paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0b2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -0
- paddlex/__init__.py +51 -18
- paddlex/__main__.py +40 -0
- paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
- paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
- paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
- paddlex/configs/face_detection/BlazeFace.yaml +40 -0
- paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
- paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
- paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
- paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
- paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
- paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
- paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
- paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
- paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
- paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
- paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
- paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
- paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
- paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
- paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
- paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
- paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
- paddlex/configs/image_classification/ResNet101.yaml +41 -0
- paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet152.yaml +41 -0
- paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet18.yaml +41 -0
- paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet34.yaml +41 -0
- paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
- paddlex/configs/image_classification/ResNet50.yaml +41 -0
- paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
- paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
- paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
- paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
- paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
- paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
- paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
- paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
- paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
- paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
- paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
- paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
- paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
- paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
- paddlex/configs/object_detection/DETR-R50.yaml +42 -0
- paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
- paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
- paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
- paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
- paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
- paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
- paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
- paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
- paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
- paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
- paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
- paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
- paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
- paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
- paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
- paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
- paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
- paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
- paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
- paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
- paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
- paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
- paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
- paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
- paddlex/configs/table_recognition/SLANet.yaml +39 -0
- paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
- paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
- paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
- paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
- paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
- paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
- paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
- paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
- paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
- paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
- paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
- paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
- paddlex/configs/ts_forecast/DLinear.yaml +38 -0
- paddlex/configs/ts_forecast/NLinear.yaml +38 -0
- paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
- paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
- paddlex/configs/ts_forecast/RLinear.yaml +38 -0
- paddlex/configs/ts_forecast/TiDE.yaml +38 -0
- paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
- paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
- paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
- paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
- paddlex/engine.py +54 -0
- paddlex/inference/__init__.py +17 -0
- paddlex/inference/components/__init__.py +18 -0
- paddlex/inference/components/base.py +292 -0
- paddlex/inference/components/llm/__init__.py +25 -0
- paddlex/inference/components/llm/base.py +65 -0
- paddlex/inference/components/llm/erniebot.py +212 -0
- paddlex/inference/components/paddle_predictor/__init__.py +20 -0
- paddlex/inference/components/paddle_predictor/predictor.py +332 -0
- paddlex/inference/components/retrieval/__init__.py +15 -0
- paddlex/inference/components/retrieval/faiss.py +359 -0
- paddlex/inference/components/task_related/__init__.py +33 -0
- paddlex/inference/components/task_related/clas.py +124 -0
- paddlex/inference/components/task_related/det.py +284 -0
- paddlex/inference/components/task_related/instance_seg.py +89 -0
- paddlex/inference/components/task_related/seal_det_warp.py +940 -0
- paddlex/inference/components/task_related/seg.py +40 -0
- paddlex/inference/components/task_related/table_rec.py +191 -0
- paddlex/inference/components/task_related/text_det.py +895 -0
- paddlex/inference/components/task_related/text_rec.py +353 -0
- paddlex/inference/components/task_related/warp.py +43 -0
- paddlex/inference/components/transforms/__init__.py +16 -0
- paddlex/inference/components/transforms/image/__init__.py +15 -0
- paddlex/inference/components/transforms/image/common.py +598 -0
- paddlex/inference/components/transforms/image/funcs.py +58 -0
- paddlex/inference/components/transforms/read_data.py +67 -0
- paddlex/inference/components/transforms/ts/__init__.py +15 -0
- paddlex/inference/components/transforms/ts/common.py +393 -0
- paddlex/inference/components/transforms/ts/funcs.py +424 -0
- paddlex/inference/models/__init__.py +106 -0
- paddlex/inference/models/anomaly_detection.py +87 -0
- paddlex/inference/models/base/__init__.py +16 -0
- paddlex/inference/models/base/base_predictor.py +76 -0
- paddlex/inference/models/base/basic_predictor.py +122 -0
- paddlex/inference/models/face_recognition.py +21 -0
- paddlex/inference/models/formula_recognition.py +55 -0
- paddlex/inference/models/general_recognition.py +99 -0
- paddlex/inference/models/image_classification.py +101 -0
- paddlex/inference/models/image_unwarping.py +43 -0
- paddlex/inference/models/instance_segmentation.py +66 -0
- paddlex/inference/models/multilabel_classification.py +33 -0
- paddlex/inference/models/object_detection.py +129 -0
- paddlex/inference/models/semantic_segmentation.py +86 -0
- paddlex/inference/models/table_recognition.py +106 -0
- paddlex/inference/models/text_detection.py +105 -0
- paddlex/inference/models/text_recognition.py +78 -0
- paddlex/inference/models/ts_ad.py +68 -0
- paddlex/inference/models/ts_cls.py +57 -0
- paddlex/inference/models/ts_fc.py +73 -0
- paddlex/inference/pipelines/__init__.py +127 -0
- paddlex/inference/pipelines/attribute_recognition.py +92 -0
- paddlex/inference/pipelines/base.py +86 -0
- paddlex/inference/pipelines/face_recognition.py +49 -0
- paddlex/inference/pipelines/formula_recognition.py +102 -0
- paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
- paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
- paddlex/inference/pipelines/ocr.py +80 -0
- paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
- paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
- paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
- paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
- paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
- paddlex/inference/pipelines/seal_recognition.py +152 -0
- paddlex/inference/pipelines/serving/__init__.py +17 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
- paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
- paddlex/inference/pipelines/serving/app.py +164 -0
- paddlex/inference/pipelines/serving/models.py +30 -0
- paddlex/inference/pipelines/serving/server.py +25 -0
- paddlex/inference/pipelines/serving/storage.py +161 -0
- paddlex/inference/pipelines/serving/utils.py +190 -0
- paddlex/inference/pipelines/single_model_pipeline.py +76 -0
- paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
- paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
- paddlex/inference/pipelines/table_recognition/utils.py +457 -0
- paddlex/inference/results/__init__.py +31 -0
- paddlex/inference/results/attribute_rec.py +89 -0
- paddlex/inference/results/base.py +43 -0
- paddlex/inference/results/chat_ocr.py +158 -0
- paddlex/inference/results/clas.py +133 -0
- paddlex/inference/results/det.py +86 -0
- paddlex/inference/results/face_rec.py +34 -0
- paddlex/inference/results/formula_rec.py +363 -0
- paddlex/inference/results/instance_seg.py +152 -0
- paddlex/inference/results/ocr.py +157 -0
- paddlex/inference/results/seal_rec.py +50 -0
- paddlex/inference/results/seg.py +72 -0
- paddlex/inference/results/shitu.py +35 -0
- paddlex/inference/results/table_rec.py +109 -0
- paddlex/inference/results/text_det.py +33 -0
- paddlex/inference/results/text_rec.py +66 -0
- paddlex/inference/results/ts.py +37 -0
- paddlex/inference/results/utils/__init__.py +13 -0
- paddlex/inference/results/utils/mixin.py +204 -0
- paddlex/inference/results/warp.py +31 -0
- paddlex/inference/utils/__init__.py +13 -0
- paddlex/inference/utils/benchmark.py +214 -0
- paddlex/inference/utils/color_map.py +123 -0
- paddlex/inference/utils/get_pipeline_path.py +26 -0
- paddlex/inference/utils/io/__init__.py +33 -0
- paddlex/inference/utils/io/readers.py +353 -0
- paddlex/inference/utils/io/style.py +374 -0
- paddlex/inference/utils/io/tablepyxl.py +149 -0
- paddlex/inference/utils/io/writers.py +376 -0
- paddlex/inference/utils/new_ir_blacklist.py +22 -0
- paddlex/inference/utils/official_models.py +286 -0
- paddlex/inference/utils/pp_option.py +236 -0
- paddlex/inference/utils/process_hook.py +54 -0
- paddlex/model.py +106 -0
- paddlex/modules/__init__.py +105 -0
- paddlex/modules/anomaly_detection/__init__.py +18 -0
- paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
- paddlex/modules/anomaly_detection/evaluator.py +58 -0
- paddlex/modules/anomaly_detection/exportor.py +22 -0
- paddlex/modules/anomaly_detection/model_list.py +16 -0
- paddlex/modules/anomaly_detection/trainer.py +71 -0
- paddlex/modules/base/__init__.py +18 -0
- paddlex/modules/base/build_model.py +34 -0
- paddlex/modules/base/dataset_checker/__init__.py +16 -0
- paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
- paddlex/modules/base/dataset_checker/utils.py +110 -0
- paddlex/modules/base/evaluator.py +154 -0
- paddlex/modules/base/exportor.py +121 -0
- paddlex/modules/base/trainer.py +111 -0
- paddlex/modules/face_recognition/__init__.py +18 -0
- paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
- paddlex/modules/face_recognition/evaluator.py +52 -0
- paddlex/modules/face_recognition/exportor.py +22 -0
- paddlex/modules/face_recognition/model_list.py +15 -0
- paddlex/modules/face_recognition/trainer.py +97 -0
- paddlex/modules/formula_recognition/__init__.py +13 -0
- paddlex/modules/formula_recognition/model_list.py +17 -0
- paddlex/modules/general_recognition/__init__.py +18 -0
- paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
- paddlex/modules/general_recognition/evaluator.py +31 -0
- paddlex/modules/general_recognition/exportor.py +22 -0
- paddlex/modules/general_recognition/model_list.py +19 -0
- paddlex/modules/general_recognition/trainer.py +52 -0
- paddlex/modules/image_classification/__init__.py +18 -0
- paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
- paddlex/modules/image_classification/evaluator.py +43 -0
- paddlex/modules/image_classification/exportor.py +22 -0
- paddlex/modules/image_classification/model_list.py +97 -0
- paddlex/modules/image_classification/trainer.py +82 -0
- paddlex/modules/image_unwarping/__init__.py +13 -0
- paddlex/modules/image_unwarping/model_list.py +17 -0
- paddlex/modules/instance_segmentation/__init__.py +18 -0
- paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
- paddlex/modules/instance_segmentation/evaluator.py +32 -0
- paddlex/modules/instance_segmentation/exportor.py +22 -0
- paddlex/modules/instance_segmentation/model_list.py +33 -0
- paddlex/modules/instance_segmentation/trainer.py +31 -0
- paddlex/modules/multilabel_classification/__init__.py +18 -0
- paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
- paddlex/modules/multilabel_classification/evaluator.py +43 -0
- paddlex/modules/multilabel_classification/exportor.py +22 -0
- paddlex/modules/multilabel_classification/model_list.py +24 -0
- paddlex/modules/multilabel_classification/trainer.py +85 -0
- paddlex/modules/object_detection/__init__.py +18 -0
- paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
- paddlex/modules/object_detection/evaluator.py +41 -0
- paddlex/modules/object_detection/exportor.py +22 -0
- paddlex/modules/object_detection/model_list.py +74 -0
- paddlex/modules/object_detection/trainer.py +85 -0
- paddlex/modules/semantic_segmentation/__init__.py +18 -0
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
- paddlex/modules/semantic_segmentation/evaluator.py +58 -0
- paddlex/modules/semantic_segmentation/exportor.py +22 -0
- paddlex/modules/semantic_segmentation/model_list.py +35 -0
- paddlex/modules/semantic_segmentation/trainer.py +71 -0
- paddlex/modules/table_recognition/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
- paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
- paddlex/modules/table_recognition/evaluator.py +43 -0
- paddlex/modules/table_recognition/exportor.py +22 -0
- paddlex/modules/table_recognition/model_list.py +19 -0
- paddlex/modules/table_recognition/trainer.py +70 -0
- paddlex/modules/text_detection/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
- paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
- paddlex/modules/text_detection/evaluator.py +41 -0
- paddlex/modules/text_detection/exportor.py +22 -0
- paddlex/modules/text_detection/model_list.py +22 -0
- paddlex/modules/text_detection/trainer.py +68 -0
- paddlex/modules/text_recognition/__init__.py +18 -0
- paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
- paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
- paddlex/modules/text_recognition/evaluator.py +63 -0
- paddlex/modules/text_recognition/exportor.py +25 -0
- paddlex/modules/text_recognition/model_list.py +20 -0
- paddlex/modules/text_recognition/trainer.py +105 -0
- paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
- paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
- paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
- paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
- paddlex/modules/ts_classification/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
- paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
- paddlex/modules/ts_classification/evaluator.py +66 -0
- paddlex/modules/ts_classification/exportor.py +45 -0
- paddlex/modules/ts_classification/model_list.py +18 -0
- paddlex/modules/ts_classification/trainer.py +92 -0
- paddlex/modules/ts_forecast/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
- paddlex/modules/ts_forecast/evaluator.py +66 -0
- paddlex/modules/ts_forecast/exportor.py +45 -0
- paddlex/modules/ts_forecast/model_list.py +24 -0
- paddlex/modules/ts_forecast/trainer.py +92 -0
- paddlex/paddlex_cli.py +197 -0
- paddlex/pipelines/OCR.yaml +8 -0
- paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
- paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
- paddlex/pipelines/anomaly_detection.yaml +7 -0
- paddlex/pipelines/face_recognition.yaml +13 -0
- paddlex/pipelines/formula_recognition.yaml +8 -0
- paddlex/pipelines/image_classification.yaml +7 -0
- paddlex/pipelines/instance_segmentation.yaml +7 -0
- paddlex/pipelines/layout_parsing.yaml +14 -0
- paddlex/pipelines/multi_label_image_classification.yaml +7 -0
- paddlex/pipelines/object_detection.yaml +7 -0
- paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
- paddlex/pipelines/seal_recognition.yaml +10 -0
- paddlex/pipelines/semantic_segmentation.yaml +7 -0
- paddlex/pipelines/small_object_detection.yaml +7 -0
- paddlex/pipelines/table_recognition.yaml +12 -0
- paddlex/pipelines/ts_ad.yaml +7 -0
- paddlex/pipelines/ts_cls.yaml +7 -0
- paddlex/pipelines/ts_fc.yaml +7 -0
- paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
- paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
- paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
- paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
- paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
- paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
- paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
- paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
- paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
- paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
- paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
- paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
- paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
- paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
- paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
- paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
- paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
- paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
- paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
- paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
- paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
- paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
- paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
- paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
- paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
- paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
- paddlex/repo_apis/__init__.py +13 -0
- paddlex/repo_apis/base/__init__.py +23 -0
- paddlex/repo_apis/base/config.py +238 -0
- paddlex/repo_apis/base/model.py +571 -0
- paddlex/repo_apis/base/register.py +135 -0
- paddlex/repo_apis/base/runner.py +390 -0
- paddlex/repo_apis/base/utils/__init__.py +13 -0
- paddlex/repo_apis/base/utils/arg.py +64 -0
- paddlex/repo_apis/base/utils/subprocess.py +107 -0
- paddlex/repo_manager/__init__.py +24 -0
- paddlex/repo_manager/core.py +271 -0
- paddlex/repo_manager/meta.py +143 -0
- paddlex/repo_manager/repo.py +396 -0
- paddlex/repo_manager/requirements.txt +18 -0
- paddlex/repo_manager/utils.py +298 -0
- paddlex/utils/__init__.py +1 -12
- paddlex/utils/cache.py +148 -0
- paddlex/utils/config.py +214 -0
- paddlex/utils/device.py +103 -0
- paddlex/utils/download.py +168 -182
- paddlex/utils/errors/__init__.py +17 -0
- paddlex/utils/errors/dataset_checker.py +78 -0
- paddlex/utils/errors/others.py +152 -0
- paddlex/utils/file_interface.py +212 -0
- paddlex/utils/flags.py +61 -0
- paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
- paddlex/utils/fonts/__init__.py +24 -0
- paddlex/utils/func_register.py +41 -0
- paddlex/utils/interactive_get_pipeline.py +55 -0
- paddlex/utils/lazy_loader.py +66 -0
- paddlex/utils/logging.py +132 -33
- paddlex/utils/misc.py +201 -0
- paddlex/utils/result_saver.py +59 -0
- paddlex/utils/subclass_register.py +101 -0
- paddlex/version.py +54 -0
- paddlex-3.0.0b2.dist-info/LICENSE +169 -0
- paddlex-3.0.0b2.dist-info/METADATA +760 -0
- paddlex-3.0.0b2.dist-info/RECORD +646 -0
- paddlex-3.0.0b2.dist-info/WHEEL +5 -0
- paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
- paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
- PaddleClas/__init__.py +0 -16
- PaddleClas/paddleclas.py +0 -375
- PaddleClas/ppcls/__init__.py +0 -20
- PaddleClas/ppcls/data/__init__.py +0 -15
- PaddleClas/ppcls/data/imaug/__init__.py +0 -94
- PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
- PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
- PaddleClas/ppcls/data/imaug/cutout.py +0 -41
- PaddleClas/ppcls/data/imaug/fmix.py +0 -217
- PaddleClas/ppcls/data/imaug/grid.py +0 -89
- PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
- PaddleClas/ppcls/data/imaug/operators.py +0 -244
- PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
- PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
- PaddleClas/ppcls/data/reader.py +0 -318
- PaddleClas/ppcls/modeling/__init__.py +0 -20
- PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
- PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
- PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
- PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
- PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
- PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
- PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
- PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
- PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
- PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
- PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
- PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
- PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
- PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
- PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
- PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
- PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
- PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
- PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
- PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
- PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
- PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
- PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
- PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
- PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
- PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
- PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
- PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
- PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
- PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
- PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
- PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
- PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
- PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
- PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
- PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
- PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
- PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
- PaddleClas/ppcls/modeling/loss.py +0 -154
- PaddleClas/ppcls/modeling/utils.py +0 -53
- PaddleClas/ppcls/optimizer/__init__.py +0 -19
- PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
- PaddleClas/ppcls/optimizer/optimizer.py +0 -165
- PaddleClas/ppcls/utils/__init__.py +0 -27
- PaddleClas/ppcls/utils/check.py +0 -151
- PaddleClas/ppcls/utils/config.py +0 -201
- PaddleClas/ppcls/utils/logger.py +0 -120
- PaddleClas/ppcls/utils/metrics.py +0 -107
- PaddleClas/ppcls/utils/misc.py +0 -62
- PaddleClas/ppcls/utils/model_zoo.py +0 -213
- PaddleClas/ppcls/utils/save_load.py +0 -163
- PaddleClas/setup.py +0 -55
- PaddleClas/tools/__init__.py +0 -15
- PaddleClas/tools/download.py +0 -50
- PaddleClas/tools/ema.py +0 -58
- PaddleClas/tools/eval.py +0 -112
- PaddleClas/tools/export_model.py +0 -85
- PaddleClas/tools/export_serving_model.py +0 -76
- PaddleClas/tools/infer/__init__.py +0 -16
- PaddleClas/tools/infer/infer.py +0 -94
- PaddleClas/tools/infer/predict.py +0 -117
- PaddleClas/tools/infer/utils.py +0 -233
- PaddleClas/tools/program.py +0 -444
- PaddleClas/tools/test_hubserving.py +0 -113
- PaddleClas/tools/train.py +0 -141
- paddlex/cls.py +0 -76
- paddlex/command.py +0 -215
- paddlex/cv/__init__.py +0 -17
- paddlex/cv/datasets/__init__.py +0 -18
- paddlex/cv/datasets/coco.py +0 -169
- paddlex/cv/datasets/imagenet.py +0 -88
- paddlex/cv/datasets/seg_dataset.py +0 -91
- paddlex/cv/datasets/voc.py +0 -301
- paddlex/cv/models/__init__.py +0 -18
- paddlex/cv/models/base.py +0 -623
- paddlex/cv/models/classifier.py +0 -814
- paddlex/cv/models/detector.py +0 -1747
- paddlex/cv/models/load_model.py +0 -126
- paddlex/cv/models/segmenter.py +0 -673
- paddlex/cv/models/slim/__init__.py +0 -13
- paddlex/cv/models/slim/prune.py +0 -55
- paddlex/cv/models/utils/__init__.py +0 -13
- paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
- paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
- paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
- paddlex/cv/models/utils/ema.py +0 -48
- paddlex/cv/models/utils/seg_metrics.py +0 -62
- paddlex/cv/models/utils/visualize.py +0 -394
- paddlex/cv/transforms/__init__.py +0 -46
- paddlex/cv/transforms/batch_operators.py +0 -286
- paddlex/cv/transforms/box_utils.py +0 -41
- paddlex/cv/transforms/functions.py +0 -193
- paddlex/cv/transforms/operators.py +0 -1402
- paddlex/det.py +0 -43
- paddlex/paddleseg/__init__.py +0 -17
- paddlex/paddleseg/core/__init__.py +0 -20
- paddlex/paddleseg/core/infer.py +0 -289
- paddlex/paddleseg/core/predict.py +0 -145
- paddlex/paddleseg/core/train.py +0 -258
- paddlex/paddleseg/core/val.py +0 -172
- paddlex/paddleseg/cvlibs/__init__.py +0 -17
- paddlex/paddleseg/cvlibs/callbacks.py +0 -279
- paddlex/paddleseg/cvlibs/config.py +0 -359
- paddlex/paddleseg/cvlibs/manager.py +0 -142
- paddlex/paddleseg/cvlibs/param_init.py +0 -91
- paddlex/paddleseg/datasets/__init__.py +0 -21
- paddlex/paddleseg/datasets/ade.py +0 -112
- paddlex/paddleseg/datasets/cityscapes.py +0 -86
- paddlex/paddleseg/datasets/cocostuff.py +0 -79
- paddlex/paddleseg/datasets/dataset.py +0 -164
- paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
- paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
- paddlex/paddleseg/datasets/pascal_context.py +0 -80
- paddlex/paddleseg/datasets/voc.py +0 -113
- paddlex/paddleseg/models/__init__.py +0 -39
- paddlex/paddleseg/models/ann.py +0 -436
- paddlex/paddleseg/models/attention_unet.py +0 -189
- paddlex/paddleseg/models/backbones/__init__.py +0 -18
- paddlex/paddleseg/models/backbones/hrnet.py +0 -815
- paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
- paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
- paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
- paddlex/paddleseg/models/bisenet.py +0 -311
- paddlex/paddleseg/models/danet.py +0 -220
- paddlex/paddleseg/models/decoupled_segnet.py +0 -233
- paddlex/paddleseg/models/deeplab.py +0 -258
- paddlex/paddleseg/models/dnlnet.py +0 -231
- paddlex/paddleseg/models/emanet.py +0 -219
- paddlex/paddleseg/models/fast_scnn.py +0 -318
- paddlex/paddleseg/models/fcn.py +0 -135
- paddlex/paddleseg/models/gcnet.py +0 -223
- paddlex/paddleseg/models/gscnn.py +0 -357
- paddlex/paddleseg/models/hardnet.py +0 -309
- paddlex/paddleseg/models/isanet.py +0 -202
- paddlex/paddleseg/models/layers/__init__.py +0 -19
- paddlex/paddleseg/models/layers/activation.py +0 -73
- paddlex/paddleseg/models/layers/attention.py +0 -146
- paddlex/paddleseg/models/layers/layer_libs.py +0 -168
- paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
- paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
- paddlex/paddleseg/models/losses/__init__.py +0 -27
- paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
- paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
- paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
- paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
- paddlex/paddleseg/models/losses/dice_loss.py +0 -61
- paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
- paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
- paddlex/paddleseg/models/losses/l1_loss.py +0 -76
- paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
- paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
- paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
- paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
- paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
- paddlex/paddleseg/models/ocrnet.py +0 -248
- paddlex/paddleseg/models/pspnet.py +0 -147
- paddlex/paddleseg/models/sfnet.py +0 -236
- paddlex/paddleseg/models/shufflenet_slim.py +0 -268
- paddlex/paddleseg/models/u2net.py +0 -574
- paddlex/paddleseg/models/unet.py +0 -155
- paddlex/paddleseg/models/unet_3plus.py +0 -316
- paddlex/paddleseg/models/unet_plusplus.py +0 -237
- paddlex/paddleseg/transforms/__init__.py +0 -16
- paddlex/paddleseg/transforms/functional.py +0 -161
- paddlex/paddleseg/transforms/transforms.py +0 -937
- paddlex/paddleseg/utils/__init__.py +0 -22
- paddlex/paddleseg/utils/config_check.py +0 -60
- paddlex/paddleseg/utils/download.py +0 -163
- paddlex/paddleseg/utils/env/__init__.py +0 -16
- paddlex/paddleseg/utils/env/seg_env.py +0 -56
- paddlex/paddleseg/utils/env/sys_env.py +0 -122
- paddlex/paddleseg/utils/logger.py +0 -48
- paddlex/paddleseg/utils/metrics.py +0 -146
- paddlex/paddleseg/utils/progbar.py +0 -212
- paddlex/paddleseg/utils/timer.py +0 -53
- paddlex/paddleseg/utils/utils.py +0 -120
- paddlex/paddleseg/utils/visualize.py +0 -90
- paddlex/ppcls/__init__.py +0 -20
- paddlex/ppcls/data/__init__.py +0 -15
- paddlex/ppcls/data/imaug/__init__.py +0 -94
- paddlex/ppcls/data/imaug/autoaugment.py +0 -264
- paddlex/ppcls/data/imaug/batch_operators.py +0 -117
- paddlex/ppcls/data/imaug/cutout.py +0 -41
- paddlex/ppcls/data/imaug/fmix.py +0 -217
- paddlex/ppcls/data/imaug/grid.py +0 -89
- paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
- paddlex/ppcls/data/imaug/operators.py +0 -256
- paddlex/ppcls/data/imaug/randaugment.py +0 -106
- paddlex/ppcls/data/imaug/random_erasing.py +0 -55
- paddlex/ppcls/data/reader.py +0 -318
- paddlex/ppcls/modeling/__init__.py +0 -20
- paddlex/ppcls/modeling/architectures/__init__.py +0 -51
- paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
- paddlex/ppcls/modeling/architectures/darknet.py +0 -161
- paddlex/ppcls/modeling/architectures/densenet.py +0 -308
- paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
- paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
- paddlex/ppcls/modeling/architectures/dpn.py +0 -425
- paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
- paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
- paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
- paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
- paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
- paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
- paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
- paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
- paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
- paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
- paddlex/ppcls/modeling/architectures/regnet.py +0 -383
- paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
- paddlex/ppcls/modeling/architectures/res2net.py +0 -272
- paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
- paddlex/ppcls/modeling/architectures/resnest.py +0 -705
- paddlex/ppcls/modeling/architectures/resnet.py +0 -317
- paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
- paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
- paddlex/ppcls/modeling/architectures/resnext.py +0 -259
- paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
- paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
- paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
- paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
- paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
- paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
- paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
- paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
- paddlex/ppcls/modeling/architectures/vgg.py +0 -152
- paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
- paddlex/ppcls/modeling/architectures/xception.py +0 -345
- paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
- paddlex/ppcls/modeling/loss.py +0 -158
- paddlex/ppcls/modeling/utils.py +0 -53
- paddlex/ppcls/optimizer/__init__.py +0 -19
- paddlex/ppcls/optimizer/learning_rate.py +0 -159
- paddlex/ppcls/optimizer/optimizer.py +0 -165
- paddlex/ppcls/utils/__init__.py +0 -27
- paddlex/ppcls/utils/check.py +0 -151
- paddlex/ppcls/utils/config.py +0 -201
- paddlex/ppcls/utils/logger.py +0 -120
- paddlex/ppcls/utils/metrics.py +0 -112
- paddlex/ppcls/utils/misc.py +0 -62
- paddlex/ppcls/utils/model_zoo.py +0 -213
- paddlex/ppcls/utils/save_load.py +0 -163
- paddlex/ppdet/__init__.py +0 -16
- paddlex/ppdet/core/__init__.py +0 -15
- paddlex/ppdet/core/config/__init__.py +0 -13
- paddlex/ppdet/core/config/schema.py +0 -248
- paddlex/ppdet/core/config/yaml_helpers.py +0 -118
- paddlex/ppdet/core/workspace.py +0 -279
- paddlex/ppdet/data/__init__.py +0 -21
- paddlex/ppdet/data/reader.py +0 -304
- paddlex/ppdet/data/shm_utils.py +0 -67
- paddlex/ppdet/data/source/__init__.py +0 -27
- paddlex/ppdet/data/source/category.py +0 -823
- paddlex/ppdet/data/source/coco.py +0 -243
- paddlex/ppdet/data/source/dataset.py +0 -192
- paddlex/ppdet/data/source/keypoint_coco.py +0 -656
- paddlex/ppdet/data/source/mot.py +0 -360
- paddlex/ppdet/data/source/voc.py +0 -204
- paddlex/ppdet/data/source/widerface.py +0 -180
- paddlex/ppdet/data/transform/__init__.py +0 -28
- paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
- paddlex/ppdet/data/transform/batch_operators.py +0 -758
- paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
- paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
- paddlex/ppdet/data/transform/mot_operators.py +0 -636
- paddlex/ppdet/data/transform/op_helper.py +0 -468
- paddlex/ppdet/data/transform/operators.py +0 -2103
- paddlex/ppdet/engine/__init__.py +0 -29
- paddlex/ppdet/engine/callbacks.py +0 -262
- paddlex/ppdet/engine/env.py +0 -47
- paddlex/ppdet/engine/export_utils.py +0 -118
- paddlex/ppdet/engine/tracker.py +0 -425
- paddlex/ppdet/engine/trainer.py +0 -535
- paddlex/ppdet/metrics/__init__.py +0 -23
- paddlex/ppdet/metrics/coco_utils.py +0 -184
- paddlex/ppdet/metrics/json_results.py +0 -151
- paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
- paddlex/ppdet/metrics/map_utils.py +0 -396
- paddlex/ppdet/metrics/metrics.py +0 -300
- paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
- paddlex/ppdet/metrics/mot_metrics.py +0 -184
- paddlex/ppdet/metrics/widerface_utils.py +0 -393
- paddlex/ppdet/model_zoo/__init__.py +0 -18
- paddlex/ppdet/model_zoo/model_zoo.py +0 -86
- paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
- paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
- paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
- paddlex/ppdet/modeling/__init__.py +0 -41
- paddlex/ppdet/modeling/architectures/__init__.py +0 -40
- paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
- paddlex/ppdet/modeling/architectures/centernet.py +0 -103
- paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
- paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
- paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
- paddlex/ppdet/modeling/architectures/fcos.py +0 -105
- paddlex/ppdet/modeling/architectures/jde.py +0 -125
- paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
- paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
- paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
- paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
- paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
- paddlex/ppdet/modeling/architectures/solov2.py +0 -110
- paddlex/ppdet/modeling/architectures/ssd.py +0 -84
- paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
- paddlex/ppdet/modeling/architectures/yolo.py +0 -104
- paddlex/ppdet/modeling/backbones/__init__.py +0 -37
- paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
- paddlex/ppdet/modeling/backbones/darknet.py +0 -341
- paddlex/ppdet/modeling/backbones/dla.py +0 -244
- paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
- paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
- paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
- paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
- paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
- paddlex/ppdet/modeling/backbones/res2net.py +0 -358
- paddlex/ppdet/modeling/backbones/resnet.py +0 -606
- paddlex/ppdet/modeling/backbones/senet.py +0 -140
- paddlex/ppdet/modeling/backbones/vgg.py +0 -216
- paddlex/ppdet/modeling/bbox_utils.py +0 -464
- paddlex/ppdet/modeling/heads/__init__.py +0 -41
- paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
- paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
- paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
- paddlex/ppdet/modeling/heads/face_head.py +0 -113
- paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
- paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
- paddlex/ppdet/modeling/heads/mask_head.py +0 -253
- paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
- paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
- paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
- paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
- paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
- paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
- paddlex/ppdet/modeling/keypoint_utils.py +0 -302
- paddlex/ppdet/modeling/layers.py +0 -1142
- paddlex/ppdet/modeling/losses/__init__.py +0 -35
- paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
- paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
- paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
- paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
- paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
- paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
- paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
- paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
- paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
- paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
- paddlex/ppdet/modeling/mot/__init__.py +0 -25
- paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
- paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
- paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
- paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
- paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
- paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
- paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
- paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
- paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
- paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
- paddlex/ppdet/modeling/mot/utils.py +0 -181
- paddlex/ppdet/modeling/mot/visualization.py +0 -130
- paddlex/ppdet/modeling/necks/__init__.py +0 -25
- paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
- paddlex/ppdet/modeling/necks/fpn.py +0 -233
- paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
- paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
- paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
- paddlex/ppdet/modeling/ops.py +0 -1599
- paddlex/ppdet/modeling/post_process.py +0 -449
- paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
- paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
- paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
- paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
- paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
- paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
- paddlex/ppdet/modeling/reid/__init__.py +0 -23
- paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
- paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
- paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
- paddlex/ppdet/modeling/reid/resnet.py +0 -320
- paddlex/ppdet/modeling/shape_spec.py +0 -33
- paddlex/ppdet/modeling/tests/__init__.py +0 -13
- paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
- paddlex/ppdet/modeling/tests/test_base.py +0 -75
- paddlex/ppdet/modeling/tests/test_ops.py +0 -839
- paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
- paddlex/ppdet/optimizer.py +0 -285
- paddlex/ppdet/slim/__init__.py +0 -62
- paddlex/ppdet/slim/distill.py +0 -111
- paddlex/ppdet/slim/prune.py +0 -85
- paddlex/ppdet/slim/quant.py +0 -52
- paddlex/ppdet/utils/__init__.py +0 -13
- paddlex/ppdet/utils/check.py +0 -93
- paddlex/ppdet/utils/checkpoint.py +0 -216
- paddlex/ppdet/utils/cli.py +0 -151
- paddlex/ppdet/utils/colormap.py +0 -56
- paddlex/ppdet/utils/download.py +0 -477
- paddlex/ppdet/utils/logger.py +0 -71
- paddlex/ppdet/utils/stats.py +0 -95
- paddlex/ppdet/utils/visualizer.py +0 -292
- paddlex/ppdet/utils/voc_utils.py +0 -87
- paddlex/seg.py +0 -38
- paddlex/tools/__init__.py +0 -16
- paddlex/tools/convert.py +0 -52
- paddlex/tools/dataset_conversion/__init__.py +0 -24
- paddlex/tools/dataset_conversion/x2coco.py +0 -379
- paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
- paddlex/tools/dataset_conversion/x2seg.py +0 -343
- paddlex/tools/dataset_conversion/x2voc.py +0 -230
- paddlex/tools/dataset_split/__init__.py +0 -23
- paddlex/tools/dataset_split/coco_split.py +0 -69
- paddlex/tools/dataset_split/imagenet_split.py +0 -75
- paddlex/tools/dataset_split/seg_split.py +0 -96
- paddlex/tools/dataset_split/utils.py +0 -75
- paddlex/tools/dataset_split/voc_split.py +0 -91
- paddlex/tools/split.py +0 -41
- paddlex/utils/checkpoint.py +0 -439
- paddlex/utils/env.py +0 -71
- paddlex/utils/shm.py +0 -67
- paddlex/utils/stats.py +0 -68
- paddlex/utils/utils.py +0 -140
- paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
- paddlex-2.0.0rc4.dist-info/METADATA +0 -29
- paddlex-2.0.0rc4.dist-info/RECORD +0 -445
- paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
- paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
- paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,758 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
try:
|
20
|
-
from collections.abc import Sequence
|
21
|
-
except Exception:
|
22
|
-
from collections import Sequence
|
23
|
-
|
24
|
-
import cv2
|
25
|
-
import numpy as np
|
26
|
-
from .operators import register_op, BaseOperator, Resize
|
27
|
-
from .op_helper import jaccard_overlap, gaussian2D
|
28
|
-
from scipy import ndimage
|
29
|
-
|
30
|
-
from paddlex.ppdet.modeling import bbox_utils
|
31
|
-
from paddlex.ppdet.utils.logger import setup_logger
|
32
|
-
logger = setup_logger(__name__)
|
33
|
-
|
34
|
-
__all__ = [
|
35
|
-
'PadBatch', 'BatchRandomResize', 'Gt2YoloTarget', 'Gt2FCOSTarget',
|
36
|
-
'Gt2TTFTarget', 'Gt2Solov2Target'
|
37
|
-
]
|
38
|
-
|
39
|
-
|
40
|
-
@register_op
|
41
|
-
class PadBatch(BaseOperator):
|
42
|
-
"""
|
43
|
-
Pad a batch of samples so they can be divisible by a stride.
|
44
|
-
The layout of each image should be 'CHW'.
|
45
|
-
Args:
|
46
|
-
pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
|
47
|
-
height and width is divisible by `pad_to_stride`.
|
48
|
-
"""
|
49
|
-
|
50
|
-
def __init__(self, pad_to_stride=0):
|
51
|
-
super(PadBatch, self).__init__()
|
52
|
-
self.pad_to_stride = pad_to_stride
|
53
|
-
|
54
|
-
def __call__(self, samples, context=None):
|
55
|
-
"""
|
56
|
-
Args:
|
57
|
-
samples (list): a batch of sample, each is dict.
|
58
|
-
"""
|
59
|
-
coarsest_stride = self.pad_to_stride
|
60
|
-
|
61
|
-
max_shape = np.array([data['image'].shape for data in samples]).max(
|
62
|
-
axis=0)
|
63
|
-
if coarsest_stride > 0:
|
64
|
-
max_shape[1] = int(
|
65
|
-
np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
|
66
|
-
max_shape[2] = int(
|
67
|
-
np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)
|
68
|
-
|
69
|
-
for data in samples:
|
70
|
-
im = data['image']
|
71
|
-
im_c, im_h, im_w = im.shape[:]
|
72
|
-
padding_im = np.zeros(
|
73
|
-
(im_c, max_shape[1], max_shape[2]), dtype=np.float32)
|
74
|
-
padding_im[:, :im_h, :im_w] = im
|
75
|
-
data['image'] = padding_im
|
76
|
-
if 'semantic' in data and data['semantic'] is not None:
|
77
|
-
semantic = data['semantic']
|
78
|
-
padding_sem = np.zeros(
|
79
|
-
(1, max_shape[1], max_shape[2]), dtype=np.float32)
|
80
|
-
padding_sem[:, :im_h, :im_w] = semantic
|
81
|
-
data['semantic'] = padding_sem
|
82
|
-
if 'gt_segm' in data and data['gt_segm'] is not None:
|
83
|
-
gt_segm = data['gt_segm']
|
84
|
-
padding_segm = np.zeros(
|
85
|
-
(gt_segm.shape[0], max_shape[1], max_shape[2]),
|
86
|
-
dtype=np.uint8)
|
87
|
-
padding_segm[:, :im_h, :im_w] = gt_segm
|
88
|
-
data['gt_segm'] = padding_segm
|
89
|
-
|
90
|
-
if 'gt_rbox2poly' in data and data['gt_rbox2poly'] is not None:
|
91
|
-
# ploy to rbox
|
92
|
-
polys = data['gt_rbox2poly']
|
93
|
-
rbox = bbox_utils.poly2rbox(polys)
|
94
|
-
data['gt_rbox'] = rbox
|
95
|
-
|
96
|
-
return samples
|
97
|
-
|
98
|
-
|
99
|
-
@register_op
|
100
|
-
class BatchRandomResize(BaseOperator):
|
101
|
-
"""
|
102
|
-
Resize image to target size randomly. random target_size and interpolation method
|
103
|
-
Args:
|
104
|
-
target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
|
105
|
-
keep_ratio (bool): whether keep_raio or not, default true
|
106
|
-
interp (int): the interpolation method
|
107
|
-
random_size (bool): whether random select target size of image
|
108
|
-
random_interp (bool): whether random select interpolation method
|
109
|
-
"""
|
110
|
-
|
111
|
-
def __init__(self,
|
112
|
-
target_size,
|
113
|
-
keep_ratio,
|
114
|
-
interp=cv2.INTER_NEAREST,
|
115
|
-
random_size=True,
|
116
|
-
random_interp=False):
|
117
|
-
super(BatchRandomResize, self).__init__()
|
118
|
-
self.keep_ratio = keep_ratio
|
119
|
-
self.interps = [
|
120
|
-
cv2.INTER_NEAREST,
|
121
|
-
cv2.INTER_LINEAR,
|
122
|
-
cv2.INTER_AREA,
|
123
|
-
cv2.INTER_CUBIC,
|
124
|
-
cv2.INTER_LANCZOS4,
|
125
|
-
]
|
126
|
-
self.interp = interp
|
127
|
-
assert isinstance(target_size, (
|
128
|
-
int, Sequence)), "target_size must be int, list or tuple"
|
129
|
-
if random_size and not isinstance(target_size, list):
|
130
|
-
raise TypeError(
|
131
|
-
"Type of target_size is invalid when random_size is True. Must be List, now is {}".
|
132
|
-
format(type(target_size)))
|
133
|
-
self.target_size = target_size
|
134
|
-
self.random_size = random_size
|
135
|
-
self.random_interp = random_interp
|
136
|
-
|
137
|
-
def __call__(self, samples, context=None):
|
138
|
-
if self.random_size:
|
139
|
-
index = np.random.choice(len(self.target_size))
|
140
|
-
target_size = self.target_size[index]
|
141
|
-
else:
|
142
|
-
target_size = self.target_size
|
143
|
-
|
144
|
-
if self.random_interp:
|
145
|
-
interp = np.random.choice(self.interps)
|
146
|
-
else:
|
147
|
-
interp = self.interp
|
148
|
-
|
149
|
-
resizer = Resize(
|
150
|
-
target_size, keep_ratio=self.keep_ratio, interp=interp)
|
151
|
-
return resizer(samples, context=context)
|
152
|
-
|
153
|
-
|
154
|
-
@register_op
|
155
|
-
class Gt2YoloTarget(BaseOperator):
|
156
|
-
"""
|
157
|
-
Generate YOLOv3 targets by groud truth data, this operator is only used in
|
158
|
-
fine grained YOLOv3 loss mode
|
159
|
-
"""
|
160
|
-
|
161
|
-
def __init__(self,
|
162
|
-
anchors,
|
163
|
-
anchor_masks,
|
164
|
-
downsample_ratios,
|
165
|
-
num_classes=80,
|
166
|
-
iou_thresh=1.):
|
167
|
-
super(Gt2YoloTarget, self).__init__()
|
168
|
-
self.anchors = anchors
|
169
|
-
self.anchor_masks = anchor_masks
|
170
|
-
self.downsample_ratios = downsample_ratios
|
171
|
-
self.num_classes = num_classes
|
172
|
-
self.iou_thresh = iou_thresh
|
173
|
-
|
174
|
-
def __call__(self, samples, context=None):
|
175
|
-
assert len(self.anchor_masks) == len(self.downsample_ratios), \
|
176
|
-
"anchor_masks', and 'downsample_ratios' should have same length."
|
177
|
-
|
178
|
-
h, w = samples[0]['image'].shape[1:3]
|
179
|
-
an_hw = np.array(self.anchors) / np.array([[w, h]])
|
180
|
-
for sample in samples:
|
181
|
-
# im, gt_bbox, gt_class, gt_score = sample
|
182
|
-
im = sample['image']
|
183
|
-
gt_bbox = sample['gt_bbox']
|
184
|
-
gt_class = sample['gt_class']
|
185
|
-
if 'gt_score' not in sample:
|
186
|
-
sample['gt_score'] = np.ones(
|
187
|
-
(gt_bbox.shape[0], 1), dtype=np.float32)
|
188
|
-
gt_score = sample['gt_score']
|
189
|
-
for i, (
|
190
|
-
mask, downsample_ratio
|
191
|
-
) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
|
192
|
-
grid_h = int(h / downsample_ratio)
|
193
|
-
grid_w = int(w / downsample_ratio)
|
194
|
-
target = np.zeros(
|
195
|
-
(len(mask), 6 + self.num_classes, grid_h, grid_w),
|
196
|
-
dtype=np.float32)
|
197
|
-
for b in range(gt_bbox.shape[0]):
|
198
|
-
gx, gy, gw, gh = gt_bbox[b, :]
|
199
|
-
cls = gt_class[b]
|
200
|
-
score = gt_score[b]
|
201
|
-
if gw <= 0. or gh <= 0. or score <= 0.:
|
202
|
-
continue
|
203
|
-
|
204
|
-
# find best match anchor index
|
205
|
-
best_iou = 0.
|
206
|
-
best_idx = -1
|
207
|
-
for an_idx in range(an_hw.shape[0]):
|
208
|
-
iou = jaccard_overlap(
|
209
|
-
[0., 0., gw, gh],
|
210
|
-
[0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
|
211
|
-
if iou > best_iou:
|
212
|
-
best_iou = iou
|
213
|
-
best_idx = an_idx
|
214
|
-
|
215
|
-
gi = int(gx * grid_w)
|
216
|
-
gj = int(gy * grid_h)
|
217
|
-
|
218
|
-
# gtbox should be regresed in this layes if best match
|
219
|
-
# anchor index in anchor mask of this layer
|
220
|
-
if best_idx in mask:
|
221
|
-
best_n = mask.index(best_idx)
|
222
|
-
|
223
|
-
# x, y, w, h, scale
|
224
|
-
target[best_n, 0, gj, gi] = gx * grid_w - gi
|
225
|
-
target[best_n, 1, gj, gi] = gy * grid_h - gj
|
226
|
-
target[best_n, 2, gj, gi] = np.log(
|
227
|
-
gw * w / self.anchors[best_idx][0])
|
228
|
-
target[best_n, 3, gj, gi] = np.log(
|
229
|
-
gh * h / self.anchors[best_idx][1])
|
230
|
-
target[best_n, 4, gj, gi] = 2.0 - gw * gh
|
231
|
-
|
232
|
-
# objectness record gt_score
|
233
|
-
target[best_n, 5, gj, gi] = score
|
234
|
-
|
235
|
-
# classification
|
236
|
-
target[best_n, 6 + cls, gj, gi] = 1.
|
237
|
-
|
238
|
-
# For non-matched anchors, calculate the target if the iou
|
239
|
-
# between anchor and gt is larger than iou_thresh
|
240
|
-
if self.iou_thresh < 1:
|
241
|
-
for idx, mask_i in enumerate(mask):
|
242
|
-
if mask_i == best_idx: continue
|
243
|
-
iou = jaccard_overlap(
|
244
|
-
[0., 0., gw, gh],
|
245
|
-
[0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
|
246
|
-
if iou > self.iou_thresh and target[idx, 5, gj,
|
247
|
-
gi] == 0.:
|
248
|
-
# x, y, w, h, scale
|
249
|
-
target[idx, 0, gj, gi] = gx * grid_w - gi
|
250
|
-
target[idx, 1, gj, gi] = gy * grid_h - gj
|
251
|
-
target[idx, 2, gj, gi] = np.log(
|
252
|
-
gw * w / self.anchors[mask_i][0])
|
253
|
-
target[idx, 3, gj, gi] = np.log(
|
254
|
-
gh * h / self.anchors[mask_i][1])
|
255
|
-
target[idx, 4, gj, gi] = 2.0 - gw * gh
|
256
|
-
|
257
|
-
# objectness record gt_score
|
258
|
-
target[idx, 5, gj, gi] = score
|
259
|
-
|
260
|
-
# classification
|
261
|
-
target[idx, 6 + cls, gj, gi] = 1.
|
262
|
-
sample['target{}'.format(i)] = target
|
263
|
-
|
264
|
-
# remove useless gt_class and gt_score after target calculated
|
265
|
-
sample.pop('gt_class')
|
266
|
-
sample.pop('gt_score')
|
267
|
-
|
268
|
-
return samples
|
269
|
-
|
270
|
-
|
271
|
-
@register_op
|
272
|
-
class Gt2FCOSTarget(BaseOperator):
|
273
|
-
"""
|
274
|
-
Generate FCOS targets by groud truth data
|
275
|
-
"""
|
276
|
-
|
277
|
-
def __init__(self,
|
278
|
-
object_sizes_boundary,
|
279
|
-
center_sampling_radius,
|
280
|
-
downsample_ratios,
|
281
|
-
norm_reg_targets=False):
|
282
|
-
super(Gt2FCOSTarget, self).__init__()
|
283
|
-
self.center_sampling_radius = center_sampling_radius
|
284
|
-
self.downsample_ratios = downsample_ratios
|
285
|
-
self.INF = np.inf
|
286
|
-
self.object_sizes_boundary = [-1] + object_sizes_boundary + [self.INF]
|
287
|
-
object_sizes_of_interest = []
|
288
|
-
for i in range(len(self.object_sizes_boundary) - 1):
|
289
|
-
object_sizes_of_interest.append([
|
290
|
-
self.object_sizes_boundary[i],
|
291
|
-
self.object_sizes_boundary[i + 1]
|
292
|
-
])
|
293
|
-
self.object_sizes_of_interest = object_sizes_of_interest
|
294
|
-
self.norm_reg_targets = norm_reg_targets
|
295
|
-
|
296
|
-
def _compute_points(self, w, h):
|
297
|
-
"""
|
298
|
-
compute the corresponding points in each feature map
|
299
|
-
:param h: image height
|
300
|
-
:param w: image width
|
301
|
-
:return: points from all feature map
|
302
|
-
"""
|
303
|
-
locations = []
|
304
|
-
for stride in self.downsample_ratios:
|
305
|
-
shift_x = np.arange(0, w, stride).astype(np.float32)
|
306
|
-
shift_y = np.arange(0, h, stride).astype(np.float32)
|
307
|
-
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
|
308
|
-
shift_x = shift_x.flatten()
|
309
|
-
shift_y = shift_y.flatten()
|
310
|
-
location = np.stack([shift_x, shift_y], axis=1) + stride // 2
|
311
|
-
locations.append(location)
|
312
|
-
num_points_each_level = [len(location) for location in locations]
|
313
|
-
locations = np.concatenate(locations, axis=0)
|
314
|
-
return locations, num_points_each_level
|
315
|
-
|
316
|
-
def _convert_xywh2xyxy(self, gt_bbox, w, h):
|
317
|
-
"""
|
318
|
-
convert the bounding box from style xywh to xyxy
|
319
|
-
:param gt_bbox: bounding boxes normalized into [0, 1]
|
320
|
-
:param w: image width
|
321
|
-
:param h: image height
|
322
|
-
:return: bounding boxes in xyxy style
|
323
|
-
"""
|
324
|
-
bboxes = gt_bbox.copy()
|
325
|
-
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * w
|
326
|
-
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * h
|
327
|
-
bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
|
328
|
-
bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
|
329
|
-
return bboxes
|
330
|
-
|
331
|
-
def _check_inside_boxes_limited(self, gt_bbox, xs, ys,
|
332
|
-
num_points_each_level):
|
333
|
-
"""
|
334
|
-
check if points is within the clipped boxes
|
335
|
-
:param gt_bbox: bounding boxes
|
336
|
-
:param xs: horizontal coordinate of points
|
337
|
-
:param ys: vertical coordinate of points
|
338
|
-
:return: the mask of points is within gt_box or not
|
339
|
-
"""
|
340
|
-
bboxes = np.reshape(
|
341
|
-
gt_bbox, newshape=[1, gt_bbox.shape[0], gt_bbox.shape[1]])
|
342
|
-
bboxes = np.tile(bboxes, reps=[xs.shape[0], 1, 1])
|
343
|
-
ct_x = (bboxes[:, :, 0] + bboxes[:, :, 2]) / 2
|
344
|
-
ct_y = (bboxes[:, :, 1] + bboxes[:, :, 3]) / 2
|
345
|
-
beg = 0
|
346
|
-
clipped_box = bboxes.copy()
|
347
|
-
for lvl, stride in enumerate(self.downsample_ratios):
|
348
|
-
end = beg + num_points_each_level[lvl]
|
349
|
-
stride_exp = self.center_sampling_radius * stride
|
350
|
-
clipped_box[beg:end, :, 0] = np.maximum(
|
351
|
-
bboxes[beg:end, :, 0], ct_x[beg:end, :] - stride_exp)
|
352
|
-
clipped_box[beg:end, :, 1] = np.maximum(
|
353
|
-
bboxes[beg:end, :, 1], ct_y[beg:end, :] - stride_exp)
|
354
|
-
clipped_box[beg:end, :, 2] = np.minimum(
|
355
|
-
bboxes[beg:end, :, 2], ct_x[beg:end, :] + stride_exp)
|
356
|
-
clipped_box[beg:end, :, 3] = np.minimum(
|
357
|
-
bboxes[beg:end, :, 3], ct_y[beg:end, :] + stride_exp)
|
358
|
-
beg = end
|
359
|
-
l_res = xs - clipped_box[:, :, 0]
|
360
|
-
r_res = clipped_box[:, :, 2] - xs
|
361
|
-
t_res = ys - clipped_box[:, :, 1]
|
362
|
-
b_res = clipped_box[:, :, 3] - ys
|
363
|
-
clipped_box_reg_targets = np.stack(
|
364
|
-
[l_res, t_res, r_res, b_res], axis=2)
|
365
|
-
inside_gt_box = np.min(clipped_box_reg_targets, axis=2) > 0
|
366
|
-
return inside_gt_box
|
367
|
-
|
368
|
-
def __call__(self, samples, context=None):
|
369
|
-
assert len(self.object_sizes_of_interest) == len(self.downsample_ratios), \
|
370
|
-
"object_sizes_of_interest', and 'downsample_ratios' should have same length."
|
371
|
-
|
372
|
-
for sample in samples:
|
373
|
-
# im, gt_bbox, gt_class, gt_score = sample
|
374
|
-
im = sample['image']
|
375
|
-
bboxes = sample['gt_bbox']
|
376
|
-
gt_class = sample['gt_class']
|
377
|
-
# calculate the locations
|
378
|
-
h, w = im.shape[1:3]
|
379
|
-
points, num_points_each_level = self._compute_points(w, h)
|
380
|
-
object_scale_exp = []
|
381
|
-
for i, num_pts in enumerate(num_points_each_level):
|
382
|
-
object_scale_exp.append(
|
383
|
-
np.tile(
|
384
|
-
np.array([self.object_sizes_of_interest[i]]),
|
385
|
-
reps=[num_pts, 1]))
|
386
|
-
object_scale_exp = np.concatenate(object_scale_exp, axis=0)
|
387
|
-
|
388
|
-
gt_area = (bboxes[:, 2] - bboxes[:, 0]) * (
|
389
|
-
bboxes[:, 3] - bboxes[:, 1])
|
390
|
-
xs, ys = points[:, 0], points[:, 1]
|
391
|
-
xs = np.reshape(xs, newshape=[xs.shape[0], 1])
|
392
|
-
xs = np.tile(xs, reps=[1, bboxes.shape[0]])
|
393
|
-
ys = np.reshape(ys, newshape=[ys.shape[0], 1])
|
394
|
-
ys = np.tile(ys, reps=[1, bboxes.shape[0]])
|
395
|
-
|
396
|
-
l_res = xs - bboxes[:, 0]
|
397
|
-
r_res = bboxes[:, 2] - xs
|
398
|
-
t_res = ys - bboxes[:, 1]
|
399
|
-
b_res = bboxes[:, 3] - ys
|
400
|
-
reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
|
401
|
-
if self.center_sampling_radius > 0:
|
402
|
-
is_inside_box = self._check_inside_boxes_limited(
|
403
|
-
bboxes, xs, ys, num_points_each_level)
|
404
|
-
else:
|
405
|
-
is_inside_box = np.min(reg_targets, axis=2) > 0
|
406
|
-
# check if the targets is inside the corresponding level
|
407
|
-
max_reg_targets = np.max(reg_targets, axis=2)
|
408
|
-
lower_bound = np.tile(
|
409
|
-
np.expand_dims(
|
410
|
-
object_scale_exp[:, 0], axis=1),
|
411
|
-
reps=[1, max_reg_targets.shape[1]])
|
412
|
-
high_bound = np.tile(
|
413
|
-
np.expand_dims(
|
414
|
-
object_scale_exp[:, 1], axis=1),
|
415
|
-
reps=[1, max_reg_targets.shape[1]])
|
416
|
-
is_match_current_level = \
|
417
|
-
(max_reg_targets > lower_bound) & \
|
418
|
-
(max_reg_targets < high_bound)
|
419
|
-
points2gtarea = np.tile(
|
420
|
-
np.expand_dims(
|
421
|
-
gt_area, axis=0), reps=[xs.shape[0], 1])
|
422
|
-
points2gtarea[is_inside_box == 0] = self.INF
|
423
|
-
points2gtarea[is_match_current_level == 0] = self.INF
|
424
|
-
points2min_area = points2gtarea.min(axis=1)
|
425
|
-
points2min_area_ind = points2gtarea.argmin(axis=1)
|
426
|
-
labels = gt_class[points2min_area_ind] + 1
|
427
|
-
labels[points2min_area == self.INF] = 0
|
428
|
-
reg_targets = reg_targets[range(xs.shape[0]), points2min_area_ind]
|
429
|
-
ctn_targets = np.sqrt((reg_targets[:, [0, 2]].min(axis=1) / \
|
430
|
-
reg_targets[:, [0, 2]].max(axis=1)) * \
|
431
|
-
(reg_targets[:, [1, 3]].min(axis=1) / \
|
432
|
-
reg_targets[:, [1, 3]].max(axis=1))).astype(np.float32)
|
433
|
-
ctn_targets = np.reshape(
|
434
|
-
ctn_targets, newshape=[ctn_targets.shape[0], 1])
|
435
|
-
ctn_targets[labels <= 0] = 0
|
436
|
-
pos_ind = np.nonzero(labels != 0)
|
437
|
-
reg_targets_pos = reg_targets[pos_ind[0], :]
|
438
|
-
split_sections = []
|
439
|
-
beg = 0
|
440
|
-
for lvl in range(len(num_points_each_level)):
|
441
|
-
end = beg + num_points_each_level[lvl]
|
442
|
-
split_sections.append(end)
|
443
|
-
beg = end
|
444
|
-
labels_by_level = np.split(labels, split_sections, axis=0)
|
445
|
-
reg_targets_by_level = np.split(
|
446
|
-
reg_targets, split_sections, axis=0)
|
447
|
-
ctn_targets_by_level = np.split(
|
448
|
-
ctn_targets, split_sections, axis=0)
|
449
|
-
for lvl in range(len(self.downsample_ratios)):
|
450
|
-
grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
|
451
|
-
grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
|
452
|
-
if self.norm_reg_targets:
|
453
|
-
sample['reg_target{}'.format(lvl)] = \
|
454
|
-
np.reshape(
|
455
|
-
reg_targets_by_level[lvl] / \
|
456
|
-
self.downsample_ratios[lvl],
|
457
|
-
newshape=[grid_h, grid_w, 4])
|
458
|
-
else:
|
459
|
-
sample['reg_target{}'.format(lvl)] = np.reshape(
|
460
|
-
reg_targets_by_level[lvl],
|
461
|
-
newshape=[grid_h, grid_w, 4])
|
462
|
-
sample['labels{}'.format(lvl)] = np.reshape(
|
463
|
-
labels_by_level[lvl], newshape=[grid_h, grid_w, 1])
|
464
|
-
sample['centerness{}'.format(lvl)] = np.reshape(
|
465
|
-
ctn_targets_by_level[lvl], newshape=[grid_h, grid_w, 1])
|
466
|
-
|
467
|
-
sample.pop('is_crowd', None)
|
468
|
-
sample.pop('difficult', None)
|
469
|
-
sample.pop('gt_class', None)
|
470
|
-
sample.pop('gt_bbox', None)
|
471
|
-
return samples
|
472
|
-
|
473
|
-
|
474
|
-
@register_op
|
475
|
-
class Gt2TTFTarget(BaseOperator):
|
476
|
-
__shared__ = ['num_classes']
|
477
|
-
"""
|
478
|
-
Gt2TTFTarget
|
479
|
-
Generate TTFNet targets by ground truth data
|
480
|
-
|
481
|
-
Args:
|
482
|
-
num_classes(int): the number of classes.
|
483
|
-
down_ratio(int): the down ratio from images to heatmap, 4 by default.
|
484
|
-
alpha(float): the alpha parameter to generate gaussian target.
|
485
|
-
0.54 by default.
|
486
|
-
"""
|
487
|
-
|
488
|
-
def __init__(self, num_classes=80, down_ratio=4, alpha=0.54):
|
489
|
-
super(Gt2TTFTarget, self).__init__()
|
490
|
-
self.down_ratio = down_ratio
|
491
|
-
self.num_classes = num_classes
|
492
|
-
self.alpha = alpha
|
493
|
-
|
494
|
-
def __call__(self, samples, context=None):
|
495
|
-
output_size = samples[0]['image'].shape[1]
|
496
|
-
feat_size = output_size // self.down_ratio
|
497
|
-
for sample in samples:
|
498
|
-
heatmap = np.zeros(
|
499
|
-
(self.num_classes, feat_size, feat_size), dtype='float32')
|
500
|
-
box_target = np.ones(
|
501
|
-
(4, feat_size, feat_size), dtype='float32') * -1
|
502
|
-
reg_weight = np.zeros((1, feat_size, feat_size), dtype='float32')
|
503
|
-
|
504
|
-
gt_bbox = sample['gt_bbox']
|
505
|
-
gt_class = sample['gt_class']
|
506
|
-
|
507
|
-
bbox_w = gt_bbox[:, 2] - gt_bbox[:, 0] + 1
|
508
|
-
bbox_h = gt_bbox[:, 3] - gt_bbox[:, 1] + 1
|
509
|
-
area = bbox_w * bbox_h
|
510
|
-
boxes_areas_log = np.log(area)
|
511
|
-
boxes_ind = np.argsort(boxes_areas_log, axis=0)[::-1]
|
512
|
-
boxes_area_topk_log = boxes_areas_log[boxes_ind]
|
513
|
-
gt_bbox = gt_bbox[boxes_ind]
|
514
|
-
gt_class = gt_class[boxes_ind]
|
515
|
-
|
516
|
-
feat_gt_bbox = gt_bbox / self.down_ratio
|
517
|
-
feat_gt_bbox = np.clip(feat_gt_bbox, 0, feat_size - 1)
|
518
|
-
feat_hs, feat_ws = (feat_gt_bbox[:, 3] - feat_gt_bbox[:, 1],
|
519
|
-
feat_gt_bbox[:, 2] - feat_gt_bbox[:, 0])
|
520
|
-
|
521
|
-
ct_inds = np.stack(
|
522
|
-
[(gt_bbox[:, 0] + gt_bbox[:, 2]) / 2,
|
523
|
-
(gt_bbox[:, 1] + gt_bbox[:, 3]) / 2],
|
524
|
-
axis=1) / self.down_ratio
|
525
|
-
|
526
|
-
h_radiuses_alpha = (feat_hs / 2. * self.alpha).astype('int32')
|
527
|
-
w_radiuses_alpha = (feat_ws / 2. * self.alpha).astype('int32')
|
528
|
-
|
529
|
-
for k in range(len(gt_bbox)):
|
530
|
-
cls_id = gt_class[k]
|
531
|
-
fake_heatmap = np.zeros(
|
532
|
-
(feat_size, feat_size), dtype='float32')
|
533
|
-
self.draw_truncate_gaussian(fake_heatmap, ct_inds[k],
|
534
|
-
h_radiuses_alpha[k],
|
535
|
-
w_radiuses_alpha[k])
|
536
|
-
|
537
|
-
heatmap[cls_id] = np.maximum(heatmap[cls_id], fake_heatmap)
|
538
|
-
box_target_inds = fake_heatmap > 0
|
539
|
-
box_target[:, box_target_inds] = gt_bbox[k][:, None]
|
540
|
-
|
541
|
-
local_heatmap = fake_heatmap[box_target_inds]
|
542
|
-
ct_div = np.sum(local_heatmap)
|
543
|
-
local_heatmap *= boxes_area_topk_log[k]
|
544
|
-
reg_weight[0, box_target_inds] = local_heatmap / ct_div
|
545
|
-
sample['ttf_heatmap'] = heatmap
|
546
|
-
sample['ttf_box_target'] = box_target
|
547
|
-
sample['ttf_reg_weight'] = reg_weight
|
548
|
-
sample.pop('is_crowd', None)
|
549
|
-
sample.pop('difficult', None)
|
550
|
-
sample.pop('gt_class', None)
|
551
|
-
sample.pop('gt_bbox', None)
|
552
|
-
sample.pop('gt_score', None)
|
553
|
-
return samples
|
554
|
-
|
555
|
-
def draw_truncate_gaussian(self, heatmap, center, h_radius, w_radius):
|
556
|
-
h, w = 2 * h_radius + 1, 2 * w_radius + 1
|
557
|
-
sigma_x = w / 6
|
558
|
-
sigma_y = h / 6
|
559
|
-
gaussian = gaussian2D((h, w), sigma_x, sigma_y)
|
560
|
-
|
561
|
-
x, y = int(center[0]), int(center[1])
|
562
|
-
|
563
|
-
height, width = heatmap.shape[0:2]
|
564
|
-
|
565
|
-
left, right = min(x, w_radius), min(width - x, w_radius + 1)
|
566
|
-
top, bottom = min(y, h_radius), min(height - y, h_radius + 1)
|
567
|
-
|
568
|
-
masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
|
569
|
-
masked_gaussian = gaussian[h_radius - top:h_radius + bottom, w_radius -
|
570
|
-
left:w_radius + right]
|
571
|
-
if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
|
572
|
-
heatmap[y - top:y + bottom, x - left:x + right] = np.maximum(
|
573
|
-
masked_heatmap, masked_gaussian)
|
574
|
-
return heatmap
|
575
|
-
|
576
|
-
|
577
|
-
@register_op
|
578
|
-
class Gt2Solov2Target(BaseOperator):
|
579
|
-
"""Assign mask target and labels in SOLOv2 network.
|
580
|
-
Args:
|
581
|
-
num_grids (list): The list of feature map grids size.
|
582
|
-
scale_ranges (list): The list of mask boundary range.
|
583
|
-
coord_sigma (float): The coefficient of coordinate area length.
|
584
|
-
sampling_ratio (float): The ratio of down sampling.
|
585
|
-
"""
|
586
|
-
|
587
|
-
def __init__(self,
|
588
|
-
num_grids=[40, 36, 24, 16, 12],
|
589
|
-
scale_ranges=[[1, 96], [48, 192], [96, 384], [192, 768],
|
590
|
-
[384, 2048]],
|
591
|
-
coord_sigma=0.2,
|
592
|
-
sampling_ratio=4.0):
|
593
|
-
super(Gt2Solov2Target, self).__init__()
|
594
|
-
self.num_grids = num_grids
|
595
|
-
self.scale_ranges = scale_ranges
|
596
|
-
self.coord_sigma = coord_sigma
|
597
|
-
self.sampling_ratio = sampling_ratio
|
598
|
-
|
599
|
-
def _scale_size(self, im, scale):
|
600
|
-
h, w = im.shape[:2]
|
601
|
-
new_size = (int(w * float(scale) + 0.5), int(h * float(scale) + 0.5))
|
602
|
-
resized_img = cv2.resize(
|
603
|
-
im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
|
604
|
-
return resized_img
|
605
|
-
|
606
|
-
def __call__(self, samples, context=None):
|
607
|
-
sample_id = 0
|
608
|
-
max_ins_num = [0] * len(self.num_grids)
|
609
|
-
for sample in samples:
|
610
|
-
gt_bboxes_raw = sample['gt_bbox']
|
611
|
-
gt_labels_raw = sample['gt_class'] + 1
|
612
|
-
im_c, im_h, im_w = sample['image'].shape[:]
|
613
|
-
gt_masks_raw = sample['gt_segm'].astype(np.uint8)
|
614
|
-
mask_feat_size = [
|
615
|
-
int(im_h / self.sampling_ratio),
|
616
|
-
int(im_w / self.sampling_ratio)
|
617
|
-
]
|
618
|
-
gt_areas = np.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
|
619
|
-
(gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
|
620
|
-
ins_ind_label_list = []
|
621
|
-
idx = 0
|
622
|
-
for (lower_bound, upper_bound), num_grid \
|
623
|
-
in zip(self.scale_ranges, self.num_grids):
|
624
|
-
|
625
|
-
hit_indices = ((gt_areas >= lower_bound) &
|
626
|
-
(gt_areas <= upper_bound)).nonzero()[0]
|
627
|
-
num_ins = len(hit_indices)
|
628
|
-
|
629
|
-
ins_label = []
|
630
|
-
grid_order = []
|
631
|
-
cate_label = np.zeros([num_grid, num_grid], dtype=np.int64)
|
632
|
-
ins_ind_label = np.zeros([num_grid**2], dtype=np.bool)
|
633
|
-
|
634
|
-
if num_ins == 0:
|
635
|
-
ins_label = np.zeros(
|
636
|
-
[1, mask_feat_size[0], mask_feat_size[1]],
|
637
|
-
dtype=np.uint8)
|
638
|
-
ins_ind_label_list.append(ins_ind_label)
|
639
|
-
sample['cate_label{}'.format(idx)] = cate_label.flatten()
|
640
|
-
sample['ins_label{}'.format(idx)] = ins_label
|
641
|
-
sample['grid_order{}'.format(idx)] = np.asarray(
|
642
|
-
[sample_id * num_grid * num_grid + 0], dtype=np.int32)
|
643
|
-
idx += 1
|
644
|
-
continue
|
645
|
-
gt_bboxes = gt_bboxes_raw[hit_indices]
|
646
|
-
gt_labels = gt_labels_raw[hit_indices]
|
647
|
-
gt_masks = gt_masks_raw[hit_indices, ...]
|
648
|
-
|
649
|
-
half_ws = 0.5 * (
|
650
|
-
gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.coord_sigma
|
651
|
-
half_hs = 0.5 * (
|
652
|
-
gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.coord_sigma
|
653
|
-
|
654
|
-
for seg_mask, gt_label, half_h, half_w in zip(
|
655
|
-
gt_masks, gt_labels, half_hs, half_ws):
|
656
|
-
if seg_mask.sum() == 0:
|
657
|
-
continue
|
658
|
-
# mass center
|
659
|
-
upsampled_size = (mask_feat_size[0] * 4,
|
660
|
-
mask_feat_size[1] * 4)
|
661
|
-
center_h, center_w = ndimage.measurements.center_of_mass(
|
662
|
-
seg_mask)
|
663
|
-
coord_w = int(
|
664
|
-
(center_w / upsampled_size[1]) // (1. / num_grid))
|
665
|
-
coord_h = int(
|
666
|
-
(center_h / upsampled_size[0]) // (1. / num_grid))
|
667
|
-
|
668
|
-
# left, top, right, down
|
669
|
-
top_box = max(0,
|
670
|
-
int(((center_h - half_h) / upsampled_size[0])
|
671
|
-
// (1. / num_grid)))
|
672
|
-
down_box = min(
|
673
|
-
num_grid - 1,
|
674
|
-
int(((center_h + half_h) / upsampled_size[0]) //
|
675
|
-
(1. / num_grid)))
|
676
|
-
left_box = max(
|
677
|
-
0,
|
678
|
-
int(((center_w - half_w) / upsampled_size[1]) //
|
679
|
-
(1. / num_grid)))
|
680
|
-
right_box = min(num_grid - 1,
|
681
|
-
int(((center_w + half_w) /
|
682
|
-
upsampled_size[1]) //
|
683
|
-
(1. / num_grid)))
|
684
|
-
|
685
|
-
top = max(top_box, coord_h - 1)
|
686
|
-
down = min(down_box, coord_h + 1)
|
687
|
-
left = max(coord_w - 1, left_box)
|
688
|
-
right = min(right_box, coord_w + 1)
|
689
|
-
|
690
|
-
cate_label[top:(down + 1), left:(right + 1)] = gt_label
|
691
|
-
seg_mask = self._scale_size(
|
692
|
-
seg_mask, scale=1. / self.sampling_ratio)
|
693
|
-
for i in range(top, down + 1):
|
694
|
-
for j in range(left, right + 1):
|
695
|
-
label = int(i * num_grid + j)
|
696
|
-
cur_ins_label = np.zeros(
|
697
|
-
[mask_feat_size[0], mask_feat_size[1]],
|
698
|
-
dtype=np.uint8)
|
699
|
-
cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[
|
700
|
-
1]] = seg_mask
|
701
|
-
ins_label.append(cur_ins_label)
|
702
|
-
ins_ind_label[label] = True
|
703
|
-
grid_order.append(sample_id * num_grid * num_grid +
|
704
|
-
label)
|
705
|
-
if ins_label == []:
|
706
|
-
ins_label = np.zeros(
|
707
|
-
[1, mask_feat_size[0], mask_feat_size[1]],
|
708
|
-
dtype=np.uint8)
|
709
|
-
ins_ind_label_list.append(ins_ind_label)
|
710
|
-
sample['cate_label{}'.format(idx)] = cate_label.flatten()
|
711
|
-
sample['ins_label{}'.format(idx)] = ins_label
|
712
|
-
sample['grid_order{}'.format(idx)] = np.asarray(
|
713
|
-
[sample_id * num_grid * num_grid + 0], dtype=np.int32)
|
714
|
-
else:
|
715
|
-
ins_label = np.stack(ins_label, axis=0)
|
716
|
-
ins_ind_label_list.append(ins_ind_label)
|
717
|
-
sample['cate_label{}'.format(idx)] = cate_label.flatten()
|
718
|
-
sample['ins_label{}'.format(idx)] = ins_label
|
719
|
-
sample['grid_order{}'.format(idx)] = np.asarray(
|
720
|
-
grid_order, dtype=np.int32)
|
721
|
-
assert len(grid_order) > 0
|
722
|
-
max_ins_num[idx] = max(
|
723
|
-
max_ins_num[idx],
|
724
|
-
sample['ins_label{}'.format(idx)].shape[0])
|
725
|
-
idx += 1
|
726
|
-
ins_ind_labels = np.concatenate([
|
727
|
-
ins_ind_labels_level_img
|
728
|
-
for ins_ind_labels_level_img in ins_ind_label_list
|
729
|
-
])
|
730
|
-
fg_num = np.sum(ins_ind_labels)
|
731
|
-
sample['fg_num'] = fg_num
|
732
|
-
sample_id += 1
|
733
|
-
|
734
|
-
sample.pop('is_crowd')
|
735
|
-
sample.pop('gt_class')
|
736
|
-
sample.pop('gt_bbox')
|
737
|
-
sample.pop('gt_poly')
|
738
|
-
sample.pop('gt_segm')
|
739
|
-
|
740
|
-
# padding batch
|
741
|
-
for data in samples:
|
742
|
-
for idx in range(len(self.num_grids)):
|
743
|
-
gt_ins_data = np.zeros(
|
744
|
-
[
|
745
|
-
max_ins_num[idx],
|
746
|
-
data['ins_label{}'.format(idx)].shape[1],
|
747
|
-
data['ins_label{}'.format(idx)].shape[2]
|
748
|
-
],
|
749
|
-
dtype=np.uint8)
|
750
|
-
gt_ins_data[0:data['ins_label{}'.format(idx)].shape[
|
751
|
-
0], :, :] = data['ins_label{}'.format(idx)]
|
752
|
-
gt_grid_order = np.zeros([max_ins_num[idx]], dtype=np.int32)
|
753
|
-
gt_grid_order[0:data['grid_order{}'.format(idx)].shape[
|
754
|
-
0]] = data['grid_order{}'.format(idx)]
|
755
|
-
data['ins_label{}'.format(idx)] = gt_ins_data
|
756
|
-
data['grid_order{}'.format(idx)] = gt_grid_order
|
757
|
-
|
758
|
-
return samples
|