paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1087) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -18
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/paddleclas.py +0 -375
  649. PaddleClas/ppcls/__init__.py +0 -20
  650. PaddleClas/ppcls/data/__init__.py +0 -15
  651. PaddleClas/ppcls/data/imaug/__init__.py +0 -94
  652. PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
  653. PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
  654. PaddleClas/ppcls/data/imaug/cutout.py +0 -41
  655. PaddleClas/ppcls/data/imaug/fmix.py +0 -217
  656. PaddleClas/ppcls/data/imaug/grid.py +0 -89
  657. PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
  658. PaddleClas/ppcls/data/imaug/operators.py +0 -244
  659. PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
  660. PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
  661. PaddleClas/ppcls/data/reader.py +0 -318
  662. PaddleClas/ppcls/modeling/__init__.py +0 -20
  663. PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
  664. PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
  665. PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
  666. PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
  667. PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
  668. PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  669. PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
  670. PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
  671. PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
  672. PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
  673. PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
  674. PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
  675. PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
  676. PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
  677. PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  678. PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  679. PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  680. PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
  681. PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
  682. PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
  683. PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
  684. PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
  685. PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
  686. PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
  687. PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
  688. PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
  689. PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  690. PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
  691. PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
  692. PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  693. PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
  694. PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  695. PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  696. PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
  697. PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
  698. PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
  699. PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
  700. PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  701. PaddleClas/ppcls/modeling/loss.py +0 -154
  702. PaddleClas/ppcls/modeling/utils.py +0 -53
  703. PaddleClas/ppcls/optimizer/__init__.py +0 -19
  704. PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
  705. PaddleClas/ppcls/optimizer/optimizer.py +0 -165
  706. PaddleClas/ppcls/utils/__init__.py +0 -27
  707. PaddleClas/ppcls/utils/check.py +0 -151
  708. PaddleClas/ppcls/utils/config.py +0 -201
  709. PaddleClas/ppcls/utils/logger.py +0 -120
  710. PaddleClas/ppcls/utils/metrics.py +0 -107
  711. PaddleClas/ppcls/utils/misc.py +0 -62
  712. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  713. PaddleClas/ppcls/utils/save_load.py +0 -163
  714. PaddleClas/setup.py +0 -55
  715. PaddleClas/tools/__init__.py +0 -15
  716. PaddleClas/tools/download.py +0 -50
  717. PaddleClas/tools/ema.py +0 -58
  718. PaddleClas/tools/eval.py +0 -112
  719. PaddleClas/tools/export_model.py +0 -85
  720. PaddleClas/tools/export_serving_model.py +0 -76
  721. PaddleClas/tools/infer/__init__.py +0 -16
  722. PaddleClas/tools/infer/infer.py +0 -94
  723. PaddleClas/tools/infer/predict.py +0 -117
  724. PaddleClas/tools/infer/utils.py +0 -233
  725. PaddleClas/tools/program.py +0 -444
  726. PaddleClas/tools/test_hubserving.py +0 -113
  727. PaddleClas/tools/train.py +0 -141
  728. paddlex/cls.py +0 -76
  729. paddlex/command.py +0 -215
  730. paddlex/cv/__init__.py +0 -17
  731. paddlex/cv/datasets/__init__.py +0 -18
  732. paddlex/cv/datasets/coco.py +0 -169
  733. paddlex/cv/datasets/imagenet.py +0 -88
  734. paddlex/cv/datasets/seg_dataset.py +0 -91
  735. paddlex/cv/datasets/voc.py +0 -301
  736. paddlex/cv/models/__init__.py +0 -18
  737. paddlex/cv/models/base.py +0 -623
  738. paddlex/cv/models/classifier.py +0 -814
  739. paddlex/cv/models/detector.py +0 -1747
  740. paddlex/cv/models/load_model.py +0 -126
  741. paddlex/cv/models/segmenter.py +0 -673
  742. paddlex/cv/models/slim/__init__.py +0 -13
  743. paddlex/cv/models/slim/prune.py +0 -55
  744. paddlex/cv/models/utils/__init__.py +0 -13
  745. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  746. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
  747. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  748. paddlex/cv/models/utils/ema.py +0 -48
  749. paddlex/cv/models/utils/seg_metrics.py +0 -62
  750. paddlex/cv/models/utils/visualize.py +0 -394
  751. paddlex/cv/transforms/__init__.py +0 -46
  752. paddlex/cv/transforms/batch_operators.py +0 -286
  753. paddlex/cv/transforms/box_utils.py +0 -41
  754. paddlex/cv/transforms/functions.py +0 -193
  755. paddlex/cv/transforms/operators.py +0 -1402
  756. paddlex/det.py +0 -43
  757. paddlex/paddleseg/__init__.py +0 -17
  758. paddlex/paddleseg/core/__init__.py +0 -20
  759. paddlex/paddleseg/core/infer.py +0 -289
  760. paddlex/paddleseg/core/predict.py +0 -145
  761. paddlex/paddleseg/core/train.py +0 -258
  762. paddlex/paddleseg/core/val.py +0 -172
  763. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  764. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  765. paddlex/paddleseg/cvlibs/config.py +0 -359
  766. paddlex/paddleseg/cvlibs/manager.py +0 -142
  767. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  768. paddlex/paddleseg/datasets/__init__.py +0 -21
  769. paddlex/paddleseg/datasets/ade.py +0 -112
  770. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  771. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  772. paddlex/paddleseg/datasets/dataset.py +0 -164
  773. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  774. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  775. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  776. paddlex/paddleseg/datasets/voc.py +0 -113
  777. paddlex/paddleseg/models/__init__.py +0 -39
  778. paddlex/paddleseg/models/ann.py +0 -436
  779. paddlex/paddleseg/models/attention_unet.py +0 -189
  780. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  781. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  782. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  783. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  784. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  785. paddlex/paddleseg/models/bisenet.py +0 -311
  786. paddlex/paddleseg/models/danet.py +0 -220
  787. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  788. paddlex/paddleseg/models/deeplab.py +0 -258
  789. paddlex/paddleseg/models/dnlnet.py +0 -231
  790. paddlex/paddleseg/models/emanet.py +0 -219
  791. paddlex/paddleseg/models/fast_scnn.py +0 -318
  792. paddlex/paddleseg/models/fcn.py +0 -135
  793. paddlex/paddleseg/models/gcnet.py +0 -223
  794. paddlex/paddleseg/models/gscnn.py +0 -357
  795. paddlex/paddleseg/models/hardnet.py +0 -309
  796. paddlex/paddleseg/models/isanet.py +0 -202
  797. paddlex/paddleseg/models/layers/__init__.py +0 -19
  798. paddlex/paddleseg/models/layers/activation.py +0 -73
  799. paddlex/paddleseg/models/layers/attention.py +0 -146
  800. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  801. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  802. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  803. paddlex/paddleseg/models/losses/__init__.py +0 -27
  804. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  805. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  806. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  807. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  808. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  809. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  810. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  811. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  812. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  813. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  814. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  815. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  816. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  817. paddlex/paddleseg/models/ocrnet.py +0 -248
  818. paddlex/paddleseg/models/pspnet.py +0 -147
  819. paddlex/paddleseg/models/sfnet.py +0 -236
  820. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  821. paddlex/paddleseg/models/u2net.py +0 -574
  822. paddlex/paddleseg/models/unet.py +0 -155
  823. paddlex/paddleseg/models/unet_3plus.py +0 -316
  824. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  825. paddlex/paddleseg/transforms/__init__.py +0 -16
  826. paddlex/paddleseg/transforms/functional.py +0 -161
  827. paddlex/paddleseg/transforms/transforms.py +0 -937
  828. paddlex/paddleseg/utils/__init__.py +0 -22
  829. paddlex/paddleseg/utils/config_check.py +0 -60
  830. paddlex/paddleseg/utils/download.py +0 -163
  831. paddlex/paddleseg/utils/env/__init__.py +0 -16
  832. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  833. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  834. paddlex/paddleseg/utils/logger.py +0 -48
  835. paddlex/paddleseg/utils/metrics.py +0 -146
  836. paddlex/paddleseg/utils/progbar.py +0 -212
  837. paddlex/paddleseg/utils/timer.py +0 -53
  838. paddlex/paddleseg/utils/utils.py +0 -120
  839. paddlex/paddleseg/utils/visualize.py +0 -90
  840. paddlex/ppcls/__init__.py +0 -20
  841. paddlex/ppcls/data/__init__.py +0 -15
  842. paddlex/ppcls/data/imaug/__init__.py +0 -94
  843. paddlex/ppcls/data/imaug/autoaugment.py +0 -264
  844. paddlex/ppcls/data/imaug/batch_operators.py +0 -117
  845. paddlex/ppcls/data/imaug/cutout.py +0 -41
  846. paddlex/ppcls/data/imaug/fmix.py +0 -217
  847. paddlex/ppcls/data/imaug/grid.py +0 -89
  848. paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
  849. paddlex/ppcls/data/imaug/operators.py +0 -256
  850. paddlex/ppcls/data/imaug/randaugment.py +0 -106
  851. paddlex/ppcls/data/imaug/random_erasing.py +0 -55
  852. paddlex/ppcls/data/reader.py +0 -318
  853. paddlex/ppcls/modeling/__init__.py +0 -20
  854. paddlex/ppcls/modeling/architectures/__init__.py +0 -51
  855. paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
  856. paddlex/ppcls/modeling/architectures/darknet.py +0 -161
  857. paddlex/ppcls/modeling/architectures/densenet.py +0 -308
  858. paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
  859. paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  860. paddlex/ppcls/modeling/architectures/dpn.py +0 -425
  861. paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
  862. paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
  863. paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
  864. paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
  865. paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
  866. paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
  867. paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
  868. paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  869. paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  870. paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  871. paddlex/ppcls/modeling/architectures/regnet.py +0 -383
  872. paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
  873. paddlex/ppcls/modeling/architectures/res2net.py +0 -272
  874. paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
  875. paddlex/ppcls/modeling/architectures/resnest.py +0 -705
  876. paddlex/ppcls/modeling/architectures/resnet.py +0 -317
  877. paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
  878. paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
  879. paddlex/ppcls/modeling/architectures/resnext.py +0 -259
  880. paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  881. paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
  882. paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
  883. paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  884. paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
  885. paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  886. paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  887. paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
  888. paddlex/ppcls/modeling/architectures/vgg.py +0 -152
  889. paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
  890. paddlex/ppcls/modeling/architectures/xception.py +0 -345
  891. paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  892. paddlex/ppcls/modeling/loss.py +0 -158
  893. paddlex/ppcls/modeling/utils.py +0 -53
  894. paddlex/ppcls/optimizer/__init__.py +0 -19
  895. paddlex/ppcls/optimizer/learning_rate.py +0 -159
  896. paddlex/ppcls/optimizer/optimizer.py +0 -165
  897. paddlex/ppcls/utils/__init__.py +0 -27
  898. paddlex/ppcls/utils/check.py +0 -151
  899. paddlex/ppcls/utils/config.py +0 -201
  900. paddlex/ppcls/utils/logger.py +0 -120
  901. paddlex/ppcls/utils/metrics.py +0 -112
  902. paddlex/ppcls/utils/misc.py +0 -62
  903. paddlex/ppcls/utils/model_zoo.py +0 -213
  904. paddlex/ppcls/utils/save_load.py +0 -163
  905. paddlex/ppdet/__init__.py +0 -16
  906. paddlex/ppdet/core/__init__.py +0 -15
  907. paddlex/ppdet/core/config/__init__.py +0 -13
  908. paddlex/ppdet/core/config/schema.py +0 -248
  909. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  910. paddlex/ppdet/core/workspace.py +0 -279
  911. paddlex/ppdet/data/__init__.py +0 -21
  912. paddlex/ppdet/data/reader.py +0 -304
  913. paddlex/ppdet/data/shm_utils.py +0 -67
  914. paddlex/ppdet/data/source/__init__.py +0 -27
  915. paddlex/ppdet/data/source/category.py +0 -823
  916. paddlex/ppdet/data/source/coco.py +0 -243
  917. paddlex/ppdet/data/source/dataset.py +0 -192
  918. paddlex/ppdet/data/source/keypoint_coco.py +0 -656
  919. paddlex/ppdet/data/source/mot.py +0 -360
  920. paddlex/ppdet/data/source/voc.py +0 -204
  921. paddlex/ppdet/data/source/widerface.py +0 -180
  922. paddlex/ppdet/data/transform/__init__.py +0 -28
  923. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
  924. paddlex/ppdet/data/transform/batch_operators.py +0 -758
  925. paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
  926. paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
  927. paddlex/ppdet/data/transform/mot_operators.py +0 -636
  928. paddlex/ppdet/data/transform/op_helper.py +0 -468
  929. paddlex/ppdet/data/transform/operators.py +0 -2103
  930. paddlex/ppdet/engine/__init__.py +0 -29
  931. paddlex/ppdet/engine/callbacks.py +0 -262
  932. paddlex/ppdet/engine/env.py +0 -47
  933. paddlex/ppdet/engine/export_utils.py +0 -118
  934. paddlex/ppdet/engine/tracker.py +0 -425
  935. paddlex/ppdet/engine/trainer.py +0 -535
  936. paddlex/ppdet/metrics/__init__.py +0 -23
  937. paddlex/ppdet/metrics/coco_utils.py +0 -184
  938. paddlex/ppdet/metrics/json_results.py +0 -151
  939. paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
  940. paddlex/ppdet/metrics/map_utils.py +0 -396
  941. paddlex/ppdet/metrics/metrics.py +0 -300
  942. paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
  943. paddlex/ppdet/metrics/mot_metrics.py +0 -184
  944. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  945. paddlex/ppdet/model_zoo/__init__.py +0 -18
  946. paddlex/ppdet/model_zoo/model_zoo.py +0 -86
  947. paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
  948. paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
  949. paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
  950. paddlex/ppdet/modeling/__init__.py +0 -41
  951. paddlex/ppdet/modeling/architectures/__init__.py +0 -40
  952. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  953. paddlex/ppdet/modeling/architectures/centernet.py +0 -103
  954. paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
  955. paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
  956. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  957. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  958. paddlex/ppdet/modeling/architectures/jde.py +0 -125
  959. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
  960. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
  961. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  962. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
  963. paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
  964. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  965. paddlex/ppdet/modeling/architectures/ssd.py +0 -84
  966. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  967. paddlex/ppdet/modeling/architectures/yolo.py +0 -104
  968. paddlex/ppdet/modeling/backbones/__init__.py +0 -37
  969. paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
  970. paddlex/ppdet/modeling/backbones/darknet.py +0 -341
  971. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  972. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
  973. paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
  974. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
  975. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
  976. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  977. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  978. paddlex/ppdet/modeling/backbones/resnet.py +0 -606
  979. paddlex/ppdet/modeling/backbones/senet.py +0 -140
  980. paddlex/ppdet/modeling/backbones/vgg.py +0 -216
  981. paddlex/ppdet/modeling/bbox_utils.py +0 -464
  982. paddlex/ppdet/modeling/heads/__init__.py +0 -41
  983. paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
  984. paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
  985. paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
  986. paddlex/ppdet/modeling/heads/face_head.py +0 -113
  987. paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
  988. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  989. paddlex/ppdet/modeling/heads/mask_head.py +0 -253
  990. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  991. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
  992. paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
  993. paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
  994. paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
  995. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  996. paddlex/ppdet/modeling/keypoint_utils.py +0 -302
  997. paddlex/ppdet/modeling/layers.py +0 -1142
  998. paddlex/ppdet/modeling/losses/__init__.py +0 -35
  999. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
  1000. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1001. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1002. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
  1003. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1004. paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
  1005. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
  1006. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1007. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
  1008. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1009. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1010. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1011. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1012. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
  1013. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1014. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1015. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1016. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
  1017. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
  1018. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
  1019. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
  1020. paddlex/ppdet/modeling/mot/utils.py +0 -181
  1021. paddlex/ppdet/modeling/mot/visualization.py +0 -130
  1022. paddlex/ppdet/modeling/necks/__init__.py +0 -25
  1023. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
  1024. paddlex/ppdet/modeling/necks/fpn.py +0 -233
  1025. paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
  1026. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
  1027. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
  1028. paddlex/ppdet/modeling/ops.py +0 -1599
  1029. paddlex/ppdet/modeling/post_process.py +0 -449
  1030. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1031. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1032. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
  1033. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
  1034. paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
  1035. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
  1036. paddlex/ppdet/modeling/reid/__init__.py +0 -23
  1037. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
  1038. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
  1039. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
  1040. paddlex/ppdet/modeling/reid/resnet.py +0 -320
  1041. paddlex/ppdet/modeling/shape_spec.py +0 -33
  1042. paddlex/ppdet/modeling/tests/__init__.py +0 -13
  1043. paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
  1044. paddlex/ppdet/modeling/tests/test_base.py +0 -75
  1045. paddlex/ppdet/modeling/tests/test_ops.py +0 -839
  1046. paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
  1047. paddlex/ppdet/optimizer.py +0 -285
  1048. paddlex/ppdet/slim/__init__.py +0 -62
  1049. paddlex/ppdet/slim/distill.py +0 -111
  1050. paddlex/ppdet/slim/prune.py +0 -85
  1051. paddlex/ppdet/slim/quant.py +0 -52
  1052. paddlex/ppdet/utils/__init__.py +0 -13
  1053. paddlex/ppdet/utils/check.py +0 -93
  1054. paddlex/ppdet/utils/checkpoint.py +0 -216
  1055. paddlex/ppdet/utils/cli.py +0 -151
  1056. paddlex/ppdet/utils/colormap.py +0 -56
  1057. paddlex/ppdet/utils/download.py +0 -477
  1058. paddlex/ppdet/utils/logger.py +0 -71
  1059. paddlex/ppdet/utils/stats.py +0 -95
  1060. paddlex/ppdet/utils/visualizer.py +0 -292
  1061. paddlex/ppdet/utils/voc_utils.py +0 -87
  1062. paddlex/seg.py +0 -38
  1063. paddlex/tools/__init__.py +0 -16
  1064. paddlex/tools/convert.py +0 -52
  1065. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1066. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1067. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1068. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1069. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1070. paddlex/tools/dataset_split/__init__.py +0 -23
  1071. paddlex/tools/dataset_split/coco_split.py +0 -69
  1072. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1073. paddlex/tools/dataset_split/seg_split.py +0 -96
  1074. paddlex/tools/dataset_split/utils.py +0 -75
  1075. paddlex/tools/dataset_split/voc_split.py +0 -91
  1076. paddlex/tools/split.py +0 -41
  1077. paddlex/utils/checkpoint.py +0 -439
  1078. paddlex/utils/env.py +0 -71
  1079. paddlex/utils/shm.py +0 -67
  1080. paddlex/utils/stats.py +0 -68
  1081. paddlex/utils/utils.py +0 -140
  1082. paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
  1083. paddlex-2.0.0rc4.dist-info/METADATA +0 -29
  1084. paddlex-2.0.0rc4.dist-info/RECORD +0 -445
  1085. paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
  1086. paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
  1087. paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,758 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- try:
20
- from collections.abc import Sequence
21
- except Exception:
22
- from collections import Sequence
23
-
24
- import cv2
25
- import numpy as np
26
- from .operators import register_op, BaseOperator, Resize
27
- from .op_helper import jaccard_overlap, gaussian2D
28
- from scipy import ndimage
29
-
30
- from paddlex.ppdet.modeling import bbox_utils
31
- from paddlex.ppdet.utils.logger import setup_logger
32
- logger = setup_logger(__name__)
33
-
34
- __all__ = [
35
- 'PadBatch', 'BatchRandomResize', 'Gt2YoloTarget', 'Gt2FCOSTarget',
36
- 'Gt2TTFTarget', 'Gt2Solov2Target'
37
- ]
38
-
39
-
40
- @register_op
41
- class PadBatch(BaseOperator):
42
- """
43
- Pad a batch of samples so they can be divisible by a stride.
44
- The layout of each image should be 'CHW'.
45
- Args:
46
- pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
47
- height and width is divisible by `pad_to_stride`.
48
- """
49
-
50
- def __init__(self, pad_to_stride=0):
51
- super(PadBatch, self).__init__()
52
- self.pad_to_stride = pad_to_stride
53
-
54
- def __call__(self, samples, context=None):
55
- """
56
- Args:
57
- samples (list): a batch of sample, each is dict.
58
- """
59
- coarsest_stride = self.pad_to_stride
60
-
61
- max_shape = np.array([data['image'].shape for data in samples]).max(
62
- axis=0)
63
- if coarsest_stride > 0:
64
- max_shape[1] = int(
65
- np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
66
- max_shape[2] = int(
67
- np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)
68
-
69
- for data in samples:
70
- im = data['image']
71
- im_c, im_h, im_w = im.shape[:]
72
- padding_im = np.zeros(
73
- (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
74
- padding_im[:, :im_h, :im_w] = im
75
- data['image'] = padding_im
76
- if 'semantic' in data and data['semantic'] is not None:
77
- semantic = data['semantic']
78
- padding_sem = np.zeros(
79
- (1, max_shape[1], max_shape[2]), dtype=np.float32)
80
- padding_sem[:, :im_h, :im_w] = semantic
81
- data['semantic'] = padding_sem
82
- if 'gt_segm' in data and data['gt_segm'] is not None:
83
- gt_segm = data['gt_segm']
84
- padding_segm = np.zeros(
85
- (gt_segm.shape[0], max_shape[1], max_shape[2]),
86
- dtype=np.uint8)
87
- padding_segm[:, :im_h, :im_w] = gt_segm
88
- data['gt_segm'] = padding_segm
89
-
90
- if 'gt_rbox2poly' in data and data['gt_rbox2poly'] is not None:
91
- # ploy to rbox
92
- polys = data['gt_rbox2poly']
93
- rbox = bbox_utils.poly2rbox(polys)
94
- data['gt_rbox'] = rbox
95
-
96
- return samples
97
-
98
-
99
- @register_op
100
- class BatchRandomResize(BaseOperator):
101
- """
102
- Resize image to target size randomly. random target_size and interpolation method
103
- Args:
104
- target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
105
- keep_ratio (bool): whether keep_raio or not, default true
106
- interp (int): the interpolation method
107
- random_size (bool): whether random select target size of image
108
- random_interp (bool): whether random select interpolation method
109
- """
110
-
111
- def __init__(self,
112
- target_size,
113
- keep_ratio,
114
- interp=cv2.INTER_NEAREST,
115
- random_size=True,
116
- random_interp=False):
117
- super(BatchRandomResize, self).__init__()
118
- self.keep_ratio = keep_ratio
119
- self.interps = [
120
- cv2.INTER_NEAREST,
121
- cv2.INTER_LINEAR,
122
- cv2.INTER_AREA,
123
- cv2.INTER_CUBIC,
124
- cv2.INTER_LANCZOS4,
125
- ]
126
- self.interp = interp
127
- assert isinstance(target_size, (
128
- int, Sequence)), "target_size must be int, list or tuple"
129
- if random_size and not isinstance(target_size, list):
130
- raise TypeError(
131
- "Type of target_size is invalid when random_size is True. Must be List, now is {}".
132
- format(type(target_size)))
133
- self.target_size = target_size
134
- self.random_size = random_size
135
- self.random_interp = random_interp
136
-
137
- def __call__(self, samples, context=None):
138
- if self.random_size:
139
- index = np.random.choice(len(self.target_size))
140
- target_size = self.target_size[index]
141
- else:
142
- target_size = self.target_size
143
-
144
- if self.random_interp:
145
- interp = np.random.choice(self.interps)
146
- else:
147
- interp = self.interp
148
-
149
- resizer = Resize(
150
- target_size, keep_ratio=self.keep_ratio, interp=interp)
151
- return resizer(samples, context=context)
152
-
153
-
154
- @register_op
155
- class Gt2YoloTarget(BaseOperator):
156
- """
157
- Generate YOLOv3 targets by groud truth data, this operator is only used in
158
- fine grained YOLOv3 loss mode
159
- """
160
-
161
- def __init__(self,
162
- anchors,
163
- anchor_masks,
164
- downsample_ratios,
165
- num_classes=80,
166
- iou_thresh=1.):
167
- super(Gt2YoloTarget, self).__init__()
168
- self.anchors = anchors
169
- self.anchor_masks = anchor_masks
170
- self.downsample_ratios = downsample_ratios
171
- self.num_classes = num_classes
172
- self.iou_thresh = iou_thresh
173
-
174
- def __call__(self, samples, context=None):
175
- assert len(self.anchor_masks) == len(self.downsample_ratios), \
176
- "anchor_masks', and 'downsample_ratios' should have same length."
177
-
178
- h, w = samples[0]['image'].shape[1:3]
179
- an_hw = np.array(self.anchors) / np.array([[w, h]])
180
- for sample in samples:
181
- # im, gt_bbox, gt_class, gt_score = sample
182
- im = sample['image']
183
- gt_bbox = sample['gt_bbox']
184
- gt_class = sample['gt_class']
185
- if 'gt_score' not in sample:
186
- sample['gt_score'] = np.ones(
187
- (gt_bbox.shape[0], 1), dtype=np.float32)
188
- gt_score = sample['gt_score']
189
- for i, (
190
- mask, downsample_ratio
191
- ) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
192
- grid_h = int(h / downsample_ratio)
193
- grid_w = int(w / downsample_ratio)
194
- target = np.zeros(
195
- (len(mask), 6 + self.num_classes, grid_h, grid_w),
196
- dtype=np.float32)
197
- for b in range(gt_bbox.shape[0]):
198
- gx, gy, gw, gh = gt_bbox[b, :]
199
- cls = gt_class[b]
200
- score = gt_score[b]
201
- if gw <= 0. or gh <= 0. or score <= 0.:
202
- continue
203
-
204
- # find best match anchor index
205
- best_iou = 0.
206
- best_idx = -1
207
- for an_idx in range(an_hw.shape[0]):
208
- iou = jaccard_overlap(
209
- [0., 0., gw, gh],
210
- [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
211
- if iou > best_iou:
212
- best_iou = iou
213
- best_idx = an_idx
214
-
215
- gi = int(gx * grid_w)
216
- gj = int(gy * grid_h)
217
-
218
- # gtbox should be regresed in this layes if best match
219
- # anchor index in anchor mask of this layer
220
- if best_idx in mask:
221
- best_n = mask.index(best_idx)
222
-
223
- # x, y, w, h, scale
224
- target[best_n, 0, gj, gi] = gx * grid_w - gi
225
- target[best_n, 1, gj, gi] = gy * grid_h - gj
226
- target[best_n, 2, gj, gi] = np.log(
227
- gw * w / self.anchors[best_idx][0])
228
- target[best_n, 3, gj, gi] = np.log(
229
- gh * h / self.anchors[best_idx][1])
230
- target[best_n, 4, gj, gi] = 2.0 - gw * gh
231
-
232
- # objectness record gt_score
233
- target[best_n, 5, gj, gi] = score
234
-
235
- # classification
236
- target[best_n, 6 + cls, gj, gi] = 1.
237
-
238
- # For non-matched anchors, calculate the target if the iou
239
- # between anchor and gt is larger than iou_thresh
240
- if self.iou_thresh < 1:
241
- for idx, mask_i in enumerate(mask):
242
- if mask_i == best_idx: continue
243
- iou = jaccard_overlap(
244
- [0., 0., gw, gh],
245
- [0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
246
- if iou > self.iou_thresh and target[idx, 5, gj,
247
- gi] == 0.:
248
- # x, y, w, h, scale
249
- target[idx, 0, gj, gi] = gx * grid_w - gi
250
- target[idx, 1, gj, gi] = gy * grid_h - gj
251
- target[idx, 2, gj, gi] = np.log(
252
- gw * w / self.anchors[mask_i][0])
253
- target[idx, 3, gj, gi] = np.log(
254
- gh * h / self.anchors[mask_i][1])
255
- target[idx, 4, gj, gi] = 2.0 - gw * gh
256
-
257
- # objectness record gt_score
258
- target[idx, 5, gj, gi] = score
259
-
260
- # classification
261
- target[idx, 6 + cls, gj, gi] = 1.
262
- sample['target{}'.format(i)] = target
263
-
264
- # remove useless gt_class and gt_score after target calculated
265
- sample.pop('gt_class')
266
- sample.pop('gt_score')
267
-
268
- return samples
269
-
270
-
271
- @register_op
272
- class Gt2FCOSTarget(BaseOperator):
273
- """
274
- Generate FCOS targets by groud truth data
275
- """
276
-
277
- def __init__(self,
278
- object_sizes_boundary,
279
- center_sampling_radius,
280
- downsample_ratios,
281
- norm_reg_targets=False):
282
- super(Gt2FCOSTarget, self).__init__()
283
- self.center_sampling_radius = center_sampling_radius
284
- self.downsample_ratios = downsample_ratios
285
- self.INF = np.inf
286
- self.object_sizes_boundary = [-1] + object_sizes_boundary + [self.INF]
287
- object_sizes_of_interest = []
288
- for i in range(len(self.object_sizes_boundary) - 1):
289
- object_sizes_of_interest.append([
290
- self.object_sizes_boundary[i],
291
- self.object_sizes_boundary[i + 1]
292
- ])
293
- self.object_sizes_of_interest = object_sizes_of_interest
294
- self.norm_reg_targets = norm_reg_targets
295
-
296
- def _compute_points(self, w, h):
297
- """
298
- compute the corresponding points in each feature map
299
- :param h: image height
300
- :param w: image width
301
- :return: points from all feature map
302
- """
303
- locations = []
304
- for stride in self.downsample_ratios:
305
- shift_x = np.arange(0, w, stride).astype(np.float32)
306
- shift_y = np.arange(0, h, stride).astype(np.float32)
307
- shift_x, shift_y = np.meshgrid(shift_x, shift_y)
308
- shift_x = shift_x.flatten()
309
- shift_y = shift_y.flatten()
310
- location = np.stack([shift_x, shift_y], axis=1) + stride // 2
311
- locations.append(location)
312
- num_points_each_level = [len(location) for location in locations]
313
- locations = np.concatenate(locations, axis=0)
314
- return locations, num_points_each_level
315
-
316
- def _convert_xywh2xyxy(self, gt_bbox, w, h):
317
- """
318
- convert the bounding box from style xywh to xyxy
319
- :param gt_bbox: bounding boxes normalized into [0, 1]
320
- :param w: image width
321
- :param h: image height
322
- :return: bounding boxes in xyxy style
323
- """
324
- bboxes = gt_bbox.copy()
325
- bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * w
326
- bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * h
327
- bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
328
- bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
329
- return bboxes
330
-
331
- def _check_inside_boxes_limited(self, gt_bbox, xs, ys,
332
- num_points_each_level):
333
- """
334
- check if points is within the clipped boxes
335
- :param gt_bbox: bounding boxes
336
- :param xs: horizontal coordinate of points
337
- :param ys: vertical coordinate of points
338
- :return: the mask of points is within gt_box or not
339
- """
340
- bboxes = np.reshape(
341
- gt_bbox, newshape=[1, gt_bbox.shape[0], gt_bbox.shape[1]])
342
- bboxes = np.tile(bboxes, reps=[xs.shape[0], 1, 1])
343
- ct_x = (bboxes[:, :, 0] + bboxes[:, :, 2]) / 2
344
- ct_y = (bboxes[:, :, 1] + bboxes[:, :, 3]) / 2
345
- beg = 0
346
- clipped_box = bboxes.copy()
347
- for lvl, stride in enumerate(self.downsample_ratios):
348
- end = beg + num_points_each_level[lvl]
349
- stride_exp = self.center_sampling_radius * stride
350
- clipped_box[beg:end, :, 0] = np.maximum(
351
- bboxes[beg:end, :, 0], ct_x[beg:end, :] - stride_exp)
352
- clipped_box[beg:end, :, 1] = np.maximum(
353
- bboxes[beg:end, :, 1], ct_y[beg:end, :] - stride_exp)
354
- clipped_box[beg:end, :, 2] = np.minimum(
355
- bboxes[beg:end, :, 2], ct_x[beg:end, :] + stride_exp)
356
- clipped_box[beg:end, :, 3] = np.minimum(
357
- bboxes[beg:end, :, 3], ct_y[beg:end, :] + stride_exp)
358
- beg = end
359
- l_res = xs - clipped_box[:, :, 0]
360
- r_res = clipped_box[:, :, 2] - xs
361
- t_res = ys - clipped_box[:, :, 1]
362
- b_res = clipped_box[:, :, 3] - ys
363
- clipped_box_reg_targets = np.stack(
364
- [l_res, t_res, r_res, b_res], axis=2)
365
- inside_gt_box = np.min(clipped_box_reg_targets, axis=2) > 0
366
- return inside_gt_box
367
-
368
- def __call__(self, samples, context=None):
369
- assert len(self.object_sizes_of_interest) == len(self.downsample_ratios), \
370
- "object_sizes_of_interest', and 'downsample_ratios' should have same length."
371
-
372
- for sample in samples:
373
- # im, gt_bbox, gt_class, gt_score = sample
374
- im = sample['image']
375
- bboxes = sample['gt_bbox']
376
- gt_class = sample['gt_class']
377
- # calculate the locations
378
- h, w = im.shape[1:3]
379
- points, num_points_each_level = self._compute_points(w, h)
380
- object_scale_exp = []
381
- for i, num_pts in enumerate(num_points_each_level):
382
- object_scale_exp.append(
383
- np.tile(
384
- np.array([self.object_sizes_of_interest[i]]),
385
- reps=[num_pts, 1]))
386
- object_scale_exp = np.concatenate(object_scale_exp, axis=0)
387
-
388
- gt_area = (bboxes[:, 2] - bboxes[:, 0]) * (
389
- bboxes[:, 3] - bboxes[:, 1])
390
- xs, ys = points[:, 0], points[:, 1]
391
- xs = np.reshape(xs, newshape=[xs.shape[0], 1])
392
- xs = np.tile(xs, reps=[1, bboxes.shape[0]])
393
- ys = np.reshape(ys, newshape=[ys.shape[0], 1])
394
- ys = np.tile(ys, reps=[1, bboxes.shape[0]])
395
-
396
- l_res = xs - bboxes[:, 0]
397
- r_res = bboxes[:, 2] - xs
398
- t_res = ys - bboxes[:, 1]
399
- b_res = bboxes[:, 3] - ys
400
- reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
401
- if self.center_sampling_radius > 0:
402
- is_inside_box = self._check_inside_boxes_limited(
403
- bboxes, xs, ys, num_points_each_level)
404
- else:
405
- is_inside_box = np.min(reg_targets, axis=2) > 0
406
- # check if the targets is inside the corresponding level
407
- max_reg_targets = np.max(reg_targets, axis=2)
408
- lower_bound = np.tile(
409
- np.expand_dims(
410
- object_scale_exp[:, 0], axis=1),
411
- reps=[1, max_reg_targets.shape[1]])
412
- high_bound = np.tile(
413
- np.expand_dims(
414
- object_scale_exp[:, 1], axis=1),
415
- reps=[1, max_reg_targets.shape[1]])
416
- is_match_current_level = \
417
- (max_reg_targets > lower_bound) & \
418
- (max_reg_targets < high_bound)
419
- points2gtarea = np.tile(
420
- np.expand_dims(
421
- gt_area, axis=0), reps=[xs.shape[0], 1])
422
- points2gtarea[is_inside_box == 0] = self.INF
423
- points2gtarea[is_match_current_level == 0] = self.INF
424
- points2min_area = points2gtarea.min(axis=1)
425
- points2min_area_ind = points2gtarea.argmin(axis=1)
426
- labels = gt_class[points2min_area_ind] + 1
427
- labels[points2min_area == self.INF] = 0
428
- reg_targets = reg_targets[range(xs.shape[0]), points2min_area_ind]
429
- ctn_targets = np.sqrt((reg_targets[:, [0, 2]].min(axis=1) / \
430
- reg_targets[:, [0, 2]].max(axis=1)) * \
431
- (reg_targets[:, [1, 3]].min(axis=1) / \
432
- reg_targets[:, [1, 3]].max(axis=1))).astype(np.float32)
433
- ctn_targets = np.reshape(
434
- ctn_targets, newshape=[ctn_targets.shape[0], 1])
435
- ctn_targets[labels <= 0] = 0
436
- pos_ind = np.nonzero(labels != 0)
437
- reg_targets_pos = reg_targets[pos_ind[0], :]
438
- split_sections = []
439
- beg = 0
440
- for lvl in range(len(num_points_each_level)):
441
- end = beg + num_points_each_level[lvl]
442
- split_sections.append(end)
443
- beg = end
444
- labels_by_level = np.split(labels, split_sections, axis=0)
445
- reg_targets_by_level = np.split(
446
- reg_targets, split_sections, axis=0)
447
- ctn_targets_by_level = np.split(
448
- ctn_targets, split_sections, axis=0)
449
- for lvl in range(len(self.downsample_ratios)):
450
- grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
451
- grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
452
- if self.norm_reg_targets:
453
- sample['reg_target{}'.format(lvl)] = \
454
- np.reshape(
455
- reg_targets_by_level[lvl] / \
456
- self.downsample_ratios[lvl],
457
- newshape=[grid_h, grid_w, 4])
458
- else:
459
- sample['reg_target{}'.format(lvl)] = np.reshape(
460
- reg_targets_by_level[lvl],
461
- newshape=[grid_h, grid_w, 4])
462
- sample['labels{}'.format(lvl)] = np.reshape(
463
- labels_by_level[lvl], newshape=[grid_h, grid_w, 1])
464
- sample['centerness{}'.format(lvl)] = np.reshape(
465
- ctn_targets_by_level[lvl], newshape=[grid_h, grid_w, 1])
466
-
467
- sample.pop('is_crowd', None)
468
- sample.pop('difficult', None)
469
- sample.pop('gt_class', None)
470
- sample.pop('gt_bbox', None)
471
- return samples
472
-
473
-
474
- @register_op
475
- class Gt2TTFTarget(BaseOperator):
476
- __shared__ = ['num_classes']
477
- """
478
- Gt2TTFTarget
479
- Generate TTFNet targets by ground truth data
480
-
481
- Args:
482
- num_classes(int): the number of classes.
483
- down_ratio(int): the down ratio from images to heatmap, 4 by default.
484
- alpha(float): the alpha parameter to generate gaussian target.
485
- 0.54 by default.
486
- """
487
-
488
- def __init__(self, num_classes=80, down_ratio=4, alpha=0.54):
489
- super(Gt2TTFTarget, self).__init__()
490
- self.down_ratio = down_ratio
491
- self.num_classes = num_classes
492
- self.alpha = alpha
493
-
494
- def __call__(self, samples, context=None):
495
- output_size = samples[0]['image'].shape[1]
496
- feat_size = output_size // self.down_ratio
497
- for sample in samples:
498
- heatmap = np.zeros(
499
- (self.num_classes, feat_size, feat_size), dtype='float32')
500
- box_target = np.ones(
501
- (4, feat_size, feat_size), dtype='float32') * -1
502
- reg_weight = np.zeros((1, feat_size, feat_size), dtype='float32')
503
-
504
- gt_bbox = sample['gt_bbox']
505
- gt_class = sample['gt_class']
506
-
507
- bbox_w = gt_bbox[:, 2] - gt_bbox[:, 0] + 1
508
- bbox_h = gt_bbox[:, 3] - gt_bbox[:, 1] + 1
509
- area = bbox_w * bbox_h
510
- boxes_areas_log = np.log(area)
511
- boxes_ind = np.argsort(boxes_areas_log, axis=0)[::-1]
512
- boxes_area_topk_log = boxes_areas_log[boxes_ind]
513
- gt_bbox = gt_bbox[boxes_ind]
514
- gt_class = gt_class[boxes_ind]
515
-
516
- feat_gt_bbox = gt_bbox / self.down_ratio
517
- feat_gt_bbox = np.clip(feat_gt_bbox, 0, feat_size - 1)
518
- feat_hs, feat_ws = (feat_gt_bbox[:, 3] - feat_gt_bbox[:, 1],
519
- feat_gt_bbox[:, 2] - feat_gt_bbox[:, 0])
520
-
521
- ct_inds = np.stack(
522
- [(gt_bbox[:, 0] + gt_bbox[:, 2]) / 2,
523
- (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2],
524
- axis=1) / self.down_ratio
525
-
526
- h_radiuses_alpha = (feat_hs / 2. * self.alpha).astype('int32')
527
- w_radiuses_alpha = (feat_ws / 2. * self.alpha).astype('int32')
528
-
529
- for k in range(len(gt_bbox)):
530
- cls_id = gt_class[k]
531
- fake_heatmap = np.zeros(
532
- (feat_size, feat_size), dtype='float32')
533
- self.draw_truncate_gaussian(fake_heatmap, ct_inds[k],
534
- h_radiuses_alpha[k],
535
- w_radiuses_alpha[k])
536
-
537
- heatmap[cls_id] = np.maximum(heatmap[cls_id], fake_heatmap)
538
- box_target_inds = fake_heatmap > 0
539
- box_target[:, box_target_inds] = gt_bbox[k][:, None]
540
-
541
- local_heatmap = fake_heatmap[box_target_inds]
542
- ct_div = np.sum(local_heatmap)
543
- local_heatmap *= boxes_area_topk_log[k]
544
- reg_weight[0, box_target_inds] = local_heatmap / ct_div
545
- sample['ttf_heatmap'] = heatmap
546
- sample['ttf_box_target'] = box_target
547
- sample['ttf_reg_weight'] = reg_weight
548
- sample.pop('is_crowd', None)
549
- sample.pop('difficult', None)
550
- sample.pop('gt_class', None)
551
- sample.pop('gt_bbox', None)
552
- sample.pop('gt_score', None)
553
- return samples
554
-
555
- def draw_truncate_gaussian(self, heatmap, center, h_radius, w_radius):
556
- h, w = 2 * h_radius + 1, 2 * w_radius + 1
557
- sigma_x = w / 6
558
- sigma_y = h / 6
559
- gaussian = gaussian2D((h, w), sigma_x, sigma_y)
560
-
561
- x, y = int(center[0]), int(center[1])
562
-
563
- height, width = heatmap.shape[0:2]
564
-
565
- left, right = min(x, w_radius), min(width - x, w_radius + 1)
566
- top, bottom = min(y, h_radius), min(height - y, h_radius + 1)
567
-
568
- masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
569
- masked_gaussian = gaussian[h_radius - top:h_radius + bottom, w_radius -
570
- left:w_radius + right]
571
- if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
572
- heatmap[y - top:y + bottom, x - left:x + right] = np.maximum(
573
- masked_heatmap, masked_gaussian)
574
- return heatmap
575
-
576
-
577
- @register_op
578
- class Gt2Solov2Target(BaseOperator):
579
- """Assign mask target and labels in SOLOv2 network.
580
- Args:
581
- num_grids (list): The list of feature map grids size.
582
- scale_ranges (list): The list of mask boundary range.
583
- coord_sigma (float): The coefficient of coordinate area length.
584
- sampling_ratio (float): The ratio of down sampling.
585
- """
586
-
587
- def __init__(self,
588
- num_grids=[40, 36, 24, 16, 12],
589
- scale_ranges=[[1, 96], [48, 192], [96, 384], [192, 768],
590
- [384, 2048]],
591
- coord_sigma=0.2,
592
- sampling_ratio=4.0):
593
- super(Gt2Solov2Target, self).__init__()
594
- self.num_grids = num_grids
595
- self.scale_ranges = scale_ranges
596
- self.coord_sigma = coord_sigma
597
- self.sampling_ratio = sampling_ratio
598
-
599
- def _scale_size(self, im, scale):
600
- h, w = im.shape[:2]
601
- new_size = (int(w * float(scale) + 0.5), int(h * float(scale) + 0.5))
602
- resized_img = cv2.resize(
603
- im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
604
- return resized_img
605
-
606
- def __call__(self, samples, context=None):
607
- sample_id = 0
608
- max_ins_num = [0] * len(self.num_grids)
609
- for sample in samples:
610
- gt_bboxes_raw = sample['gt_bbox']
611
- gt_labels_raw = sample['gt_class'] + 1
612
- im_c, im_h, im_w = sample['image'].shape[:]
613
- gt_masks_raw = sample['gt_segm'].astype(np.uint8)
614
- mask_feat_size = [
615
- int(im_h / self.sampling_ratio),
616
- int(im_w / self.sampling_ratio)
617
- ]
618
- gt_areas = np.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
619
- (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
620
- ins_ind_label_list = []
621
- idx = 0
622
- for (lower_bound, upper_bound), num_grid \
623
- in zip(self.scale_ranges, self.num_grids):
624
-
625
- hit_indices = ((gt_areas >= lower_bound) &
626
- (gt_areas <= upper_bound)).nonzero()[0]
627
- num_ins = len(hit_indices)
628
-
629
- ins_label = []
630
- grid_order = []
631
- cate_label = np.zeros([num_grid, num_grid], dtype=np.int64)
632
- ins_ind_label = np.zeros([num_grid**2], dtype=np.bool)
633
-
634
- if num_ins == 0:
635
- ins_label = np.zeros(
636
- [1, mask_feat_size[0], mask_feat_size[1]],
637
- dtype=np.uint8)
638
- ins_ind_label_list.append(ins_ind_label)
639
- sample['cate_label{}'.format(idx)] = cate_label.flatten()
640
- sample['ins_label{}'.format(idx)] = ins_label
641
- sample['grid_order{}'.format(idx)] = np.asarray(
642
- [sample_id * num_grid * num_grid + 0], dtype=np.int32)
643
- idx += 1
644
- continue
645
- gt_bboxes = gt_bboxes_raw[hit_indices]
646
- gt_labels = gt_labels_raw[hit_indices]
647
- gt_masks = gt_masks_raw[hit_indices, ...]
648
-
649
- half_ws = 0.5 * (
650
- gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.coord_sigma
651
- half_hs = 0.5 * (
652
- gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.coord_sigma
653
-
654
- for seg_mask, gt_label, half_h, half_w in zip(
655
- gt_masks, gt_labels, half_hs, half_ws):
656
- if seg_mask.sum() == 0:
657
- continue
658
- # mass center
659
- upsampled_size = (mask_feat_size[0] * 4,
660
- mask_feat_size[1] * 4)
661
- center_h, center_w = ndimage.measurements.center_of_mass(
662
- seg_mask)
663
- coord_w = int(
664
- (center_w / upsampled_size[1]) // (1. / num_grid))
665
- coord_h = int(
666
- (center_h / upsampled_size[0]) // (1. / num_grid))
667
-
668
- # left, top, right, down
669
- top_box = max(0,
670
- int(((center_h - half_h) / upsampled_size[0])
671
- // (1. / num_grid)))
672
- down_box = min(
673
- num_grid - 1,
674
- int(((center_h + half_h) / upsampled_size[0]) //
675
- (1. / num_grid)))
676
- left_box = max(
677
- 0,
678
- int(((center_w - half_w) / upsampled_size[1]) //
679
- (1. / num_grid)))
680
- right_box = min(num_grid - 1,
681
- int(((center_w + half_w) /
682
- upsampled_size[1]) //
683
- (1. / num_grid)))
684
-
685
- top = max(top_box, coord_h - 1)
686
- down = min(down_box, coord_h + 1)
687
- left = max(coord_w - 1, left_box)
688
- right = min(right_box, coord_w + 1)
689
-
690
- cate_label[top:(down + 1), left:(right + 1)] = gt_label
691
- seg_mask = self._scale_size(
692
- seg_mask, scale=1. / self.sampling_ratio)
693
- for i in range(top, down + 1):
694
- for j in range(left, right + 1):
695
- label = int(i * num_grid + j)
696
- cur_ins_label = np.zeros(
697
- [mask_feat_size[0], mask_feat_size[1]],
698
- dtype=np.uint8)
699
- cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[
700
- 1]] = seg_mask
701
- ins_label.append(cur_ins_label)
702
- ins_ind_label[label] = True
703
- grid_order.append(sample_id * num_grid * num_grid +
704
- label)
705
- if ins_label == []:
706
- ins_label = np.zeros(
707
- [1, mask_feat_size[0], mask_feat_size[1]],
708
- dtype=np.uint8)
709
- ins_ind_label_list.append(ins_ind_label)
710
- sample['cate_label{}'.format(idx)] = cate_label.flatten()
711
- sample['ins_label{}'.format(idx)] = ins_label
712
- sample['grid_order{}'.format(idx)] = np.asarray(
713
- [sample_id * num_grid * num_grid + 0], dtype=np.int32)
714
- else:
715
- ins_label = np.stack(ins_label, axis=0)
716
- ins_ind_label_list.append(ins_ind_label)
717
- sample['cate_label{}'.format(idx)] = cate_label.flatten()
718
- sample['ins_label{}'.format(idx)] = ins_label
719
- sample['grid_order{}'.format(idx)] = np.asarray(
720
- grid_order, dtype=np.int32)
721
- assert len(grid_order) > 0
722
- max_ins_num[idx] = max(
723
- max_ins_num[idx],
724
- sample['ins_label{}'.format(idx)].shape[0])
725
- idx += 1
726
- ins_ind_labels = np.concatenate([
727
- ins_ind_labels_level_img
728
- for ins_ind_labels_level_img in ins_ind_label_list
729
- ])
730
- fg_num = np.sum(ins_ind_labels)
731
- sample['fg_num'] = fg_num
732
- sample_id += 1
733
-
734
- sample.pop('is_crowd')
735
- sample.pop('gt_class')
736
- sample.pop('gt_bbox')
737
- sample.pop('gt_poly')
738
- sample.pop('gt_segm')
739
-
740
- # padding batch
741
- for data in samples:
742
- for idx in range(len(self.num_grids)):
743
- gt_ins_data = np.zeros(
744
- [
745
- max_ins_num[idx],
746
- data['ins_label{}'.format(idx)].shape[1],
747
- data['ins_label{}'.format(idx)].shape[2]
748
- ],
749
- dtype=np.uint8)
750
- gt_ins_data[0:data['ins_label{}'.format(idx)].shape[
751
- 0], :, :] = data['ins_label{}'.format(idx)]
752
- gt_grid_order = np.zeros([max_ins_num[idx]], dtype=np.int32)
753
- gt_grid_order[0:data['grid_order{}'.format(idx)].shape[
754
- 0]] = data['grid_order{}'.format(idx)]
755
- data['ins_label{}'.format(idx)] = gt_ins_data
756
- data['grid_order{}'.format(idx)] = gt_grid_order
757
-
758
- return samples