nvfuser-cu121-torch25 0.2.25.dev20250201__cp312-cp312-manylinux_2_28_x86_64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (242) hide show
  1. nvfuser/_C.cpython-312-x86_64-linux-gnu.so +0 -0
  2. nvfuser/__init__.py +618 -0
  3. nvfuser/__init__.pyi +4 -0
  4. nvfuser/contrib/__init__.py +9 -0
  5. nvfuser/contrib/nn/__init__.py +13 -0
  6. nvfuser/contrib/nn/normalization.py +725 -0
  7. nvfuser/include/nvfuser/alias_analysis.h +116 -0
  8. nvfuser/include/nvfuser/bfs.h +929 -0
  9. nvfuser/include/nvfuser/codegen.h +26 -0
  10. nvfuser/include/nvfuser/compute_at.h +28 -0
  11. nvfuser/include/nvfuser/compute_at_map.h +394 -0
  12. nvfuser/include/nvfuser/contiguity.h +351 -0
  13. nvfuser/include/nvfuser/cuda_utils.h +50 -0
  14. nvfuser/include/nvfuser/debug.h +50 -0
  15. nvfuser/include/nvfuser/device_lower/analysis/bank_conflict.h +53 -0
  16. nvfuser/include/nvfuser/device_lower/analysis/circular_buffer.h +109 -0
  17. nvfuser/include/nvfuser/device_lower/analysis/device_version.h +65 -0
  18. nvfuser/include/nvfuser/device_lower/analysis/divisible_split.h +28 -0
  19. nvfuser/include/nvfuser/device_lower/analysis/fused_reduction.h +36 -0
  20. nvfuser/include/nvfuser/device_lower/analysis/index_compute.h +322 -0
  21. nvfuser/include/nvfuser/device_lower/analysis/predicate_elimination.h +71 -0
  22. nvfuser/include/nvfuser/device_lower/analysis/sync_information.h +47 -0
  23. nvfuser/include/nvfuser/device_lower/analysis/tensor_memory.h +65 -0
  24. nvfuser/include/nvfuser/device_lower/analysis/thread_predicate.h +158 -0
  25. nvfuser/include/nvfuser/device_lower/analysis/tma.h +93 -0
  26. nvfuser/include/nvfuser/device_lower/analysis/trivial_broadcast.h +75 -0
  27. nvfuser/include/nvfuser/device_lower/id_model_options.h +135 -0
  28. nvfuser/include/nvfuser/device_lower/lower2device.h +391 -0
  29. nvfuser/include/nvfuser/device_lower/pass/alias_memory.h +37 -0
  30. nvfuser/include/nvfuser/device_lower/pass/allocation.h +32 -0
  31. nvfuser/include/nvfuser/device_lower/pass/circular_buffer.h +191 -0
  32. nvfuser/include/nvfuser/device_lower/pass/expr_sort.h +17 -0
  33. nvfuser/include/nvfuser/device_lower/pass/fusion_simplifier.h +21 -0
  34. nvfuser/include/nvfuser/device_lower/pass/grid_serialization.h +26 -0
  35. nvfuser/include/nvfuser/device_lower/pass/index.h +200 -0
  36. nvfuser/include/nvfuser/device_lower/pass/inline_ptx.h +16 -0
  37. nvfuser/include/nvfuser/device_lower/pass/insert_syncs.h +39 -0
  38. nvfuser/include/nvfuser/device_lower/pass/instrument.h +24 -0
  39. nvfuser/include/nvfuser/device_lower/pass/loop_rotation.h +150 -0
  40. nvfuser/include/nvfuser/device_lower/pass/loops.h +68 -0
  41. nvfuser/include/nvfuser/device_lower/pass/magic_zero.h +86 -0
  42. nvfuser/include/nvfuser/device_lower/pass/misaligned_vectorization.h +118 -0
  43. nvfuser/include/nvfuser/device_lower/pass/predicate.h +23 -0
  44. nvfuser/include/nvfuser/device_lower/pass/replace_size.h +24 -0
  45. nvfuser/include/nvfuser/device_lower/pass/scalar_hoist.h +115 -0
  46. nvfuser/include/nvfuser/device_lower/pass/unroll.h +98 -0
  47. nvfuser/include/nvfuser/device_lower/pass/vectorize_welford.h +45 -0
  48. nvfuser/include/nvfuser/device_lower/pass/warp_reduce.h +23 -0
  49. nvfuser/include/nvfuser/device_lower/utils.h +382 -0
  50. nvfuser/include/nvfuser/device_lower/validation.h +74 -0
  51. nvfuser/include/nvfuser/disjoint_set.h +556 -0
  52. nvfuser/include/nvfuser/dispatch.h +334 -0
  53. nvfuser/include/nvfuser/driver_api.h +49 -0
  54. nvfuser/include/nvfuser/dynamic_transform.h +316 -0
  55. nvfuser/include/nvfuser/dynamic_type/C++20/type_traits +37 -0
  56. nvfuser/include/nvfuser/dynamic_type/dynamic_type.h +969 -0
  57. nvfuser/include/nvfuser/dynamic_type/error.h +24 -0
  58. nvfuser/include/nvfuser/dynamic_type/type_traits.h +703 -0
  59. nvfuser/include/nvfuser/evaluator_common.h +295 -0
  60. nvfuser/include/nvfuser/exceptions.h +283 -0
  61. nvfuser/include/nvfuser/expr_evaluator.h +125 -0
  62. nvfuser/include/nvfuser/expr_simplifier.h +218 -0
  63. nvfuser/include/nvfuser/flatbuffers/allocator.h +68 -0
  64. nvfuser/include/nvfuser/flatbuffers/array.h +253 -0
  65. nvfuser/include/nvfuser/flatbuffers/base.h +486 -0
  66. nvfuser/include/nvfuser/flatbuffers/buffer.h +154 -0
  67. nvfuser/include/nvfuser/flatbuffers/buffer_ref.h +53 -0
  68. nvfuser/include/nvfuser/flatbuffers/code_generator.h +80 -0
  69. nvfuser/include/nvfuser/flatbuffers/code_generators.h +234 -0
  70. nvfuser/include/nvfuser/flatbuffers/default_allocator.h +64 -0
  71. nvfuser/include/nvfuser/flatbuffers/detached_buffer.h +114 -0
  72. nvfuser/include/nvfuser/flatbuffers/flatbuffer_builder.h +1225 -0
  73. nvfuser/include/nvfuser/flatbuffers/flatbuffers.h +272 -0
  74. nvfuser/include/nvfuser/flatbuffers/flatc.h +130 -0
  75. nvfuser/include/nvfuser/flatbuffers/flex_flat_util.h +36 -0
  76. nvfuser/include/nvfuser/flatbuffers/flexbuffers.h +1889 -0
  77. nvfuser/include/nvfuser/flatbuffers/grpc.h +300 -0
  78. nvfuser/include/nvfuser/flatbuffers/hash.h +127 -0
  79. nvfuser/include/nvfuser/flatbuffers/idl.h +1359 -0
  80. nvfuser/include/nvfuser/flatbuffers/minireflect.h +420 -0
  81. nvfuser/include/nvfuser/flatbuffers/reflection.h +522 -0
  82. nvfuser/include/nvfuser/flatbuffers/reflection_generated.h +1471 -0
  83. nvfuser/include/nvfuser/flatbuffers/registry.h +128 -0
  84. nvfuser/include/nvfuser/flatbuffers/stl_emulation.h +513 -0
  85. nvfuser/include/nvfuser/flatbuffers/string.h +64 -0
  86. nvfuser/include/nvfuser/flatbuffers/struct.h +53 -0
  87. nvfuser/include/nvfuser/flatbuffers/table.h +168 -0
  88. nvfuser/include/nvfuser/flatbuffers/util.h +731 -0
  89. nvfuser/include/nvfuser/flatbuffers/vector.h +393 -0
  90. nvfuser/include/nvfuser/flatbuffers/vector_downward.h +273 -0
  91. nvfuser/include/nvfuser/flatbuffers/verifier.h +317 -0
  92. nvfuser/include/nvfuser/fusion.h +511 -0
  93. nvfuser/include/nvfuser/fusion_guard.h +37 -0
  94. nvfuser/include/nvfuser/fusion_profiler.h +311 -0
  95. nvfuser/include/nvfuser/fusion_segmenter.h +751 -0
  96. nvfuser/include/nvfuser/global_allocator.h +27 -0
  97. nvfuser/include/nvfuser/grouped_reduction.h +47 -0
  98. nvfuser/include/nvfuser/host_ir/container.h +60 -0
  99. nvfuser/include/nvfuser/host_ir/executor.h +152 -0
  100. nvfuser/include/nvfuser/host_ir/host_ir.h +320 -0
  101. nvfuser/include/nvfuser/host_ir/lower.h +35 -0
  102. nvfuser/include/nvfuser/id_model/circular_buffer_indexing.h +56 -0
  103. nvfuser/include/nvfuser/id_model/contiguity.h +166 -0
  104. nvfuser/include/nvfuser/id_model/id_model.h +359 -0
  105. nvfuser/include/nvfuser/id_model/id_model_index_compute.h +81 -0
  106. nvfuser/include/nvfuser/id_model/indexing.h +208 -0
  107. nvfuser/include/nvfuser/id_model/indexing_traversal.h +72 -0
  108. nvfuser/include/nvfuser/id_model/indexing_utils.h +62 -0
  109. nvfuser/include/nvfuser/id_model/loop_promotion.h +180 -0
  110. nvfuser/include/nvfuser/id_model/predicate_indexing.h +104 -0
  111. nvfuser/include/nvfuser/id_model/schedule.h +54 -0
  112. nvfuser/include/nvfuser/id_model/to_string.h +87 -0
  113. nvfuser/include/nvfuser/id_model/transform_replay.h +58 -0
  114. nvfuser/include/nvfuser/id_model/utils.h +176 -0
  115. nvfuser/include/nvfuser/id_model/validation_utils.h +55 -0
  116. nvfuser/include/nvfuser/index_compute.h +651 -0
  117. nvfuser/include/nvfuser/instrumentation.h +107 -0
  118. nvfuser/include/nvfuser/ir/all_nodes.h +14 -0
  119. nvfuser/include/nvfuser/ir/base_nodes.h +687 -0
  120. nvfuser/include/nvfuser/ir/builder.h +215 -0
  121. nvfuser/include/nvfuser/ir/builder_passkey.h +29 -0
  122. nvfuser/include/nvfuser/ir/cloner.h +185 -0
  123. nvfuser/include/nvfuser/ir/container.h +226 -0
  124. nvfuser/include/nvfuser/ir/graphviz.h +119 -0
  125. nvfuser/include/nvfuser/ir/interface_nodes.h +957 -0
  126. nvfuser/include/nvfuser/ir/internal_base_nodes.h +744 -0
  127. nvfuser/include/nvfuser/ir/internal_nodes.h +2792 -0
  128. nvfuser/include/nvfuser/ir/iostream.h +98 -0
  129. nvfuser/include/nvfuser/ir/printer.h +57 -0
  130. nvfuser/include/nvfuser/ir/utils.h +801 -0
  131. nvfuser/include/nvfuser/iter_visitor.h +661 -0
  132. nvfuser/include/nvfuser/kernel.h +299 -0
  133. nvfuser/include/nvfuser/kernel_db/kernel_db.h +109 -0
  134. nvfuser/include/nvfuser/kernel_db/utils.h +37 -0
  135. nvfuser/include/nvfuser/kernel_ir.h +1457 -0
  136. nvfuser/include/nvfuser/kernel_ir_dispatch.h +147 -0
  137. nvfuser/include/nvfuser/linked_hash_map.h +97 -0
  138. nvfuser/include/nvfuser/logical_domain_map.h +577 -0
  139. nvfuser/include/nvfuser/macros.h +23 -0
  140. nvfuser/include/nvfuser/mma_type.h +257 -0
  141. nvfuser/include/nvfuser/multidevice/c10d_mock.h +175 -0
  142. nvfuser/include/nvfuser/multidevice/communication.h +232 -0
  143. nvfuser/include/nvfuser/multidevice/communicator.h +179 -0
  144. nvfuser/include/nvfuser/multidevice/device_mesh.h +95 -0
  145. nvfuser/include/nvfuser/multidevice/executor.h +107 -0
  146. nvfuser/include/nvfuser/multidevice/multidevice.h +18 -0
  147. nvfuser/include/nvfuser/multidevice/utils.h +187 -0
  148. nvfuser/include/nvfuser/non_divisible_split.h +86 -0
  149. nvfuser/include/nvfuser/opaque_type.h +129 -0
  150. nvfuser/include/nvfuser/ops/alias.h +192 -0
  151. nvfuser/include/nvfuser/ops/all_ops.h +13 -0
  152. nvfuser/include/nvfuser/ops/arith.h +712 -0
  153. nvfuser/include/nvfuser/ops/composite.h +130 -0
  154. nvfuser/include/nvfuser/ops/indexing.h +55 -0
  155. nvfuser/include/nvfuser/ops/normalization.h +263 -0
  156. nvfuser/include/nvfuser/ops/utils.h +127 -0
  157. nvfuser/include/nvfuser/options.h +313 -0
  158. nvfuser/include/nvfuser/parallel_dimension_map.h +95 -0
  159. nvfuser/include/nvfuser/parallel_type_bitmap.h +365 -0
  160. nvfuser/include/nvfuser/polymorphic_value.h +432 -0
  161. nvfuser/include/nvfuser/predicate_compute.h +213 -0
  162. nvfuser/include/nvfuser/python_frontend/distributed_tensor.h +50 -0
  163. nvfuser/include/nvfuser/python_frontend/fusion_cache.h +298 -0
  164. nvfuser/include/nvfuser/python_frontend/fusion_definition.h +372 -0
  165. nvfuser/include/nvfuser/python_frontend/fusion_record.h +3124 -0
  166. nvfuser/include/nvfuser/python_frontend/fusion_state.h +143 -0
  167. nvfuser/include/nvfuser/python_frontend/python_bindings.h +27 -0
  168. nvfuser/include/nvfuser/python_frontend/segmentation.h +246 -0
  169. nvfuser/include/nvfuser/python_frontend/translation.h +20 -0
  170. nvfuser/include/nvfuser/python_frontend/translation_utils.h +308 -0
  171. nvfuser/include/nvfuser/scheduler/all_schedulers.h +17 -0
  172. nvfuser/include/nvfuser/scheduler/ampere_multi_matmul.h +206 -0
  173. nvfuser/include/nvfuser/scheduler/cache_policy_refiner.h +19 -0
  174. nvfuser/include/nvfuser/scheduler/compile_time_info.h +322 -0
  175. nvfuser/include/nvfuser/scheduler/debug_utils.h +68 -0
  176. nvfuser/include/nvfuser/scheduler/expr_eval_sched.h +45 -0
  177. nvfuser/include/nvfuser/scheduler/heuristic.h +113 -0
  178. nvfuser/include/nvfuser/scheduler/hopper_multi_matmul.h +204 -0
  179. nvfuser/include/nvfuser/scheduler/mark_aliases.h +19 -0
  180. nvfuser/include/nvfuser/scheduler/matmul.h +40 -0
  181. nvfuser/include/nvfuser/scheduler/matmul_heuristic.h +293 -0
  182. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin.h +65 -0
  183. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin_api.h +99 -0
  184. nvfuser/include/nvfuser/scheduler/matmul_utils.h +54 -0
  185. nvfuser/include/nvfuser/scheduler/mma_utils.h +500 -0
  186. nvfuser/include/nvfuser/scheduler/multi_matmul.h +74 -0
  187. nvfuser/include/nvfuser/scheduler/no_op.h +48 -0
  188. nvfuser/include/nvfuser/scheduler/normalization_inner.h +49 -0
  189. nvfuser/include/nvfuser/scheduler/normalization_inner_outer.h +51 -0
  190. nvfuser/include/nvfuser/scheduler/normalization_outer.h +48 -0
  191. nvfuser/include/nvfuser/scheduler/normalization_utils.h +379 -0
  192. nvfuser/include/nvfuser/scheduler/pointwise.h +183 -0
  193. nvfuser/include/nvfuser/scheduler/pointwise_heuristic.h +118 -0
  194. nvfuser/include/nvfuser/scheduler/pointwise_utils.h +24 -0
  195. nvfuser/include/nvfuser/scheduler/reduction.h +43 -0
  196. nvfuser/include/nvfuser/scheduler/reduction_heuristic.h +339 -0
  197. nvfuser/include/nvfuser/scheduler/reduction_utils.h +159 -0
  198. nvfuser/include/nvfuser/scheduler/registry.h +97 -0
  199. nvfuser/include/nvfuser/scheduler/registry_utils.h +111 -0
  200. nvfuser/include/nvfuser/scheduler/resize.h +41 -0
  201. nvfuser/include/nvfuser/scheduler/resize_heuristic.h +67 -0
  202. nvfuser/include/nvfuser/scheduler/runtime_info.h +166 -0
  203. nvfuser/include/nvfuser/scheduler/scheduler_types.h +80 -0
  204. nvfuser/include/nvfuser/scheduler/transpose.h +114 -0
  205. nvfuser/include/nvfuser/scheduler/transpose_heuristic.h +164 -0
  206. nvfuser/include/nvfuser/scheduler/utils.h +771 -0
  207. nvfuser/include/nvfuser/scheduler/vectorize_helper.h +349 -0
  208. nvfuser/include/nvfuser/serde/factory.h +55 -0
  209. nvfuser/include/nvfuser/serde/fusion_cache_generated.h +4319 -0
  210. nvfuser/include/nvfuser/serde/fusion_record.h +124 -0
  211. nvfuser/include/nvfuser/serde/polymorphic_value.h +52 -0
  212. nvfuser/include/nvfuser/serde/utils.h +34 -0
  213. nvfuser/include/nvfuser/struct.inl +127 -0
  214. nvfuser/include/nvfuser/swizzle.h +54 -0
  215. nvfuser/include/nvfuser/sys_utils.h +40 -0
  216. nvfuser/include/nvfuser/tensor_metadata.h +118 -0
  217. nvfuser/include/nvfuser/tma.h +124 -0
  218. nvfuser/include/nvfuser/transform_iter.h +522 -0
  219. nvfuser/include/nvfuser/transform_replay.h +297 -0
  220. nvfuser/include/nvfuser/transform_rfactor.h +33 -0
  221. nvfuser/include/nvfuser/transform_view.h +136 -0
  222. nvfuser/include/nvfuser/type.h +1125 -0
  223. nvfuser/include/nvfuser/type_promotion.h +61 -0
  224. nvfuser/include/nvfuser/utils.h +619 -0
  225. nvfuser/include/nvfuser/val_graph.h +446 -0
  226. nvfuser/include/nvfuser/val_graph_visitor.h +259 -0
  227. nvfuser/include/nvfuser/validator_utils.h +92 -0
  228. nvfuser/include/nvfuser/vectorization_info.h +31 -0
  229. nvfuser/include/nvfuser/visibility.h +21 -0
  230. nvfuser/lib/libnvfuser_codegen.so +0 -0
  231. nvfuser/nvfuser_version.py +69 -0
  232. nvfuser/pytorch_utils.py +184 -0
  233. nvfuser/share/cmake/nvfuser/NvfuserConfig-release.cmake +20 -0
  234. nvfuser/share/cmake/nvfuser/NvfuserConfig.cmake +106 -0
  235. nvfuser/utils.py +18 -0
  236. nvfuser/version.py +1 -0
  237. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/LICENSE +976 -0
  238. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/METADATA +16 -0
  239. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/RECORD +242 -0
  240. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/WHEEL +5 -0
  241. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/top_level.txt +1 -0
  242. nvfuser_cu121_torch25.libs/libnvToolsExt-847d78f2.so.1.0.0 +0 -0
@@ -0,0 +1,297 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <exceptions.h>
11
+ #include <ir/internal_nodes.h>
12
+ #include <scheduler/tools/maxinfo_propagator.h>
13
+ #include <visibility.h>
14
+
15
+ #include <algorithm>
16
+ #include <unordered_map>
17
+ #include <unordered_set>
18
+ #include <vector>
19
+
20
+ namespace nvfuser {
21
+
22
+ /*
23
+ * compute_at is a relative property between two TensorViews which marks at what
24
+ * iteration domain we're going to generate a tensor to be consumed by another.
25
+ * For example if we have: T2[I, J, K] = T1[I, J, K] * 2.0 and then we call
26
+ * T2.split(axis = 0, factor = ...): T2[Io, Ii, J, K] = T1[I, J, K] * 2.0 where
27
+ * Io is the outer axes from the split, and Ii is the inner axes from the split.
28
+ * then we call T1.compute_at(T2, axis=1) we would expect to have:
29
+ * T2[Io, Ii, J, K] = T1[Io, Ii, J, K] * 2.0
30
+ * which would produce the following loop nest structure:
31
+ *
32
+ * for(io : Io)
33
+ * for(ii : Ii)
34
+ * for(j : J)
35
+ * for(k : K)
36
+ * //produce T1:
37
+ * T1[io, ii, j, k] = ...
38
+ * for(ii : Ii)
39
+ * for(j : J)
40
+ * for(k : K)
41
+ * //consume T1, produce T2
42
+ * T2[io, ii, j, k] = T1[io, ii, j, k] * 2.0
43
+ *
44
+ * This file provides the replay function that allows us to construct T1's
45
+ * domain from T2 at a desired level (compute_at_axis) without modifying any
46
+ * unnecessary parts of the domain.
47
+ *
48
+ * EXAMPLES:
49
+ *
50
+ * ANOTHER ITER EXAMPLE:
51
+ * T2[I, J, K] = T1[I, J, K] * 2.0
52
+ * T2.split(axis = 0, factor = ...)
53
+ * T2[Io, Ii, J, K] = T1[I, J, K] * 2.0
54
+ * T2.split(axis = 2, factor = ...)
55
+ * T2[Io, Ii, Jo, Ji, K] = T1[I, J, K] * 2.0
56
+ * T1.compute_at(T2, axis=1)
57
+ * T2[Io, Ii, Jo, Ji, K] = T1[Io, Ii, J, K] * 2.0
58
+ *
59
+ * Note: compute_at axis:
60
+ * T2[ 0 Io, 1 Ii, 2 Jo, 3 Ji, 4 K 5 ] //5 is inline, 0 is at "root" which means
61
+ * completely separate loop nests.
62
+ *
63
+ * for(io : Io)
64
+ * for(ii : Ii)
65
+ * for(j : J)
66
+ * for(k : K)
67
+ * //produce T1, this is the view that replay generates:
68
+ * T1[io, ii, j, k] = ...
69
+ * for(ii : Ii)
70
+ * for(jo : Jo)
71
+ * for(ji : Ji)
72
+ * for(k : K)
73
+ * //consume T1, produce T2
74
+ * T2[io, ii, jo, ji, k] = T1[io, ii, jo, ji, k] * 2.0
75
+ * //consumer view on T1 will be produced at a later stage.
76
+ *
77
+ *
78
+ * SIMPLE REDUCTION EXAMPLE:
79
+ * T1[I, J, K] = ...
80
+ * T2[I, R, K] = T1[I, J, K] //.sum(axis = 1), we reduce on R/J to produce
81
+ * T2[I, K] T2.split(axis = 0, factor = ...) T2[Io, Ii, R, K] = T1[I, J, K]
82
+ * T1.compute_at(T2, axis=3)
83
+ * T2[Io, Ii, R, K] = T1[Io, Ii, J, K]
84
+ *
85
+ * for(io : Io)
86
+ * for(ii : Ii)
87
+ * for(k : K)
88
+ * T2[io, ii, k] = init
89
+ * for(r : R)
90
+ * for(k : K)
91
+ * //produce T1:
92
+ * T1[io, ii, r, k] = ...
93
+ * //consume T1 produce T2:
94
+ * T2[io, ii, k] += T1[io, ii, r, k]
95
+ *
96
+ *
97
+ * REDUCTION EXAMPLE RESULTING IN AN ERROR:
98
+ * T1[I, R, K] = ... //R is reduction domain, we reduce on R to produce T1[I,
99
+ * K] T2[I, K] = T1[I, K]
100
+ *
101
+ * for(i : I)
102
+ * for(k : K)
103
+ * T1[i, k] = init
104
+ * for(r : R)
105
+ * for(k : K)
106
+ * T1[i, k] += ...[i, r, k]
107
+ * for(i : I)
108
+ * for(k : K)
109
+ * T2[i, k] = T1[i, k]
110
+ *
111
+ * T1.compute_at(T2, axis=2)
112
+ * This should be an error, or a warning and changed to:
113
+ * T1.compute_at(T2, axis=1)
114
+ * The error is because the kernel would have to be:
115
+ *
116
+ * for(i : I)
117
+ * T1[i, k] = init
118
+ * for(r : R)
119
+ * for(k : K)
120
+ * T1[i, k] += ...[i, r, k]
121
+ * for(k : K)
122
+ * T2[i, k] = T1[i, k]
123
+ *
124
+ * Otherwise we would produce incorrect results.
125
+ *
126
+ */
127
+
128
+ class TensorDomain;
129
+ class TensorView;
130
+ class LogicalDomainMap;
131
+
132
+ struct TransformReplayOptions {
133
+ // In theory, it makes more sense to have skip_target_swizzle = true by
134
+ // default because this is how we index into the producer and how we propagate
135
+ // transformations. However, we are in a very funny situation that:
136
+ // BestEffortReplay for swizzle is broken. For example, if we have a
137
+ // producer <=> consumer pair like:
138
+ // I1 I0
139
+ // / \ / |
140
+ // I1o I1i I0o I0i
141
+ // | | | |
142
+ // swizzle I1i swizzle I0i <=> I3 I2
143
+ // | | | |
144
+ // I1o' I1i I0o' I0i
145
+ // \ / \ /
146
+ // I1' I0'
147
+ // where I1o', I0o' = swizzle(I1o, I0o), we never really skipped swizzle to
148
+ // map I1' with I3 and I0' with I2. But even with this error, our swizzle
149
+ // indexing worked due to luck. So effectively we were doing
150
+ // skip_target_swizzle = false. But today, we can not make this `true` for
151
+ // vectorization validation and indexing, because of another bug in
152
+ // BestEffortReplay: swizzle skip should happen in an all-or-nothing fashion.
153
+ // We can not just skip X but not skip Y, but we are not implementing this
154
+ // skip like that. If we make it `true`, this will trigger some error in some
155
+ // schedule. So here, in order to avoid exposing one bug, we are more
156
+ // explicitly using a wrong behavior that we have been using because this
157
+ // wrong behavior has a better luck.
158
+ // For more info, see https://github.com/NVIDIA/Fuser/issues/554
159
+ bool skip_target_swizzle = false;
160
+ bool replay_swizzle = false;
161
+ bool replay_resize = false;
162
+ bool replay_allocation = false;
163
+
164
+ TransformReplayOptions& skipTargetSwizzle(bool value = true) {
165
+ skip_target_swizzle = value;
166
+ return *this;
167
+ }
168
+
169
+ TransformReplayOptions& replaySwizzle(bool value = true) {
170
+ replay_swizzle = value;
171
+ return *this;
172
+ }
173
+
174
+ TransformReplayOptions& replayResize(bool value = true) {
175
+ replay_resize = value;
176
+ return *this;
177
+ }
178
+
179
+ TransformReplayOptions& replayAllocation(bool value = true) {
180
+ replay_allocation = value;
181
+ return *this;
182
+ }
183
+ };
184
+
185
+ class NVF_API TransformReplay {
186
+ public:
187
+ // Replay producer as consumer, returns {producer, producer_compute_at_axis}.
188
+ //
189
+ // replay_resize indicates whether resize should be replayed or
190
+ // ignored. It is only replayed when replaying a producer for
191
+ // indexing.
192
+ // replay_allocation indicates whether to replace the producer's allocation
193
+ // domain with corresponding consumer's allocation domain. By default, we
194
+ // should preserve producer's current allocation domain, and if that
195
+ // allocation domain is inconsistent with the replay, an error will be raised.
196
+ // This option is used in cacheBefore, cacheAfter, and cacheFork
197
+ static std::pair<TensorDomain*, int64_t> replayPasC(
198
+ const TensorView* producer,
199
+ const TensorView* consumer,
200
+ int64_t consumer_compute_at_axis,
201
+ TransformReplayOptions opt = {});
202
+ static std::pair<TensorDomain*, int64_t> replayPasC(
203
+ const TensorView* producer,
204
+ const TensorView* consumer,
205
+ int64_t consumer_compute_at_axis,
206
+ const LogicalDomainMap& logical_map,
207
+ TransformReplayOptions opt = {});
208
+
209
+ // Replay producer as consumer, returns {replayed_consumer_domain,
210
+ // consumer_compute_at_axis}.
211
+ //
212
+ // Unlike replayPasC, it always ignores resize.
213
+ static std::pair<TensorDomain*, int64_t> replayCasP(
214
+ const TensorView* consumer,
215
+ const TensorView* producer,
216
+ int64_t producer_compute_at_axis,
217
+ TransformReplayOptions opt = {});
218
+ static std::pair<TensorDomain*, int64_t> replayCasP(
219
+ const TensorView* consumer,
220
+ const TensorView* producer,
221
+ int64_t producer_compute_at_axis,
222
+ const LogicalDomainMap& logical_map,
223
+ TransformReplayOptions opt = {});
224
+
225
+ // Self replay.
226
+ static TensorDomain* fullSelfReplay(
227
+ const TensorDomain* new_self_root,
228
+ const TensorDomain* self);
229
+
230
+ // Returns the loop position in producer that matches with `consumer_pos` in
231
+ // consumer. Returns -1 if matching is impossible. This function can be used
232
+ // to test if replay is needed for getting matching outer dims. This function
233
+ // should be consistent with `replayPasC`: if you pass the tensors just
234
+ // replayed by replayPasC as inputs, you should return exactly the same
235
+ // position as `replayPasC`. However, this function is more tolerant than
236
+ // fully matching `replayPasC`: if in the consumer, there are unmappable
237
+ // dimensions, these dimensions are just ignored.
238
+ //
239
+ // When skip_resize is true, mapping is done more permissively by
240
+ // skipping resize ops. For example, that is done when this is used
241
+ // by TransformPropagator, whereas it isn't when used for
242
+ // determining the inlining position by MaxPosCalculator as inlining
243
+ // isn't allowed with different extents.
244
+ static int64_t getMatchedLeafPosWithoutReplayPasC(
245
+ const TensorView* producer,
246
+ const TensorView* consumer,
247
+ int64_t consumer_pos,
248
+ bool skip_resize = false);
249
+
250
+ // Returns the loop position in consumer that matches with `producer_pos` in
251
+ // producer. Behavior similar to getMatchedLeafPosWithoutReplayPasC, except
252
+ // that we are also ignoring reductions in the producer.
253
+ //
254
+ // When skip_resize is true, mapping is done more permissively by
255
+ // skipping resize ops. For example, that is done when this is used
256
+ // by TransformPropagator, whereas it isn't when used for
257
+ // determining the inlining position by MaxPosCalculator as inlining
258
+ // isn't allowed with different extents.
259
+ static int64_t getMatchedLeafPosWithoutReplayCasP(
260
+ const TensorView* consumer,
261
+ const TensorView* producer,
262
+ int64_t producer_pos,
263
+ bool skip_resize = false);
264
+
265
+ // tests if two tensors has fully matching transformations
266
+ static bool fullSelfMatching(
267
+ const TensorView* replay,
268
+ const TensorView* target);
269
+ };
270
+
271
+ class NVF_API TransformPropagator
272
+ : public MaxLogicalDomainInfoSpanningTree::Propagator {
273
+ protected:
274
+ std::unordered_map<TensorView*, int64_t> replayed_pos_;
275
+
276
+ public:
277
+ void propagateC2P(TensorView* from, TensorView* to) override;
278
+ void propagateP2C(TensorView* from, TensorView* to) override;
279
+ void propagateSibling(TensorView* from, TensorView* to) override;
280
+ TransformPropagator(TensorView* from, int64_t pos = -1);
281
+ };
282
+
283
+ struct MostInlinedTransformPropagator
284
+ : public MaxLogicalDomainInfoSpanningTree::Propagator {
285
+ void propagateC2P(TensorView* from, TensorView* to) override;
286
+ void propagateP2C(TensorView* from, TensorView* to) override;
287
+ void propagateSibling(TensorView* from, TensorView* to) override;
288
+ };
289
+
290
+ // Replays an `Expr` with the new input, `new_in`. This function currently has
291
+ // the following limitations:
292
+ // 1. It requires `e` to be a unary op, and therefore takes a single new input.
293
+ // 2. It requires `e` to be a TensorView op, which takes and produces only
294
+ // TensorViews.
295
+ Expr* replayExprWithNewInput(Expr* e, Val* new_in);
296
+
297
+ } // namespace nvfuser
@@ -0,0 +1,33 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <exceptions.h>
11
+
12
+ #include <ir/all_nodes.h>
13
+ #include <transform_iter.h>
14
+
15
+ #include <algorithm>
16
+ #include <vector>
17
+
18
+ namespace nvfuser {
19
+
20
+ // TODO: Only replay dispatch is really borrowed from TransformIter, we should
21
+ // reevaluate the reuse of dispatch for classes that inherit TransformIter.
22
+ class TransformRFactor {
23
+ public:
24
+ // Transform the provided tensor domain to two domains, a producer and
25
+ // consumer domain. These domains are created by taking axes and reducing them
26
+ // in the producer domain, and taking the remaining reduction axes and
27
+ // reducing them in the consumer domain.
28
+ static std::pair<TensorDomain*, TensorDomain*> runReplay(
29
+ TensorDomain*,
30
+ std::vector<int64_t> axes);
31
+ };
32
+
33
+ } // namespace nvfuser
@@ -0,0 +1,136 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <exceptions.h>
11
+ #include <visibility.h>
12
+
13
+ #include <ir/all_nodes.h>
14
+
15
+ #include <memory>
16
+ #include <vector>
17
+
18
+ namespace nvfuser {
19
+
20
+ class ViewTransform;
21
+
22
+ //!
23
+ //! The goal of analyzeView is to find the minimum number of transformations
24
+ //! to convert from the original size to the new size. A naive view algorithm
25
+ //! would merge all axis together and then split according to the new sizes.
26
+ //!
27
+ //! This implementation will keep the original domains, if the domains are the
28
+ //! same size in the original and new shapes. If an original domain is not
29
+ //! evenly divisible by the new domain, we will merge the minimum number of
30
+ //! adjacent original domains.
31
+ //!
32
+ //! The view transformations are processed in the following order:
33
+ //! 1. Squeeze - Removes size-1 broadcast dimensions
34
+ //! 2. Keep, Merge, Split - Used to create new logical domain
35
+ //! 3. Broadcast - Inserts size-1 dimensions
36
+ //!
37
+ //! Broadcast is handled last because size-1 dimension can be inserted anywhere
38
+ //! in the new shape.
39
+ //!
40
+
41
+ struct AnalyzeViewResult {
42
+ std::vector<bool> broadcast_axes;
43
+ std::vector<bool> squeeze_axes;
44
+ std::vector<std::shared_ptr<ViewTransform>> transforms;
45
+
46
+ std::string toString() const;
47
+
48
+ bool operator==(const AnalyzeViewResult& other) const;
49
+
50
+ bool operator!=(const AnalyzeViewResult& other) const {
51
+ return !(*this == other);
52
+ }
53
+
54
+ size_t hash() const;
55
+ };
56
+
57
+ struct AnalyzeViewConstraint {
58
+ // 1 if size 1 dimension, otherwise 0;
59
+ std::vector<int64_t> original_constraint;
60
+ std::vector<int64_t> new_constraint;
61
+ // Just the positions of true in AnalyzeViewResult::squeeze_axes
62
+ std::vector<int64_t> squeeze_string;
63
+ // Just the positions of true in AnalyzeViewResult:broadcast_axes
64
+ std::vector<int64_t> broadcast_string;
65
+ // A stringified version of the transformations:
66
+ std::vector<int64_t> split_merge_string;
67
+
68
+ std::vector<int64_t> conglomerateString() const {
69
+ // Don't think this is necessary but just being safe. Using
70
+ // -3 as a dilimeter between value groups.
71
+ std::vector<int64_t> conglomerate = {
72
+ (int64_t)original_constraint.size(),
73
+ (int64_t)new_constraint.size(),
74
+ -3};
75
+ auto add_vec = [&conglomerate](const std::vector<int64_t>& vec) {
76
+ conglomerate.insert(conglomerate.end(), vec.begin(), vec.end());
77
+ conglomerate.push_back(-3);
78
+ };
79
+ add_vec(original_constraint);
80
+ add_vec(new_constraint);
81
+ add_vec(squeeze_string);
82
+ add_vec(broadcast_string);
83
+ add_vec(split_merge_string);
84
+ return conglomerate;
85
+ }
86
+
87
+ bool operator==(const AnalyzeViewConstraint& other) const {
88
+ return other.conglomerateString() == this->conglomerateString();
89
+ }
90
+
91
+ // Naive hashing function, likely has a lot of collisions, but may not matter
92
+ // too much if we don't expact many types of views.
93
+ size_t hash() const {
94
+ size_t hash_value = 0;
95
+ for (auto val : conglomerateString()) {
96
+ if (val == std::numeric_limits<int64_t>::max()) {
97
+ continue;
98
+ }
99
+ hash_value += val;
100
+ }
101
+ return hash_value;
102
+ }
103
+ };
104
+
105
+ //! Infer -1 value in new view std::vector<int64_t> based on original view
106
+ //! std::vector<int64_t>. This shouldn't generally be used directly but is
107
+ //! useful for testing.
108
+ NVF_API std::pair<std::vector<int64_t>, std::vector<int64_t>> inferViewShapes(
109
+ const std::vector<int64_t>& original_sizes,
110
+ const std::vector<int64_t>& new_sizes);
111
+
112
+ // Find the transformations necessary to convert TensorView
113
+ // from original size to new size.
114
+ AnalyzeViewResult analyzeView(
115
+ const TensorView* tv,
116
+ const std::vector<int64_t>& original_sizes,
117
+ const std::vector<int64_t>& new_sizes);
118
+
119
+ // Find the constraints derived from the view transformations
120
+ NVF_API AnalyzeViewConstraint analyzeViewConstraint(
121
+ const std::vector<int64_t>& original_sizes,
122
+ const std::vector<int64_t>& new_sizes);
123
+
124
+ // Generate a new TensorDomain from the given view transformations.
125
+ // The original root domain is kept in the new TensorDomain,
126
+ // but a new logical domain is created from the view transformations.
127
+ TensorDomain* transformView(
128
+ TensorDomain* original_domain,
129
+ const AnalyzeViewResult& view_analysis);
130
+
131
+ //! Apply the reshape transformations of view_analysis to inp_tv
132
+ NVF_API TensorView* reshape(
133
+ TensorView* inp_tv,
134
+ const AnalyzeViewResult& view_analysis);
135
+
136
+ } // namespace nvfuser