paddlex 2.0.0rc4__py3-none-any.whl → 3.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1087) hide show
  1. paddlex/.version +1 -0
  2. paddlex/__init__.py +51 -18
  3. paddlex/__main__.py +40 -0
  4. paddlex/configs/anomaly_detection/STFPM.yaml +41 -0
  5. paddlex/configs/doc_text_orientation/PP-LCNet_x1_0_doc_ori.yaml +41 -0
  6. paddlex/configs/face_detection/BlazeFace-FPN-SSH.yaml +40 -0
  7. paddlex/configs/face_detection/BlazeFace.yaml +40 -0
  8. paddlex/configs/face_detection/PP-YOLOE_plus-S_face.yaml +40 -0
  9. paddlex/configs/face_detection/PicoDet_LCNet_x2_5_face.yaml +40 -0
  10. paddlex/configs/face_recognition/MobileFaceNet.yaml +44 -0
  11. paddlex/configs/face_recognition/ResNet50_face.yaml +44 -0
  12. paddlex/configs/formula_recognition/LaTeX_OCR_rec.yaml +40 -0
  13. paddlex/configs/general_recognition/PP-ShiTuV2_rec.yaml +42 -0
  14. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_base.yaml +42 -0
  15. paddlex/configs/general_recognition/PP-ShiTuV2_rec_CLIP_vit_large.yaml +41 -0
  16. paddlex/configs/human_detection/PP-YOLOE-L_human.yaml +42 -0
  17. paddlex/configs/human_detection/PP-YOLOE-S_human.yaml +42 -0
  18. paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml +41 -0
  19. paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml +41 -0
  20. paddlex/configs/image_classification/ConvNeXt_base_224.yaml +41 -0
  21. paddlex/configs/image_classification/ConvNeXt_base_384.yaml +41 -0
  22. paddlex/configs/image_classification/ConvNeXt_large_224.yaml +41 -0
  23. paddlex/configs/image_classification/ConvNeXt_large_384.yaml +41 -0
  24. paddlex/configs/image_classification/ConvNeXt_small.yaml +41 -0
  25. paddlex/configs/image_classification/ConvNeXt_tiny.yaml +41 -0
  26. paddlex/configs/image_classification/FasterNet-L.yaml +40 -0
  27. paddlex/configs/image_classification/FasterNet-M.yaml +40 -0
  28. paddlex/configs/image_classification/FasterNet-S.yaml +40 -0
  29. paddlex/configs/image_classification/FasterNet-T0.yaml +40 -0
  30. paddlex/configs/image_classification/FasterNet-T1.yaml +40 -0
  31. paddlex/configs/image_classification/FasterNet-T2.yaml +40 -0
  32. paddlex/configs/image_classification/MobileNetV1_x0_25.yaml +41 -0
  33. paddlex/configs/image_classification/MobileNetV1_x0_5.yaml +41 -0
  34. paddlex/configs/image_classification/MobileNetV1_x0_75.yaml +41 -0
  35. paddlex/configs/image_classification/MobileNetV1_x1_0.yaml +41 -0
  36. paddlex/configs/image_classification/MobileNetV2_x0_25.yaml +41 -0
  37. paddlex/configs/image_classification/MobileNetV2_x0_5.yaml +41 -0
  38. paddlex/configs/image_classification/MobileNetV2_x1_0.yaml +41 -0
  39. paddlex/configs/image_classification/MobileNetV2_x1_5.yaml +41 -0
  40. paddlex/configs/image_classification/MobileNetV2_x2_0.yaml +41 -0
  41. paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml +41 -0
  42. paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml +41 -0
  43. paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml +41 -0
  44. paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml +41 -0
  45. paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml +41 -0
  46. paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml +41 -0
  47. paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml +41 -0
  48. paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml +41 -0
  49. paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml +41 -0
  50. paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml +41 -0
  51. paddlex/configs/image_classification/MobileNetV4_conv_large.yaml +41 -0
  52. paddlex/configs/image_classification/MobileNetV4_conv_medium.yaml +41 -0
  53. paddlex/configs/image_classification/MobileNetV4_conv_small.yaml +41 -0
  54. paddlex/configs/image_classification/MobileNetV4_hybrid_large.yaml +41 -0
  55. paddlex/configs/image_classification/MobileNetV4_hybrid_medium.yaml +41 -0
  56. paddlex/configs/image_classification/PP-HGNetV2-B0.yaml +41 -0
  57. paddlex/configs/image_classification/PP-HGNetV2-B1.yaml +41 -0
  58. paddlex/configs/image_classification/PP-HGNetV2-B2.yaml +41 -0
  59. paddlex/configs/image_classification/PP-HGNetV2-B3.yaml +41 -0
  60. paddlex/configs/image_classification/PP-HGNetV2-B4.yaml +41 -0
  61. paddlex/configs/image_classification/PP-HGNetV2-B5.yaml +41 -0
  62. paddlex/configs/image_classification/PP-HGNetV2-B6.yaml +41 -0
  63. paddlex/configs/image_classification/PP-HGNet_base.yaml +41 -0
  64. paddlex/configs/image_classification/PP-HGNet_small.yaml +41 -0
  65. paddlex/configs/image_classification/PP-HGNet_tiny.yaml +41 -0
  66. paddlex/configs/image_classification/PP-LCNetV2_base.yaml +41 -0
  67. paddlex/configs/image_classification/PP-LCNetV2_large.yaml +41 -0
  68. paddlex/configs/image_classification/PP-LCNetV2_small.yaml +41 -0
  69. paddlex/configs/image_classification/PP-LCNet_x0_25.yaml +41 -0
  70. paddlex/configs/image_classification/PP-LCNet_x0_35.yaml +41 -0
  71. paddlex/configs/image_classification/PP-LCNet_x0_5.yaml +41 -0
  72. paddlex/configs/image_classification/PP-LCNet_x0_75.yaml +41 -0
  73. paddlex/configs/image_classification/PP-LCNet_x1_0.yaml +41 -0
  74. paddlex/configs/image_classification/PP-LCNet_x1_5.yaml +41 -0
  75. paddlex/configs/image_classification/PP-LCNet_x2_0.yaml +41 -0
  76. paddlex/configs/image_classification/PP-LCNet_x2_5.yaml +41 -0
  77. paddlex/configs/image_classification/ResNet101.yaml +41 -0
  78. paddlex/configs/image_classification/ResNet101_vd.yaml +41 -0
  79. paddlex/configs/image_classification/ResNet152.yaml +41 -0
  80. paddlex/configs/image_classification/ResNet152_vd.yaml +41 -0
  81. paddlex/configs/image_classification/ResNet18.yaml +41 -0
  82. paddlex/configs/image_classification/ResNet18_vd.yaml +41 -0
  83. paddlex/configs/image_classification/ResNet200_vd.yaml +41 -0
  84. paddlex/configs/image_classification/ResNet34.yaml +41 -0
  85. paddlex/configs/image_classification/ResNet34_vd.yaml +41 -0
  86. paddlex/configs/image_classification/ResNet50.yaml +41 -0
  87. paddlex/configs/image_classification/ResNet50_vd.yaml +41 -0
  88. paddlex/configs/image_classification/StarNet-S1.yaml +41 -0
  89. paddlex/configs/image_classification/StarNet-S2.yaml +41 -0
  90. paddlex/configs/image_classification/StarNet-S3.yaml +41 -0
  91. paddlex/configs/image_classification/StarNet-S4.yaml +41 -0
  92. paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml +41 -0
  93. paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml +41 -0
  94. paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml +41 -0
  95. paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml +41 -0
  96. paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml +41 -0
  97. paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml +41 -0
  98. paddlex/configs/image_unwarping/UVDoc.yaml +12 -0
  99. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-FPN.yaml +40 -0
  100. paddlex/configs/instance_segmentation/Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml +40 -0
  101. paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml +40 -0
  102. paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml +40 -0
  103. paddlex/configs/instance_segmentation/Mask-RT-DETR-M.yaml +40 -0
  104. paddlex/configs/instance_segmentation/Mask-RT-DETR-S.yaml +40 -0
  105. paddlex/configs/instance_segmentation/Mask-RT-DETR-X.yaml +40 -0
  106. paddlex/configs/instance_segmentation/MaskRCNN-ResNeXt101-vd-FPN.yaml +39 -0
  107. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-FPN.yaml +40 -0
  108. paddlex/configs/instance_segmentation/MaskRCNN-ResNet101-vd-FPN.yaml +40 -0
  109. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-FPN.yaml +40 -0
  110. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50-vd-FPN.yaml +40 -0
  111. paddlex/configs/instance_segmentation/MaskRCNN-ResNet50.yaml +40 -0
  112. paddlex/configs/instance_segmentation/PP-YOLOE_seg-S.yaml +40 -0
  113. paddlex/configs/instance_segmentation/SOLOv2.yaml +40 -0
  114. paddlex/configs/mainbody_detection/PP-ShiTuV2_det.yaml +41 -0
  115. paddlex/configs/multilabel_classification/CLIP_vit_base_patch16_448_ML.yaml +41 -0
  116. paddlex/configs/multilabel_classification/PP-HGNetV2-B0_ML.yaml +41 -0
  117. paddlex/configs/multilabel_classification/PP-HGNetV2-B4_ML.yaml +41 -0
  118. paddlex/configs/multilabel_classification/PP-HGNetV2-B6_ML.yaml +41 -0
  119. paddlex/configs/multilabel_classification/PP-LCNet_x1_0_ML.yaml +41 -0
  120. paddlex/configs/multilabel_classification/ResNet50_ML.yaml +41 -0
  121. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-FPN.yaml +41 -0
  122. paddlex/configs/object_detection/Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  123. paddlex/configs/object_detection/CenterNet-DLA-34.yaml +41 -0
  124. paddlex/configs/object_detection/CenterNet-ResNet50.yaml +41 -0
  125. paddlex/configs/object_detection/DETR-R50.yaml +42 -0
  126. paddlex/configs/object_detection/FCOS-ResNet50.yaml +41 -0
  127. paddlex/configs/object_detection/FasterRCNN-ResNeXt101-vd-FPN.yaml +42 -0
  128. paddlex/configs/object_detection/FasterRCNN-ResNet101-FPN.yaml +42 -0
  129. paddlex/configs/object_detection/FasterRCNN-ResNet101.yaml +42 -0
  130. paddlex/configs/object_detection/FasterRCNN-ResNet34-FPN.yaml +42 -0
  131. paddlex/configs/object_detection/FasterRCNN-ResNet50-FPN.yaml +42 -0
  132. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-FPN.yaml +42 -0
  133. paddlex/configs/object_detection/FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml +42 -0
  134. paddlex/configs/object_detection/FasterRCNN-ResNet50.yaml +42 -0
  135. paddlex/configs/object_detection/FasterRCNN-Swin-Tiny-FPN.yaml +42 -0
  136. paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml +40 -0
  137. paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml +40 -0
  138. paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml +40 -0
  139. paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml +40 -0
  140. paddlex/configs/object_detection/PicoDet-L.yaml +40 -0
  141. paddlex/configs/object_detection/PicoDet-M.yaml +42 -0
  142. paddlex/configs/object_detection/PicoDet-S.yaml +40 -0
  143. paddlex/configs/object_detection/PicoDet-XS.yaml +42 -0
  144. paddlex/configs/object_detection/RT-DETR-H.yaml +40 -0
  145. paddlex/configs/object_detection/RT-DETR-L.yaml +40 -0
  146. paddlex/configs/object_detection/RT-DETR-R18.yaml +40 -0
  147. paddlex/configs/object_detection/RT-DETR-R50.yaml +40 -0
  148. paddlex/configs/object_detection/RT-DETR-X.yaml +40 -0
  149. paddlex/configs/object_detection/YOLOX-L.yaml +40 -0
  150. paddlex/configs/object_detection/YOLOX-M.yaml +40 -0
  151. paddlex/configs/object_detection/YOLOX-N.yaml +40 -0
  152. paddlex/configs/object_detection/YOLOX-S.yaml +40 -0
  153. paddlex/configs/object_detection/YOLOX-T.yaml +40 -0
  154. paddlex/configs/object_detection/YOLOX-X.yaml +40 -0
  155. paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml +40 -0
  156. paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml +40 -0
  157. paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml +40 -0
  158. paddlex/configs/pedestrian_attribute/PP-LCNet_x1_0_pedestrian_attribute.yaml +41 -0
  159. paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml +40 -0
  160. paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml +40 -0
  161. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml +40 -0
  162. paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml +40 -0
  163. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml +40 -0
  164. paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml +40 -0
  165. paddlex/configs/semantic_segmentation/PP-LiteSeg-B.yaml +41 -0
  166. paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml +40 -0
  167. paddlex/configs/semantic_segmentation/SeaFormer_base.yaml +40 -0
  168. paddlex/configs/semantic_segmentation/SeaFormer_large.yaml +40 -0
  169. paddlex/configs/semantic_segmentation/SeaFormer_small.yaml +40 -0
  170. paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml +40 -0
  171. paddlex/configs/semantic_segmentation/SegFormer-B0.yaml +40 -0
  172. paddlex/configs/semantic_segmentation/SegFormer-B1.yaml +40 -0
  173. paddlex/configs/semantic_segmentation/SegFormer-B2.yaml +40 -0
  174. paddlex/configs/semantic_segmentation/SegFormer-B3.yaml +40 -0
  175. paddlex/configs/semantic_segmentation/SegFormer-B4.yaml +40 -0
  176. paddlex/configs/semantic_segmentation/SegFormer-B5.yaml +40 -0
  177. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-L.yaml +42 -0
  178. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-S.yaml +42 -0
  179. paddlex/configs/small_object_detection/PP-YOLOE_plus_SOD-largesize-L.yaml +42 -0
  180. paddlex/configs/structure_analysis/PicoDet-L_layout_17cls.yaml +40 -0
  181. paddlex/configs/structure_analysis/PicoDet-L_layout_3cls.yaml +40 -0
  182. paddlex/configs/structure_analysis/PicoDet-S_layout_17cls.yaml +40 -0
  183. paddlex/configs/structure_analysis/PicoDet-S_layout_3cls.yaml +40 -0
  184. paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml +40 -0
  185. paddlex/configs/structure_analysis/PicoDet_layout_1x_table.yaml +40 -0
  186. paddlex/configs/structure_analysis/RT-DETR-H_layout_17cls.yaml +40 -0
  187. paddlex/configs/structure_analysis/RT-DETR-H_layout_3cls.yaml +40 -0
  188. paddlex/configs/table_recognition/SLANet.yaml +39 -0
  189. paddlex/configs/table_recognition/SLANet_plus.yaml +39 -0
  190. paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml +40 -0
  191. paddlex/configs/text_detection/PP-OCRv4_server_det.yaml +40 -0
  192. paddlex/configs/text_detection_seal/PP-OCRv4_mobile_seal_det.yaml +40 -0
  193. paddlex/configs/text_detection_seal/PP-OCRv4_server_seal_det.yaml +40 -0
  194. paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml +39 -0
  195. paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml +39 -0
  196. paddlex/configs/text_recognition/ch_RepSVTR_rec.yaml +39 -0
  197. paddlex/configs/text_recognition/ch_SVTRv2_rec.yaml +39 -0
  198. paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml +37 -0
  199. paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml +37 -0
  200. paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml +37 -0
  201. paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml +37 -0
  202. paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml +37 -0
  203. paddlex/configs/ts_classification/TimesNet_cls.yaml +37 -0
  204. paddlex/configs/ts_forecast/DLinear.yaml +38 -0
  205. paddlex/configs/ts_forecast/NLinear.yaml +38 -0
  206. paddlex/configs/ts_forecast/Nonstationary.yaml +38 -0
  207. paddlex/configs/ts_forecast/PatchTST.yaml +38 -0
  208. paddlex/configs/ts_forecast/RLinear.yaml +38 -0
  209. paddlex/configs/ts_forecast/TiDE.yaml +38 -0
  210. paddlex/configs/ts_forecast/TimesNet.yaml +38 -0
  211. paddlex/configs/vehicle_attribute/PP-LCNet_x1_0_vehicle_attribute.yaml +41 -0
  212. paddlex/configs/vehicle_detection/PP-YOLOE-L_vehicle.yaml +41 -0
  213. paddlex/configs/vehicle_detection/PP-YOLOE-S_vehicle.yaml +42 -0
  214. paddlex/engine.py +54 -0
  215. paddlex/inference/__init__.py +17 -0
  216. paddlex/inference/components/__init__.py +18 -0
  217. paddlex/inference/components/base.py +292 -0
  218. paddlex/inference/components/llm/__init__.py +25 -0
  219. paddlex/inference/components/llm/base.py +65 -0
  220. paddlex/inference/components/llm/erniebot.py +212 -0
  221. paddlex/inference/components/paddle_predictor/__init__.py +20 -0
  222. paddlex/inference/components/paddle_predictor/predictor.py +332 -0
  223. paddlex/inference/components/retrieval/__init__.py +15 -0
  224. paddlex/inference/components/retrieval/faiss.py +359 -0
  225. paddlex/inference/components/task_related/__init__.py +33 -0
  226. paddlex/inference/components/task_related/clas.py +124 -0
  227. paddlex/inference/components/task_related/det.py +284 -0
  228. paddlex/inference/components/task_related/instance_seg.py +89 -0
  229. paddlex/inference/components/task_related/seal_det_warp.py +940 -0
  230. paddlex/inference/components/task_related/seg.py +40 -0
  231. paddlex/inference/components/task_related/table_rec.py +191 -0
  232. paddlex/inference/components/task_related/text_det.py +895 -0
  233. paddlex/inference/components/task_related/text_rec.py +353 -0
  234. paddlex/inference/components/task_related/warp.py +43 -0
  235. paddlex/inference/components/transforms/__init__.py +16 -0
  236. paddlex/inference/components/transforms/image/__init__.py +15 -0
  237. paddlex/inference/components/transforms/image/common.py +598 -0
  238. paddlex/inference/components/transforms/image/funcs.py +58 -0
  239. paddlex/inference/components/transforms/read_data.py +67 -0
  240. paddlex/inference/components/transforms/ts/__init__.py +15 -0
  241. paddlex/inference/components/transforms/ts/common.py +393 -0
  242. paddlex/inference/components/transforms/ts/funcs.py +424 -0
  243. paddlex/inference/models/__init__.py +106 -0
  244. paddlex/inference/models/anomaly_detection.py +87 -0
  245. paddlex/inference/models/base/__init__.py +16 -0
  246. paddlex/inference/models/base/base_predictor.py +76 -0
  247. paddlex/inference/models/base/basic_predictor.py +122 -0
  248. paddlex/inference/models/face_recognition.py +21 -0
  249. paddlex/inference/models/formula_recognition.py +55 -0
  250. paddlex/inference/models/general_recognition.py +99 -0
  251. paddlex/inference/models/image_classification.py +101 -0
  252. paddlex/inference/models/image_unwarping.py +43 -0
  253. paddlex/inference/models/instance_segmentation.py +66 -0
  254. paddlex/inference/models/multilabel_classification.py +33 -0
  255. paddlex/inference/models/object_detection.py +129 -0
  256. paddlex/inference/models/semantic_segmentation.py +86 -0
  257. paddlex/inference/models/table_recognition.py +106 -0
  258. paddlex/inference/models/text_detection.py +105 -0
  259. paddlex/inference/models/text_recognition.py +78 -0
  260. paddlex/inference/models/ts_ad.py +68 -0
  261. paddlex/inference/models/ts_cls.py +57 -0
  262. paddlex/inference/models/ts_fc.py +73 -0
  263. paddlex/inference/pipelines/__init__.py +127 -0
  264. paddlex/inference/pipelines/attribute_recognition.py +92 -0
  265. paddlex/inference/pipelines/base.py +86 -0
  266. paddlex/inference/pipelines/face_recognition.py +49 -0
  267. paddlex/inference/pipelines/formula_recognition.py +102 -0
  268. paddlex/inference/pipelines/layout_parsing/__init__.py +15 -0
  269. paddlex/inference/pipelines/layout_parsing/layout_parsing.py +362 -0
  270. paddlex/inference/pipelines/ocr.py +80 -0
  271. paddlex/inference/pipelines/pp_shitu_v2.py +152 -0
  272. paddlex/inference/pipelines/ppchatocrv3/__init__.py +15 -0
  273. paddlex/inference/pipelines/ppchatocrv3/ch_prompt.yaml +14 -0
  274. paddlex/inference/pipelines/ppchatocrv3/ppchatocrv3.py +717 -0
  275. paddlex/inference/pipelines/ppchatocrv3/utils.py +168 -0
  276. paddlex/inference/pipelines/seal_recognition.py +152 -0
  277. paddlex/inference/pipelines/serving/__init__.py +17 -0
  278. paddlex/inference/pipelines/serving/_pipeline_apps/__init__.py +205 -0
  279. paddlex/inference/pipelines/serving/_pipeline_apps/anomaly_detection.py +80 -0
  280. paddlex/inference/pipelines/serving/_pipeline_apps/face_recognition.py +317 -0
  281. paddlex/inference/pipelines/serving/_pipeline_apps/formula_recognition.py +119 -0
  282. paddlex/inference/pipelines/serving/_pipeline_apps/image_classification.py +101 -0
  283. paddlex/inference/pipelines/serving/_pipeline_apps/instance_segmentation.py +112 -0
  284. paddlex/inference/pipelines/serving/_pipeline_apps/layout_parsing.py +205 -0
  285. paddlex/inference/pipelines/serving/_pipeline_apps/multi_label_image_classification.py +90 -0
  286. paddlex/inference/pipelines/serving/_pipeline_apps/object_detection.py +90 -0
  287. paddlex/inference/pipelines/serving/_pipeline_apps/ocr.py +98 -0
  288. paddlex/inference/pipelines/serving/_pipeline_apps/pedestrian_attribute_recognition.py +102 -0
  289. paddlex/inference/pipelines/serving/_pipeline_apps/pp_shitu_v2.py +319 -0
  290. paddlex/inference/pipelines/serving/_pipeline_apps/ppchatocrv3.py +445 -0
  291. paddlex/inference/pipelines/serving/_pipeline_apps/seal_recognition.py +110 -0
  292. paddlex/inference/pipelines/serving/_pipeline_apps/semantic_segmentation.py +82 -0
  293. paddlex/inference/pipelines/serving/_pipeline_apps/small_object_detection.py +92 -0
  294. paddlex/inference/pipelines/serving/_pipeline_apps/table_recognition.py +110 -0
  295. paddlex/inference/pipelines/serving/_pipeline_apps/ts_ad.py +68 -0
  296. paddlex/inference/pipelines/serving/_pipeline_apps/ts_cls.py +68 -0
  297. paddlex/inference/pipelines/serving/_pipeline_apps/ts_fc.py +68 -0
  298. paddlex/inference/pipelines/serving/_pipeline_apps/vehicle_attribute_recognition.py +102 -0
  299. paddlex/inference/pipelines/serving/app.py +164 -0
  300. paddlex/inference/pipelines/serving/models.py +30 -0
  301. paddlex/inference/pipelines/serving/server.py +25 -0
  302. paddlex/inference/pipelines/serving/storage.py +161 -0
  303. paddlex/inference/pipelines/serving/utils.py +190 -0
  304. paddlex/inference/pipelines/single_model_pipeline.py +76 -0
  305. paddlex/inference/pipelines/table_recognition/__init__.py +15 -0
  306. paddlex/inference/pipelines/table_recognition/table_recognition.py +193 -0
  307. paddlex/inference/pipelines/table_recognition/utils.py +457 -0
  308. paddlex/inference/results/__init__.py +31 -0
  309. paddlex/inference/results/attribute_rec.py +89 -0
  310. paddlex/inference/results/base.py +43 -0
  311. paddlex/inference/results/chat_ocr.py +158 -0
  312. paddlex/inference/results/clas.py +133 -0
  313. paddlex/inference/results/det.py +86 -0
  314. paddlex/inference/results/face_rec.py +34 -0
  315. paddlex/inference/results/formula_rec.py +363 -0
  316. paddlex/inference/results/instance_seg.py +152 -0
  317. paddlex/inference/results/ocr.py +157 -0
  318. paddlex/inference/results/seal_rec.py +50 -0
  319. paddlex/inference/results/seg.py +72 -0
  320. paddlex/inference/results/shitu.py +35 -0
  321. paddlex/inference/results/table_rec.py +109 -0
  322. paddlex/inference/results/text_det.py +33 -0
  323. paddlex/inference/results/text_rec.py +66 -0
  324. paddlex/inference/results/ts.py +37 -0
  325. paddlex/inference/results/utils/__init__.py +13 -0
  326. paddlex/inference/results/utils/mixin.py +204 -0
  327. paddlex/inference/results/warp.py +31 -0
  328. paddlex/inference/utils/__init__.py +13 -0
  329. paddlex/inference/utils/benchmark.py +214 -0
  330. paddlex/inference/utils/color_map.py +123 -0
  331. paddlex/inference/utils/get_pipeline_path.py +26 -0
  332. paddlex/inference/utils/io/__init__.py +33 -0
  333. paddlex/inference/utils/io/readers.py +353 -0
  334. paddlex/inference/utils/io/style.py +374 -0
  335. paddlex/inference/utils/io/tablepyxl.py +149 -0
  336. paddlex/inference/utils/io/writers.py +376 -0
  337. paddlex/inference/utils/new_ir_blacklist.py +22 -0
  338. paddlex/inference/utils/official_models.py +286 -0
  339. paddlex/inference/utils/pp_option.py +236 -0
  340. paddlex/inference/utils/process_hook.py +54 -0
  341. paddlex/model.py +106 -0
  342. paddlex/modules/__init__.py +105 -0
  343. paddlex/modules/anomaly_detection/__init__.py +18 -0
  344. paddlex/modules/anomaly_detection/dataset_checker/__init__.py +95 -0
  345. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  346. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +79 -0
  347. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +87 -0
  348. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +230 -0
  349. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +87 -0
  350. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  351. paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  352. paddlex/modules/anomaly_detection/evaluator.py +58 -0
  353. paddlex/modules/anomaly_detection/exportor.py +22 -0
  354. paddlex/modules/anomaly_detection/model_list.py +16 -0
  355. paddlex/modules/anomaly_detection/trainer.py +71 -0
  356. paddlex/modules/base/__init__.py +18 -0
  357. paddlex/modules/base/build_model.py +34 -0
  358. paddlex/modules/base/dataset_checker/__init__.py +16 -0
  359. paddlex/modules/base/dataset_checker/dataset_checker.py +164 -0
  360. paddlex/modules/base/dataset_checker/utils.py +110 -0
  361. paddlex/modules/base/evaluator.py +154 -0
  362. paddlex/modules/base/exportor.py +121 -0
  363. paddlex/modules/base/trainer.py +111 -0
  364. paddlex/modules/face_recognition/__init__.py +18 -0
  365. paddlex/modules/face_recognition/dataset_checker/__init__.py +71 -0
  366. paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +16 -0
  367. paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +174 -0
  368. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  369. paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  370. paddlex/modules/face_recognition/evaluator.py +52 -0
  371. paddlex/modules/face_recognition/exportor.py +22 -0
  372. paddlex/modules/face_recognition/model_list.py +15 -0
  373. paddlex/modules/face_recognition/trainer.py +97 -0
  374. paddlex/modules/formula_recognition/__init__.py +13 -0
  375. paddlex/modules/formula_recognition/model_list.py +17 -0
  376. paddlex/modules/general_recognition/__init__.py +18 -0
  377. paddlex/modules/general_recognition/dataset_checker/__init__.py +107 -0
  378. paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  379. paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +98 -0
  380. paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +100 -0
  381. paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +99 -0
  382. paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +82 -0
  383. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +13 -0
  384. paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +150 -0
  385. paddlex/modules/general_recognition/evaluator.py +31 -0
  386. paddlex/modules/general_recognition/exportor.py +22 -0
  387. paddlex/modules/general_recognition/model_list.py +19 -0
  388. paddlex/modules/general_recognition/trainer.py +52 -0
  389. paddlex/modules/image_classification/__init__.py +18 -0
  390. paddlex/modules/image_classification/dataset_checker/__init__.py +104 -0
  391. paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +19 -0
  392. paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +93 -0
  393. paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  394. paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +51 -0
  395. paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  396. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  397. paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +156 -0
  398. paddlex/modules/image_classification/evaluator.py +43 -0
  399. paddlex/modules/image_classification/exportor.py +22 -0
  400. paddlex/modules/image_classification/model_list.py +97 -0
  401. paddlex/modules/image_classification/trainer.py +82 -0
  402. paddlex/modules/image_unwarping/__init__.py +13 -0
  403. paddlex/modules/image_unwarping/model_list.py +17 -0
  404. paddlex/modules/instance_segmentation/__init__.py +18 -0
  405. paddlex/modules/instance_segmentation/dataset_checker/__init__.py +93 -0
  406. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  407. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +78 -0
  408. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +92 -0
  409. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +241 -0
  410. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +119 -0
  411. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  412. paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +221 -0
  413. paddlex/modules/instance_segmentation/evaluator.py +32 -0
  414. paddlex/modules/instance_segmentation/exportor.py +22 -0
  415. paddlex/modules/instance_segmentation/model_list.py +33 -0
  416. paddlex/modules/instance_segmentation/trainer.py +31 -0
  417. paddlex/modules/multilabel_classification/__init__.py +18 -0
  418. paddlex/modules/multilabel_classification/dataset_checker/__init__.py +106 -0
  419. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +19 -0
  420. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +95 -0
  421. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +131 -0
  422. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +117 -0
  423. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +81 -0
  424. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +13 -0
  425. paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +153 -0
  426. paddlex/modules/multilabel_classification/evaluator.py +43 -0
  427. paddlex/modules/multilabel_classification/exportor.py +22 -0
  428. paddlex/modules/multilabel_classification/model_list.py +24 -0
  429. paddlex/modules/multilabel_classification/trainer.py +85 -0
  430. paddlex/modules/object_detection/__init__.py +18 -0
  431. paddlex/modules/object_detection/dataset_checker/__init__.py +115 -0
  432. paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +19 -0
  433. paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +80 -0
  434. paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +86 -0
  435. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +433 -0
  436. paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +119 -0
  437. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +13 -0
  438. paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +192 -0
  439. paddlex/modules/object_detection/evaluator.py +41 -0
  440. paddlex/modules/object_detection/exportor.py +22 -0
  441. paddlex/modules/object_detection/model_list.py +74 -0
  442. paddlex/modules/object_detection/trainer.py +85 -0
  443. paddlex/modules/semantic_segmentation/__init__.py +18 -0
  444. paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +95 -0
  445. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +19 -0
  446. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +73 -0
  447. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +80 -0
  448. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +162 -0
  449. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +87 -0
  450. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +13 -0
  451. paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +71 -0
  452. paddlex/modules/semantic_segmentation/evaluator.py +58 -0
  453. paddlex/modules/semantic_segmentation/exportor.py +22 -0
  454. paddlex/modules/semantic_segmentation/model_list.py +35 -0
  455. paddlex/modules/semantic_segmentation/trainer.py +71 -0
  456. paddlex/modules/table_recognition/__init__.py +18 -0
  457. paddlex/modules/table_recognition/dataset_checker/__init__.py +83 -0
  458. paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +18 -0
  459. paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +58 -0
  460. paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +87 -0
  461. paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +79 -0
  462. paddlex/modules/table_recognition/evaluator.py +43 -0
  463. paddlex/modules/table_recognition/exportor.py +22 -0
  464. paddlex/modules/table_recognition/model_list.py +19 -0
  465. paddlex/modules/table_recognition/trainer.py +70 -0
  466. paddlex/modules/text_detection/__init__.py +18 -0
  467. paddlex/modules/text_detection/dataset_checker/__init__.py +94 -0
  468. paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +18 -0
  469. paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +217 -0
  470. paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +96 -0
  471. paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +140 -0
  472. paddlex/modules/text_detection/evaluator.py +41 -0
  473. paddlex/modules/text_detection/exportor.py +22 -0
  474. paddlex/modules/text_detection/model_list.py +22 -0
  475. paddlex/modules/text_detection/trainer.py +68 -0
  476. paddlex/modules/text_recognition/__init__.py +18 -0
  477. paddlex/modules/text_recognition/dataset_checker/__init__.py +114 -0
  478. paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +19 -0
  479. paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +161 -0
  480. paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +97 -0
  481. paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +94 -0
  482. paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +81 -0
  483. paddlex/modules/text_recognition/evaluator.py +63 -0
  484. paddlex/modules/text_recognition/exportor.py +25 -0
  485. paddlex/modules/text_recognition/model_list.py +20 -0
  486. paddlex/modules/text_recognition/trainer.py +105 -0
  487. paddlex/modules/ts_anomaly_detection/__init__.py +19 -0
  488. paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +97 -0
  489. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +19 -0
  490. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  491. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +64 -0
  492. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +78 -0
  493. paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +63 -0
  494. paddlex/modules/ts_anomaly_detection/evaluator.py +67 -0
  495. paddlex/modules/ts_anomaly_detection/exportor.py +45 -0
  496. paddlex/modules/ts_anomaly_detection/model_list.py +22 -0
  497. paddlex/modules/ts_anomaly_detection/trainer.py +97 -0
  498. paddlex/modules/ts_classification/__init__.py +19 -0
  499. paddlex/modules/ts_classification/dataset_checker/__init__.py +97 -0
  500. paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +19 -0
  501. paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +74 -0
  502. paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +64 -0
  503. paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +78 -0
  504. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +88 -0
  505. paddlex/modules/ts_classification/evaluator.py +66 -0
  506. paddlex/modules/ts_classification/exportor.py +45 -0
  507. paddlex/modules/ts_classification/model_list.py +18 -0
  508. paddlex/modules/ts_classification/trainer.py +92 -0
  509. paddlex/modules/ts_forecast/__init__.py +19 -0
  510. paddlex/modules/ts_forecast/dataset_checker/__init__.py +97 -0
  511. paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +19 -0
  512. paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +27 -0
  513. paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +64 -0
  514. paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +77 -0
  515. paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +63 -0
  516. paddlex/modules/ts_forecast/evaluator.py +66 -0
  517. paddlex/modules/ts_forecast/exportor.py +45 -0
  518. paddlex/modules/ts_forecast/model_list.py +24 -0
  519. paddlex/modules/ts_forecast/trainer.py +92 -0
  520. paddlex/paddlex_cli.py +197 -0
  521. paddlex/pipelines/OCR.yaml +8 -0
  522. paddlex/pipelines/PP-ChatOCRv3-doc.yaml +27 -0
  523. paddlex/pipelines/PP-ShiTuV2.yaml +13 -0
  524. paddlex/pipelines/anomaly_detection.yaml +7 -0
  525. paddlex/pipelines/face_recognition.yaml +13 -0
  526. paddlex/pipelines/formula_recognition.yaml +8 -0
  527. paddlex/pipelines/image_classification.yaml +7 -0
  528. paddlex/pipelines/instance_segmentation.yaml +7 -0
  529. paddlex/pipelines/layout_parsing.yaml +14 -0
  530. paddlex/pipelines/multi_label_image_classification.yaml +7 -0
  531. paddlex/pipelines/object_detection.yaml +7 -0
  532. paddlex/pipelines/pedestrian_attribute_recognition.yaml +7 -0
  533. paddlex/pipelines/seal_recognition.yaml +10 -0
  534. paddlex/pipelines/semantic_segmentation.yaml +7 -0
  535. paddlex/pipelines/small_object_detection.yaml +7 -0
  536. paddlex/pipelines/table_recognition.yaml +12 -0
  537. paddlex/pipelines/ts_ad.yaml +7 -0
  538. paddlex/pipelines/ts_cls.yaml +7 -0
  539. paddlex/pipelines/ts_fc.yaml +7 -0
  540. paddlex/pipelines/vehicle_attribute_recognition.yaml +7 -0
  541. paddlex/repo_apis/PaddleClas_api/__init__.py +17 -0
  542. paddlex/repo_apis/PaddleClas_api/cls/__init__.py +19 -0
  543. paddlex/repo_apis/PaddleClas_api/cls/config.py +594 -0
  544. paddlex/repo_apis/PaddleClas_api/cls/model.py +349 -0
  545. paddlex/repo_apis/PaddleClas_api/cls/register.py +890 -0
  546. paddlex/repo_apis/PaddleClas_api/cls/runner.py +219 -0
  547. paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +18 -0
  548. paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +141 -0
  549. paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +23 -0
  550. paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +68 -0
  551. paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +55 -0
  552. paddlex/repo_apis/PaddleDetection_api/__init__.py +17 -0
  553. paddlex/repo_apis/PaddleDetection_api/config_helper.py +280 -0
  554. paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +18 -0
  555. paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +454 -0
  556. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +397 -0
  557. paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +263 -0
  558. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +226 -0
  559. paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +19 -0
  560. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +517 -0
  561. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +424 -0
  562. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +139 -0
  563. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +927 -0
  564. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +226 -0
  565. paddlex/repo_apis/PaddleNLP_api/__init__.py +13 -0
  566. paddlex/repo_apis/PaddleOCR_api/__init__.py +20 -0
  567. paddlex/repo_apis/PaddleOCR_api/config_utils.py +53 -0
  568. paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +16 -0
  569. paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +64 -0
  570. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +126 -0
  571. paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +53 -0
  572. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +51 -0
  573. paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +16 -0
  574. paddlex/repo_apis/PaddleOCR_api/text_det/config.py +62 -0
  575. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +72 -0
  576. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +72 -0
  577. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +53 -0
  578. paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +16 -0
  579. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +542 -0
  580. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +396 -0
  581. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +80 -0
  582. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +240 -0
  583. paddlex/repo_apis/PaddleSeg_api/__init__.py +16 -0
  584. paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +134 -0
  585. paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +16 -0
  586. paddlex/repo_apis/PaddleSeg_api/seg/config.py +177 -0
  587. paddlex/repo_apis/PaddleSeg_api/seg/model.py +481 -0
  588. paddlex/repo_apis/PaddleSeg_api/seg/register.py +253 -0
  589. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +262 -0
  590. paddlex/repo_apis/PaddleTS_api/__init__.py +19 -0
  591. paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +16 -0
  592. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +89 -0
  593. paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +146 -0
  594. paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +158 -0
  595. paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +13 -0
  596. paddlex/repo_apis/PaddleTS_api/ts_base/config.py +222 -0
  597. paddlex/repo_apis/PaddleTS_api/ts_base/model.py +272 -0
  598. paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +158 -0
  599. paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +16 -0
  600. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +73 -0
  601. paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +59 -0
  602. paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +158 -0
  603. paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +16 -0
  604. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +137 -0
  605. paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +186 -0
  606. paddlex/repo_apis/__init__.py +13 -0
  607. paddlex/repo_apis/base/__init__.py +23 -0
  608. paddlex/repo_apis/base/config.py +238 -0
  609. paddlex/repo_apis/base/model.py +571 -0
  610. paddlex/repo_apis/base/register.py +135 -0
  611. paddlex/repo_apis/base/runner.py +390 -0
  612. paddlex/repo_apis/base/utils/__init__.py +13 -0
  613. paddlex/repo_apis/base/utils/arg.py +64 -0
  614. paddlex/repo_apis/base/utils/subprocess.py +107 -0
  615. paddlex/repo_manager/__init__.py +24 -0
  616. paddlex/repo_manager/core.py +271 -0
  617. paddlex/repo_manager/meta.py +143 -0
  618. paddlex/repo_manager/repo.py +396 -0
  619. paddlex/repo_manager/requirements.txt +18 -0
  620. paddlex/repo_manager/utils.py +298 -0
  621. paddlex/utils/__init__.py +1 -12
  622. paddlex/utils/cache.py +148 -0
  623. paddlex/utils/config.py +214 -0
  624. paddlex/utils/device.py +103 -0
  625. paddlex/utils/download.py +168 -182
  626. paddlex/utils/errors/__init__.py +17 -0
  627. paddlex/utils/errors/dataset_checker.py +78 -0
  628. paddlex/utils/errors/others.py +152 -0
  629. paddlex/utils/file_interface.py +212 -0
  630. paddlex/utils/flags.py +61 -0
  631. paddlex/utils/fonts/PingFang-SC-Regular.ttf +0 -0
  632. paddlex/utils/fonts/__init__.py +24 -0
  633. paddlex/utils/func_register.py +41 -0
  634. paddlex/utils/interactive_get_pipeline.py +55 -0
  635. paddlex/utils/lazy_loader.py +66 -0
  636. paddlex/utils/logging.py +132 -33
  637. paddlex/utils/misc.py +201 -0
  638. paddlex/utils/result_saver.py +59 -0
  639. paddlex/utils/subclass_register.py +101 -0
  640. paddlex/version.py +54 -0
  641. paddlex-3.0.0b2.dist-info/LICENSE +169 -0
  642. paddlex-3.0.0b2.dist-info/METADATA +760 -0
  643. paddlex-3.0.0b2.dist-info/RECORD +646 -0
  644. paddlex-3.0.0b2.dist-info/WHEEL +5 -0
  645. paddlex-3.0.0b2.dist-info/entry_points.txt +2 -0
  646. paddlex-3.0.0b2.dist-info/top_level.txt +1 -0
  647. PaddleClas/__init__.py +0 -16
  648. PaddleClas/paddleclas.py +0 -375
  649. PaddleClas/ppcls/__init__.py +0 -20
  650. PaddleClas/ppcls/data/__init__.py +0 -15
  651. PaddleClas/ppcls/data/imaug/__init__.py +0 -94
  652. PaddleClas/ppcls/data/imaug/autoaugment.py +0 -264
  653. PaddleClas/ppcls/data/imaug/batch_operators.py +0 -117
  654. PaddleClas/ppcls/data/imaug/cutout.py +0 -41
  655. PaddleClas/ppcls/data/imaug/fmix.py +0 -217
  656. PaddleClas/ppcls/data/imaug/grid.py +0 -89
  657. PaddleClas/ppcls/data/imaug/hide_and_seek.py +0 -44
  658. PaddleClas/ppcls/data/imaug/operators.py +0 -244
  659. PaddleClas/ppcls/data/imaug/randaugment.py +0 -106
  660. PaddleClas/ppcls/data/imaug/random_erasing.py +0 -55
  661. PaddleClas/ppcls/data/reader.py +0 -318
  662. PaddleClas/ppcls/modeling/__init__.py +0 -20
  663. PaddleClas/ppcls/modeling/architectures/__init__.py +0 -51
  664. PaddleClas/ppcls/modeling/architectures/alexnet.py +0 -132
  665. PaddleClas/ppcls/modeling/architectures/darknet.py +0 -161
  666. PaddleClas/ppcls/modeling/architectures/densenet.py +0 -308
  667. PaddleClas/ppcls/modeling/architectures/distillation_models.py +0 -65
  668. PaddleClas/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  669. PaddleClas/ppcls/modeling/architectures/dpn.py +0 -425
  670. PaddleClas/ppcls/modeling/architectures/efficientnet.py +0 -901
  671. PaddleClas/ppcls/modeling/architectures/ghostnet.py +0 -331
  672. PaddleClas/ppcls/modeling/architectures/googlenet.py +0 -207
  673. PaddleClas/ppcls/modeling/architectures/hrnet.py +0 -742
  674. PaddleClas/ppcls/modeling/architectures/inception_v3.py +0 -481
  675. PaddleClas/ppcls/modeling/architectures/inception_v4.py +0 -455
  676. PaddleClas/ppcls/modeling/architectures/mixnet.py +0 -782
  677. PaddleClas/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  678. PaddleClas/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  679. PaddleClas/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  680. PaddleClas/ppcls/modeling/architectures/regnet.py +0 -383
  681. PaddleClas/ppcls/modeling/architectures/repvgg.py +0 -339
  682. PaddleClas/ppcls/modeling/architectures/res2net.py +0 -272
  683. PaddleClas/ppcls/modeling/architectures/res2net_vd.py +0 -295
  684. PaddleClas/ppcls/modeling/architectures/resnest.py +0 -705
  685. PaddleClas/ppcls/modeling/architectures/resnet.py +0 -316
  686. PaddleClas/ppcls/modeling/architectures/resnet_vc.py +0 -309
  687. PaddleClas/ppcls/modeling/architectures/resnet_vd.py +0 -354
  688. PaddleClas/ppcls/modeling/architectures/resnext.py +0 -253
  689. PaddleClas/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  690. PaddleClas/ppcls/modeling/architectures/resnext_vd.py +0 -266
  691. PaddleClas/ppcls/modeling/architectures/rexnet.py +0 -240
  692. PaddleClas/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  693. PaddleClas/ppcls/modeling/architectures/se_resnext.py +0 -290
  694. PaddleClas/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  695. PaddleClas/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  696. PaddleClas/ppcls/modeling/architectures/squeezenet.py +0 -154
  697. PaddleClas/ppcls/modeling/architectures/vgg.py +0 -152
  698. PaddleClas/ppcls/modeling/architectures/vision_transformer.py +0 -402
  699. PaddleClas/ppcls/modeling/architectures/xception.py +0 -345
  700. PaddleClas/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  701. PaddleClas/ppcls/modeling/loss.py +0 -154
  702. PaddleClas/ppcls/modeling/utils.py +0 -53
  703. PaddleClas/ppcls/optimizer/__init__.py +0 -19
  704. PaddleClas/ppcls/optimizer/learning_rate.py +0 -159
  705. PaddleClas/ppcls/optimizer/optimizer.py +0 -165
  706. PaddleClas/ppcls/utils/__init__.py +0 -27
  707. PaddleClas/ppcls/utils/check.py +0 -151
  708. PaddleClas/ppcls/utils/config.py +0 -201
  709. PaddleClas/ppcls/utils/logger.py +0 -120
  710. PaddleClas/ppcls/utils/metrics.py +0 -107
  711. PaddleClas/ppcls/utils/misc.py +0 -62
  712. PaddleClas/ppcls/utils/model_zoo.py +0 -213
  713. PaddleClas/ppcls/utils/save_load.py +0 -163
  714. PaddleClas/setup.py +0 -55
  715. PaddleClas/tools/__init__.py +0 -15
  716. PaddleClas/tools/download.py +0 -50
  717. PaddleClas/tools/ema.py +0 -58
  718. PaddleClas/tools/eval.py +0 -112
  719. PaddleClas/tools/export_model.py +0 -85
  720. PaddleClas/tools/export_serving_model.py +0 -76
  721. PaddleClas/tools/infer/__init__.py +0 -16
  722. PaddleClas/tools/infer/infer.py +0 -94
  723. PaddleClas/tools/infer/predict.py +0 -117
  724. PaddleClas/tools/infer/utils.py +0 -233
  725. PaddleClas/tools/program.py +0 -444
  726. PaddleClas/tools/test_hubserving.py +0 -113
  727. PaddleClas/tools/train.py +0 -141
  728. paddlex/cls.py +0 -76
  729. paddlex/command.py +0 -215
  730. paddlex/cv/__init__.py +0 -17
  731. paddlex/cv/datasets/__init__.py +0 -18
  732. paddlex/cv/datasets/coco.py +0 -169
  733. paddlex/cv/datasets/imagenet.py +0 -88
  734. paddlex/cv/datasets/seg_dataset.py +0 -91
  735. paddlex/cv/datasets/voc.py +0 -301
  736. paddlex/cv/models/__init__.py +0 -18
  737. paddlex/cv/models/base.py +0 -623
  738. paddlex/cv/models/classifier.py +0 -814
  739. paddlex/cv/models/detector.py +0 -1747
  740. paddlex/cv/models/load_model.py +0 -126
  741. paddlex/cv/models/segmenter.py +0 -673
  742. paddlex/cv/models/slim/__init__.py +0 -13
  743. paddlex/cv/models/slim/prune.py +0 -55
  744. paddlex/cv/models/utils/__init__.py +0 -13
  745. paddlex/cv/models/utils/det_metrics/__init__.py +0 -15
  746. paddlex/cv/models/utils/det_metrics/coco_utils.py +0 -217
  747. paddlex/cv/models/utils/det_metrics/metrics.py +0 -220
  748. paddlex/cv/models/utils/ema.py +0 -48
  749. paddlex/cv/models/utils/seg_metrics.py +0 -62
  750. paddlex/cv/models/utils/visualize.py +0 -394
  751. paddlex/cv/transforms/__init__.py +0 -46
  752. paddlex/cv/transforms/batch_operators.py +0 -286
  753. paddlex/cv/transforms/box_utils.py +0 -41
  754. paddlex/cv/transforms/functions.py +0 -193
  755. paddlex/cv/transforms/operators.py +0 -1402
  756. paddlex/det.py +0 -43
  757. paddlex/paddleseg/__init__.py +0 -17
  758. paddlex/paddleseg/core/__init__.py +0 -20
  759. paddlex/paddleseg/core/infer.py +0 -289
  760. paddlex/paddleseg/core/predict.py +0 -145
  761. paddlex/paddleseg/core/train.py +0 -258
  762. paddlex/paddleseg/core/val.py +0 -172
  763. paddlex/paddleseg/cvlibs/__init__.py +0 -17
  764. paddlex/paddleseg/cvlibs/callbacks.py +0 -279
  765. paddlex/paddleseg/cvlibs/config.py +0 -359
  766. paddlex/paddleseg/cvlibs/manager.py +0 -142
  767. paddlex/paddleseg/cvlibs/param_init.py +0 -91
  768. paddlex/paddleseg/datasets/__init__.py +0 -21
  769. paddlex/paddleseg/datasets/ade.py +0 -112
  770. paddlex/paddleseg/datasets/cityscapes.py +0 -86
  771. paddlex/paddleseg/datasets/cocostuff.py +0 -79
  772. paddlex/paddleseg/datasets/dataset.py +0 -164
  773. paddlex/paddleseg/datasets/mini_deep_globe_road_extraction.py +0 -95
  774. paddlex/paddleseg/datasets/optic_disc_seg.py +0 -97
  775. paddlex/paddleseg/datasets/pascal_context.py +0 -80
  776. paddlex/paddleseg/datasets/voc.py +0 -113
  777. paddlex/paddleseg/models/__init__.py +0 -39
  778. paddlex/paddleseg/models/ann.py +0 -436
  779. paddlex/paddleseg/models/attention_unet.py +0 -189
  780. paddlex/paddleseg/models/backbones/__init__.py +0 -18
  781. paddlex/paddleseg/models/backbones/hrnet.py +0 -815
  782. paddlex/paddleseg/models/backbones/mobilenetv3.py +0 -365
  783. paddlex/paddleseg/models/backbones/resnet_vd.py +0 -364
  784. paddlex/paddleseg/models/backbones/xception_deeplab.py +0 -415
  785. paddlex/paddleseg/models/bisenet.py +0 -311
  786. paddlex/paddleseg/models/danet.py +0 -220
  787. paddlex/paddleseg/models/decoupled_segnet.py +0 -233
  788. paddlex/paddleseg/models/deeplab.py +0 -258
  789. paddlex/paddleseg/models/dnlnet.py +0 -231
  790. paddlex/paddleseg/models/emanet.py +0 -219
  791. paddlex/paddleseg/models/fast_scnn.py +0 -318
  792. paddlex/paddleseg/models/fcn.py +0 -135
  793. paddlex/paddleseg/models/gcnet.py +0 -223
  794. paddlex/paddleseg/models/gscnn.py +0 -357
  795. paddlex/paddleseg/models/hardnet.py +0 -309
  796. paddlex/paddleseg/models/isanet.py +0 -202
  797. paddlex/paddleseg/models/layers/__init__.py +0 -19
  798. paddlex/paddleseg/models/layers/activation.py +0 -73
  799. paddlex/paddleseg/models/layers/attention.py +0 -146
  800. paddlex/paddleseg/models/layers/layer_libs.py +0 -168
  801. paddlex/paddleseg/models/layers/nonlocal2d.py +0 -155
  802. paddlex/paddleseg/models/layers/pyramid_pool.py +0 -182
  803. paddlex/paddleseg/models/losses/__init__.py +0 -27
  804. paddlex/paddleseg/models/losses/binary_cross_entropy_loss.py +0 -174
  805. paddlex/paddleseg/models/losses/bootstrapped_cross_entropy.py +0 -73
  806. paddlex/paddleseg/models/losses/cross_entropy_loss.py +0 -94
  807. paddlex/paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py +0 -129
  808. paddlex/paddleseg/models/losses/dice_loss.py +0 -61
  809. paddlex/paddleseg/models/losses/edge_attention_loss.py +0 -78
  810. paddlex/paddleseg/models/losses/gscnn_dual_task_loss.py +0 -141
  811. paddlex/paddleseg/models/losses/l1_loss.py +0 -76
  812. paddlex/paddleseg/models/losses/lovasz_loss.py +0 -222
  813. paddlex/paddleseg/models/losses/mean_square_error_loss.py +0 -65
  814. paddlex/paddleseg/models/losses/mixed_loss.py +0 -58
  815. paddlex/paddleseg/models/losses/ohem_cross_entropy_loss.py +0 -99
  816. paddlex/paddleseg/models/losses/ohem_edge_attention_loss.py +0 -114
  817. paddlex/paddleseg/models/ocrnet.py +0 -248
  818. paddlex/paddleseg/models/pspnet.py +0 -147
  819. paddlex/paddleseg/models/sfnet.py +0 -236
  820. paddlex/paddleseg/models/shufflenet_slim.py +0 -268
  821. paddlex/paddleseg/models/u2net.py +0 -574
  822. paddlex/paddleseg/models/unet.py +0 -155
  823. paddlex/paddleseg/models/unet_3plus.py +0 -316
  824. paddlex/paddleseg/models/unet_plusplus.py +0 -237
  825. paddlex/paddleseg/transforms/__init__.py +0 -16
  826. paddlex/paddleseg/transforms/functional.py +0 -161
  827. paddlex/paddleseg/transforms/transforms.py +0 -937
  828. paddlex/paddleseg/utils/__init__.py +0 -22
  829. paddlex/paddleseg/utils/config_check.py +0 -60
  830. paddlex/paddleseg/utils/download.py +0 -163
  831. paddlex/paddleseg/utils/env/__init__.py +0 -16
  832. paddlex/paddleseg/utils/env/seg_env.py +0 -56
  833. paddlex/paddleseg/utils/env/sys_env.py +0 -122
  834. paddlex/paddleseg/utils/logger.py +0 -48
  835. paddlex/paddleseg/utils/metrics.py +0 -146
  836. paddlex/paddleseg/utils/progbar.py +0 -212
  837. paddlex/paddleseg/utils/timer.py +0 -53
  838. paddlex/paddleseg/utils/utils.py +0 -120
  839. paddlex/paddleseg/utils/visualize.py +0 -90
  840. paddlex/ppcls/__init__.py +0 -20
  841. paddlex/ppcls/data/__init__.py +0 -15
  842. paddlex/ppcls/data/imaug/__init__.py +0 -94
  843. paddlex/ppcls/data/imaug/autoaugment.py +0 -264
  844. paddlex/ppcls/data/imaug/batch_operators.py +0 -117
  845. paddlex/ppcls/data/imaug/cutout.py +0 -41
  846. paddlex/ppcls/data/imaug/fmix.py +0 -217
  847. paddlex/ppcls/data/imaug/grid.py +0 -89
  848. paddlex/ppcls/data/imaug/hide_and_seek.py +0 -44
  849. paddlex/ppcls/data/imaug/operators.py +0 -256
  850. paddlex/ppcls/data/imaug/randaugment.py +0 -106
  851. paddlex/ppcls/data/imaug/random_erasing.py +0 -55
  852. paddlex/ppcls/data/reader.py +0 -318
  853. paddlex/ppcls/modeling/__init__.py +0 -20
  854. paddlex/ppcls/modeling/architectures/__init__.py +0 -51
  855. paddlex/ppcls/modeling/architectures/alexnet.py +0 -132
  856. paddlex/ppcls/modeling/architectures/darknet.py +0 -161
  857. paddlex/ppcls/modeling/architectures/densenet.py +0 -308
  858. paddlex/ppcls/modeling/architectures/distillation_models.py +0 -65
  859. paddlex/ppcls/modeling/architectures/distilled_vision_transformer.py +0 -196
  860. paddlex/ppcls/modeling/architectures/dpn.py +0 -425
  861. paddlex/ppcls/modeling/architectures/efficientnet.py +0 -901
  862. paddlex/ppcls/modeling/architectures/ghostnet.py +0 -331
  863. paddlex/ppcls/modeling/architectures/googlenet.py +0 -207
  864. paddlex/ppcls/modeling/architectures/hrnet.py +0 -742
  865. paddlex/ppcls/modeling/architectures/inception_v3.py +0 -541
  866. paddlex/ppcls/modeling/architectures/inception_v4.py +0 -455
  867. paddlex/ppcls/modeling/architectures/mixnet.py +0 -782
  868. paddlex/ppcls/modeling/architectures/mobilenet_v1.py +0 -266
  869. paddlex/ppcls/modeling/architectures/mobilenet_v2.py +0 -248
  870. paddlex/ppcls/modeling/architectures/mobilenet_v3.py +0 -359
  871. paddlex/ppcls/modeling/architectures/regnet.py +0 -383
  872. paddlex/ppcls/modeling/architectures/repvgg.py +0 -339
  873. paddlex/ppcls/modeling/architectures/res2net.py +0 -272
  874. paddlex/ppcls/modeling/architectures/res2net_vd.py +0 -295
  875. paddlex/ppcls/modeling/architectures/resnest.py +0 -705
  876. paddlex/ppcls/modeling/architectures/resnet.py +0 -317
  877. paddlex/ppcls/modeling/architectures/resnet_vc.py +0 -309
  878. paddlex/ppcls/modeling/architectures/resnet_vd.py +0 -354
  879. paddlex/ppcls/modeling/architectures/resnext.py +0 -259
  880. paddlex/ppcls/modeling/architectures/resnext101_wsl.py +0 -447
  881. paddlex/ppcls/modeling/architectures/resnext_vd.py +0 -266
  882. paddlex/ppcls/modeling/architectures/rexnet.py +0 -240
  883. paddlex/ppcls/modeling/architectures/se_resnet_vd.py +0 -378
  884. paddlex/ppcls/modeling/architectures/se_resnext.py +0 -290
  885. paddlex/ppcls/modeling/architectures/se_resnext_vd.py +0 -285
  886. paddlex/ppcls/modeling/architectures/shufflenet_v2.py +0 -320
  887. paddlex/ppcls/modeling/architectures/squeezenet.py +0 -154
  888. paddlex/ppcls/modeling/architectures/vgg.py +0 -152
  889. paddlex/ppcls/modeling/architectures/vision_transformer.py +0 -402
  890. paddlex/ppcls/modeling/architectures/xception.py +0 -345
  891. paddlex/ppcls/modeling/architectures/xception_deeplab.py +0 -386
  892. paddlex/ppcls/modeling/loss.py +0 -158
  893. paddlex/ppcls/modeling/utils.py +0 -53
  894. paddlex/ppcls/optimizer/__init__.py +0 -19
  895. paddlex/ppcls/optimizer/learning_rate.py +0 -159
  896. paddlex/ppcls/optimizer/optimizer.py +0 -165
  897. paddlex/ppcls/utils/__init__.py +0 -27
  898. paddlex/ppcls/utils/check.py +0 -151
  899. paddlex/ppcls/utils/config.py +0 -201
  900. paddlex/ppcls/utils/logger.py +0 -120
  901. paddlex/ppcls/utils/metrics.py +0 -112
  902. paddlex/ppcls/utils/misc.py +0 -62
  903. paddlex/ppcls/utils/model_zoo.py +0 -213
  904. paddlex/ppcls/utils/save_load.py +0 -163
  905. paddlex/ppdet/__init__.py +0 -16
  906. paddlex/ppdet/core/__init__.py +0 -15
  907. paddlex/ppdet/core/config/__init__.py +0 -13
  908. paddlex/ppdet/core/config/schema.py +0 -248
  909. paddlex/ppdet/core/config/yaml_helpers.py +0 -118
  910. paddlex/ppdet/core/workspace.py +0 -279
  911. paddlex/ppdet/data/__init__.py +0 -21
  912. paddlex/ppdet/data/reader.py +0 -304
  913. paddlex/ppdet/data/shm_utils.py +0 -67
  914. paddlex/ppdet/data/source/__init__.py +0 -27
  915. paddlex/ppdet/data/source/category.py +0 -823
  916. paddlex/ppdet/data/source/coco.py +0 -243
  917. paddlex/ppdet/data/source/dataset.py +0 -192
  918. paddlex/ppdet/data/source/keypoint_coco.py +0 -656
  919. paddlex/ppdet/data/source/mot.py +0 -360
  920. paddlex/ppdet/data/source/voc.py +0 -204
  921. paddlex/ppdet/data/source/widerface.py +0 -180
  922. paddlex/ppdet/data/transform/__init__.py +0 -28
  923. paddlex/ppdet/data/transform/autoaugment_utils.py +0 -1593
  924. paddlex/ppdet/data/transform/batch_operators.py +0 -758
  925. paddlex/ppdet/data/transform/gridmask_utils.py +0 -83
  926. paddlex/ppdet/data/transform/keypoint_operators.py +0 -665
  927. paddlex/ppdet/data/transform/mot_operators.py +0 -636
  928. paddlex/ppdet/data/transform/op_helper.py +0 -468
  929. paddlex/ppdet/data/transform/operators.py +0 -2103
  930. paddlex/ppdet/engine/__init__.py +0 -29
  931. paddlex/ppdet/engine/callbacks.py +0 -262
  932. paddlex/ppdet/engine/env.py +0 -47
  933. paddlex/ppdet/engine/export_utils.py +0 -118
  934. paddlex/ppdet/engine/tracker.py +0 -425
  935. paddlex/ppdet/engine/trainer.py +0 -535
  936. paddlex/ppdet/metrics/__init__.py +0 -23
  937. paddlex/ppdet/metrics/coco_utils.py +0 -184
  938. paddlex/ppdet/metrics/json_results.py +0 -151
  939. paddlex/ppdet/metrics/keypoint_metrics.py +0 -202
  940. paddlex/ppdet/metrics/map_utils.py +0 -396
  941. paddlex/ppdet/metrics/metrics.py +0 -300
  942. paddlex/ppdet/metrics/mot_eval_utils.py +0 -192
  943. paddlex/ppdet/metrics/mot_metrics.py +0 -184
  944. paddlex/ppdet/metrics/widerface_utils.py +0 -393
  945. paddlex/ppdet/model_zoo/__init__.py +0 -18
  946. paddlex/ppdet/model_zoo/model_zoo.py +0 -86
  947. paddlex/ppdet/model_zoo/tests/__init__.py +0 -13
  948. paddlex/ppdet/model_zoo/tests/test_get_model.py +0 -48
  949. paddlex/ppdet/model_zoo/tests/test_list_model.py +0 -68
  950. paddlex/ppdet/modeling/__init__.py +0 -41
  951. paddlex/ppdet/modeling/architectures/__init__.py +0 -40
  952. paddlex/ppdet/modeling/architectures/cascade_rcnn.py +0 -144
  953. paddlex/ppdet/modeling/architectures/centernet.py +0 -103
  954. paddlex/ppdet/modeling/architectures/deepsort.py +0 -111
  955. paddlex/ppdet/modeling/architectures/fairmot.py +0 -107
  956. paddlex/ppdet/modeling/architectures/faster_rcnn.py +0 -106
  957. paddlex/ppdet/modeling/architectures/fcos.py +0 -105
  958. paddlex/ppdet/modeling/architectures/jde.py +0 -125
  959. paddlex/ppdet/modeling/architectures/keypoint_hrhrnet.py +0 -286
  960. paddlex/ppdet/modeling/architectures/keypoint_hrnet.py +0 -203
  961. paddlex/ppdet/modeling/architectures/mask_rcnn.py +0 -135
  962. paddlex/ppdet/modeling/architectures/meta_arch.py +0 -45
  963. paddlex/ppdet/modeling/architectures/s2anet.py +0 -103
  964. paddlex/ppdet/modeling/architectures/solov2.py +0 -110
  965. paddlex/ppdet/modeling/architectures/ssd.py +0 -84
  966. paddlex/ppdet/modeling/architectures/ttfnet.py +0 -98
  967. paddlex/ppdet/modeling/architectures/yolo.py +0 -104
  968. paddlex/ppdet/modeling/backbones/__init__.py +0 -37
  969. paddlex/ppdet/modeling/backbones/blazenet.py +0 -322
  970. paddlex/ppdet/modeling/backbones/darknet.py +0 -341
  971. paddlex/ppdet/modeling/backbones/dla.py +0 -244
  972. paddlex/ppdet/modeling/backbones/ghostnet.py +0 -476
  973. paddlex/ppdet/modeling/backbones/hrnet.py +0 -724
  974. paddlex/ppdet/modeling/backbones/mobilenet_v1.py +0 -410
  975. paddlex/ppdet/modeling/backbones/mobilenet_v3.py +0 -497
  976. paddlex/ppdet/modeling/backbones/name_adapter.py +0 -69
  977. paddlex/ppdet/modeling/backbones/res2net.py +0 -358
  978. paddlex/ppdet/modeling/backbones/resnet.py +0 -606
  979. paddlex/ppdet/modeling/backbones/senet.py +0 -140
  980. paddlex/ppdet/modeling/backbones/vgg.py +0 -216
  981. paddlex/ppdet/modeling/bbox_utils.py +0 -464
  982. paddlex/ppdet/modeling/heads/__init__.py +0 -41
  983. paddlex/ppdet/modeling/heads/bbox_head.py +0 -379
  984. paddlex/ppdet/modeling/heads/cascade_head.py +0 -285
  985. paddlex/ppdet/modeling/heads/centernet_head.py +0 -194
  986. paddlex/ppdet/modeling/heads/face_head.py +0 -113
  987. paddlex/ppdet/modeling/heads/fcos_head.py +0 -270
  988. paddlex/ppdet/modeling/heads/keypoint_hrhrnet_head.py +0 -108
  989. paddlex/ppdet/modeling/heads/mask_head.py +0 -253
  990. paddlex/ppdet/modeling/heads/roi_extractor.py +0 -111
  991. paddlex/ppdet/modeling/heads/s2anet_head.py +0 -845
  992. paddlex/ppdet/modeling/heads/solov2_head.py +0 -537
  993. paddlex/ppdet/modeling/heads/ssd_head.py +0 -175
  994. paddlex/ppdet/modeling/heads/ttf_head.py +0 -314
  995. paddlex/ppdet/modeling/heads/yolo_head.py +0 -124
  996. paddlex/ppdet/modeling/keypoint_utils.py +0 -302
  997. paddlex/ppdet/modeling/layers.py +0 -1142
  998. paddlex/ppdet/modeling/losses/__init__.py +0 -35
  999. paddlex/ppdet/modeling/losses/ctfocal_loss.py +0 -67
  1000. paddlex/ppdet/modeling/losses/fairmot_loss.py +0 -41
  1001. paddlex/ppdet/modeling/losses/fcos_loss.py +0 -225
  1002. paddlex/ppdet/modeling/losses/iou_aware_loss.py +0 -48
  1003. paddlex/ppdet/modeling/losses/iou_loss.py +0 -210
  1004. paddlex/ppdet/modeling/losses/jde_loss.py +0 -182
  1005. paddlex/ppdet/modeling/losses/keypoint_loss.py +0 -228
  1006. paddlex/ppdet/modeling/losses/solov2_loss.py +0 -101
  1007. paddlex/ppdet/modeling/losses/ssd_loss.py +0 -163
  1008. paddlex/ppdet/modeling/losses/yolo_loss.py +0 -212
  1009. paddlex/ppdet/modeling/mot/__init__.py +0 -25
  1010. paddlex/ppdet/modeling/mot/matching/__init__.py +0 -19
  1011. paddlex/ppdet/modeling/mot/matching/deepsort_matching.py +0 -382
  1012. paddlex/ppdet/modeling/mot/matching/jde_matching.py +0 -145
  1013. paddlex/ppdet/modeling/mot/motion/__init__.py +0 -17
  1014. paddlex/ppdet/modeling/mot/motion/kalman_filter.py +0 -270
  1015. paddlex/ppdet/modeling/mot/tracker/__init__.py +0 -23
  1016. paddlex/ppdet/modeling/mot/tracker/base_jde_tracker.py +0 -267
  1017. paddlex/ppdet/modeling/mot/tracker/base_sde_tracker.py +0 -145
  1018. paddlex/ppdet/modeling/mot/tracker/deepsort_tracker.py +0 -165
  1019. paddlex/ppdet/modeling/mot/tracker/jde_tracker.py +0 -262
  1020. paddlex/ppdet/modeling/mot/utils.py +0 -181
  1021. paddlex/ppdet/modeling/mot/visualization.py +0 -130
  1022. paddlex/ppdet/modeling/necks/__init__.py +0 -25
  1023. paddlex/ppdet/modeling/necks/centernet_fpn.py +0 -185
  1024. paddlex/ppdet/modeling/necks/fpn.py +0 -233
  1025. paddlex/ppdet/modeling/necks/hrfpn.py +0 -131
  1026. paddlex/ppdet/modeling/necks/ttf_fpn.py +0 -243
  1027. paddlex/ppdet/modeling/necks/yolo_fpn.py +0 -1034
  1028. paddlex/ppdet/modeling/ops.py +0 -1599
  1029. paddlex/ppdet/modeling/post_process.py +0 -449
  1030. paddlex/ppdet/modeling/proposal_generator/__init__.py +0 -2
  1031. paddlex/ppdet/modeling/proposal_generator/anchor_generator.py +0 -135
  1032. paddlex/ppdet/modeling/proposal_generator/proposal_generator.py +0 -81
  1033. paddlex/ppdet/modeling/proposal_generator/rpn_head.py +0 -269
  1034. paddlex/ppdet/modeling/proposal_generator/target.py +0 -671
  1035. paddlex/ppdet/modeling/proposal_generator/target_layer.py +0 -476
  1036. paddlex/ppdet/modeling/reid/__init__.py +0 -23
  1037. paddlex/ppdet/modeling/reid/fairmot_embedding_head.py +0 -117
  1038. paddlex/ppdet/modeling/reid/jde_embedding_head.py +0 -189
  1039. paddlex/ppdet/modeling/reid/pyramidal_embedding.py +0 -151
  1040. paddlex/ppdet/modeling/reid/resnet.py +0 -320
  1041. paddlex/ppdet/modeling/shape_spec.py +0 -33
  1042. paddlex/ppdet/modeling/tests/__init__.py +0 -13
  1043. paddlex/ppdet/modeling/tests/test_architectures.py +0 -59
  1044. paddlex/ppdet/modeling/tests/test_base.py +0 -75
  1045. paddlex/ppdet/modeling/tests/test_ops.py +0 -839
  1046. paddlex/ppdet/modeling/tests/test_yolov3_loss.py +0 -420
  1047. paddlex/ppdet/optimizer.py +0 -285
  1048. paddlex/ppdet/slim/__init__.py +0 -62
  1049. paddlex/ppdet/slim/distill.py +0 -111
  1050. paddlex/ppdet/slim/prune.py +0 -85
  1051. paddlex/ppdet/slim/quant.py +0 -52
  1052. paddlex/ppdet/utils/__init__.py +0 -13
  1053. paddlex/ppdet/utils/check.py +0 -93
  1054. paddlex/ppdet/utils/checkpoint.py +0 -216
  1055. paddlex/ppdet/utils/cli.py +0 -151
  1056. paddlex/ppdet/utils/colormap.py +0 -56
  1057. paddlex/ppdet/utils/download.py +0 -477
  1058. paddlex/ppdet/utils/logger.py +0 -71
  1059. paddlex/ppdet/utils/stats.py +0 -95
  1060. paddlex/ppdet/utils/visualizer.py +0 -292
  1061. paddlex/ppdet/utils/voc_utils.py +0 -87
  1062. paddlex/seg.py +0 -38
  1063. paddlex/tools/__init__.py +0 -16
  1064. paddlex/tools/convert.py +0 -52
  1065. paddlex/tools/dataset_conversion/__init__.py +0 -24
  1066. paddlex/tools/dataset_conversion/x2coco.py +0 -379
  1067. paddlex/tools/dataset_conversion/x2imagenet.py +0 -82
  1068. paddlex/tools/dataset_conversion/x2seg.py +0 -343
  1069. paddlex/tools/dataset_conversion/x2voc.py +0 -230
  1070. paddlex/tools/dataset_split/__init__.py +0 -23
  1071. paddlex/tools/dataset_split/coco_split.py +0 -69
  1072. paddlex/tools/dataset_split/imagenet_split.py +0 -75
  1073. paddlex/tools/dataset_split/seg_split.py +0 -96
  1074. paddlex/tools/dataset_split/utils.py +0 -75
  1075. paddlex/tools/dataset_split/voc_split.py +0 -91
  1076. paddlex/tools/split.py +0 -41
  1077. paddlex/utils/checkpoint.py +0 -439
  1078. paddlex/utils/env.py +0 -71
  1079. paddlex/utils/shm.py +0 -67
  1080. paddlex/utils/stats.py +0 -68
  1081. paddlex/utils/utils.py +0 -140
  1082. paddlex-2.0.0rc4.dist-info/LICENSE +0 -201
  1083. paddlex-2.0.0rc4.dist-info/METADATA +0 -29
  1084. paddlex-2.0.0rc4.dist-info/RECORD +0 -445
  1085. paddlex-2.0.0rc4.dist-info/WHEEL +0 -5
  1086. paddlex-2.0.0rc4.dist-info/entry_points.txt +0 -3
  1087. paddlex-2.0.0rc4.dist-info/top_level.txt +0 -2
@@ -1,1593 +0,0 @@
1
- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # Reference:
15
- # https://github.com/tensorflow/tpu/blob/master/models/official/detection/utils/autoaugment_utils.py
16
- """AutoAugment util file."""
17
-
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import inspect
23
- import math
24
- from PIL import Image, ImageEnhance
25
- import numpy as np
26
- import os
27
- import sys
28
- import cv2
29
- from copy import deepcopy
30
-
31
- # This signifies the max integer that the controller RNN could predict for the
32
- # augmentation scheme.
33
- _MAX_LEVEL = 10.
34
-
35
- # Represents an invalid bounding box that is used for checking for padding
36
- # lists of bounding box coordinates for a few augmentation operations
37
- _INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]]
38
-
39
-
40
- def policy_v0():
41
- """Autoaugment policy that was used in AutoAugment Detection Paper."""
42
- # Each tuple is an augmentation operation of the form
43
- # (operation, probability, magnitude). Each element in policy is a
44
- # sub-policy that will be applied sequentially on the image.
45
- policy = [
46
- [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
47
- [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
48
- [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
49
- [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
50
- [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
51
- ]
52
- return policy
53
-
54
-
55
- def policy_v1():
56
- """Autoaugment policy that was used in AutoAugment Detection Paper."""
57
- # Each tuple is an augmentation operation of the form
58
- # (operation, probability, magnitude). Each element in policy is a
59
- # sub-policy that will be applied sequentially on the image.
60
- policy = [
61
- [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
62
- [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
63
- [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
64
- [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
65
- [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
66
- [('Color', 0.0, 0), ('ShearX_Only_BBoxes', 0.8, 4)],
67
- [('ShearY_Only_BBoxes', 0.8, 2), ('Flip_Only_BBoxes', 0.0, 10)],
68
- [('Equalize', 0.6, 10), ('TranslateX_BBox', 0.2, 2)],
69
- [('Color', 1.0, 10), ('TranslateY_Only_BBoxes', 0.4, 6)],
70
- [('Rotate_BBox', 0.8, 10), ('Contrast', 0.0, 10)], # ,
71
- [('Cutout', 0.2, 2), ('Brightness', 0.8, 10)],
72
- [('Color', 1.0, 6), ('Equalize', 1.0, 2)],
73
- [('Cutout_Only_BBoxes', 0.4, 6), ('TranslateY_Only_BBoxes', 0.8, 2)],
74
- [('Color', 0.2, 8), ('Rotate_BBox', 0.8, 10)],
75
- [('Sharpness', 0.4, 4), ('TranslateY_Only_BBoxes', 0.0, 4)],
76
- [('Sharpness', 1.0, 4), ('SolarizeAdd', 0.4, 4)],
77
- [('Rotate_BBox', 1.0, 8), ('Sharpness', 0.2, 8)],
78
- [('ShearY_BBox', 0.6, 10), ('Equalize_Only_BBoxes', 0.6, 8)],
79
- [('ShearX_BBox', 0.2, 6), ('TranslateY_Only_BBoxes', 0.2, 10)],
80
- [('SolarizeAdd', 0.6, 8), ('Brightness', 0.8, 10)],
81
- ]
82
- return policy
83
-
84
-
85
- def policy_vtest():
86
- """Autoaugment test policy for debugging."""
87
- # Each tuple is an augmentation operation of the form
88
- # (operation, probability, magnitude). Each element in policy is a
89
- # sub-policy that will be applied sequentially on the image.
90
- policy = [[('TranslateX_BBox', 1.0, 4), ('Equalize', 1.0, 10)], ]
91
- return policy
92
-
93
-
94
- def policy_v2():
95
- """Additional policy that performs well on object detection."""
96
- # Each tuple is an augmentation operation of the form
97
- # (operation, probability, magnitude). Each element in policy is a
98
- # sub-policy that will be applied sequentially on the image.
99
- policy = [
100
- [('Color', 0.0, 6), ('Cutout', 0.6, 8), ('Sharpness', 0.4, 8)],
101
- [('Rotate_BBox', 0.4, 8), ('Sharpness', 0.4, 2),
102
- ('Rotate_BBox', 0.8, 10)],
103
- [('TranslateY_BBox', 1.0, 8), ('AutoContrast', 0.8, 2)],
104
- [('AutoContrast', 0.4, 6), ('ShearX_BBox', 0.8, 8),
105
- ('Brightness', 0.0, 10)],
106
- [('SolarizeAdd', 0.2, 6), ('Contrast', 0.0, 10),
107
- ('AutoContrast', 0.6, 0)],
108
- [('Cutout', 0.2, 0), ('Solarize', 0.8, 8), ('Color', 1.0, 4)],
109
- [('TranslateY_BBox', 0.0, 4), ('Equalize', 0.6, 8),
110
- ('Solarize', 0.0, 10)],
111
- [('TranslateY_BBox', 0.2, 2), ('ShearY_BBox', 0.8, 8),
112
- ('Rotate_BBox', 0.8, 8)],
113
- [('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)],
114
- [('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6),
115
- ('Rotate_BBox', 0.6, 6)],
116
- [('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4), ('Cutout', 0.2, 8)
117
- ],
118
- [('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6),
119
- ('ShearY_BBox', 0.6, 8)],
120
- [('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2),
121
- ('Brightness', 0.2, 2)],
122
- [('TranslateY_BBox', 0.4, 8), ('Solarize', 0.4, 6),
123
- ('SolarizeAdd', 0.2, 10)],
124
- [('Contrast', 1.0, 10), ('SolarizeAdd', 0.2, 8), ('Equalize', 0.2, 4)],
125
- ]
126
- return policy
127
-
128
-
129
- def policy_v3():
130
- """"Additional policy that performs well on object detection."""
131
- # Each tuple is an augmentation operation of the form
132
- # (operation, probability, magnitude). Each element in policy is a
133
- # sub-policy that will be applied sequentially on the image.
134
- policy = [
135
- [('Posterize', 0.8, 2), ('TranslateX_BBox', 1.0, 8)],
136
- [('BBox_Cutout', 0.2, 10), ('Sharpness', 1.0, 8)],
137
- [('Rotate_BBox', 0.6, 8), ('Rotate_BBox', 0.8, 10)],
138
- [('Equalize', 0.8, 10), ('AutoContrast', 0.2, 10)],
139
- [('SolarizeAdd', 0.2, 2), ('TranslateY_BBox', 0.2, 8)],
140
- [('Sharpness', 0.0, 2), ('Color', 0.4, 8)],
141
- [('Equalize', 1.0, 8), ('TranslateY_BBox', 1.0, 8)],
142
- [('Posterize', 0.6, 2), ('Rotate_BBox', 0.0, 10)],
143
- [('AutoContrast', 0.6, 0), ('Rotate_BBox', 1.0, 6)],
144
- [('Equalize', 0.0, 4), ('Cutout', 0.8, 10)],
145
- [('Brightness', 1.0, 2), ('TranslateY_BBox', 1.0, 6)],
146
- [('Contrast', 0.0, 2), ('ShearY_BBox', 0.8, 0)],
147
- [('AutoContrast', 0.8, 10), ('Contrast', 0.2, 10)],
148
- [('Rotate_BBox', 1.0, 10), ('Cutout', 1.0, 10)],
149
- [('SolarizeAdd', 0.8, 6), ('Equalize', 0.8, 8)],
150
- ]
151
- return policy
152
-
153
-
154
- def _equal(val1, val2, eps=1e-8):
155
- return abs(val1 - val2) <= eps
156
-
157
-
158
- def blend(image1, image2, factor):
159
- """Blend image1 and image2 using 'factor'.
160
-
161
- Factor can be above 0.0. A value of 0.0 means only image1 is used.
162
- A value of 1.0 means only image2 is used. A value between 0.0 and
163
- 1.0 means we linearly interpolate the pixel values between the two
164
- images. A value greater than 1.0 "extrapolates" the difference
165
- between the two pixel values, and we clip the results to values
166
- between 0 and 255.
167
-
168
- Args:
169
- image1: An image Tensor of type uint8.
170
- image2: An image Tensor of type uint8.
171
- factor: A floating point value above 0.0.
172
-
173
- Returns:
174
- A blended image Tensor of type uint8.
175
- """
176
- if factor == 0.0:
177
- return image1
178
- if factor == 1.0:
179
- return image2
180
-
181
- image1 = image1.astype(np.float32)
182
- image2 = image2.astype(np.float32)
183
-
184
- difference = image2 - image1
185
- scaled = factor * difference
186
-
187
- # Do addition in float.
188
- temp = image1 + scaled
189
-
190
- # Interpolate
191
- if factor > 0.0 and factor < 1.0:
192
- # Interpolation means we always stay within 0 and 255.
193
- return temp.astype(np.uint8)
194
-
195
- # Extrapolate:
196
- #
197
- # We need to clip and then cast.
198
- return np.clip(temp, a_min=0, a_max=255).astype(np.uint8)
199
-
200
-
201
- def cutout(image, pad_size, replace=0):
202
- """Apply cutout (https://arxiv.org/abs/1708.04552) to image.
203
-
204
- This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
205
- a random location within `img`. The pixel values filled in will be of the
206
- value `replace`. The located where the mask will be applied is randomly
207
- chosen uniformly over the whole image.
208
-
209
- Args:
210
- image: An image Tensor of type uint8.
211
- pad_size: Specifies how big the zero mask that will be generated is that
212
- is applied to the image. The mask will be of size
213
- (2*pad_size x 2*pad_size).
214
- replace: What pixel value to fill in the image in the area that has
215
- the cutout mask applied to it.
216
-
217
- Returns:
218
- An image Tensor that is of type uint8.
219
- Example:
220
- img = cv2.imread( "/home/vis/gry/train/img_data/test.jpg", cv2.COLOR_BGR2RGB )
221
- new_img = cutout(img, pad_size=50, replace=0)
222
- """
223
- image_height, image_width = image.shape[0], image.shape[1]
224
-
225
- cutout_center_height = np.random.randint(low=0, high=image_height)
226
- cutout_center_width = np.random.randint(low=0, high=image_width)
227
-
228
- lower_pad = np.maximum(0, cutout_center_height - pad_size)
229
- upper_pad = np.maximum(0, image_height - cutout_center_height - pad_size)
230
- left_pad = np.maximum(0, cutout_center_width - pad_size)
231
- right_pad = np.maximum(0, image_width - cutout_center_width - pad_size)
232
-
233
- cutout_shape = [
234
- image_height - (lower_pad + upper_pad),
235
- image_width - (left_pad + right_pad)
236
- ]
237
- padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
238
- mask = np.pad(np.zeros(
239
- cutout_shape, dtype=image.dtype),
240
- padding_dims,
241
- 'constant',
242
- constant_values=1)
243
- mask = np.expand_dims(mask, -1)
244
- mask = np.tile(mask, [1, 1, 3])
245
- image = np.where(
246
- np.equal(mask, 0),
247
- np.ones_like(
248
- image, dtype=image.dtype) * replace,
249
- image)
250
- return image.astype(np.uint8)
251
-
252
-
253
- def solarize(image, threshold=128):
254
- # For each pixel in the image, select the pixel
255
- # if the value is less than the threshold.
256
- # Otherwise, subtract 255 from the pixel.
257
- return np.where(image < threshold, image, 255 - image)
258
-
259
-
260
- def solarize_add(image, addition=0, threshold=128):
261
- # For each pixel in the image less than threshold
262
- # we add 'addition' amount to it and then clip the
263
- # pixel value to be between 0 and 255. The value
264
- # of 'addition' is between -128 and 128.
265
- added_image = image.astype(np.int64) + addition
266
- added_image = np.clip(added_image, a_min=0, a_max=255).astype(np.uint8)
267
- return np.where(image < threshold, added_image, image)
268
-
269
-
270
- def color(image, factor):
271
- """use cv2 to deal"""
272
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
273
- degenerate = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
274
- return blend(degenerate, image, factor)
275
-
276
-
277
- # refer to https://github.com/4uiiurz1/pytorch-auto-augment/blob/024b2eac4140c38df8342f09998e307234cafc80/auto_augment.py#L197
278
- def contrast(img, factor):
279
- img = ImageEnhance.Contrast(Image.fromarray(img)).enhance(factor)
280
- return np.array(img)
281
-
282
-
283
- def brightness(image, factor):
284
- """Equivalent of PIL Brightness."""
285
- degenerate = np.zeros_like(image)
286
- return blend(degenerate, image, factor)
287
-
288
-
289
- def posterize(image, bits):
290
- """Equivalent of PIL Posterize."""
291
- shift = 8 - bits
292
- return np.left_shift(np.right_shift(image, shift), shift)
293
-
294
-
295
- def rotate(image, degrees, replace):
296
- """Rotates the image by degrees either clockwise or counterclockwise.
297
-
298
- Args:
299
- image: An image Tensor of type uint8.
300
- degrees: Float, a scalar angle in degrees to rotate all images by. If
301
- degrees is positive the image will be rotated clockwise otherwise it will
302
- be rotated counterclockwise.
303
- replace: A one or three value 1D tensor to fill empty pixels caused by
304
- the rotate operation.
305
-
306
- Returns:
307
- The rotated version of image.
308
- """
309
- image = wrap(image)
310
- image = Image.fromarray(image)
311
- image = image.rotate(degrees)
312
- image = np.array(image, dtype=np.uint8)
313
- return unwrap(image, replace)
314
-
315
-
316
- def random_shift_bbox(image,
317
- bbox,
318
- pixel_scaling,
319
- replace,
320
- new_min_bbox_coords=None):
321
- """Move the bbox and the image content to a slightly new random location.
322
-
323
- Args:
324
- image: 3D uint8 Tensor.
325
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
326
- of type float that represents the normalized coordinates between 0 and 1.
327
- The potential values for the new min corner of the bbox will be between
328
- [old_min - pixel_scaling * bbox_height/2,
329
- old_min - pixel_scaling * bbox_height/2].
330
- pixel_scaling: A float between 0 and 1 that specifies the pixel range
331
- that the new bbox location will be sampled from.
332
- replace: A one or three value 1D tensor to fill empty pixels.
333
- new_min_bbox_coords: If not None, then this is a tuple that specifies the
334
- (min_y, min_x) coordinates of the new bbox. Normally this is randomly
335
- specified, but this allows it to be manually set. The coordinates are
336
- the absolute coordinates between 0 and image height/width and are int32.
337
-
338
- Returns:
339
- The new image that will have the shifted bbox location in it along with
340
- the new bbox that contains the new coordinates.
341
- """
342
- # Obtains image height and width and create helper clip functions.
343
- image_height, image_width = image.shape[0], image.shape[1]
344
- image_height = float(image_height)
345
- image_width = float(image_width)
346
-
347
- def clip_y(val):
348
- return np.clip(val, a_min=0, a_max=image_height - 1).astype(np.int32)
349
-
350
- def clip_x(val):
351
- return np.clip(val, a_min=0, a_max=image_width - 1).astype(np.int32)
352
-
353
- # Convert bbox to pixel coordinates.
354
- min_y = int(image_height * bbox[0])
355
- min_x = int(image_width * bbox[1])
356
- max_y = clip_y(image_height * bbox[2])
357
- max_x = clip_x(image_width * bbox[3])
358
-
359
- bbox_height, bbox_width = (max_y - min_y + 1, max_x - min_x + 1)
360
- image_height = int(image_height)
361
- image_width = int(image_width)
362
-
363
- # Select the new min/max bbox ranges that are used for sampling the
364
- # new min x/y coordinates of the shifted bbox.
365
- minval_y = clip_y(min_y - np.int32(pixel_scaling * float(bbox_height) /
366
- 2.0))
367
- maxval_y = clip_y(min_y + np.int32(pixel_scaling * float(bbox_height) /
368
- 2.0))
369
- minval_x = clip_x(min_x - np.int32(pixel_scaling * float(bbox_width) /
370
- 2.0))
371
- maxval_x = clip_x(min_x + np.int32(pixel_scaling * float(bbox_width) /
372
- 2.0))
373
-
374
- # Sample and calculate the new unclipped min/max coordinates of the new bbox.
375
- if new_min_bbox_coords is None:
376
- unclipped_new_min_y = np.random.randint(
377
- low=minval_y, high=maxval_y, dtype=np.int32)
378
- unclipped_new_min_x = np.random.randint(
379
- low=minval_x, high=maxval_x, dtype=np.int32)
380
- else:
381
- unclipped_new_min_y, unclipped_new_min_x = (
382
- clip_y(new_min_bbox_coords[0]), clip_x(new_min_bbox_coords[1]))
383
- unclipped_new_max_y = unclipped_new_min_y + bbox_height - 1
384
- unclipped_new_max_x = unclipped_new_min_x + bbox_width - 1
385
-
386
- # Determine if any of the new bbox was shifted outside the current image.
387
- # This is used for determining if any of the original bbox content should be
388
- # discarded.
389
- new_min_y, new_min_x, new_max_y, new_max_x = (
390
- clip_y(unclipped_new_min_y), clip_x(unclipped_new_min_x),
391
- clip_y(unclipped_new_max_y), clip_x(unclipped_new_max_x))
392
- shifted_min_y = (new_min_y - unclipped_new_min_y) + min_y
393
- shifted_max_y = max_y - (unclipped_new_max_y - new_max_y)
394
- shifted_min_x = (new_min_x - unclipped_new_min_x) + min_x
395
- shifted_max_x = max_x - (unclipped_new_max_x - new_max_x)
396
-
397
- # Create the new bbox tensor by converting pixel integer values to floats.
398
- new_bbox = np.stack([
399
- float(new_min_y) / float(image_height), float(new_min_x) /
400
- float(image_width), float(new_max_y) / float(image_height),
401
- float(new_max_x) / float(image_width)
402
- ])
403
-
404
- # Copy the contents in the bbox and fill the old bbox location
405
- # with gray (128).
406
- bbox_content = image[shifted_min_y:shifted_max_y + 1, shifted_min_x:
407
- shifted_max_x + 1, :]
408
-
409
- def mask_and_add_image(min_y_, min_x_, max_y_, max_x_, mask,
410
- content_tensor, image_):
411
- """Applies mask to bbox region in image then adds content_tensor to it."""
412
- mask = np.pad(mask, [[min_y_, (image_height - 1) - max_y_],
413
- [min_x_, (image_width - 1) - max_x_], [0, 0]],
414
- 'constant',
415
- constant_values=1)
416
-
417
- content_tensor = np.pad(content_tensor,
418
- [[min_y_, (image_height - 1) - max_y_],
419
- [min_x_, (image_width - 1) - max_x_], [0, 0]],
420
- 'constant',
421
- constant_values=0)
422
- return image_ * mask + content_tensor
423
-
424
- # Zero out original bbox location.
425
- mask = np.zeros_like(image)[min_y:max_y + 1, min_x:max_x + 1, :]
426
- grey_tensor = np.zeros_like(mask) + replace[0]
427
- image = mask_and_add_image(min_y, min_x, max_y, max_x, mask, grey_tensor,
428
- image)
429
-
430
- # Fill in bbox content to new bbox location.
431
- mask = np.zeros_like(bbox_content)
432
- image = mask_and_add_image(new_min_y, new_min_x, new_max_y, new_max_x,
433
- mask, bbox_content, image)
434
-
435
- return image.astype(np.uint8), new_bbox
436
-
437
-
438
- def _clip_bbox(min_y, min_x, max_y, max_x):
439
- """Clip bounding box coordinates between 0 and 1.
440
-
441
- Args:
442
- min_y: Normalized bbox coordinate of type float between 0 and 1.
443
- min_x: Normalized bbox coordinate of type float between 0 and 1.
444
- max_y: Normalized bbox coordinate of type float between 0 and 1.
445
- max_x: Normalized bbox coordinate of type float between 0 and 1.
446
-
447
- Returns:
448
- Clipped coordinate values between 0 and 1.
449
- """
450
- min_y = np.clip(min_y, a_min=0, a_max=1.0)
451
- min_x = np.clip(min_x, a_min=0, a_max=1.0)
452
- max_y = np.clip(max_y, a_min=0, a_max=1.0)
453
- max_x = np.clip(max_x, a_min=0, a_max=1.0)
454
- return min_y, min_x, max_y, max_x
455
-
456
-
457
- def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05):
458
- """Adjusts bbox coordinates to make sure the area is > 0.
459
-
460
- Args:
461
- min_y: Normalized bbox coordinate of type float between 0 and 1.
462
- min_x: Normalized bbox coordinate of type float between 0 and 1.
463
- max_y: Normalized bbox coordinate of type float between 0 and 1.
464
- max_x: Normalized bbox coordinate of type float between 0 and 1.
465
- delta: Float, this is used to create a gap of size 2 * delta between
466
- bbox min/max coordinates that are the same on the boundary.
467
- This prevents the bbox from having an area of zero.
468
-
469
- Returns:
470
- Tuple of new bbox coordinates between 0 and 1 that will now have a
471
- guaranteed area > 0.
472
- """
473
- height = max_y - min_y
474
- width = max_x - min_x
475
-
476
- def _adjust_bbox_boundaries(min_coord, max_coord):
477
- # Make sure max is never 0 and min is never 1.
478
- max_coord = np.maximum(max_coord, 0.0 + delta)
479
- min_coord = np.minimum(min_coord, 1.0 - delta)
480
- return min_coord, max_coord
481
-
482
- if _equal(height, 0):
483
- min_y, max_y = _adjust_bbox_boundaries(min_y, max_y)
484
-
485
- if _equal(width, 0):
486
- min_x, max_x = _adjust_bbox_boundaries(min_x, max_x)
487
-
488
- return min_y, min_x, max_y, max_x
489
-
490
-
491
- def _scale_bbox_only_op_probability(prob):
492
- """Reduce the probability of the bbox-only operation.
493
-
494
- Probability is reduced so that we do not distort the content of too many
495
- bounding boxes that are close to each other. The value of 3.0 was a chosen
496
- hyper parameter when designing the autoaugment algorithm that we found
497
- empirically to work well.
498
-
499
- Args:
500
- prob: Float that is the probability of applying the bbox-only operation.
501
-
502
- Returns:
503
- Reduced probability.
504
- """
505
- return prob / 3.0
506
-
507
-
508
- def _apply_bbox_augmentation(image, bbox, augmentation_func, *args):
509
- """Applies augmentation_func to the subsection of image indicated by bbox.
510
-
511
- Args:
512
- image: 3D uint8 Tensor.
513
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
514
- of type float that represents the normalized coordinates between 0 and 1.
515
- augmentation_func: Augmentation function that will be applied to the
516
- subsection of image.
517
- *args: Additional parameters that will be passed into augmentation_func
518
- when it is called.
519
-
520
- Returns:
521
- A modified version of image, where the bbox location in the image will
522
- have `ugmentation_func applied to it.
523
- """
524
- image_height = image.shape[0]
525
- image_width = image.shape[1]
526
-
527
- min_y = int(image_height * bbox[0])
528
- min_x = int(image_width * bbox[1])
529
- max_y = int(image_height * bbox[2])
530
- max_x = int(image_width * bbox[3])
531
-
532
- # Clip to be sure the max values do not fall out of range.
533
- max_y = np.minimum(max_y, image_height - 1)
534
- max_x = np.minimum(max_x, image_width - 1)
535
-
536
- # Get the sub-tensor that is the image within the bounding box region.
537
- bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :]
538
-
539
- # Apply the augmentation function to the bbox portion of the image.
540
- augmented_bbox_content = augmentation_func(bbox_content, *args)
541
-
542
- # Pad the augmented_bbox_content and the mask to match the shape of original
543
- # image.
544
- augmented_bbox_content = np.pad(
545
- augmented_bbox_content, [[min_y, (image_height - 1) - max_y],
546
- [min_x, (image_width - 1) - max_x], [0, 0]],
547
- 'constant',
548
- constant_values=1)
549
-
550
- # Create a mask that will be used to zero out a part of the original image.
551
- mask_tensor = np.zeros_like(bbox_content)
552
-
553
- mask_tensor = np.pad(mask_tensor,
554
- [[min_y, (image_height - 1) - max_y],
555
- [min_x, (image_width - 1) - max_x], [0, 0]],
556
- 'constant',
557
- constant_values=1)
558
- # Replace the old bbox content with the new augmented content.
559
- image = image * mask_tensor + augmented_bbox_content
560
- return image.astype(np.uint8)
561
-
562
-
563
- def _concat_bbox(bbox, bboxes):
564
- """Helper function that concates bbox to bboxes along the first dimension."""
565
-
566
- # Note if all elements in bboxes are -1 (_INVALID_BOX), then this means
567
- # we discard bboxes and start the bboxes Tensor with the current bbox.
568
- bboxes_sum_check = np.sum(bboxes)
569
- bbox = np.expand_dims(bbox, 0)
570
- # This check will be true when it is an _INVALID_BOX
571
- if _equal(bboxes_sum_check, -4):
572
- bboxes = bbox
573
- else:
574
- bboxes = np.concatenate([bboxes, bbox], 0)
575
- return bboxes
576
-
577
-
578
- def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob,
579
- augmentation_func, func_changes_bbox,
580
- *args):
581
- """Applies _apply_bbox_augmentation with probability prob.
582
-
583
- Args:
584
- image: 3D uint8 Tensor.
585
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
586
- of type float that represents the normalized coordinates between 0 and 1.
587
- new_bboxes: 2D Tensor that is a list of the bboxes in the image after they
588
- have been altered by aug_func. These will only be changed when
589
- func_changes_bbox is set to true. Each bbox has 4 elements
590
- (min_y, min_x, max_y, max_x) of type float that are the normalized
591
- bbox coordinates between 0 and 1.
592
- prob: Float that is the probability of applying _apply_bbox_augmentation.
593
- augmentation_func: Augmentation function that will be applied to the
594
- subsection of image.
595
- func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
596
- to image.
597
- *args: Additional parameters that will be passed into augmentation_func
598
- when it is called.
599
-
600
- Returns:
601
- A tuple. Fist element is a modified version of image, where the bbox
602
- location in the image will have augmentation_func applied to it if it is
603
- chosen to be called with probability `prob`. The second element is a
604
- Tensor of Tensors of length 4 that will contain the altered bbox after
605
- applying augmentation_func.
606
- """
607
- should_apply_op = (np.random.rand() + prob >= 1)
608
- if func_changes_bbox:
609
- if should_apply_op:
610
- augmented_image, bbox = augmentation_func(image, bbox, *args)
611
- else:
612
- augmented_image, bbox = (image, bbox)
613
- else:
614
- if should_apply_op:
615
- augmented_image = _apply_bbox_augmentation(
616
- image, bbox, augmentation_func, *args)
617
- else:
618
- augmented_image = image
619
- new_bboxes = _concat_bbox(bbox, new_bboxes)
620
- return augmented_image.astype(np.uint8), new_bboxes
621
-
622
-
623
- def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func,
624
- func_changes_bbox, *args):
625
- """Applies aug_func to the image for each bbox in bboxes.
626
-
627
- Args:
628
- image: 3D uint8 Tensor.
629
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
630
- has 4 elements (min_y, min_x, max_y, max_x) of type float.
631
- prob: Float that is the probability of applying aug_func to a specific
632
- bounding box within the image.
633
- aug_func: Augmentation function that will be applied to the
634
- subsections of image indicated by the bbox values in bboxes.
635
- func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
636
- to image.
637
- *args: Additional parameters that will be passed into augmentation_func
638
- when it is called.
639
-
640
- Returns:
641
- A modified version of image, where each bbox location in the image will
642
- have augmentation_func applied to it if it is chosen to be called with
643
- probability prob independently across all bboxes. Also the final
644
- bboxes are returned that will be unchanged if func_changes_bbox is set to
645
- false and if true, the new altered ones will be returned.
646
- """
647
- # Will keep track of the new altered bboxes after aug_func is repeatedly
648
- # applied. The -1 values are a dummy value and this first Tensor will be
649
- # removed upon appending the first real bbox.
650
- new_bboxes = np.array(_INVALID_BOX)
651
-
652
- # If the bboxes are empty, then just give it _INVALID_BOX. The result
653
- # will be thrown away.
654
- bboxes = np.array((_INVALID_BOX)) if bboxes.size == 0 else bboxes
655
-
656
- assert bboxes.shape[1] == 4, "bboxes.shape[1] must be 4!!!!"
657
-
658
- # pylint:disable=g-long-lambda
659
- # pylint:disable=line-too-long
660
- wrapped_aug_func = lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper(_image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args)
661
- # pylint:enable=g-long-lambda
662
- # pylint:enable=line-too-long
663
-
664
- # Setup the while_loop.
665
- num_bboxes = bboxes.shape[0] # We loop until we go over all bboxes.
666
- idx = 0 # Counter for the while loop.
667
-
668
- # Conditional function when to end the loop once we go over all bboxes
669
- # images_and_bboxes contain (_image, _new_bboxes)
670
- def cond(_idx, _images_and_bboxes):
671
- return _idx < num_bboxes
672
-
673
- # Shuffle the bboxes so that the augmentation order is not deterministic if
674
- # we are not changing the bboxes with aug_func.
675
- # if not func_changes_bbox:
676
- # print(bboxes)
677
- # loop_bboxes = np.take(bboxes,np.random.permutation(bboxes.shape[0]),axis=0)
678
- # print(loop_bboxes)
679
- # else:
680
- # loop_bboxes = bboxes
681
- # we can not shuffle the bbox because it does not contain class information here
682
- loop_bboxes = deepcopy(bboxes)
683
-
684
- # Main function of while_loop where we repeatedly apply augmentation on the
685
- # bboxes in the image.
686
- # pylint:disable=g-long-lambda
687
- body = lambda _idx, _images_and_bboxes: [
688
- _idx + 1, wrapped_aug_func(_images_and_bboxes[0],
689
- loop_bboxes[_idx],
690
- _images_and_bboxes[1])]
691
- while (cond(idx, (image, new_bboxes))):
692
- idx, (image, new_bboxes) = body(idx, (image, new_bboxes))
693
-
694
- # Either return the altered bboxes or the original ones depending on if
695
- # we altered them in anyway.
696
- if func_changes_bbox:
697
- final_bboxes = new_bboxes
698
- else:
699
- final_bboxes = bboxes
700
- return image, final_bboxes
701
-
702
-
703
- def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func,
704
- func_changes_bbox, *args):
705
- """Checks to be sure num bboxes > 0 before calling inner function."""
706
- num_bboxes = len(bboxes)
707
- new_image = deepcopy(image)
708
- new_bboxes = deepcopy(bboxes)
709
- if num_bboxes != 0:
710
- new_image, new_bboxes = _apply_multi_bbox_augmentation(
711
- new_image, new_bboxes, prob, aug_func, func_changes_bbox, *args)
712
- return new_image, new_bboxes
713
-
714
-
715
- def rotate_only_bboxes(image, bboxes, prob, degrees, replace):
716
- """Apply rotate to each bbox in the image with probability prob."""
717
- func_changes_bbox = False
718
- prob = _scale_bbox_only_op_probability(prob)
719
- return _apply_multi_bbox_augmentation_wrapper(
720
- image, bboxes, prob, rotate, func_changes_bbox, degrees, replace)
721
-
722
-
723
- def shear_x_only_bboxes(image, bboxes, prob, level, replace):
724
- """Apply shear_x to each bbox in the image with probability prob."""
725
- func_changes_bbox = False
726
- prob = _scale_bbox_only_op_probability(prob)
727
- return _apply_multi_bbox_augmentation_wrapper(
728
- image, bboxes, prob, shear_x, func_changes_bbox, level, replace)
729
-
730
-
731
- def shear_y_only_bboxes(image, bboxes, prob, level, replace):
732
- """Apply shear_y to each bbox in the image with probability prob."""
733
- func_changes_bbox = False
734
- prob = _scale_bbox_only_op_probability(prob)
735
- return _apply_multi_bbox_augmentation_wrapper(
736
- image, bboxes, prob, shear_y, func_changes_bbox, level, replace)
737
-
738
-
739
- def translate_x_only_bboxes(image, bboxes, prob, pixels, replace):
740
- """Apply translate_x to each bbox in the image with probability prob."""
741
- func_changes_bbox = False
742
- prob = _scale_bbox_only_op_probability(prob)
743
- return _apply_multi_bbox_augmentation_wrapper(
744
- image, bboxes, prob, translate_x, func_changes_bbox, pixels, replace)
745
-
746
-
747
- def translate_y_only_bboxes(image, bboxes, prob, pixels, replace):
748
- """Apply translate_y to each bbox in the image with probability prob."""
749
- func_changes_bbox = False
750
- prob = _scale_bbox_only_op_probability(prob)
751
- return _apply_multi_bbox_augmentation_wrapper(
752
- image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace)
753
-
754
-
755
- def flip_only_bboxes(image, bboxes, prob):
756
- """Apply flip_lr to each bbox in the image with probability prob."""
757
- func_changes_bbox = False
758
- prob = _scale_bbox_only_op_probability(prob)
759
- return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob,
760
- np.fliplr, func_changes_bbox)
761
-
762
-
763
- def solarize_only_bboxes(image, bboxes, prob, threshold):
764
- """Apply solarize to each bbox in the image with probability prob."""
765
- func_changes_bbox = False
766
- prob = _scale_bbox_only_op_probability(prob)
767
- return _apply_multi_bbox_augmentation_wrapper(
768
- image, bboxes, prob, solarize, func_changes_bbox, threshold)
769
-
770
-
771
- def equalize_only_bboxes(image, bboxes, prob):
772
- """Apply equalize to each bbox in the image with probability prob."""
773
- func_changes_bbox = False
774
- prob = _scale_bbox_only_op_probability(prob)
775
- return _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob,
776
- equalize, func_changes_bbox)
777
-
778
-
779
- def cutout_only_bboxes(image, bboxes, prob, pad_size, replace):
780
- """Apply cutout to each bbox in the image with probability prob."""
781
- func_changes_bbox = False
782
- prob = _scale_bbox_only_op_probability(prob)
783
- return _apply_multi_bbox_augmentation_wrapper(
784
- image, bboxes, prob, cutout, func_changes_bbox, pad_size, replace)
785
-
786
-
787
- def _rotate_bbox(bbox, image_height, image_width, degrees):
788
- """Rotates the bbox coordinated by degrees.
789
-
790
- Args:
791
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
792
- of type float that represents the normalized coordinates between 0 and 1.
793
- image_height: Int, height of the image.
794
- image_width: Int, height of the image.
795
- degrees: Float, a scalar angle in degrees to rotate all images by. If
796
- degrees is positive the image will be rotated clockwise otherwise it will
797
- be rotated counterclockwise.
798
-
799
- Returns:
800
- A tensor of the same shape as bbox, but now with the rotated coordinates.
801
- """
802
- image_height, image_width = (float(image_height), float(image_width))
803
-
804
- # Convert from degrees to radians.
805
- degrees_to_radians = math.pi / 180.0
806
- radians = degrees * degrees_to_radians
807
-
808
- # Translate the bbox to the center of the image and turn the normalized 0-1
809
- # coordinates to absolute pixel locations.
810
- # Y coordinates are made negative as the y axis of images goes down with
811
- # increasing pixel values, so we negate to make sure x axis and y axis points
812
- # are in the traditionally positive direction.
813
- min_y = -int(image_height * (bbox[0] - 0.5))
814
- min_x = int(image_width * (bbox[1] - 0.5))
815
- max_y = -int(image_height * (bbox[2] - 0.5))
816
- max_x = int(image_width * (bbox[3] - 0.5))
817
- coordinates = np.stack([[min_y, min_x], [min_y, max_x], [max_y, min_x],
818
- [max_y, max_x]]).astype(np.float32)
819
- # Rotate the coordinates according to the rotation matrix clockwise if
820
- # radians is positive, else negative
821
- rotation_matrix = np.stack([[math.cos(radians), math.sin(radians)],
822
- [-math.sin(radians), math.cos(radians)]])
823
- new_coords = np.matmul(rotation_matrix,
824
- np.transpose(coordinates)).astype(np.int32)
825
-
826
- # Find min/max values and convert them back to normalized 0-1 floats.
827
- min_y = -(float(np.max(new_coords[0, :])) / image_height - 0.5)
828
- min_x = float(np.min(new_coords[1, :])) / image_width + 0.5
829
- max_y = -(float(np.min(new_coords[0, :])) / image_height - 0.5)
830
- max_x = float(np.max(new_coords[1, :])) / image_width + 0.5
831
-
832
- # Clip the bboxes to be sure the fall between [0, 1].
833
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
834
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
835
- return np.stack([min_y, min_x, max_y, max_x])
836
-
837
-
838
- def rotate_with_bboxes(image, bboxes, degrees, replace):
839
- # Rotate the image.
840
- image = rotate(image, degrees, replace)
841
-
842
- # Convert bbox coordinates to pixel values.
843
- image_height, image_width = image.shape[:2]
844
- # pylint:disable=g-long-lambda
845
- wrapped_rotate_bbox = lambda bbox: _rotate_bbox(bbox, image_height, image_width, degrees)
846
- # pylint:enable=g-long-lambda
847
- new_bboxes = np.zeros_like(bboxes)
848
- for idx in range(len(bboxes)):
849
- new_bboxes[idx] = wrapped_rotate_bbox(bboxes[idx])
850
- return image, new_bboxes
851
-
852
-
853
- def translate_x(image, pixels, replace):
854
- """Equivalent of PIL Translate in X dimension."""
855
- image = Image.fromarray(wrap(image))
856
- image = image.transform(image.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0))
857
- return unwrap(np.array(image), replace)
858
-
859
-
860
- def translate_y(image, pixels, replace):
861
- """Equivalent of PIL Translate in Y dimension."""
862
- image = Image.fromarray(wrap(image))
863
- image = image.transform(image.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels))
864
- return unwrap(np.array(image), replace)
865
-
866
-
867
- def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal):
868
- """Shifts the bbox coordinates by pixels.
869
-
870
- Args:
871
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
872
- of type float that represents the normalized coordinates between 0 and 1.
873
- image_height: Int, height of the image.
874
- image_width: Int, width of the image.
875
- pixels: An int. How many pixels to shift the bbox.
876
- shift_horizontal: Boolean. If true then shift in X dimension else shift in
877
- Y dimension.
878
-
879
- Returns:
880
- A tensor of the same shape as bbox, but now with the shifted coordinates.
881
- """
882
- pixels = int(pixels)
883
- # Convert bbox to integer pixel locations.
884
- min_y = int(float(image_height) * bbox[0])
885
- min_x = int(float(image_width) * bbox[1])
886
- max_y = int(float(image_height) * bbox[2])
887
- max_x = int(float(image_width) * bbox[3])
888
-
889
- if shift_horizontal:
890
- min_x = np.maximum(0, min_x - pixels)
891
- max_x = np.minimum(image_width, max_x - pixels)
892
- else:
893
- min_y = np.maximum(0, min_y - pixels)
894
- max_y = np.minimum(image_height, max_y - pixels)
895
-
896
- # Convert bbox back to floats.
897
- min_y = float(min_y) / float(image_height)
898
- min_x = float(min_x) / float(image_width)
899
- max_y = float(max_y) / float(image_height)
900
- max_x = float(max_x) / float(image_width)
901
-
902
- # Clip the bboxes to be sure the fall between [0, 1].
903
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
904
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
905
- return np.stack([min_y, min_x, max_y, max_x])
906
-
907
-
908
- def translate_bbox(image, bboxes, pixels, replace, shift_horizontal):
909
- """Equivalent of PIL Translate in X/Y dimension that shifts image and bbox.
910
-
911
- Args:
912
- image: 3D uint8 Tensor.
913
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
914
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
915
- between [0, 1].
916
- pixels: An int. How many pixels to shift the image and bboxes
917
- replace: A one or three value 1D tensor to fill empty pixels.
918
- shift_horizontal: Boolean. If true then shift in X dimension else shift in
919
- Y dimension.
920
-
921
- Returns:
922
- A tuple containing a 3D uint8 Tensor that will be the result of translating
923
- image by pixels. The second element of the tuple is bboxes, where now
924
- the coordinates will be shifted to reflect the shifted image.
925
- """
926
- if shift_horizontal:
927
- image = translate_x(image, pixels, replace)
928
- else:
929
- image = translate_y(image, pixels, replace)
930
-
931
- # Convert bbox coordinates to pixel values.
932
- image_height, image_width = image.shape[0], image.shape[1]
933
- # pylint:disable=g-long-lambda
934
- wrapped_shift_bbox = lambda bbox: _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal)
935
- # pylint:enable=g-long-lambda
936
- new_bboxes = deepcopy(bboxes)
937
- num_bboxes = len(bboxes)
938
- for idx in range(num_bboxes):
939
- new_bboxes[idx] = wrapped_shift_bbox(bboxes[idx])
940
- return image.astype(np.uint8), new_bboxes
941
-
942
-
943
- def shear_x(image, level, replace):
944
- """Equivalent of PIL Shearing in X dimension."""
945
- # Shear parallel to x axis is a projective transform
946
- # with a matrix form of:
947
- # [1 level
948
- # 0 1].
949
- image = Image.fromarray(wrap(image))
950
- image = image.transform(image.size, Image.AFFINE, (1, level, 0, 0, 1, 0))
951
- return unwrap(np.array(image), replace)
952
-
953
-
954
- def shear_y(image, level, replace):
955
- """Equivalent of PIL Shearing in Y dimension."""
956
- # Shear parallel to y axis is a projective transform
957
- # with a matrix form of:
958
- # [1 0
959
- # level 1].
960
- image = Image.fromarray(wrap(image))
961
- image = image.transform(image.size, Image.AFFINE, (1, 0, 0, level, 1, 0))
962
- return unwrap(np.array(image), replace)
963
-
964
-
965
- def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal):
966
- """Shifts the bbox according to how the image was sheared.
967
-
968
- Args:
969
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
970
- of type float that represents the normalized coordinates between 0 and 1.
971
- image_height: Int, height of the image.
972
- image_width: Int, height of the image.
973
- level: Float. How much to shear the image.
974
- shear_horizontal: If true then shear in X dimension else shear in
975
- the Y dimension.
976
-
977
- Returns:
978
- A tensor of the same shape as bbox, but now with the shifted coordinates.
979
- """
980
- image_height, image_width = (float(image_height), float(image_width))
981
-
982
- # Change bbox coordinates to be pixels.
983
- min_y = int(image_height * bbox[0])
984
- min_x = int(image_width * bbox[1])
985
- max_y = int(image_height * bbox[2])
986
- max_x = int(image_width * bbox[3])
987
- coordinates = np.stack(
988
- [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
989
- coordinates = coordinates.astype(np.float32)
990
-
991
- # Shear the coordinates according to the translation matrix.
992
- if shear_horizontal:
993
- translation_matrix = np.stack([[1, 0], [-level, 1]])
994
- else:
995
- translation_matrix = np.stack([[1, -level], [0, 1]])
996
- translation_matrix = translation_matrix.astype(np.float32)
997
- new_coords = np.matmul(translation_matrix,
998
- np.transpose(coordinates)).astype(np.int32)
999
-
1000
- # Find min/max values and convert them back to floats.
1001
- min_y = float(np.min(new_coords[0, :])) / image_height
1002
- min_x = float(np.min(new_coords[1, :])) / image_width
1003
- max_y = float(np.max(new_coords[0, :])) / image_height
1004
- max_x = float(np.max(new_coords[1, :])) / image_width
1005
-
1006
- # Clip the bboxes to be sure the fall between [0, 1].
1007
- min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
1008
- min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
1009
- return np.stack([min_y, min_x, max_y, max_x])
1010
-
1011
-
1012
- def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal):
1013
- """Applies Shear Transformation to the image and shifts the bboxes.
1014
-
1015
- Args:
1016
- image: 3D uint8 Tensor.
1017
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
1018
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
1019
- between [0, 1].
1020
- level: Float. How much to shear the image. This value will be between
1021
- -0.3 to 0.3.
1022
- replace: A one or three value 1D tensor to fill empty pixels.
1023
- shear_horizontal: Boolean. If true then shear in X dimension else shear in
1024
- the Y dimension.
1025
-
1026
- Returns:
1027
- A tuple containing a 3D uint8 Tensor that will be the result of shearing
1028
- image by level. The second element of the tuple is bboxes, where now
1029
- the coordinates will be shifted to reflect the sheared image.
1030
- """
1031
- if shear_horizontal:
1032
- image = shear_x(image, level, replace)
1033
- else:
1034
- image = shear_y(image, level, replace)
1035
-
1036
- # Convert bbox coordinates to pixel values.
1037
- image_height, image_width = image.shape[:2]
1038
- # pylint:disable=g-long-lambda
1039
- wrapped_shear_bbox = lambda bbox: _shear_bbox(bbox, image_height, image_width, level, shear_horizontal)
1040
- # pylint:enable=g-long-lambda
1041
- new_bboxes = deepcopy(bboxes)
1042
- num_bboxes = len(bboxes)
1043
- for idx in range(num_bboxes):
1044
- new_bboxes[idx] = wrapped_shear_bbox(bboxes[idx])
1045
- return image.astype(np.uint8), new_bboxes
1046
-
1047
-
1048
- def autocontrast(image):
1049
- """Implements Autocontrast function from PIL.
1050
-
1051
- Args:
1052
- image: A 3D uint8 tensor.
1053
-
1054
- Returns:
1055
- The image after it has had autocontrast applied to it and will be of type
1056
- uint8.
1057
- """
1058
-
1059
- def scale_channel(image):
1060
- """Scale the 2D image using the autocontrast rule."""
1061
- # A possibly cheaper version can be done using cumsum/unique_with_counts
1062
- # over the histogram values, rather than iterating over the entire image.
1063
- # to compute mins and maxes.
1064
- lo = float(np.min(image))
1065
- hi = float(np.max(image))
1066
-
1067
- # Scale the image, making the lowest value 0 and the highest value 255.
1068
- def scale_values(im):
1069
- scale = 255.0 / (hi - lo)
1070
- offset = -lo * scale
1071
- im = im.astype(np.float32) * scale + offset
1072
- img = np.clip(im, a_min=0, a_max=255.0)
1073
- return im.astype(np.uint8)
1074
-
1075
- result = scale_values(image) if hi > lo else image
1076
- return result
1077
-
1078
- # Assumes RGB for now. Scales each channel independently
1079
- # and then stacks the result.
1080
- s1 = scale_channel(image[:, :, 0])
1081
- s2 = scale_channel(image[:, :, 1])
1082
- s3 = scale_channel(image[:, :, 2])
1083
- image = np.stack([s1, s2, s3], 2)
1084
- return image
1085
-
1086
-
1087
- def sharpness(image, factor):
1088
- """Implements Sharpness function from PIL."""
1089
- orig_image = image
1090
- image = image.astype(np.float32)
1091
- # Make image 4D for conv operation.
1092
- # SMOOTH PIL Kernel.
1093
- kernel = np.array(
1094
- [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=np.float32) / 13.
1095
- result = cv2.filter2D(image, -1, kernel).astype(np.uint8)
1096
-
1097
- # Blend the final result.
1098
- return blend(result, orig_image, factor)
1099
-
1100
-
1101
- def equalize(image):
1102
- """Implements Equalize function from PIL using."""
1103
-
1104
- def scale_channel(im, c):
1105
- """Scale the data in the channel to implement equalize."""
1106
- im = im[:, :, c].astype(np.int32)
1107
- # Compute the histogram of the image channel.
1108
- histo, _ = np.histogram(im, range=[0, 255], bins=256)
1109
-
1110
- # For the purposes of computing the step, filter out the nonzeros.
1111
- nonzero = np.where(np.not_equal(histo, 0))
1112
- nonzero_histo = np.reshape(np.take(histo, nonzero), [-1])
1113
- step = (np.sum(nonzero_histo) - nonzero_histo[-1]) // 255
1114
-
1115
- def build_lut(histo, step):
1116
- # Compute the cumulative sum, shifting by step // 2
1117
- # and then normalization by step.
1118
- lut = (np.cumsum(histo) + (step // 2)) // step
1119
- # Shift lut, prepending with 0.
1120
- lut = np.concatenate([[0], lut[:-1]], 0)
1121
- # Clip the counts to be in range. This is done
1122
- # in the C code for image.point.
1123
- return np.clip(lut, a_min=0, a_max=255).astype(np.uint8)
1124
-
1125
- # If step is zero, return the original image. Otherwise, build
1126
- # lut from the full histogram and step and then index from it.
1127
- if step == 0:
1128
- result = im
1129
- else:
1130
- result = np.take(build_lut(histo, step), im)
1131
-
1132
- return result.astype(np.uint8)
1133
-
1134
- # Assumes RGB for now. Scales each channel independently
1135
- # and then stacks the result.
1136
- s1 = scale_channel(image, 0)
1137
- s2 = scale_channel(image, 1)
1138
- s3 = scale_channel(image, 2)
1139
- image = np.stack([s1, s2, s3], 2)
1140
- return image
1141
-
1142
-
1143
- def wrap(image):
1144
- """Returns 'image' with an extra channel set to all 1s."""
1145
- shape = image.shape
1146
- extended_channel = 255 * np.ones([shape[0], shape[1], 1], image.dtype)
1147
- extended = np.concatenate([image, extended_channel], 2).astype(image.dtype)
1148
- return extended
1149
-
1150
-
1151
- def unwrap(image, replace):
1152
- """Unwraps an image produced by wrap.
1153
-
1154
- Where there is a 0 in the last channel for every spatial position,
1155
- the rest of the three channels in that spatial dimension are grayed
1156
- (set to 128). Operations like translate and shear on a wrapped
1157
- Tensor will leave 0s in empty locations. Some transformations look
1158
- at the intensity of values to do preprocessing, and we want these
1159
- empty pixels to assume the 'average' value, rather than pure black.
1160
-
1161
-
1162
- Args:
1163
- image: A 3D Image Tensor with 4 channels.
1164
- replace: A one or three value 1D tensor to fill empty pixels.
1165
-
1166
- Returns:
1167
- image: A 3D image Tensor with 3 channels.
1168
- """
1169
- image_shape = image.shape
1170
- # Flatten the spatial dimensions.
1171
- flattened_image = np.reshape(image, [-1, image_shape[2]])
1172
-
1173
- # Find all pixels where the last channel is zero.
1174
- alpha_channel = flattened_image[:, 3]
1175
-
1176
- replace = np.concatenate([replace, np.ones([1], image.dtype)], 0)
1177
-
1178
- # Where they are zero, fill them in with 'replace'.
1179
- alpha_channel = np.reshape(alpha_channel, (-1, 1))
1180
- alpha_channel = np.tile(alpha_channel, reps=(1, flattened_image.shape[1]))
1181
-
1182
- flattened_image = np.where(
1183
- np.equal(alpha_channel, 0),
1184
- np.ones_like(
1185
- flattened_image, dtype=image.dtype) * replace,
1186
- flattened_image)
1187
-
1188
- image = np.reshape(flattened_image, image_shape)
1189
- image = image[:, :, :3]
1190
- return image.astype(np.uint8)
1191
-
1192
-
1193
- def _cutout_inside_bbox(image, bbox, pad_fraction):
1194
- """Generates cutout mask and the mean pixel value of the bbox.
1195
-
1196
- First a location is randomly chosen within the image as the center where the
1197
- cutout mask will be applied. Note this can be towards the boundaries of the
1198
- image, so the full cutout mask may not be applied.
1199
-
1200
- Args:
1201
- image: 3D uint8 Tensor.
1202
- bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
1203
- of type float that represents the normalized coordinates between 0 and 1.
1204
- pad_fraction: Float that specifies how large the cutout mask should be in
1205
- in reference to the size of the original bbox. If pad_fraction is 0.25,
1206
- then the cutout mask will be of shape
1207
- (0.25 * bbox height, 0.25 * bbox width).
1208
-
1209
- Returns:
1210
- A tuple. Fist element is a tensor of the same shape as image where each
1211
- element is either a 1 or 0 that is used to determine where the image
1212
- will have cutout applied. The second element is the mean of the pixels
1213
- in the image where the bbox is located.
1214
- mask value: [0,1]
1215
- """
1216
- image_height, image_width = image.shape[0], image.shape[1]
1217
- # Transform from shape [1, 4] to [4].
1218
- bbox = np.squeeze(bbox)
1219
-
1220
- min_y = int(float(image_height) * bbox[0])
1221
- min_x = int(float(image_width) * bbox[1])
1222
- max_y = int(float(image_height) * bbox[2])
1223
- max_x = int(float(image_width) * bbox[3])
1224
-
1225
- # Calculate the mean pixel values in the bounding box, which will be used
1226
- # to fill the cutout region.
1227
- mean = np.mean(image[min_y:max_y + 1, min_x:max_x + 1], axis=(0, 1))
1228
- # Cutout mask will be size pad_size_heigh * 2 by pad_size_width * 2 if the
1229
- # region lies entirely within the bbox.
1230
- box_height = max_y - min_y + 1
1231
- box_width = max_x - min_x + 1
1232
- pad_size_height = int(pad_fraction * (box_height / 2))
1233
- pad_size_width = int(pad_fraction * (box_width / 2))
1234
-
1235
- # Sample the center location in the image where the zero mask will be applied.
1236
- cutout_center_height = np.random.randint(min_y, max_y + 1, dtype=np.int32)
1237
- cutout_center_width = np.random.randint(min_x, max_x + 1, dtype=np.int32)
1238
-
1239
- lower_pad = np.maximum(0, cutout_center_height - pad_size_height)
1240
- upper_pad = np.maximum(
1241
- 0, image_height - cutout_center_height - pad_size_height)
1242
- left_pad = np.maximum(0, cutout_center_width - pad_size_width)
1243
- right_pad = np.maximum(0,
1244
- image_width - cutout_center_width - pad_size_width)
1245
-
1246
- cutout_shape = [
1247
- image_height - (lower_pad + upper_pad),
1248
- image_width - (left_pad + right_pad)
1249
- ]
1250
- padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
1251
-
1252
- mask = np.pad(np.zeros(
1253
- cutout_shape, dtype=image.dtype),
1254
- padding_dims,
1255
- 'constant',
1256
- constant_values=1)
1257
-
1258
- mask = np.expand_dims(mask, 2)
1259
- mask = np.tile(mask, [1, 1, 3])
1260
- return mask, mean
1261
-
1262
-
1263
- def bbox_cutout(image, bboxes, pad_fraction, replace_with_mean):
1264
- """Applies cutout to the image according to bbox information.
1265
-
1266
- This is a cutout variant that using bbox information to make more informed
1267
- decisions on where to place the cutout mask.
1268
-
1269
- Args:
1270
- image: 3D uint8 Tensor.
1271
- bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
1272
- has 4 elements (min_y, min_x, max_y, max_x) of type float with values
1273
- between [0, 1].
1274
- pad_fraction: Float that specifies how large the cutout mask should be in
1275
- in reference to the size of the original bbox. If pad_fraction is 0.25,
1276
- then the cutout mask will be of shape
1277
- (0.25 * bbox height, 0.25 * bbox width).
1278
- replace_with_mean: Boolean that specified what value should be filled in
1279
- where the cutout mask is applied. Since the incoming image will be of
1280
- uint8 and will not have had any mean normalization applied, by default
1281
- we set the value to be 128. If replace_with_mean is True then we find
1282
- the mean pixel values across the channel dimension and use those to fill
1283
- in where the cutout mask is applied.
1284
-
1285
- Returns:
1286
- A tuple. First element is a tensor of the same shape as image that has
1287
- cutout applied to it. Second element is the bboxes that were passed in
1288
- that will be unchanged.
1289
- """
1290
-
1291
- def apply_bbox_cutout(image, bboxes, pad_fraction):
1292
- """Applies cutout to a single bounding box within image."""
1293
- # Choose a single bounding box to apply cutout to.
1294
- random_index = np.random.randint(0, bboxes.shape[0], dtype=np.int32)
1295
- # Select the corresponding bbox and apply cutout.
1296
- chosen_bbox = np.take(bboxes, random_index, axis=0)
1297
- mask, mean = _cutout_inside_bbox(image, chosen_bbox, pad_fraction)
1298
-
1299
- # When applying cutout we either set the pixel value to 128 or to the mean
1300
- # value inside the bbox.
1301
- replace = mean if replace_with_mean else [128] * 3
1302
-
1303
- # Apply the cutout mask to the image. Where the mask is 0 we fill it with
1304
- # `replace`.
1305
- image = np.where(
1306
- np.equal(mask, 0),
1307
- np.ones_like(
1308
- image, dtype=image.dtype) * replace,
1309
- image).astype(image.dtype)
1310
- return image
1311
-
1312
- # Check to see if there are boxes, if so then apply boxcutout.
1313
- if len(bboxes) != 0:
1314
- image = apply_bbox_cutout(image, bboxes, pad_fraction)
1315
-
1316
- return image, bboxes
1317
-
1318
-
1319
- NAME_TO_FUNC = {
1320
- 'AutoContrast': autocontrast,
1321
- 'Equalize': equalize,
1322
- 'Posterize': posterize,
1323
- 'Solarize': solarize,
1324
- 'SolarizeAdd': solarize_add,
1325
- 'Color': color,
1326
- 'Contrast': contrast,
1327
- 'Brightness': brightness,
1328
- 'Sharpness': sharpness,
1329
- 'Cutout': cutout,
1330
- 'BBox_Cutout': bbox_cutout,
1331
- 'Rotate_BBox': rotate_with_bboxes,
1332
- # pylint:disable=g-long-lambda
1333
- 'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
1334
- image, bboxes, pixels, replace, shift_horizontal=True),
1335
- 'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
1336
- image, bboxes, pixels, replace, shift_horizontal=False),
1337
- 'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
1338
- image, bboxes, level, replace, shear_horizontal=True),
1339
- 'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
1340
- image, bboxes, level, replace, shear_horizontal=False),
1341
- # pylint:enable=g-long-lambda
1342
- 'Rotate_Only_BBoxes': rotate_only_bboxes,
1343
- 'ShearX_Only_BBoxes': shear_x_only_bboxes,
1344
- 'ShearY_Only_BBoxes': shear_y_only_bboxes,
1345
- 'TranslateX_Only_BBoxes': translate_x_only_bboxes,
1346
- 'TranslateY_Only_BBoxes': translate_y_only_bboxes,
1347
- 'Flip_Only_BBoxes': flip_only_bboxes,
1348
- 'Solarize_Only_BBoxes': solarize_only_bboxes,
1349
- 'Equalize_Only_BBoxes': equalize_only_bboxes,
1350
- 'Cutout_Only_BBoxes': cutout_only_bboxes,
1351
- }
1352
-
1353
-
1354
- def _randomly_negate_tensor(tensor):
1355
- """With 50% prob turn the tensor negative."""
1356
- should_flip = np.floor(np.random.rand() + 0.5) >= 1
1357
- final_tensor = tensor if should_flip else -tensor
1358
- return final_tensor
1359
-
1360
-
1361
- def _rotate_level_to_arg(level):
1362
- level = (level / _MAX_LEVEL) * 30.
1363
- level = _randomly_negate_tensor(level)
1364
- return (level, )
1365
-
1366
-
1367
- def _shrink_level_to_arg(level):
1368
- """Converts level to ratio by which we shrink the image content."""
1369
- if level == 0:
1370
- return (1.0, ) # if level is zero, do not shrink the image
1371
- # Maximum shrinking ratio is 2.9.
1372
- level = 2. / (_MAX_LEVEL / level) + 0.9
1373
- return (level, )
1374
-
1375
-
1376
- def _enhance_level_to_arg(level):
1377
- return ((level / _MAX_LEVEL) * 1.8 + 0.1, )
1378
-
1379
-
1380
- def _shear_level_to_arg(level):
1381
- level = (level / _MAX_LEVEL) * 0.3
1382
- # Flip level to negative with 50% chance.
1383
- level = _randomly_negate_tensor(level)
1384
- return (level, )
1385
-
1386
-
1387
- def _translate_level_to_arg(level, translate_const):
1388
- level = (level / _MAX_LEVEL) * float(translate_const)
1389
- # Flip level to negative with 50% chance.
1390
- level = _randomly_negate_tensor(level)
1391
- return (level, )
1392
-
1393
-
1394
- def _bbox_cutout_level_to_arg(level, hparams):
1395
- cutout_pad_fraction = (
1396
- level / _MAX_LEVEL) * 0.75 # hparams.cutout_max_pad_fraction
1397
- return (cutout_pad_fraction, False
1398
- ) # hparams.cutout_bbox_replace_with_mean
1399
-
1400
-
1401
- def level_to_arg(hparams):
1402
- return {
1403
- 'AutoContrast': lambda level: (),
1404
- 'Equalize': lambda level: (),
1405
- 'Posterize': lambda level: (int((level / _MAX_LEVEL) * 4), ),
1406
- 'Solarize': lambda level: (int((level / _MAX_LEVEL) * 256), ),
1407
- 'SolarizeAdd': lambda level: (int((level / _MAX_LEVEL) * 110), ),
1408
- 'Color': _enhance_level_to_arg,
1409
- 'Contrast': _enhance_level_to_arg,
1410
- 'Brightness': _enhance_level_to_arg,
1411
- 'Sharpness': _enhance_level_to_arg,
1412
- 'Cutout':
1413
- lambda level: (int((level / _MAX_LEVEL) * 100), ), # hparams.cutout_const=100
1414
- # pylint:disable=g-long-lambda
1415
- 'BBox_Cutout': lambda level: _bbox_cutout_level_to_arg(level, hparams),
1416
- 'TranslateX_BBox':
1417
- lambda level: _translate_level_to_arg(level, 250), # hparams.translate_const=250
1418
- 'TranslateY_BBox':
1419
- lambda level: _translate_level_to_arg(level, 250), # hparams.translate_cons
1420
- # pylint:enable=g-long-lambda
1421
- 'ShearX_BBox': _shear_level_to_arg,
1422
- 'ShearY_BBox': _shear_level_to_arg,
1423
- 'Rotate_BBox': _rotate_level_to_arg,
1424
- 'Rotate_Only_BBoxes': _rotate_level_to_arg,
1425
- 'ShearX_Only_BBoxes': _shear_level_to_arg,
1426
- 'ShearY_Only_BBoxes': _shear_level_to_arg,
1427
- # pylint:disable=g-long-lambda
1428
- 'TranslateX_Only_BBoxes':
1429
- lambda level: _translate_level_to_arg(level, 120), # hparams.translate_bbox_const
1430
- 'TranslateY_Only_BBoxes':
1431
- lambda level: _translate_level_to_arg(level, 120), # hparams.translate_bbox_const
1432
- # pylint:enable=g-long-lambda
1433
- 'Flip_Only_BBoxes': lambda level: (),
1434
- 'Solarize_Only_BBoxes':
1435
- lambda level: (int((level / _MAX_LEVEL) * 256), ),
1436
- 'Equalize_Only_BBoxes': lambda level: (),
1437
- # pylint:disable=g-long-lambda
1438
- 'Cutout_Only_BBoxes':
1439
- lambda level: (int((level / _MAX_LEVEL) * 50), ), # hparams.cutout_bbox_const
1440
- # pylint:enable=g-long-lambda
1441
- }
1442
-
1443
-
1444
- def bbox_wrapper(func):
1445
- """Adds a bboxes function argument to func and returns unchanged bboxes."""
1446
-
1447
- def wrapper(images, bboxes, *args, **kwargs):
1448
- return (func(images, *args, **kwargs), bboxes)
1449
-
1450
- return wrapper
1451
-
1452
-
1453
- def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams):
1454
- """Return the function that corresponds to `name` and update `level` param."""
1455
- func = NAME_TO_FUNC[name]
1456
- args = level_to_arg(augmentation_hparams)[name](level)
1457
-
1458
- # Check to see if prob is passed into function. This is used for operations
1459
- # where we alter bboxes independently.
1460
- # pytype:disable=wrong-arg-types
1461
- if 'prob' in inspect.getfullargspec(func)[0]:
1462
- args = tuple([prob] + list(args))
1463
- # pytype:enable=wrong-arg-types
1464
-
1465
- # Add in replace arg if it is required for the function that is being called.
1466
- if 'replace' in inspect.getfullargspec(func)[0]:
1467
- # Make sure replace is the final argument
1468
- assert 'replace' == inspect.getfullargspec(func)[0][-1]
1469
- args = tuple(list(args) + [replace_value])
1470
-
1471
- # Add bboxes as the second positional argument for the function if it does
1472
- # not already exist.
1473
- if 'bboxes' not in inspect.getfullargspec(func)[0]:
1474
- func = bbox_wrapper(func)
1475
- return (func, prob, args)
1476
-
1477
-
1478
- def _apply_func_with_prob(func, image, args, prob, bboxes):
1479
- """Apply `func` to image w/ `args` as input with probability `prob`."""
1480
- assert isinstance(args, tuple)
1481
- assert 'bboxes' == inspect.getfullargspec(func)[0][1]
1482
-
1483
- # If prob is a function argument, then this randomness is being handled
1484
- # inside the function, so make sure it is always called.
1485
- if 'prob' in inspect.getfullargspec(func)[0]:
1486
- prob = 1.0
1487
-
1488
- # Apply the function with probability `prob`.
1489
- should_apply_op = np.floor(np.random.rand() + 0.5) >= 1
1490
- if should_apply_op:
1491
- augmented_image, augmented_bboxes = func(image, bboxes, *args)
1492
- else:
1493
- augmented_image, augmented_bboxes = (image, bboxes)
1494
- return augmented_image, augmented_bboxes
1495
-
1496
-
1497
- def select_and_apply_random_policy(policies, image, bboxes):
1498
- """Select a random policy from `policies` and apply it to `image`."""
1499
- policy_to_select = np.random.randint(0, len(policies), dtype=np.int32)
1500
- # policy_to_select = 6 # for test
1501
- for (i, policy) in enumerate(policies):
1502
- if i == policy_to_select:
1503
- image, bboxes = policy(image, bboxes)
1504
- return (image, bboxes)
1505
-
1506
-
1507
- def build_and_apply_nas_policy(policies, image, bboxes, augmentation_hparams):
1508
- """Build a policy from the given policies passed in and apply to image.
1509
-
1510
- Args:
1511
- policies: list of lists of tuples in the form `(func, prob, level)`, `func`
1512
- is a string name of the augmentation function, `prob` is the probability
1513
- of applying the `func` operation, `level` is the input argument for
1514
- `func`.
1515
- image: numpy array that the resulting policy will be applied to.
1516
- bboxes:
1517
- augmentation_hparams: Hparams associated with the NAS learned policy.
1518
-
1519
- Returns:
1520
- A version of image that now has data augmentation applied to it based on
1521
- the `policies` pass into the function. Additionally, returns bboxes if
1522
- a value for them is passed in that is not None
1523
- """
1524
- replace_value = [128, 128, 128]
1525
-
1526
- # func is the string name of the augmentation function, prob is the
1527
- # probability of applying the operation and level is the parameter associated
1528
-
1529
- # tf_policies are functions that take in an image and return an augmented
1530
- # image.
1531
- tf_policies = []
1532
- for policy in policies:
1533
- tf_policy = []
1534
- # Link string name to the correct python function and make sure the correct
1535
- # argument is passed into that function.
1536
- for policy_info in policy:
1537
- policy_info = list(
1538
- policy_info) + [replace_value, augmentation_hparams]
1539
-
1540
- tf_policy.append(_parse_policy_info(*policy_info))
1541
- # Now build the tf policy that will apply the augmentation procedue
1542
- # on image.
1543
- def make_final_policy(tf_policy_):
1544
- def final_policy(image_, bboxes_):
1545
- for func, prob, args in tf_policy_:
1546
- image_, bboxes_ = _apply_func_with_prob(func, image_, args,
1547
- prob, bboxes_)
1548
- return image_, bboxes_
1549
-
1550
- return final_policy
1551
-
1552
- tf_policies.append(make_final_policy(tf_policy))
1553
-
1554
- augmented_images, augmented_bboxes = select_and_apply_random_policy(
1555
- tf_policies, image, bboxes)
1556
- # If no bounding boxes were specified, then just return the images.
1557
- return (augmented_images, augmented_bboxes)
1558
-
1559
-
1560
- # TODO(barretzoph): Add in ArXiv link once paper is out.
1561
- def distort_image_with_autoaugment(image, bboxes, augmentation_name):
1562
- """Applies the AutoAugment policy to `image` and `bboxes`.
1563
-
1564
- Args:
1565
- image: `Tensor` of shape [height, width, 3] representing an image.
1566
- bboxes: `Tensor` of shape [N, 4] representing ground truth boxes that are
1567
- normalized between [0, 1].
1568
- augmentation_name: The name of the AutoAugment policy to use. The available
1569
- options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for
1570
- all of the results in the paper and was found to achieve the best results
1571
- on the COCO dataset. `v1`, `v2` and `v3` are additional good policies
1572
- found on the COCO dataset that have slight variation in what operations
1573
- were used during the search procedure along with how many operations are
1574
- applied in parallel to a single image (2 vs 3).
1575
-
1576
- Returns:
1577
- A tuple containing the augmented versions of `image` and `bboxes`.
1578
- """
1579
- available_policies = {
1580
- 'v0': policy_v0,
1581
- 'v1': policy_v1,
1582
- 'v2': policy_v2,
1583
- 'v3': policy_v3,
1584
- 'test': policy_vtest
1585
- }
1586
- if augmentation_name not in available_policies:
1587
- raise ValueError('Invalid augmentation_name: {}'.format(
1588
- augmentation_name))
1589
-
1590
- policy = available_policies[augmentation_name]()
1591
- augmentation_hparams = {}
1592
- return build_and_apply_nas_policy(policy, image, bboxes,
1593
- augmentation_hparams)