):
|
55
|
-
pass
|
56
|
-
|
57
|
-
def apply_im(self, image):
|
58
|
-
pass
|
59
|
-
|
60
|
-
def apply_mask(self, mask):
|
61
|
-
pass
|
62
|
-
|
63
|
-
def apply_bbox(self, bbox):
|
64
|
-
pass
|
65
|
-
|
66
|
-
def apply_segm(self, segms):
|
67
|
-
pass
|
68
|
-
|
69
|
-
def apply(self, sample):
|
70
|
-
sample['image'] = self.apply_im(sample['image'])
|
71
|
-
if 'mask' in sample:
|
72
|
-
sample['mask'] = self.apply_mask(sample['mask'])
|
73
|
-
if 'gt_bbox' in sample:
|
74
|
-
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'])
|
75
|
-
|
76
|
-
return sample
|
77
|
-
|
78
|
-
def __call__(self, sample):
|
79
|
-
if isinstance(sample, Sequence):
|
80
|
-
sample = [self.apply(s) for s in sample]
|
81
|
-
else:
|
82
|
-
sample = self.apply(sample)
|
83
|
-
|
84
|
-
return sample
|
85
|
-
|
86
|
-
|
87
|
-
class Compose(Transform):
|
88
|
-
"""
|
89
|
-
Apply a series of data augmentation to the input.
|
90
|
-
All input images are in Height-Width-Channel ([H, W, C]) format.
|
91
|
-
|
92
|
-
Args:
|
93
|
-
transforms (List[paddlex.transforms.Transform]): List of data preprocess or augmentations.
|
94
|
-
Raises:
|
95
|
-
TypeError: Invalid type of transforms.
|
96
|
-
ValueError: Invalid length of transforms.
|
97
|
-
"""
|
98
|
-
|
99
|
-
def __init__(self, transforms):
|
100
|
-
super(Compose, self).__init__()
|
101
|
-
if not isinstance(transforms, list):
|
102
|
-
raise TypeError(
|
103
|
-
'Type of transforms is invalid. Must be List, but received is {}'
|
104
|
-
.format(type(transforms)))
|
105
|
-
if len(transforms) < 1:
|
106
|
-
raise ValueError(
|
107
|
-
'Length of transforms must not be less than 1, but received is {}'
|
108
|
-
.format(len(transforms)))
|
109
|
-
self.transforms = transforms
|
110
|
-
self.decode_image = Decode()
|
111
|
-
self.arrange_outputs = None
|
112
|
-
self.apply_im_only = False
|
113
|
-
|
114
|
-
def __call__(self, sample):
|
115
|
-
if self.apply_im_only and 'mask' in sample:
|
116
|
-
mask_backup = copy.deepcopy(sample['mask'])
|
117
|
-
del sample['mask']
|
118
|
-
|
119
|
-
sample = self.decode_image(sample)
|
120
|
-
|
121
|
-
for op in self.transforms:
|
122
|
-
# skip batch transforms amd mixup
|
123
|
-
if isinstance(op, (paddlex.transforms.BatchRandomResize,
|
124
|
-
paddlex.transforms.BatchRandomResizeByShort,
|
125
|
-
MixupImage)):
|
126
|
-
continue
|
127
|
-
sample = op(sample)
|
128
|
-
|
129
|
-
if self.arrange_outputs is not None:
|
130
|
-
if self.apply_im_only:
|
131
|
-
sample['mask'] = mask_backup
|
132
|
-
sample = self.arrange_outputs(sample)
|
133
|
-
|
134
|
-
return sample
|
135
|
-
|
136
|
-
|
137
|
-
class Decode(Transform):
|
138
|
-
"""
|
139
|
-
Decode image(s) in input.
|
140
|
-
|
141
|
-
Args:
|
142
|
-
to_rgb (bool, optional): If True, convert input images from BGR format to RGB format. Defaults to True.
|
143
|
-
"""
|
144
|
-
|
145
|
-
def __init__(self, to_rgb=True):
|
146
|
-
super(Decode, self).__init__()
|
147
|
-
self.to_rgb = to_rgb
|
148
|
-
|
149
|
-
def read_img(self, img_path):
|
150
|
-
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_ANYCOLOR |
|
151
|
-
cv2.IMREAD_COLOR)
|
152
|
-
|
153
|
-
def apply_im(self, im_path):
|
154
|
-
if isinstance(im_path, str):
|
155
|
-
try:
|
156
|
-
image = self.read_img(im_path)
|
157
|
-
except:
|
158
|
-
raise ValueError('Cannot read the image file {}!'.format(
|
159
|
-
im_path))
|
160
|
-
else:
|
161
|
-
image = im_path
|
162
|
-
|
163
|
-
if self.to_rgb:
|
164
|
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
165
|
-
|
166
|
-
return image
|
167
|
-
|
168
|
-
def apply_mask(self, mask):
|
169
|
-
try:
|
170
|
-
mask = np.asarray(Image.open(mask))
|
171
|
-
except:
|
172
|
-
raise ValueError("Cannot read the mask file {}!".format(mask))
|
173
|
-
if len(mask.shape) != 2:
|
174
|
-
raise Exception(
|
175
|
-
"Mask should be a 1-channel image, but recevied is a {}-channel image.".
|
176
|
-
format(mask.shape[2]))
|
177
|
-
return mask
|
178
|
-
|
179
|
-
def apply(self, sample):
|
180
|
-
"""
|
181
|
-
|
182
|
-
Args:
|
183
|
-
sample (dict): Input sample, containing 'image' at least.
|
184
|
-
|
185
|
-
Returns:
|
186
|
-
dict: Decoded sample.
|
187
|
-
|
188
|
-
"""
|
189
|
-
sample['image'] = self.apply_im(sample['image'])
|
190
|
-
if 'mask' in sample:
|
191
|
-
sample['mask'] = self.apply_mask(sample['mask'])
|
192
|
-
im_height, im_width, _ = sample['image'].shape
|
193
|
-
se_height, se_width = sample['mask'].shape
|
194
|
-
if im_height != se_height or im_width != se_width:
|
195
|
-
raise Exception(
|
196
|
-
"The height or width of the im is not same as the mask")
|
197
|
-
sample['im_shape'] = np.array(
|
198
|
-
sample['image'].shape[:2], dtype=np.float32)
|
199
|
-
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
|
200
|
-
return sample
|
201
|
-
|
202
|
-
|
203
|
-
class Resize(Transform):
|
204
|
-
"""
|
205
|
-
Resize input.
|
206
|
-
|
207
|
-
- If target_size is an int,resize the image(s) to (target_size, target_size).
|
208
|
-
- If target_size is a list or tuple, resize the image(s) to target_size.
|
209
|
-
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
210
|
-
|
211
|
-
Args:
|
212
|
-
target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
|
213
|
-
Otherwise, target_size represents [target height, target width].
|
214
|
-
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
|
215
|
-
Interpolation method of resize. Defaults to 'LINEAR'.
|
216
|
-
keep_ratio (bool): the resize scale of width/height is same and width/height after resized is not greater
|
217
|
-
than target width/height. Defaults to False.
|
218
|
-
|
219
|
-
Raises:
|
220
|
-
TypeError: Invalid type of target_size.
|
221
|
-
ValueError: Invalid interpolation method.
|
222
|
-
"""
|
223
|
-
|
224
|
-
def __init__(self, target_size, interp='LINEAR', keep_ratio=False):
|
225
|
-
super(Resize, self).__init__()
|
226
|
-
if not (interp == "RANDOM" or interp in interp_dict):
|
227
|
-
raise ValueError("interp should be one of {}".format(
|
228
|
-
interp_dict.keys()))
|
229
|
-
if isinstance(target_size, int):
|
230
|
-
target_size = (target_size, target_size)
|
231
|
-
else:
|
232
|
-
if not (isinstance(target_size,
|
233
|
-
(list, tuple)) and len(target_size) == 2):
|
234
|
-
raise TypeError(
|
235
|
-
"target_size should be an int or a list of length 2, but received {}".
|
236
|
-
format(target_size))
|
237
|
-
# (height, width)
|
238
|
-
self.target_size = target_size
|
239
|
-
self.interp = interp
|
240
|
-
self.keep_ratio = keep_ratio
|
241
|
-
|
242
|
-
def apply_im(self, image, interp, target_size):
|
243
|
-
image = cv2.resize(image, target_size, interpolation=interp)
|
244
|
-
return image
|
245
|
-
|
246
|
-
def apply_mask(self, mask, target_size):
|
247
|
-
mask = cv2.resize(mask, target_size, interpolation=cv2.INTER_NEAREST)
|
248
|
-
return mask
|
249
|
-
|
250
|
-
def apply_bbox(self, bbox, scale, target_size):
|
251
|
-
im_scale_x, im_scale_y = scale
|
252
|
-
bbox[:, 0::2] *= im_scale_x
|
253
|
-
bbox[:, 1::2] *= im_scale_y
|
254
|
-
bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, target_size[0])
|
255
|
-
bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, target_size[1])
|
256
|
-
return bbox
|
257
|
-
|
258
|
-
def apply_segm(self, segms, im_size, scale):
|
259
|
-
im_h, im_w = im_size
|
260
|
-
im_scale_x, im_scale_y = scale
|
261
|
-
resized_segms = []
|
262
|
-
for segm in segms:
|
263
|
-
if is_poly(segm):
|
264
|
-
# Polygon format
|
265
|
-
resized_segms.append([
|
266
|
-
resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
|
267
|
-
])
|
268
|
-
else:
|
269
|
-
# RLE format
|
270
|
-
resized_segms.append(
|
271
|
-
resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
|
272
|
-
|
273
|
-
return resized_segms
|
274
|
-
|
275
|
-
def apply(self, sample):
|
276
|
-
if self.interp == "RANDOM":
|
277
|
-
interp = random.choice(list(interp_dict.values()))
|
278
|
-
else:
|
279
|
-
interp = interp_dict[self.interp]
|
280
|
-
im_h, im_w = sample['image'].shape[:2]
|
281
|
-
|
282
|
-
im_scale_y = self.target_size[0] / im_h
|
283
|
-
im_scale_x = self.target_size[1] / im_w
|
284
|
-
target_size = (self.target_size[1], self.target_size[0])
|
285
|
-
if self.keep_ratio:
|
286
|
-
scale = min(im_scale_y, im_scale_x)
|
287
|
-
target_w = int(round(im_w * scale))
|
288
|
-
target_h = int(round(im_h * scale))
|
289
|
-
target_size = (target_w, target_h)
|
290
|
-
im_scale_y = target_h / im_h
|
291
|
-
im_scale_x = target_w / im_w
|
292
|
-
|
293
|
-
sample['image'] = self.apply_im(sample['image'], interp, target_size)
|
294
|
-
|
295
|
-
if 'mask' in sample:
|
296
|
-
sample['mask'] = self.apply_mask(sample['mask'], target_size)
|
297
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
298
|
-
sample['gt_bbox'] = self.apply_bbox(
|
299
|
-
sample['gt_bbox'], [im_scale_x, im_scale_y], target_size)
|
300
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
301
|
-
sample['gt_poly'] = self.apply_segm(
|
302
|
-
sample['gt_poly'], [im_h, im_w], [im_scale_x, im_scale_y])
|
303
|
-
sample['im_shape'] = np.asarray(
|
304
|
-
sample['image'].shape[:2], dtype=np.float32)
|
305
|
-
if 'scale_factor' in sample:
|
306
|
-
scale_factor = sample['scale_factor']
|
307
|
-
sample['scale_factor'] = np.asarray(
|
308
|
-
[scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
|
309
|
-
dtype=np.float32)
|
310
|
-
|
311
|
-
return sample
|
312
|
-
|
313
|
-
|
314
|
-
class RandomResize(Transform):
|
315
|
-
"""
|
316
|
-
Resize input to random sizes.
|
317
|
-
|
318
|
-
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
319
|
-
|
320
|
-
Args:
|
321
|
-
target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
|
322
|
-
Multiple target sizes, each target size is an int or list/tuple.
|
323
|
-
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional):
|
324
|
-
Interpolation method of resize. Defaults to 'LINEAR'.
|
325
|
-
|
326
|
-
Raises:
|
327
|
-
TypeError: Invalid type of target_size.
|
328
|
-
ValueError: Invalid interpolation method.
|
329
|
-
|
330
|
-
See Also:
|
331
|
-
Resize input to a specific size.
|
332
|
-
"""
|
333
|
-
|
334
|
-
def __init__(self, target_sizes, interp='LINEAR'):
|
335
|
-
super(RandomResize, self).__init__()
|
336
|
-
if not (interp == "RANDOM" or interp in interp_dict):
|
337
|
-
raise ValueError("interp should be one of {}".format(
|
338
|
-
interp_dict.keys()))
|
339
|
-
self.interp = interp
|
340
|
-
assert isinstance(target_sizes, list), \
|
341
|
-
"target_size must be List"
|
342
|
-
for i, item in enumerate(target_sizes):
|
343
|
-
if isinstance(item, int):
|
344
|
-
target_sizes[i] = (item, item)
|
345
|
-
self.target_size = target_sizes
|
346
|
-
|
347
|
-
def apply(self, sample):
|
348
|
-
height, width = random.choice(self.target_size)
|
349
|
-
resizer = Resize((height, width), interp=self.interp)
|
350
|
-
sample = resizer(sample)
|
351
|
-
|
352
|
-
return sample
|
353
|
-
|
354
|
-
|
355
|
-
class ResizeByShort(Transform):
|
356
|
-
"""
|
357
|
-
Resize input with keeping the aspect ratio.
|
358
|
-
|
359
|
-
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
360
|
-
|
361
|
-
Args:
|
362
|
-
short_size (int): Target size of the shorter side of the image(s).
|
363
|
-
max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
|
364
|
-
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
|
365
|
-
|
366
|
-
Raises:
|
367
|
-
ValueError: Invalid interpolation method.
|
368
|
-
"""
|
369
|
-
|
370
|
-
def __init__(self, short_size=256, max_size=-1, interp='LINEAR'):
|
371
|
-
if not (interp == "RANDOM" or interp in interp_dict):
|
372
|
-
raise ValueError("interp should be one of {}".format(
|
373
|
-
interp_dict.keys()))
|
374
|
-
super(ResizeByShort, self).__init__()
|
375
|
-
self.short_size = short_size
|
376
|
-
self.max_size = max_size
|
377
|
-
self.interp = interp
|
378
|
-
|
379
|
-
def apply(self, sample):
|
380
|
-
im_h, im_w = sample['image'].shape[:2]
|
381
|
-
im_short_size = min(im_h, im_w)
|
382
|
-
im_long_size = max(im_h, im_w)
|
383
|
-
scale = float(self.short_size) / float(im_short_size)
|
384
|
-
if 0 < self.max_size < np.round(scale * im_long_size):
|
385
|
-
scale = float(self.max_size) / float(im_long_size)
|
386
|
-
target_w = int(round(im_w * scale))
|
387
|
-
target_h = int(round(im_h * scale))
|
388
|
-
sample = Resize(
|
389
|
-
target_size=(target_h, target_w), interp=self.interp)(sample)
|
390
|
-
|
391
|
-
return sample
|
392
|
-
|
393
|
-
|
394
|
-
class RandomResizeByShort(Transform):
|
395
|
-
"""
|
396
|
-
Resize input to random sizes with keeping the aspect ratio.
|
397
|
-
|
398
|
-
Attention:If interp is 'RANDOM', the interpolation method will be chose randomly.
|
399
|
-
|
400
|
-
Args:
|
401
|
-
short_sizes (List[int]): Target size of the shorter side of the image(s).
|
402
|
-
max_size (int, optional): The upper bound of longer side of the image(s). If max_size is -1, no upper bound is applied. Defaults to -1.
|
403
|
-
interp ({'NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM'}, optional): Interpolation method of resize. Defaults to 'LINEAR'.
|
404
|
-
|
405
|
-
Raises:
|
406
|
-
TypeError: Invalid type of target_size.
|
407
|
-
ValueError: Invalid interpolation method.
|
408
|
-
|
409
|
-
See Also:
|
410
|
-
ResizeByShort: Resize image(s) in input with keeping the aspect ratio.
|
411
|
-
"""
|
412
|
-
|
413
|
-
def __init__(self, short_sizes, max_size=-1, interp='LINEAR'):
|
414
|
-
super(RandomResizeByShort, self).__init__()
|
415
|
-
if not (interp == "RANDOM" or interp in interp_dict):
|
416
|
-
raise ValueError("interp should be one of {}".format(
|
417
|
-
interp_dict.keys()))
|
418
|
-
self.interp = interp
|
419
|
-
assert isinstance(short_sizes, list), \
|
420
|
-
"short_sizes must be List"
|
421
|
-
|
422
|
-
self.short_sizes = short_sizes
|
423
|
-
self.max_size = max_size
|
424
|
-
|
425
|
-
def apply(self, sample):
|
426
|
-
short_size = random.choice(self.short_sizes)
|
427
|
-
resizer = ResizeByShort(
|
428
|
-
short_size=short_size, max_size=self.max_size, interp=self.interp)
|
429
|
-
sample = resizer(sample)
|
430
|
-
return sample
|
431
|
-
|
432
|
-
|
433
|
-
class ResizeByLong(Transform):
|
434
|
-
def __init__(self, long_size=256, interp='LINEAR'):
|
435
|
-
super(ResizeByLong, self).__init__()
|
436
|
-
self.long_size = long_size
|
437
|
-
self.interp = interp
|
438
|
-
|
439
|
-
def apply(self, sample):
|
440
|
-
im_h, im_w = sample['image'].shape[:2]
|
441
|
-
im_long_size = max(im_h, im_w)
|
442
|
-
scale = float(self.long_size) / float(im_long_size)
|
443
|
-
target_h = int(round(im_h * scale))
|
444
|
-
target_w = int(round(im_w * scale))
|
445
|
-
sample = Resize(
|
446
|
-
target_size=(target_h, target_w), interp=self.interp)(sample)
|
447
|
-
|
448
|
-
return sample
|
449
|
-
|
450
|
-
|
451
|
-
class RandomHorizontalFlip(Transform):
|
452
|
-
"""
|
453
|
-
Randomly flip the input horizontally.
|
454
|
-
|
455
|
-
Args:
|
456
|
-
prob(float, optional): Probability of flipping the input. Defaults to .5.
|
457
|
-
"""
|
458
|
-
|
459
|
-
def __init__(self, prob=0.5):
|
460
|
-
super(RandomHorizontalFlip, self).__init__()
|
461
|
-
self.prob = prob
|
462
|
-
|
463
|
-
def apply_im(self, image):
|
464
|
-
image = horizontal_flip(image)
|
465
|
-
return image
|
466
|
-
|
467
|
-
def apply_mask(self, mask):
|
468
|
-
mask = horizontal_flip(mask)
|
469
|
-
return mask
|
470
|
-
|
471
|
-
def apply_bbox(self, bbox, width):
|
472
|
-
oldx1 = bbox[:, 0].copy()
|
473
|
-
oldx2 = bbox[:, 2].copy()
|
474
|
-
bbox[:, 0] = width - oldx2
|
475
|
-
bbox[:, 2] = width - oldx1
|
476
|
-
return bbox
|
477
|
-
|
478
|
-
def apply_segm(self, segms, height, width):
|
479
|
-
flipped_segms = []
|
480
|
-
for segm in segms:
|
481
|
-
if is_poly(segm):
|
482
|
-
# Polygon format
|
483
|
-
flipped_segms.append(
|
484
|
-
[horizontal_flip_poly(poly, width) for poly in segm])
|
485
|
-
else:
|
486
|
-
# RLE format
|
487
|
-
flipped_segms.append(horizontal_flip_rle(segm, height, width))
|
488
|
-
return flipped_segms
|
489
|
-
|
490
|
-
def apply(self, sample):
|
491
|
-
if random.random() < self.prob:
|
492
|
-
im_h, im_w = sample['image'].shape[:2]
|
493
|
-
sample['image'] = self.apply_im(sample['image'])
|
494
|
-
if 'mask' in sample:
|
495
|
-
sample['mask'] = self.apply_mask(sample['mask'])
|
496
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
497
|
-
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_w)
|
498
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
499
|
-
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
|
500
|
-
im_w)
|
501
|
-
return sample
|
502
|
-
|
503
|
-
|
504
|
-
class RandomVerticalFlip(Transform):
|
505
|
-
"""
|
506
|
-
Randomly flip the input vertically.
|
507
|
-
|
508
|
-
Args:
|
509
|
-
prob(float, optional): Probability of flipping the input. Defaults to .5.
|
510
|
-
"""
|
511
|
-
|
512
|
-
def __init__(self, prob=0.5):
|
513
|
-
super(RandomVerticalFlip, self).__init__()
|
514
|
-
self.prob = prob
|
515
|
-
|
516
|
-
def apply_im(self, image):
|
517
|
-
image = vertical_flip(image)
|
518
|
-
return image
|
519
|
-
|
520
|
-
def apply_mask(self, mask):
|
521
|
-
mask = vertical_flip(mask)
|
522
|
-
return mask
|
523
|
-
|
524
|
-
def apply_bbox(self, bbox, height):
|
525
|
-
oldy1 = bbox[:, 1].copy()
|
526
|
-
oldy2 = bbox[:, 3].copy()
|
527
|
-
bbox[:, 0] = height - oldy2
|
528
|
-
bbox[:, 2] = height - oldy1
|
529
|
-
return bbox
|
530
|
-
|
531
|
-
def apply_segm(self, segms, height, width):
|
532
|
-
flipped_segms = []
|
533
|
-
for segm in segms:
|
534
|
-
if is_poly(segm):
|
535
|
-
# Polygon format
|
536
|
-
flipped_segms.append(
|
537
|
-
[vertical_flip_poly(poly, height) for poly in segm])
|
538
|
-
else:
|
539
|
-
# RLE format
|
540
|
-
flipped_segms.append(vertical_flip_rle(segm, height, width))
|
541
|
-
return flipped_segms
|
542
|
-
|
543
|
-
def apply(self, sample):
|
544
|
-
if random.random() < self.prob:
|
545
|
-
im_h, im_w = sample['image'].shape[:2]
|
546
|
-
sample['image'] = self.apply_im(sample['image'])
|
547
|
-
if 'mask' in sample:
|
548
|
-
sample['mask'] = self.apply_mask(sample['mask'])
|
549
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
550
|
-
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], im_h)
|
551
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
552
|
-
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_h,
|
553
|
-
im_w)
|
554
|
-
return sample
|
555
|
-
|
556
|
-
|
557
|
-
class Normalize(Transform):
|
558
|
-
"""
|
559
|
-
Apply min-max normalization to the image(s) in input.
|
560
|
-
1. im = (im - min_value) * 1 / (max_value - min_value)
|
561
|
-
2. im = im - mean
|
562
|
-
3. im = im / std
|
563
|
-
|
564
|
-
Args:
|
565
|
-
mean(List[float] or Tuple[float], optional): Mean of input image(s). Defaults to [0.485, 0.456, 0.406].
|
566
|
-
std(List[float] or Tuple[float], optional): Standard deviation of input image(s). Defaults to [0.229, 0.224, 0.225].
|
567
|
-
min_val(List[float] or Tuple[float], optional): Minimum value of input image(s). Defaults to [0, 0, 0, ].
|
568
|
-
max_val(List[float] or Tuple[float], optional): Max value of input image(s). Defaults to [255., 255., 255.].
|
569
|
-
is_scale(bool, optional): If True, the image pixel values will be divided by 255.
|
570
|
-
"""
|
571
|
-
|
572
|
-
def __init__(self,
|
573
|
-
mean=[0.485, 0.456, 0.406],
|
574
|
-
std=[0.229, 0.224, 0.225],
|
575
|
-
min_val=[0, 0, 0],
|
576
|
-
max_val=[255., 255., 255.],
|
577
|
-
is_scale=True):
|
578
|
-
super(Normalize, self).__init__()
|
579
|
-
from functools import reduce
|
580
|
-
if reduce(lambda x, y: x * y, std) == 0:
|
581
|
-
raise ValueError(
|
582
|
-
'Std should not have 0, but received is {}'.format(std))
|
583
|
-
if is_scale:
|
584
|
-
if reduce(lambda x, y: x * y,
|
585
|
-
[a - b for a, b in zip(max_val, min_val)]) == 0:
|
586
|
-
raise ValueError(
|
587
|
-
'(max_val - min_val) should not have 0, but received is {}'.
|
588
|
-
format((np.asarray(max_val) - np.asarray(min_val)).tolist(
|
589
|
-
)))
|
590
|
-
|
591
|
-
self.mean = mean
|
592
|
-
self.std = std
|
593
|
-
self.min_val = min_val
|
594
|
-
self.max_val = max_val
|
595
|
-
self.is_scale = is_scale
|
596
|
-
|
597
|
-
def apply_im(self, image):
|
598
|
-
image = image.astype(np.float32)
|
599
|
-
mean = np.asarray(
|
600
|
-
self.mean, dtype=np.float32)[np.newaxis, np.newaxis, :]
|
601
|
-
std = np.asarray(self.std, dtype=np.float32)[np.newaxis, np.newaxis, :]
|
602
|
-
image = normalize(image, mean, std, self.min_val, self.max_val)
|
603
|
-
return image
|
604
|
-
|
605
|
-
def apply(self, sample):
|
606
|
-
sample['image'] = self.apply_im(sample['image'])
|
607
|
-
|
608
|
-
return sample
|
609
|
-
|
610
|
-
|
611
|
-
class CenterCrop(Transform):
|
612
|
-
"""
|
613
|
-
Crop the input at the center.
|
614
|
-
1. Locate the center of the image.
|
615
|
-
2. Crop the sample.
|
616
|
-
|
617
|
-
Args:
|
618
|
-
crop_size(int, optional): target size of the cropped image(s). Defaults to 224.
|
619
|
-
"""
|
620
|
-
|
621
|
-
def __init__(self, crop_size=224):
|
622
|
-
super(CenterCrop, self).__init__()
|
623
|
-
self.crop_size = crop_size
|
624
|
-
|
625
|
-
def apply_im(self, image):
|
626
|
-
image = center_crop(image, self.crop_size)
|
627
|
-
|
628
|
-
return image
|
629
|
-
|
630
|
-
def apply_mask(self, mask):
|
631
|
-
mask = center_crop(mask)
|
632
|
-
return mask
|
633
|
-
|
634
|
-
def apply(self, sample):
|
635
|
-
sample['image'] = self.apply_im(sample['image'])
|
636
|
-
if 'mask' in sample:
|
637
|
-
sample['mask'] = self.apply_mask(sample['mask'])
|
638
|
-
return sample
|
639
|
-
|
640
|
-
|
641
|
-
class RandomCrop(Transform):
|
642
|
-
"""
|
643
|
-
Randomly crop the input.
|
644
|
-
1. Compute the height and width of cropped area according to aspect_ratio and scaling.
|
645
|
-
2. Locate the upper left corner of cropped area randomly.
|
646
|
-
3. Crop the image(s).
|
647
|
-
4. Resize the cropped area to crop_size by crop_size.
|
648
|
-
|
649
|
-
Args:
|
650
|
-
crop_size(int, List[int] or Tuple[int]): Target size of the cropped area. If None, the cropped area will not be
|
651
|
-
resized. Defaults to None.
|
652
|
-
aspect_ratio (List[float], optional): Aspect ratio of cropped region in [min, max] format. Defaults to [.5, 2.].
|
653
|
-
thresholds (List[float], optional): Iou thresholds to decide a valid bbox crop.
|
654
|
-
Defaults to [.0, .1, .3, .5, .7, .9].
|
655
|
-
scaling (List[float], optional): Ratio between the cropped region and the original image in [min, max] format.
|
656
|
-
Defaults to [.3, 1.].
|
657
|
-
num_attempts (int, optional): The number of tries before giving up. Defaults to 50.
|
658
|
-
allow_no_crop (bool, optional): Whether returning without doing crop is allowed. Defaults to True.
|
659
|
-
cover_all_box (bool, optional): Whether to ensure all bboxes are covered in the final crop. Defaults to False.
|
660
|
-
"""
|
661
|
-
|
662
|
-
def __init__(self,
|
663
|
-
crop_size=None,
|
664
|
-
aspect_ratio=[.5, 2.],
|
665
|
-
thresholds=[.0, .1, .3, .5, .7, .9],
|
666
|
-
scaling=[.3, 1.],
|
667
|
-
num_attempts=50,
|
668
|
-
allow_no_crop=True,
|
669
|
-
cover_all_box=False):
|
670
|
-
super(RandomCrop, self).__init__()
|
671
|
-
self.crop_size = crop_size
|
672
|
-
self.aspect_ratio = aspect_ratio
|
673
|
-
self.thresholds = thresholds
|
674
|
-
self.scaling = scaling
|
675
|
-
self.num_attempts = num_attempts
|
676
|
-
self.allow_no_crop = allow_no_crop
|
677
|
-
self.cover_all_box = cover_all_box
|
678
|
-
|
679
|
-
def _generate_crop_info(self, sample):
|
680
|
-
im_h, im_w = sample['image'].shape[:2]
|
681
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
682
|
-
thresholds = self.thresholds
|
683
|
-
if self.allow_no_crop:
|
684
|
-
thresholds.append('no_crop')
|
685
|
-
np.random.shuffle(thresholds)
|
686
|
-
for thresh in thresholds:
|
687
|
-
if thresh == 'no_crop':
|
688
|
-
return None
|
689
|
-
for i in range(self.num_attempts):
|
690
|
-
crop_box = self._get_crop_box(im_h, im_w)
|
691
|
-
if crop_box is None:
|
692
|
-
continue
|
693
|
-
iou = self._iou_matrix(
|
694
|
-
sample['gt_bbox'],
|
695
|
-
np.array(
|
696
|
-
[crop_box], dtype=np.float32))
|
697
|
-
if iou.max() < thresh:
|
698
|
-
continue
|
699
|
-
if self.cover_all_box and iou.min() < thresh:
|
700
|
-
continue
|
701
|
-
cropped_box, valid_ids = self._crop_box_with_center_constraint(
|
702
|
-
sample['gt_bbox'],
|
703
|
-
np.array(
|
704
|
-
crop_box, dtype=np.float32))
|
705
|
-
if valid_ids.size > 0:
|
706
|
-
return crop_box, cropped_box, valid_ids
|
707
|
-
else:
|
708
|
-
for i in range(self.num_attempts):
|
709
|
-
crop_box = self._get_crop_box(im_h, im_w)
|
710
|
-
if crop_box is None:
|
711
|
-
continue
|
712
|
-
return crop_box, None, None
|
713
|
-
return None
|
714
|
-
|
715
|
-
def _get_crop_box(self, im_h, im_w):
|
716
|
-
scale = np.random.uniform(*self.scaling)
|
717
|
-
if self.aspect_ratio is not None:
|
718
|
-
min_ar, max_ar = self.aspect_ratio
|
719
|
-
aspect_ratio = np.random.uniform(
|
720
|
-
max(min_ar, scale**2), min(max_ar, scale**-2))
|
721
|
-
h_scale = scale / np.sqrt(aspect_ratio)
|
722
|
-
w_scale = scale * np.sqrt(aspect_ratio)
|
723
|
-
else:
|
724
|
-
h_scale = np.random.uniform(*self.scaling)
|
725
|
-
w_scale = np.random.uniform(*self.scaling)
|
726
|
-
crop_h = im_h * h_scale
|
727
|
-
crop_w = im_w * w_scale
|
728
|
-
if self.aspect_ratio is None:
|
729
|
-
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
|
730
|
-
return None
|
731
|
-
crop_h = int(crop_h)
|
732
|
-
crop_w = int(crop_w)
|
733
|
-
crop_y = np.random.randint(0, im_h - crop_h)
|
734
|
-
crop_x = np.random.randint(0, im_w - crop_w)
|
735
|
-
return [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
|
736
|
-
|
737
|
-
def _iou_matrix(self, a, b):
|
738
|
-
tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
739
|
-
br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
740
|
-
|
741
|
-
area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
|
742
|
-
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
743
|
-
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
|
744
|
-
area_o = (area_a[:, np.newaxis] + area_b - area_i)
|
745
|
-
return area_i / (area_o + 1e-10)
|
746
|
-
|
747
|
-
def _crop_box_with_center_constraint(self, box, crop):
|
748
|
-
cropped_box = box.copy()
|
749
|
-
|
750
|
-
cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
|
751
|
-
cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
|
752
|
-
cropped_box[:, :2] -= crop[:2]
|
753
|
-
cropped_box[:, 2:] -= crop[:2]
|
754
|
-
|
755
|
-
centers = (box[:, :2] + box[:, 2:]) / 2
|
756
|
-
valid = np.logical_and(crop[:2] <= centers,
|
757
|
-
centers < crop[2:]).all(axis=1)
|
758
|
-
valid = np.logical_and(
|
759
|
-
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
|
760
|
-
|
761
|
-
return cropped_box, np.where(valid)[0]
|
762
|
-
|
763
|
-
def _crop_segm(self, segms, valid_ids, crop, height, width):
|
764
|
-
crop_segms = []
|
765
|
-
for id in valid_ids:
|
766
|
-
segm = segms[id]
|
767
|
-
if is_poly(segm):
|
768
|
-
# Polygon format
|
769
|
-
crop_segms.append(crop_poly(segm, crop))
|
770
|
-
else:
|
771
|
-
# RLE format
|
772
|
-
crop_segms.append(crop_rle(segm, crop, height, width))
|
773
|
-
|
774
|
-
return crop_segms
|
775
|
-
|
776
|
-
def apply_im(self, image, crop):
|
777
|
-
x1, y1, x2, y2 = crop
|
778
|
-
return image[y1:y2, x1:x2, :]
|
779
|
-
|
780
|
-
def apply_mask(self, mask, crop):
|
781
|
-
x1, y1, x2, y2 = crop
|
782
|
-
return mask[y1:y2, x1:x2, ...]
|
783
|
-
|
784
|
-
def apply(self, sample):
|
785
|
-
crop_info = self._generate_crop_info(sample)
|
786
|
-
if crop_info is not None:
|
787
|
-
crop_box, cropped_box, valid_ids = crop_info
|
788
|
-
im_h, im_w = sample['image'].shape[:2]
|
789
|
-
sample['image'] = self.apply_im(sample['image'], crop_box)
|
790
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
791
|
-
crop_polys = self._crop_segm(
|
792
|
-
sample['gt_poly'],
|
793
|
-
valid_ids,
|
794
|
-
np.array(
|
795
|
-
crop_box, dtype=np.int64),
|
796
|
-
im_h,
|
797
|
-
im_w)
|
798
|
-
if [] in crop_polys:
|
799
|
-
delete_id = list()
|
800
|
-
valid_polys = list()
|
801
|
-
for idx, poly in enumerate(crop_polys):
|
802
|
-
if not crop_poly:
|
803
|
-
delete_id.append(idx)
|
804
|
-
else:
|
805
|
-
valid_polys.append(poly)
|
806
|
-
valid_ids = np.delete(valid_ids, delete_id)
|
807
|
-
if not valid_polys:
|
808
|
-
return sample
|
809
|
-
sample['gt_poly'] = valid_polys
|
810
|
-
else:
|
811
|
-
sample['gt_poly'] = crop_polys
|
812
|
-
|
813
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
814
|
-
sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
|
815
|
-
sample['gt_class'] = np.take(
|
816
|
-
sample['gt_class'], valid_ids, axis=0)
|
817
|
-
if 'gt_score' in sample:
|
818
|
-
sample['gt_score'] = np.take(
|
819
|
-
sample['gt_score'], valid_ids, axis=0)
|
820
|
-
if 'is_crowd' in sample:
|
821
|
-
sample['is_crowd'] = np.take(
|
822
|
-
sample['is_crowd'], valid_ids, axis=0)
|
823
|
-
|
824
|
-
if 'mask' in sample:
|
825
|
-
sample['mask'] = self.apply_mask(sample['mask'], crop_box)
|
826
|
-
|
827
|
-
if self.crop_size is not None:
|
828
|
-
sample = Resize(self.crop_size)(sample)
|
829
|
-
|
830
|
-
return sample
|
831
|
-
|
832
|
-
|
833
|
-
class RandomScaleAspect(Transform):
|
834
|
-
"""
|
835
|
-
Crop input image(s) and resize back to original sizes.
|
836
|
-
Args:
|
837
|
-
min_scale (float):Minimum ratio between the cropped region and the original image.
|
838
|
-
If 0, image(s) will not be cropped. Defaults to .5.
|
839
|
-
aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
|
840
|
-
"""
|
841
|
-
|
842
|
-
def __init__(self, min_scale=0.5, aspect_ratio=0.33):
|
843
|
-
super(RandomScaleAspect, self).__init__()
|
844
|
-
self.min_scale = min_scale
|
845
|
-
self.aspect_ratio = aspect_ratio
|
846
|
-
|
847
|
-
def apply(self, sample):
|
848
|
-
if self.min_scale != 0 and self.aspect_ratio != 0:
|
849
|
-
img_height, img_width = sample['image'].shape[:2]
|
850
|
-
sample = RandomCrop(
|
851
|
-
crop_size=(img_height, img_width),
|
852
|
-
aspect_ratio=[self.aspect_ratio, 1. / self.aspect_ratio],
|
853
|
-
scaling=[self.min_scale, 1.],
|
854
|
-
num_attempts=10,
|
855
|
-
allow_no_crop=False)(sample)
|
856
|
-
return sample
|
857
|
-
|
858
|
-
|
859
|
-
class RandomExpand(Transform):
|
860
|
-
"""
|
861
|
-
Randomly expand the input by padding according to random offsets.
|
862
|
-
|
863
|
-
Args:
|
864
|
-
upper_ratio(float, optional): The maximum ratio to which the original image is expanded. Defaults to 4..
|
865
|
-
prob(float, optional): The probability of apply expanding. Defaults to .5.
|
866
|
-
im_padding_value(List[float] or Tuple[float], optional): RGB filling value for the image. Defaults to (127.5, 127.5, 127.5).
|
867
|
-
label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
|
868
|
-
|
869
|
-
See Also:
|
870
|
-
paddlex.transforms.Padding
|
871
|
-
"""
|
872
|
-
|
873
|
-
def __init__(self,
|
874
|
-
upper_ratio=4.,
|
875
|
-
prob=.5,
|
876
|
-
im_padding_value=(127.5, 127.5, 127.5),
|
877
|
-
label_padding_value=255):
|
878
|
-
super(RandomExpand, self).__init__()
|
879
|
-
assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
|
880
|
-
self.upper_ratio = upper_ratio
|
881
|
-
self.prob = prob
|
882
|
-
assert isinstance(im_padding_value, (Number, Sequence)), \
|
883
|
-
"fill value must be either float or sequence"
|
884
|
-
if isinstance(im_padding_value, Number):
|
885
|
-
im_padding_value = (im_padding_value, ) * 3
|
886
|
-
if not isinstance(im_padding_value, tuple):
|
887
|
-
im_padding_value = tuple(im_padding_value)
|
888
|
-
self.im_padding_value = im_padding_value
|
889
|
-
self.label_padding_value = label_padding_value
|
890
|
-
|
891
|
-
def apply(self, sample):
|
892
|
-
if random.random() < self.prob:
|
893
|
-
im_h, im_w = sample['image'].shape[:2]
|
894
|
-
ratio = np.random.uniform(1., self.upper_ratio)
|
895
|
-
h = int(im_h * ratio)
|
896
|
-
w = int(im_w * ratio)
|
897
|
-
if h > im_h and w > im_w:
|
898
|
-
y = np.random.randint(0, h - im_h)
|
899
|
-
x = np.random.randint(0, w - im_w)
|
900
|
-
target_size = (h, w)
|
901
|
-
offsets = (x, y)
|
902
|
-
sample = Padding(
|
903
|
-
target_size=target_size,
|
904
|
-
pad_mode=-1,
|
905
|
-
offsets=offsets,
|
906
|
-
im_padding_value=self.im_padding_value,
|
907
|
-
label_padding_value=self.label_padding_value)(sample)
|
908
|
-
return sample
|
909
|
-
|
910
|
-
|
911
|
-
class Padding(Transform):
|
912
|
-
def __init__(self,
|
913
|
-
target_size=None,
|
914
|
-
pad_mode=0,
|
915
|
-
offsets=None,
|
916
|
-
im_padding_value=(127.5, 127.5, 127.5),
|
917
|
-
label_padding_value=255,
|
918
|
-
size_divisor=32):
|
919
|
-
"""
|
920
|
-
Pad image to a specified size or multiple of size_divisor.
|
921
|
-
|
922
|
-
Args:
|
923
|
-
target_size(int, Sequence, optional): Image target size, if None, pad to multiple of size_divisor. Defaults to None.
|
924
|
-
pad_mode({-1, 0, 1, 2}, optional): Pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
|
925
|
-
if 0, only pad to right and bottom. If 1, pad according to center. If 2, only pad left and top. Defaults to 0.
|
926
|
-
im_padding_value(Sequence[float]): RGB value of pad area. Defaults to (127.5, 127.5, 127.5).
|
927
|
-
label_padding_value(int, optional): Filling value for the mask. Defaults to 255.
|
928
|
-
size_divisor(int): Image width and height after padding is a multiple of coarsest_stride.
|
929
|
-
"""
|
930
|
-
super(Padding, self).__init__()
|
931
|
-
if isinstance(target_size, (list, tuple)):
|
932
|
-
if len(target_size) != 2:
|
933
|
-
raise ValueError(
|
934
|
-
'`target_size` should include 2 elements, but it is {}'.
|
935
|
-
format(target_size))
|
936
|
-
if isinstance(target_size, int):
|
937
|
-
target_size = [target_size] * 2
|
938
|
-
|
939
|
-
assert pad_mode in [
|
940
|
-
-1, 0, 1, 2
|
941
|
-
], 'currently only supports four modes [-1, 0, 1, 2]'
|
942
|
-
if pad_mode == -1:
|
943
|
-
assert offsets, 'if pad_mode is -1, offsets should not be None'
|
944
|
-
|
945
|
-
self.target_size = target_size
|
946
|
-
self.size_divisor = size_divisor
|
947
|
-
self.pad_mode = pad_mode
|
948
|
-
self.offsets = offsets
|
949
|
-
self.im_padding_value = im_padding_value
|
950
|
-
self.label_padding_value = label_padding_value
|
951
|
-
|
952
|
-
def apply_im(self, image, offsets, target_size):
|
953
|
-
x, y = offsets
|
954
|
-
im_h, im_w = image.shape[:2]
|
955
|
-
h, w = target_size
|
956
|
-
canvas = np.ones((h, w, 3), dtype=np.float32)
|
957
|
-
canvas *= np.array(self.im_padding_value, dtype=np.float32)
|
958
|
-
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
|
959
|
-
return canvas
|
960
|
-
|
961
|
-
def apply_mask(self, mask, offsets, target_size):
|
962
|
-
x, y = offsets
|
963
|
-
im_h, im_w = mask.shape[:2]
|
964
|
-
h, w = target_size
|
965
|
-
canvas = np.ones((h, w), dtype=np.float32)
|
966
|
-
canvas *= np.array(self.label_padding_value, dtype=np.float32)
|
967
|
-
canvas[y:y + im_h, x:x + im_w] = mask.astype(np.float32)
|
968
|
-
return canvas
|
969
|
-
|
970
|
-
def apply_bbox(self, bbox, offsets):
|
971
|
-
return bbox + np.array(offsets * 2, dtype=np.float32)
|
972
|
-
|
973
|
-
def apply_segm(self, segms, offsets, im_size, size):
|
974
|
-
x, y = offsets
|
975
|
-
height, width = im_size
|
976
|
-
h, w = size
|
977
|
-
expanded_segms = []
|
978
|
-
for segm in segms:
|
979
|
-
if is_poly(segm):
|
980
|
-
# Polygon format
|
981
|
-
expanded_segms.append(
|
982
|
-
[expand_poly(poly, x, y) for poly in segm])
|
983
|
-
else:
|
984
|
-
# RLE format
|
985
|
-
expanded_segms.append(
|
986
|
-
expand_rle(segm, x, y, height, width, h, w))
|
987
|
-
return expanded_segms
|
988
|
-
|
989
|
-
def apply(self, sample):
|
990
|
-
im_h, im_w = sample['image'].shape[:2]
|
991
|
-
if self.target_size:
|
992
|
-
h, w = self.target_size
|
993
|
-
assert (
|
994
|
-
im_h <= h and im_w <= w
|
995
|
-
), 'target size ({}, {}) cannot be less than image size ({}, {})'\
|
996
|
-
.format(h, w, im_h, im_w)
|
997
|
-
else:
|
998
|
-
h = (np.ceil(im_h / self.size_divisor) *
|
999
|
-
self.size_divisor).astype(int)
|
1000
|
-
w = (np.ceil(im_w / self.size_divisor) *
|
1001
|
-
self.size_divisor).astype(int)
|
1002
|
-
|
1003
|
-
if h == im_h and w == im_w:
|
1004
|
-
return sample
|
1005
|
-
|
1006
|
-
if self.pad_mode == -1:
|
1007
|
-
offsets = self.offsets
|
1008
|
-
elif self.pad_mode == 0:
|
1009
|
-
offsets = [0, 0]
|
1010
|
-
elif self.pad_mode == 1:
|
1011
|
-
offsets = [(w - im_w) // 2, (h - im_h) // 2]
|
1012
|
-
else:
|
1013
|
-
offsets = [w - im_w, h - im_h]
|
1014
|
-
|
1015
|
-
sample['image'] = self.apply_im(sample['image'], offsets, (h, w))
|
1016
|
-
if 'mask' in sample:
|
1017
|
-
sample['mask'] = self.apply_mask(sample['mask'], offsets, (h, w))
|
1018
|
-
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
|
1019
|
-
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
|
1020
|
-
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
|
1021
|
-
sample['gt_poly'] = self.apply_segm(
|
1022
|
-
sample['gt_poly'], offsets, im_size=[im_h, im_w], size=[h, w])
|
1023
|
-
return sample
|
1024
|
-
|
1025
|
-
|
1026
|
-
class MixupImage(Transform):
|
1027
|
-
def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
|
1028
|
-
"""
|
1029
|
-
Mixup two images and their gt_bbbox/gt_score.
|
1030
|
-
|
1031
|
-
Args:
|
1032
|
-
alpha (float, optional): Alpha parameter of beta distribution. Defaults to 1.5.
|
1033
|
-
beta (float, optional): Beta parameter of beta distribution. Defaults to 1.5.
|
1034
|
-
"""
|
1035
|
-
super(MixupImage, self).__init__()
|
1036
|
-
if alpha <= 0.0:
|
1037
|
-
raise ValueError("alpha should be positive in {}".format(self))
|
1038
|
-
if beta <= 0.0:
|
1039
|
-
raise ValueError("beta should be positive in {}".format(self))
|
1040
|
-
self.alpha = alpha
|
1041
|
-
self.beta = beta
|
1042
|
-
self.mixup_epoch = mixup_epoch
|
1043
|
-
|
1044
|
-
def apply_im(self, image1, image2, factor):
|
1045
|
-
h = max(image1.shape[0], image2.shape[0])
|
1046
|
-
w = max(image1.shape[1], image2.shape[1])
|
1047
|
-
img = np.zeros((h, w, image1.shape[2]), 'float32')
|
1048
|
-
img[:image1.shape[0], :image1.shape[1], :] = \
|
1049
|
-
image1.astype('float32') * factor
|
1050
|
-
img[:image2.shape[0], :image2.shape[1], :] += \
|
1051
|
-
image2.astype('float32') * (1.0 - factor)
|
1052
|
-
return img.astype('uint8')
|
1053
|
-
|
1054
|
-
def __call__(self, sample):
|
1055
|
-
if not isinstance(sample, Sequence):
|
1056
|
-
return sample
|
1057
|
-
|
1058
|
-
assert len(sample) == 2, 'mixup need two samples'
|
1059
|
-
|
1060
|
-
factor = np.random.beta(self.alpha, self.beta)
|
1061
|
-
factor = max(0.0, min(1.0, factor))
|
1062
|
-
if factor >= 1.0:
|
1063
|
-
return sample[0]
|
1064
|
-
if factor <= 0.0:
|
1065
|
-
return sample[1]
|
1066
|
-
image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
|
1067
|
-
result = copy.deepcopy(sample[0])
|
1068
|
-
result['image'] = image
|
1069
|
-
# apply bbox and score
|
1070
|
-
if 'gt_bbox' in sample[0]:
|
1071
|
-
gt_bbox1 = sample[0]['gt_bbox']
|
1072
|
-
gt_bbox2 = sample[1]['gt_bbox']
|
1073
|
-
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
|
1074
|
-
result['gt_bbox'] = gt_bbox
|
1075
|
-
if 'gt_poly' in sample[0]:
|
1076
|
-
gt_poly1 = sample[0]['gt_poly']
|
1077
|
-
gt_poly2 = sample[1]['gt_poly']
|
1078
|
-
gt_poly = gt_poly1 + gt_poly2
|
1079
|
-
result['gt_poly'] = gt_poly
|
1080
|
-
if 'gt_class' in sample[0]:
|
1081
|
-
gt_class1 = sample[0]['gt_class']
|
1082
|
-
gt_class2 = sample[1]['gt_class']
|
1083
|
-
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
|
1084
|
-
result['gt_class'] = gt_class
|
1085
|
-
|
1086
|
-
gt_score1 = np.ones_like(sample[0]['gt_class'])
|
1087
|
-
gt_score2 = np.ones_like(sample[1]['gt_class'])
|
1088
|
-
gt_score = np.concatenate(
|
1089
|
-
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
|
1090
|
-
result['gt_score'] = gt_score
|
1091
|
-
if 'is_crowd' in sample[0]:
|
1092
|
-
is_crowd1 = sample[0]['is_crowd']
|
1093
|
-
is_crowd2 = sample[1]['is_crowd']
|
1094
|
-
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
|
1095
|
-
result['is_crowd'] = is_crowd
|
1096
|
-
if 'difficult' in sample[0]:
|
1097
|
-
is_difficult1 = sample[0]['difficult']
|
1098
|
-
is_difficult2 = sample[1]['difficult']
|
1099
|
-
is_difficult = np.concatenate(
|
1100
|
-
(is_difficult1, is_difficult2), axis=0)
|
1101
|
-
result['difficult'] = is_difficult
|
1102
|
-
|
1103
|
-
return result
|
1104
|
-
|
1105
|
-
|
1106
|
-
class RandomDistort(Transform):
|
1107
|
-
"""
|
1108
|
-
Random color distortion.
|
1109
|
-
|
1110
|
-
Args:
|
1111
|
-
brightness_range(float, optional): Range of brightness distortion. Defaults to .5.
|
1112
|
-
brightness_prob(float, optional): Probability of brightness distortion. Defaults to .5.
|
1113
|
-
contrast_range(float, optional): Range of contrast distortion. Defaults to .5.
|
1114
|
-
contrast_prob(float, optional): Probability of contrast distortion. Defaults to .5.
|
1115
|
-
saturation_range(float, optional): Range of saturation distortion. Defaults to .5.
|
1116
|
-
saturation_prob(float, optional): Probability of saturation distortion. Defaults to .5.
|
1117
|
-
hue_range(float, optional): Range of hue distortion. Defaults to .5.
|
1118
|
-
hue_prob(float, optional): Probability of hue distortion. Defaults to .5.
|
1119
|
-
random_apply (bool, optional): whether to apply in random (yolo) or fixed (SSD)
|
1120
|
-
order. Defaults to True.
|
1121
|
-
count (int, optional): the number of doing distortion. Defaults to 4.
|
1122
|
-
shuffle_channel (bool, optional): whether to swap channels randomly. Defaults to False.
|
1123
|
-
"""
|
1124
|
-
|
1125
|
-
def __init__(self,
|
1126
|
-
brightness_range=0.5,
|
1127
|
-
brightness_prob=0.5,
|
1128
|
-
contrast_range=0.5,
|
1129
|
-
contrast_prob=0.5,
|
1130
|
-
saturation_range=0.5,
|
1131
|
-
saturation_prob=0.5,
|
1132
|
-
hue_range=18,
|
1133
|
-
hue_prob=0.5,
|
1134
|
-
random_apply=True,
|
1135
|
-
count=4,
|
1136
|
-
shuffle_channel=False):
|
1137
|
-
super(RandomDistort, self).__init__()
|
1138
|
-
self.brightness_range = [1 - brightness_range, 1 + brightness_range]
|
1139
|
-
self.brightness_prob = brightness_prob
|
1140
|
-
self.contrast_range = [1 - contrast_range, 1 + contrast_range]
|
1141
|
-
self.contrast_prob = contrast_prob
|
1142
|
-
self.saturation_range = [1 - saturation_range, 1 + saturation_range]
|
1143
|
-
self.saturation_prob = saturation_prob
|
1144
|
-
self.hue_range = [1 - hue_range, 1 + hue_range]
|
1145
|
-
self.hue_prob = hue_prob
|
1146
|
-
self.random_apply = random_apply
|
1147
|
-
self.count = count
|
1148
|
-
self.shuffle_channel = shuffle_channel
|
1149
|
-
|
1150
|
-
def apply_hue(self, image):
|
1151
|
-
low, high = self.hue_range
|
1152
|
-
if np.random.uniform(0., 1.) < self.hue_prob:
|
1153
|
-
return image
|
1154
|
-
|
1155
|
-
image = image.astype(np.float32)
|
1156
|
-
# it works, but result differ from HSV version
|
1157
|
-
delta = np.random.uniform(low, high)
|
1158
|
-
u = np.cos(delta * np.pi)
|
1159
|
-
w = np.sin(delta * np.pi)
|
1160
|
-
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
|
1161
|
-
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
|
1162
|
-
[0.211, -0.523, 0.311]])
|
1163
|
-
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
|
1164
|
-
[1.0, -1.107, 1.705]])
|
1165
|
-
t = np.dot(np.dot(ityiq, bt), tyiq).T
|
1166
|
-
image = np.dot(image, t)
|
1167
|
-
return image
|
1168
|
-
|
1169
|
-
def apply_saturation(self, image):
|
1170
|
-
low, high = self.saturation_range
|
1171
|
-
if np.random.uniform(0., 1.) < self.saturation_prob:
|
1172
|
-
return image
|
1173
|
-
delta = np.random.uniform(low, high)
|
1174
|
-
image = image.astype(np.float32)
|
1175
|
-
# it works, but result differ from HSV version
|
1176
|
-
gray = image * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
|
1177
|
-
gray = gray.sum(axis=2, keepdims=True)
|
1178
|
-
gray *= (1.0 - delta)
|
1179
|
-
image *= delta
|
1180
|
-
image += gray
|
1181
|
-
return image
|
1182
|
-
|
1183
|
-
def apply_contrast(self, image):
|
1184
|
-
low, high = self.contrast_range
|
1185
|
-
if np.random.uniform(0., 1.) < self.contrast_prob:
|
1186
|
-
return image
|
1187
|
-
delta = np.random.uniform(low, high)
|
1188
|
-
image = image.astype(np.float32)
|
1189
|
-
image *= delta
|
1190
|
-
return image
|
1191
|
-
|
1192
|
-
def apply_brightness(self, image):
|
1193
|
-
low, high = self.brightness_range
|
1194
|
-
if np.random.uniform(0., 1.) < self.brightness_prob:
|
1195
|
-
return image
|
1196
|
-
delta = np.random.uniform(low, high)
|
1197
|
-
image = image.astype(np.float32)
|
1198
|
-
image += delta
|
1199
|
-
return image
|
1200
|
-
|
1201
|
-
def apply(self, sample):
|
1202
|
-
if self.random_apply:
|
1203
|
-
functions = [
|
1204
|
-
self.apply_brightness, self.apply_contrast,
|
1205
|
-
self.apply_saturation, self.apply_hue
|
1206
|
-
]
|
1207
|
-
distortions = np.random.permutation(functions)[:self.count]
|
1208
|
-
for func in distortions:
|
1209
|
-
sample['image'] = func(sample['image'])
|
1210
|
-
return sample
|
1211
|
-
|
1212
|
-
sample['image'] = self.apply_brightness(sample['image'])
|
1213
|
-
mode = np.random.randint(0, 2)
|
1214
|
-
if mode:
|
1215
|
-
sample['image'] = self.apply_contrast(sample['image'])
|
1216
|
-
sample['image'] = self.apply_saturation(sample['image'])
|
1217
|
-
sample['image'] = self.apply_hue(sample['image'])
|
1218
|
-
if not mode:
|
1219
|
-
sample['image'] = self.apply_contrast(sample['image'])
|
1220
|
-
|
1221
|
-
if self.shuffle_channel:
|
1222
|
-
if np.random.randint(0, 2):
|
1223
|
-
sample['image'] = sample['image'][..., np.random.permutation(
|
1224
|
-
3)]
|
1225
|
-
|
1226
|
-
return sample
|
1227
|
-
|
1228
|
-
|
1229
|
-
class RandomBlur(Transform):
|
1230
|
-
"""
|
1231
|
-
Randomly blur input image(s).
|
1232
|
-
|
1233
|
-
Args:
|
1234
|
-
prob (float): Probability of blurring.
|
1235
|
-
"""
|
1236
|
-
|
1237
|
-
def __init__(self, prob=0.1):
|
1238
|
-
super(RandomBlur, self).__init__()
|
1239
|
-
self.prob = prob
|
1240
|
-
|
1241
|
-
def apply_im(self, image, radius):
|
1242
|
-
image = cv2.GaussianBlur(image, (radius, radius), 0, 0)
|
1243
|
-
return image
|
1244
|
-
|
1245
|
-
def apply(self, sample):
|
1246
|
-
if self.prob <= 0:
|
1247
|
-
n = 0
|
1248
|
-
elif self.prob >= 1:
|
1249
|
-
n = 1
|
1250
|
-
else:
|
1251
|
-
n = int(1.0 / self.prob)
|
1252
|
-
if n > 0:
|
1253
|
-
if np.random.randint(0, n) == 0:
|
1254
|
-
radius = np.random.randint(3, 10)
|
1255
|
-
if radius % 2 != 1:
|
1256
|
-
radius = radius + 1
|
1257
|
-
if radius > 9:
|
1258
|
-
radius = 9
|
1259
|
-
sample['image'] = self.apply_im(sample['image'], radius)
|
1260
|
-
|
1261
|
-
return sample
|
1262
|
-
|
1263
|
-
|
1264
|
-
class _PadBox(Transform):
|
1265
|
-
def __init__(self, num_max_boxes=50):
|
1266
|
-
"""
|
1267
|
-
Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
|
1268
|
-
|
1269
|
-
Args:
|
1270
|
-
num_max_boxes (int, optional): the max number of bboxes. Defaults to 50.
|
1271
|
-
"""
|
1272
|
-
self.num_max_boxes = num_max_boxes
|
1273
|
-
super(_PadBox, self).__init__()
|
1274
|
-
|
1275
|
-
def apply(self, sample):
|
1276
|
-
gt_num = min(self.num_max_boxes, len(sample['gt_bbox']))
|
1277
|
-
num_max = self.num_max_boxes
|
1278
|
-
pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
|
1279
|
-
if gt_num > 0:
|
1280
|
-
pad_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
|
1281
|
-
sample['gt_bbox'] = pad_bbox
|
1282
|
-
if 'gt_class' in sample:
|
1283
|
-
pad_class = np.zeros((num_max, ), dtype=np.int32)
|
1284
|
-
if gt_num > 0:
|
1285
|
-
pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
|
1286
|
-
sample['gt_class'] = pad_class
|
1287
|
-
if 'gt_score' in sample:
|
1288
|
-
pad_score = np.zeros((num_max, ), dtype=np.float32)
|
1289
|
-
if gt_num > 0:
|
1290
|
-
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
|
1291
|
-
sample['gt_score'] = pad_score
|
1292
|
-
# in training, for example in op ExpandImage,
|
1293
|
-
# the bbox and gt_class is expanded, but the difficult is not,
|
1294
|
-
# so, judging by it's length
|
1295
|
-
if 'difficult' in sample:
|
1296
|
-
pad_diff = np.zeros((num_max, ), dtype=np.int32)
|
1297
|
-
if gt_num > 0:
|
1298
|
-
pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
|
1299
|
-
sample['difficult'] = pad_diff
|
1300
|
-
if 'is_crowd' in sample:
|
1301
|
-
pad_crowd = np.zeros((num_max, ), dtype=np.int32)
|
1302
|
-
if gt_num > 0:
|
1303
|
-
pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
|
1304
|
-
sample['is_crowd'] = pad_crowd
|
1305
|
-
return sample
|
1306
|
-
|
1307
|
-
|
1308
|
-
class _NormalizeBox(Transform):
|
1309
|
-
def __init__(self):
|
1310
|
-
super(_NormalizeBox, self).__init__()
|
1311
|
-
|
1312
|
-
def apply(self, sample):
|
1313
|
-
height, width = sample['image'].shape[:2]
|
1314
|
-
for i in range(sample['gt_bbox'].shape[0]):
|
1315
|
-
sample['gt_bbox'][i][0] = sample['gt_bbox'][i][0] / width
|
1316
|
-
sample['gt_bbox'][i][1] = sample['gt_bbox'][i][1] / height
|
1317
|
-
sample['gt_bbox'][i][2] = sample['gt_bbox'][i][2] / width
|
1318
|
-
sample['gt_bbox'][i][3] = sample['gt_bbox'][i][3] / height
|
1319
|
-
|
1320
|
-
return sample
|
1321
|
-
|
1322
|
-
|
1323
|
-
class _BboxXYXY2XYWH(Transform):
|
1324
|
-
"""
|
1325
|
-
Convert bbox XYXY format to XYWH format.
|
1326
|
-
"""
|
1327
|
-
|
1328
|
-
def __init__(self):
|
1329
|
-
super(_BboxXYXY2XYWH, self).__init__()
|
1330
|
-
|
1331
|
-
def apply(self, sample):
|
1332
|
-
bbox = sample['gt_bbox']
|
1333
|
-
bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
|
1334
|
-
bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
|
1335
|
-
sample['gt_bbox'] = bbox
|
1336
|
-
return sample
|
1337
|
-
|
1338
|
-
|
1339
|
-
class _Permute(Transform):
|
1340
|
-
def __init__(self):
|
1341
|
-
super(_Permute, self).__init__()
|
1342
|
-
|
1343
|
-
def apply(self, sample):
|
1344
|
-
sample['image'] = permute(sample['image'], False)
|
1345
|
-
return sample
|
1346
|
-
|
1347
|
-
|
1348
|
-
class ArrangeSegmenter(Transform):
|
1349
|
-
def __init__(self, mode):
|
1350
|
-
super(ArrangeSegmenter, self).__init__()
|
1351
|
-
if mode not in ['train', 'eval', 'test', 'quant']:
|
1352
|
-
raise ValueError(
|
1353
|
-
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
|
1354
|
-
)
|
1355
|
-
self.mode = mode
|
1356
|
-
|
1357
|
-
def apply(self, sample):
|
1358
|
-
if 'mask' in sample:
|
1359
|
-
mask = sample['mask']
|
1360
|
-
|
1361
|
-
image = permute(sample['image'], False)
|
1362
|
-
if self.mode == 'train':
|
1363
|
-
mask = mask.astype('int64')
|
1364
|
-
return image, mask
|
1365
|
-
if self.mode == 'eval':
|
1366
|
-
mask = np.asarray(Image.open(mask))
|
1367
|
-
mask = mask[np.newaxis, :, :].astype('int64')
|
1368
|
-
return image, mask
|
1369
|
-
if self.mode == 'test':
|
1370
|
-
return image,
|
1371
|
-
|
1372
|
-
|
1373
|
-
class ArrangeClassifier(Transform):
|
1374
|
-
def __init__(self, mode):
|
1375
|
-
super(ArrangeClassifier, self).__init__()
|
1376
|
-
if mode not in ['train', 'eval', 'test', 'quant']:
|
1377
|
-
raise ValueError(
|
1378
|
-
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
|
1379
|
-
)
|
1380
|
-
self.mode = mode
|
1381
|
-
|
1382
|
-
def apply(self, sample):
|
1383
|
-
image = permute(sample['image'], False)
|
1384
|
-
if self.mode in ['train', 'eval']:
|
1385
|
-
return image, sample['label']
|
1386
|
-
else:
|
1387
|
-
return image
|
1388
|
-
|
1389
|
-
|
1390
|
-
class ArrangeDetector(Transform):
|
1391
|
-
def __init__(self, mode):
|
1392
|
-
super(ArrangeDetector, self).__init__()
|
1393
|
-
if mode not in ['train', 'eval', 'test', 'quant']:
|
1394
|
-
raise ValueError(
|
1395
|
-
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
|
1396
|
-
)
|
1397
|
-
self.mode = mode
|
1398
|
-
|
1399
|
-
def apply(self, sample):
|
1400
|
-
if self.mode == 'eval' and 'gt_poly' in sample:
|
1401
|
-
del sample['gt_poly']
|
1402
|
-
return sample
|