nvfuser-cu121-torch25 0.2.25.dev20250201__cp312-cp312-manylinux_2_28_x86_64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (242) hide show
  1. nvfuser/_C.cpython-312-x86_64-linux-gnu.so +0 -0
  2. nvfuser/__init__.py +618 -0
  3. nvfuser/__init__.pyi +4 -0
  4. nvfuser/contrib/__init__.py +9 -0
  5. nvfuser/contrib/nn/__init__.py +13 -0
  6. nvfuser/contrib/nn/normalization.py +725 -0
  7. nvfuser/include/nvfuser/alias_analysis.h +116 -0
  8. nvfuser/include/nvfuser/bfs.h +929 -0
  9. nvfuser/include/nvfuser/codegen.h +26 -0
  10. nvfuser/include/nvfuser/compute_at.h +28 -0
  11. nvfuser/include/nvfuser/compute_at_map.h +394 -0
  12. nvfuser/include/nvfuser/contiguity.h +351 -0
  13. nvfuser/include/nvfuser/cuda_utils.h +50 -0
  14. nvfuser/include/nvfuser/debug.h +50 -0
  15. nvfuser/include/nvfuser/device_lower/analysis/bank_conflict.h +53 -0
  16. nvfuser/include/nvfuser/device_lower/analysis/circular_buffer.h +109 -0
  17. nvfuser/include/nvfuser/device_lower/analysis/device_version.h +65 -0
  18. nvfuser/include/nvfuser/device_lower/analysis/divisible_split.h +28 -0
  19. nvfuser/include/nvfuser/device_lower/analysis/fused_reduction.h +36 -0
  20. nvfuser/include/nvfuser/device_lower/analysis/index_compute.h +322 -0
  21. nvfuser/include/nvfuser/device_lower/analysis/predicate_elimination.h +71 -0
  22. nvfuser/include/nvfuser/device_lower/analysis/sync_information.h +47 -0
  23. nvfuser/include/nvfuser/device_lower/analysis/tensor_memory.h +65 -0
  24. nvfuser/include/nvfuser/device_lower/analysis/thread_predicate.h +158 -0
  25. nvfuser/include/nvfuser/device_lower/analysis/tma.h +93 -0
  26. nvfuser/include/nvfuser/device_lower/analysis/trivial_broadcast.h +75 -0
  27. nvfuser/include/nvfuser/device_lower/id_model_options.h +135 -0
  28. nvfuser/include/nvfuser/device_lower/lower2device.h +391 -0
  29. nvfuser/include/nvfuser/device_lower/pass/alias_memory.h +37 -0
  30. nvfuser/include/nvfuser/device_lower/pass/allocation.h +32 -0
  31. nvfuser/include/nvfuser/device_lower/pass/circular_buffer.h +191 -0
  32. nvfuser/include/nvfuser/device_lower/pass/expr_sort.h +17 -0
  33. nvfuser/include/nvfuser/device_lower/pass/fusion_simplifier.h +21 -0
  34. nvfuser/include/nvfuser/device_lower/pass/grid_serialization.h +26 -0
  35. nvfuser/include/nvfuser/device_lower/pass/index.h +200 -0
  36. nvfuser/include/nvfuser/device_lower/pass/inline_ptx.h +16 -0
  37. nvfuser/include/nvfuser/device_lower/pass/insert_syncs.h +39 -0
  38. nvfuser/include/nvfuser/device_lower/pass/instrument.h +24 -0
  39. nvfuser/include/nvfuser/device_lower/pass/loop_rotation.h +150 -0
  40. nvfuser/include/nvfuser/device_lower/pass/loops.h +68 -0
  41. nvfuser/include/nvfuser/device_lower/pass/magic_zero.h +86 -0
  42. nvfuser/include/nvfuser/device_lower/pass/misaligned_vectorization.h +118 -0
  43. nvfuser/include/nvfuser/device_lower/pass/predicate.h +23 -0
  44. nvfuser/include/nvfuser/device_lower/pass/replace_size.h +24 -0
  45. nvfuser/include/nvfuser/device_lower/pass/scalar_hoist.h +115 -0
  46. nvfuser/include/nvfuser/device_lower/pass/unroll.h +98 -0
  47. nvfuser/include/nvfuser/device_lower/pass/vectorize_welford.h +45 -0
  48. nvfuser/include/nvfuser/device_lower/pass/warp_reduce.h +23 -0
  49. nvfuser/include/nvfuser/device_lower/utils.h +382 -0
  50. nvfuser/include/nvfuser/device_lower/validation.h +74 -0
  51. nvfuser/include/nvfuser/disjoint_set.h +556 -0
  52. nvfuser/include/nvfuser/dispatch.h +334 -0
  53. nvfuser/include/nvfuser/driver_api.h +49 -0
  54. nvfuser/include/nvfuser/dynamic_transform.h +316 -0
  55. nvfuser/include/nvfuser/dynamic_type/C++20/type_traits +37 -0
  56. nvfuser/include/nvfuser/dynamic_type/dynamic_type.h +969 -0
  57. nvfuser/include/nvfuser/dynamic_type/error.h +24 -0
  58. nvfuser/include/nvfuser/dynamic_type/type_traits.h +703 -0
  59. nvfuser/include/nvfuser/evaluator_common.h +295 -0
  60. nvfuser/include/nvfuser/exceptions.h +283 -0
  61. nvfuser/include/nvfuser/expr_evaluator.h +125 -0
  62. nvfuser/include/nvfuser/expr_simplifier.h +218 -0
  63. nvfuser/include/nvfuser/flatbuffers/allocator.h +68 -0
  64. nvfuser/include/nvfuser/flatbuffers/array.h +253 -0
  65. nvfuser/include/nvfuser/flatbuffers/base.h +486 -0
  66. nvfuser/include/nvfuser/flatbuffers/buffer.h +154 -0
  67. nvfuser/include/nvfuser/flatbuffers/buffer_ref.h +53 -0
  68. nvfuser/include/nvfuser/flatbuffers/code_generator.h +80 -0
  69. nvfuser/include/nvfuser/flatbuffers/code_generators.h +234 -0
  70. nvfuser/include/nvfuser/flatbuffers/default_allocator.h +64 -0
  71. nvfuser/include/nvfuser/flatbuffers/detached_buffer.h +114 -0
  72. nvfuser/include/nvfuser/flatbuffers/flatbuffer_builder.h +1225 -0
  73. nvfuser/include/nvfuser/flatbuffers/flatbuffers.h +272 -0
  74. nvfuser/include/nvfuser/flatbuffers/flatc.h +130 -0
  75. nvfuser/include/nvfuser/flatbuffers/flex_flat_util.h +36 -0
  76. nvfuser/include/nvfuser/flatbuffers/flexbuffers.h +1889 -0
  77. nvfuser/include/nvfuser/flatbuffers/grpc.h +300 -0
  78. nvfuser/include/nvfuser/flatbuffers/hash.h +127 -0
  79. nvfuser/include/nvfuser/flatbuffers/idl.h +1359 -0
  80. nvfuser/include/nvfuser/flatbuffers/minireflect.h +420 -0
  81. nvfuser/include/nvfuser/flatbuffers/reflection.h +522 -0
  82. nvfuser/include/nvfuser/flatbuffers/reflection_generated.h +1471 -0
  83. nvfuser/include/nvfuser/flatbuffers/registry.h +128 -0
  84. nvfuser/include/nvfuser/flatbuffers/stl_emulation.h +513 -0
  85. nvfuser/include/nvfuser/flatbuffers/string.h +64 -0
  86. nvfuser/include/nvfuser/flatbuffers/struct.h +53 -0
  87. nvfuser/include/nvfuser/flatbuffers/table.h +168 -0
  88. nvfuser/include/nvfuser/flatbuffers/util.h +731 -0
  89. nvfuser/include/nvfuser/flatbuffers/vector.h +393 -0
  90. nvfuser/include/nvfuser/flatbuffers/vector_downward.h +273 -0
  91. nvfuser/include/nvfuser/flatbuffers/verifier.h +317 -0
  92. nvfuser/include/nvfuser/fusion.h +511 -0
  93. nvfuser/include/nvfuser/fusion_guard.h +37 -0
  94. nvfuser/include/nvfuser/fusion_profiler.h +311 -0
  95. nvfuser/include/nvfuser/fusion_segmenter.h +751 -0
  96. nvfuser/include/nvfuser/global_allocator.h +27 -0
  97. nvfuser/include/nvfuser/grouped_reduction.h +47 -0
  98. nvfuser/include/nvfuser/host_ir/container.h +60 -0
  99. nvfuser/include/nvfuser/host_ir/executor.h +152 -0
  100. nvfuser/include/nvfuser/host_ir/host_ir.h +320 -0
  101. nvfuser/include/nvfuser/host_ir/lower.h +35 -0
  102. nvfuser/include/nvfuser/id_model/circular_buffer_indexing.h +56 -0
  103. nvfuser/include/nvfuser/id_model/contiguity.h +166 -0
  104. nvfuser/include/nvfuser/id_model/id_model.h +359 -0
  105. nvfuser/include/nvfuser/id_model/id_model_index_compute.h +81 -0
  106. nvfuser/include/nvfuser/id_model/indexing.h +208 -0
  107. nvfuser/include/nvfuser/id_model/indexing_traversal.h +72 -0
  108. nvfuser/include/nvfuser/id_model/indexing_utils.h +62 -0
  109. nvfuser/include/nvfuser/id_model/loop_promotion.h +180 -0
  110. nvfuser/include/nvfuser/id_model/predicate_indexing.h +104 -0
  111. nvfuser/include/nvfuser/id_model/schedule.h +54 -0
  112. nvfuser/include/nvfuser/id_model/to_string.h +87 -0
  113. nvfuser/include/nvfuser/id_model/transform_replay.h +58 -0
  114. nvfuser/include/nvfuser/id_model/utils.h +176 -0
  115. nvfuser/include/nvfuser/id_model/validation_utils.h +55 -0
  116. nvfuser/include/nvfuser/index_compute.h +651 -0
  117. nvfuser/include/nvfuser/instrumentation.h +107 -0
  118. nvfuser/include/nvfuser/ir/all_nodes.h +14 -0
  119. nvfuser/include/nvfuser/ir/base_nodes.h +687 -0
  120. nvfuser/include/nvfuser/ir/builder.h +215 -0
  121. nvfuser/include/nvfuser/ir/builder_passkey.h +29 -0
  122. nvfuser/include/nvfuser/ir/cloner.h +185 -0
  123. nvfuser/include/nvfuser/ir/container.h +226 -0
  124. nvfuser/include/nvfuser/ir/graphviz.h +119 -0
  125. nvfuser/include/nvfuser/ir/interface_nodes.h +957 -0
  126. nvfuser/include/nvfuser/ir/internal_base_nodes.h +744 -0
  127. nvfuser/include/nvfuser/ir/internal_nodes.h +2792 -0
  128. nvfuser/include/nvfuser/ir/iostream.h +98 -0
  129. nvfuser/include/nvfuser/ir/printer.h +57 -0
  130. nvfuser/include/nvfuser/ir/utils.h +801 -0
  131. nvfuser/include/nvfuser/iter_visitor.h +661 -0
  132. nvfuser/include/nvfuser/kernel.h +299 -0
  133. nvfuser/include/nvfuser/kernel_db/kernel_db.h +109 -0
  134. nvfuser/include/nvfuser/kernel_db/utils.h +37 -0
  135. nvfuser/include/nvfuser/kernel_ir.h +1457 -0
  136. nvfuser/include/nvfuser/kernel_ir_dispatch.h +147 -0
  137. nvfuser/include/nvfuser/linked_hash_map.h +97 -0
  138. nvfuser/include/nvfuser/logical_domain_map.h +577 -0
  139. nvfuser/include/nvfuser/macros.h +23 -0
  140. nvfuser/include/nvfuser/mma_type.h +257 -0
  141. nvfuser/include/nvfuser/multidevice/c10d_mock.h +175 -0
  142. nvfuser/include/nvfuser/multidevice/communication.h +232 -0
  143. nvfuser/include/nvfuser/multidevice/communicator.h +179 -0
  144. nvfuser/include/nvfuser/multidevice/device_mesh.h +95 -0
  145. nvfuser/include/nvfuser/multidevice/executor.h +107 -0
  146. nvfuser/include/nvfuser/multidevice/multidevice.h +18 -0
  147. nvfuser/include/nvfuser/multidevice/utils.h +187 -0
  148. nvfuser/include/nvfuser/non_divisible_split.h +86 -0
  149. nvfuser/include/nvfuser/opaque_type.h +129 -0
  150. nvfuser/include/nvfuser/ops/alias.h +192 -0
  151. nvfuser/include/nvfuser/ops/all_ops.h +13 -0
  152. nvfuser/include/nvfuser/ops/arith.h +712 -0
  153. nvfuser/include/nvfuser/ops/composite.h +130 -0
  154. nvfuser/include/nvfuser/ops/indexing.h +55 -0
  155. nvfuser/include/nvfuser/ops/normalization.h +263 -0
  156. nvfuser/include/nvfuser/ops/utils.h +127 -0
  157. nvfuser/include/nvfuser/options.h +313 -0
  158. nvfuser/include/nvfuser/parallel_dimension_map.h +95 -0
  159. nvfuser/include/nvfuser/parallel_type_bitmap.h +365 -0
  160. nvfuser/include/nvfuser/polymorphic_value.h +432 -0
  161. nvfuser/include/nvfuser/predicate_compute.h +213 -0
  162. nvfuser/include/nvfuser/python_frontend/distributed_tensor.h +50 -0
  163. nvfuser/include/nvfuser/python_frontend/fusion_cache.h +298 -0
  164. nvfuser/include/nvfuser/python_frontend/fusion_definition.h +372 -0
  165. nvfuser/include/nvfuser/python_frontend/fusion_record.h +3124 -0
  166. nvfuser/include/nvfuser/python_frontend/fusion_state.h +143 -0
  167. nvfuser/include/nvfuser/python_frontend/python_bindings.h +27 -0
  168. nvfuser/include/nvfuser/python_frontend/segmentation.h +246 -0
  169. nvfuser/include/nvfuser/python_frontend/translation.h +20 -0
  170. nvfuser/include/nvfuser/python_frontend/translation_utils.h +308 -0
  171. nvfuser/include/nvfuser/scheduler/all_schedulers.h +17 -0
  172. nvfuser/include/nvfuser/scheduler/ampere_multi_matmul.h +206 -0
  173. nvfuser/include/nvfuser/scheduler/cache_policy_refiner.h +19 -0
  174. nvfuser/include/nvfuser/scheduler/compile_time_info.h +322 -0
  175. nvfuser/include/nvfuser/scheduler/debug_utils.h +68 -0
  176. nvfuser/include/nvfuser/scheduler/expr_eval_sched.h +45 -0
  177. nvfuser/include/nvfuser/scheduler/heuristic.h +113 -0
  178. nvfuser/include/nvfuser/scheduler/hopper_multi_matmul.h +204 -0
  179. nvfuser/include/nvfuser/scheduler/mark_aliases.h +19 -0
  180. nvfuser/include/nvfuser/scheduler/matmul.h +40 -0
  181. nvfuser/include/nvfuser/scheduler/matmul_heuristic.h +293 -0
  182. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin.h +65 -0
  183. nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin_api.h +99 -0
  184. nvfuser/include/nvfuser/scheduler/matmul_utils.h +54 -0
  185. nvfuser/include/nvfuser/scheduler/mma_utils.h +500 -0
  186. nvfuser/include/nvfuser/scheduler/multi_matmul.h +74 -0
  187. nvfuser/include/nvfuser/scheduler/no_op.h +48 -0
  188. nvfuser/include/nvfuser/scheduler/normalization_inner.h +49 -0
  189. nvfuser/include/nvfuser/scheduler/normalization_inner_outer.h +51 -0
  190. nvfuser/include/nvfuser/scheduler/normalization_outer.h +48 -0
  191. nvfuser/include/nvfuser/scheduler/normalization_utils.h +379 -0
  192. nvfuser/include/nvfuser/scheduler/pointwise.h +183 -0
  193. nvfuser/include/nvfuser/scheduler/pointwise_heuristic.h +118 -0
  194. nvfuser/include/nvfuser/scheduler/pointwise_utils.h +24 -0
  195. nvfuser/include/nvfuser/scheduler/reduction.h +43 -0
  196. nvfuser/include/nvfuser/scheduler/reduction_heuristic.h +339 -0
  197. nvfuser/include/nvfuser/scheduler/reduction_utils.h +159 -0
  198. nvfuser/include/nvfuser/scheduler/registry.h +97 -0
  199. nvfuser/include/nvfuser/scheduler/registry_utils.h +111 -0
  200. nvfuser/include/nvfuser/scheduler/resize.h +41 -0
  201. nvfuser/include/nvfuser/scheduler/resize_heuristic.h +67 -0
  202. nvfuser/include/nvfuser/scheduler/runtime_info.h +166 -0
  203. nvfuser/include/nvfuser/scheduler/scheduler_types.h +80 -0
  204. nvfuser/include/nvfuser/scheduler/transpose.h +114 -0
  205. nvfuser/include/nvfuser/scheduler/transpose_heuristic.h +164 -0
  206. nvfuser/include/nvfuser/scheduler/utils.h +771 -0
  207. nvfuser/include/nvfuser/scheduler/vectorize_helper.h +349 -0
  208. nvfuser/include/nvfuser/serde/factory.h +55 -0
  209. nvfuser/include/nvfuser/serde/fusion_cache_generated.h +4319 -0
  210. nvfuser/include/nvfuser/serde/fusion_record.h +124 -0
  211. nvfuser/include/nvfuser/serde/polymorphic_value.h +52 -0
  212. nvfuser/include/nvfuser/serde/utils.h +34 -0
  213. nvfuser/include/nvfuser/struct.inl +127 -0
  214. nvfuser/include/nvfuser/swizzle.h +54 -0
  215. nvfuser/include/nvfuser/sys_utils.h +40 -0
  216. nvfuser/include/nvfuser/tensor_metadata.h +118 -0
  217. nvfuser/include/nvfuser/tma.h +124 -0
  218. nvfuser/include/nvfuser/transform_iter.h +522 -0
  219. nvfuser/include/nvfuser/transform_replay.h +297 -0
  220. nvfuser/include/nvfuser/transform_rfactor.h +33 -0
  221. nvfuser/include/nvfuser/transform_view.h +136 -0
  222. nvfuser/include/nvfuser/type.h +1125 -0
  223. nvfuser/include/nvfuser/type_promotion.h +61 -0
  224. nvfuser/include/nvfuser/utils.h +619 -0
  225. nvfuser/include/nvfuser/val_graph.h +446 -0
  226. nvfuser/include/nvfuser/val_graph_visitor.h +259 -0
  227. nvfuser/include/nvfuser/validator_utils.h +92 -0
  228. nvfuser/include/nvfuser/vectorization_info.h +31 -0
  229. nvfuser/include/nvfuser/visibility.h +21 -0
  230. nvfuser/lib/libnvfuser_codegen.so +0 -0
  231. nvfuser/nvfuser_version.py +69 -0
  232. nvfuser/pytorch_utils.py +184 -0
  233. nvfuser/share/cmake/nvfuser/NvfuserConfig-release.cmake +20 -0
  234. nvfuser/share/cmake/nvfuser/NvfuserConfig.cmake +106 -0
  235. nvfuser/utils.py +18 -0
  236. nvfuser/version.py +1 -0
  237. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/LICENSE +976 -0
  238. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/METADATA +16 -0
  239. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/RECORD +242 -0
  240. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/WHEEL +5 -0
  241. nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/top_level.txt +1 -0
  242. nvfuser_cu121_torch25.libs/libnvToolsExt-847d78f2.so.1.0.0 +0 -0
@@ -0,0 +1,522 @@
1
+ // clang-format off
2
+ /*
3
+ * SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
4
+ * All rights reserved.
5
+ * SPDX-License-Identifier: BSD-3-Clause
6
+ */
7
+ // clang-format on
8
+ #pragma once
9
+
10
+ #include <exceptions.h>
11
+ #include <visibility.h>
12
+
13
+ #include <disjoint_set.h>
14
+ #include <ir/all_nodes.h>
15
+ #include <iter_visitor.h>
16
+ #include <unordered_map>
17
+ #include <vector>
18
+
19
+ namespace nvfuser {
20
+
21
+ class LogicalDomainMap;
22
+
23
+ namespace {
24
+
25
+ // Enable pair<IterDomain*, size_t> in a set, size_t must be unique in set
26
+ struct id_int_lt {
27
+ bool operator()(
28
+ const std::pair<IterDomain*, size_t>& first,
29
+ const std::pair<IterDomain*, size_t>& second) const {
30
+ return first.second < second.second;
31
+ }
32
+ };
33
+
34
+ } // namespace
35
+
36
+ // Uses the history of _target_domain, and replays that history using the
37
+ // provided map.
38
+ //
39
+ // target_domain contains the history we want replayed.
40
+ //
41
+ // id_map maps IterDomains in that history to the IterDomains we want it
42
+ // replayed on.
43
+ //
44
+ // error_on_failure = true will cause the replay to error if we can't replay any
45
+ // operation in target_domain's history due to missing IDs in the id_map.
46
+ //
47
+ // If error_on_failure = false, replay will replay everything it can, and ignore
48
+ // operations it can't.
49
+ class ReplayTransformations : public IterVisitor {
50
+ public:
51
+ ReplayTransformations(
52
+ const std::vector<IterDomain*>& target_domain,
53
+ std::unordered_map<IterDomain*, IterDomain*> id_map);
54
+
55
+ ReplayTransformations& setErrorOnFailure(bool error_on_failure) {
56
+ error_on_failure_ = error_on_failure;
57
+ return *this;
58
+ }
59
+
60
+ ReplayTransformations& setReplaySwizzle(bool replay_swizzle) {
61
+ replay_swizzle_ = replay_swizzle;
62
+ return *this;
63
+ }
64
+
65
+ ReplayTransformations& setReplayResize(bool replay_resize) {
66
+ replay_resize_ = replay_resize;
67
+ return *this;
68
+ }
69
+
70
+ ReplayTransformations& setReplayRFactor(bool replay_rfactor) {
71
+ replay_rfactor_ = replay_rfactor;
72
+ return *this;
73
+ }
74
+
75
+ // Replays outputs that were generated from ids.first on ids.second
76
+ void runReplay();
77
+
78
+ // Returns map from provided target domain to their corresponding IDs
79
+ const std::unordered_map<IterDomain*, IterDomain*>& getReplay() {
80
+ if (!ran_replay_) {
81
+ runReplay();
82
+ }
83
+ return id_map_;
84
+ }
85
+
86
+ // Returns loop_ids_ the size_t marks the order in which they were put into
87
+ // the map, this is part of the structure because it's used to generate the
88
+ // order from 'getLeafIDs'
89
+ const std::unordered_map<IterDomain*, size_t>& getUnorderedLeafIDs() {
90
+ if (!ran_replay_) {
91
+ runReplay();
92
+ }
93
+ return loop_ids_;
94
+ }
95
+
96
+ // Returns all terminating IDs that resulted from the replay. Leaf IDs are run
97
+ // to run deterministic, but otherwise in no specific order.
98
+ const std::vector<IterDomain*>& getLeafIDs() {
99
+ if (!ran_replay_) {
100
+ runReplay();
101
+ }
102
+ return loop_vec_;
103
+ }
104
+
105
+ protected:
106
+ using IterVisitor::handle;
107
+
108
+ // Transform dispatch
109
+ void dispatch(Expr* e) override;
110
+
111
+ // We're going to replay this split operation on the corresponding ID
112
+ void handle(Split* s) override;
113
+
114
+ // We're going to replay this merge operation on the corresponding IDs
115
+ void handle(Merge* m) override;
116
+
117
+ // We're going to replay this swizzle operation on the corresponding IDs
118
+ // if replaying swizzle is enabled.
119
+ void handle(Swizzle* m) override;
120
+ void handle(Swizzle2D* m) override;
121
+
122
+ void handle(Resize* resize) override;
123
+
124
+ size_t newCounter() {
125
+ return counter_++;
126
+ }
127
+
128
+ protected:
129
+ // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
130
+ const std::vector<IterDomain*>& target_domain_;
131
+ // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
132
+ std::unordered_map<IterDomain*, IterDomain*> id_map_;
133
+ // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
134
+ std::unordered_map<IterDomain*, size_t> loop_ids_;
135
+
136
+ private:
137
+ bool error_on_failure_ = true;
138
+
139
+ // Indicates if we want to replay swizzle ops on the replayed
140
+ // tensor.
141
+ // The swizzle op will be replayed if true,
142
+ // The swizzle inputs will be directly forwarded, and therefore skipping
143
+ // the swizzle op if false.
144
+ // Currently this options should always be off but
145
+ // later we may have cases in scheduling large fusions where
146
+ // this functionality could be useful.
147
+ bool replay_swizzle_ = false;
148
+
149
+ // Indicates if we want to replay resize ops on the replayed
150
+ // tensor.
151
+ bool replay_resize_ = false;
152
+
153
+ // Whether to copy the `rf` flag from ops producing `target_domain`.
154
+ bool replay_rfactor_ = false;
155
+
156
+ size_t counter_ = 0;
157
+
158
+ std::vector<IterDomain*> loop_vec_;
159
+
160
+ bool ran_replay_ = false; // Mark if replay has been run
161
+ };
162
+
163
+ // Maps that track information relevant to best effort replay about newly added
164
+ // or squeezed broadcast axes
165
+ //
166
+ // For example if we have consumer: T0[i0, b1, b2, i3] and producer:
167
+ // T1[i0, i3]
168
+ //
169
+ // If consumer transformations are:
170
+ // -> T[i0, b1o, b1i, b2o, b2i, i3]
171
+ // -> T[i0*b1i, b1o, b2o, b2i, i3]
172
+ // -> T[i0*b1i*b2o, b1o, b2i, i3]
173
+ // -> T[i0*b1i*b2o*i3, b1o, b2i]
174
+ //
175
+ // forwarding_map would forward i0->i0*b1i and i0*b1i->i0*b1i*b2o
176
+ // compliment_map would have the entry i0->b1i and i0*b1i->b2o
177
+ //
178
+ // The first is to fast forward transformations in consumer involving broadcast
179
+ // axes not in producer. The compliment map is to use later to compute what loop
180
+ // nodes we may have after the forwarding process is finished. Leaf nodes are
181
+ // only important for replayCasP, so look there to see how this is done. Forward
182
+ // map is used for replayCasP and replayPasC.
183
+ //
184
+ // The producer forwarding map is filled when producer broadcast
185
+ // domains are squeezed.
186
+ class ForwardingInfo {
187
+ public:
188
+ // Map IterDomain* axes that can safely be forwarded to their output.
189
+ std::unordered_map<IterDomain*, IterDomain*> producer_forwarding_map;
190
+ std::unordered_map<IterDomain*, IterDomain*> consumer_forwarding_map;
191
+
192
+ // Given a forward id map id_input -> id_forwarded
193
+ // Track the other inputs in the expr that id_input is an input to. These will
194
+ // be used to adjust the replay's loop tracking. Don't need to track one to
195
+ // many as currently transformations on IterDomains can only have maximum 2
196
+ // inputs, but maybe in the future we'll have more.
197
+ std::unordered_map<IterDomain*, std::vector<IterDomain*>>
198
+ producer_compliment_map;
199
+ std::unordered_map<IterDomain*, std::vector<IterDomain*>>
200
+ consumer_compliment_map;
201
+
202
+ ForwardingInfo(const TensorView* producer, const TensorView* consumer);
203
+
204
+ ForwardingInfo() = delete;
205
+ };
206
+
207
+ /*
208
+ * Short Description:
209
+ *
210
+ * Given an Expr in target_domain, check if its inputs are in replay_map. If so,
211
+ * check if the mapped domain in replay_map are recorded to be transformed by an
212
+ * "equivelent" operation in replay_domain's history. If so, forward the
213
+ * operation and update replay_map to map the outputs of the expressions across
214
+ * target_domain and reference_domain.
215
+ *
216
+ * Long Description:
217
+ *
218
+ * replay_map maps root IDs in the history of target_domain to root IDs in the
219
+ * history replay_domain. PasC and CasP is just a convenient mechanism to have
220
+ * BestEffortReplay make this base root mapping.
221
+ *
222
+ * Note: See ForwardingInfo in transform_iter.cpp for more information on
223
+ * forwarding.
224
+ *
225
+ * Motivation:
226
+ *
227
+ * Consider the following program:
228
+ *
229
+ * T1[I0, R1] = T0[I0, I1]
230
+ * T2[I0] = T1[I0, R1i]
231
+ *
232
+ * T1->split(1, factor)
233
+ * T1->rFactor(2)
234
+ *
235
+ * T4[I0, R1orf, I1irf] = T0[I0, I1]
236
+ * T1[I0, R1i] = T4[I0, R1orf, I1irf]
237
+ * T2[I0] = T1[I0, R1i]
238
+ *
239
+ * There's an issue when we want to replay T4 to have transformations similar to
240
+ * those on T0. Primarily T0's "rfactor" domain has a strict match requirement
241
+ * on T4's root domain. If transformations on top of T0 don't match T4's
242
+ * transformations (from T4's root domain to T4's logical domain), T4 cannot be
243
+ * replayed like T0 on those domains as they would generate incorrect code in
244
+ * the system today.
245
+ *
246
+ * Side note potentially for the future: In theory we could actually disconnect
247
+ * T4's view from it's logical domain. This would allow logical domains to be
248
+ * "reversible". The way this would have to be implemented is that there just
249
+ * needs to be a path of transformations from a tensors loop domains, to its
250
+ * root domains, and its logical domain. It shouldn't really matter if those
251
+ * connections are forward or backward through transformations. The only thing
252
+ * that really matters is they're connected. This is left for future work as it
253
+ * could have significant impact on other parts of the system like how loops are
254
+ * generated and expressions are sorted.
255
+ *
256
+ * T0 doesn't have this constraint if we want to replay T0 as T4, so this is
257
+ * directional based on rfactor. Therefore to replay T0 transformations onto T4
258
+ * we want to make sure those transformations are consistent with T4 (between
259
+ * T4's root and logical domain). Best Effort Replay does not actually add any
260
+ * transformations to the tensors provided. However, it will provide information
261
+ * to determine producers's transformations are consistent with consumers
262
+ * transformations (or the other way around). Best Effort Replay will return
263
+ * discovered mappings between tensors that it detects to be matching based on
264
+ * provided initial information (or just through p2c/c2p root domain mappings).
265
+ *
266
+ * Transformations have a concept of "permissiveness" used for broadcast and
267
+ * squeeze. For example:
268
+ *
269
+ * T1[I0, B1] = T0[I0]
270
+ * T2[I0, I1] = T1[I0, B1]
271
+ *
272
+ * We may want to replay T1 and T0 based on transformations on T2. These
273
+ * transformations may involve B1. We could even have:
274
+ *
275
+ * T2->merge(0, 1)->split(0, 128)
276
+ *
277
+ * resulting in:
278
+ *
279
+ * T2[(I0*I1)/128, 128]
280
+ *
281
+ * T0 doesn't have I1 so it can't technicaly be transformed in an exactly
282
+ * consistent way. However, it may still be desired to "inline" T0 into T1 and
283
+ * in result T1 into T2. It may further be desired to bind BIDx and TIDx to the
284
+ * two dimensions in the problem. This example doesn't "technically" result in
285
+ * thread to thread communication, but since our scope in mind is a shared
286
+ * global memory it results in duplicate reads. These duplicate reads are
287
+ * automatically cached in our memory hierarchy. So in a way there is implicit
288
+ * communication in that a memory location is read by multiple threads.
289
+ *
290
+ * This is where forwarding and permissiveness come into play. When we transform
291
+ * T1 with the first merge, we will mark the result I0*B1 of T1 to be
292
+ * "permissively" mapped to I0 of T0, so when we perform the split, we split
293
+ * T0's I0 dimension to I0/128 and 128. This is to help us mark inlining and
294
+ * paralellization across these dimensions so we can effectively reason about
295
+ * the "not full" dimension in T0. This is where the concept of forward map in
296
+ * BestEffortReplay comes in.
297
+ *
298
+ * Permissiveness can also be considered "symmetric" across broadcast and
299
+ * squeeze as they are similar operations, however broadcast and squeeze do have
300
+ * different implications since squeeze doesn't result in the implicit
301
+ * communication described in the previous paragraph. However, as far as
302
+ * forwarding is concerned they're symmetric. Indexing/parallelization has
303
+ * significant logic dedicated to broadcast resolutions (unlike squeeze).
304
+ *
305
+ * This class provides a mechanism to annalyze all of the above concepts. It
306
+ * can also run through transformations in target according to a manually
307
+ * specified IterDomain to IterDomain replay_map. If equal transformations
308
+ * already exist in replay_domain history, we will not redo those
309
+ * transformations, but instead update replay_map to reflect forwarding the
310
+ * existing transformations based on a notion of expresions being "equal" (input
311
+ * IterDomains mapped and transformation expression parameters matching, or the
312
+ * iter domain that doesn't match is in a forwarding map). The replay map is the
313
+ * "best effort" part of BestEffortReplay, it doesn't actually perform new
314
+ * transformations to enforce matching, it just detects existing matching
315
+ * transforms. However, we still include rfactor validation within.
316
+ */
317
+
318
+ class BestEffortReplay {
319
+ private:
320
+ std::unordered_map<IterDomain*, IterDomain*> target2replay_id_map_;
321
+ std::unordered_map<IterDomain*, IterDomain*> replay_forward_id_map_;
322
+ std::unordered_map<IterDomain*, IterDomain*> target_forward_id_map_;
323
+ std::unordered_map<IterDomain*, size_t> loop_ids_;
324
+ std::vector<IterDomain*> forwarded_ids_;
325
+ std::unordered_map<IterDomain*, IterDomain*> skipped_resize_id_map_;
326
+
327
+ // Need to track which id's have been forwarded. Later will need to make sure
328
+ // loop nodes to produce "compliment" axes are properly tracked. i.e.
329
+ // T[i0, b1, b2, i3]
330
+ // -> T[i0, b1o, b1i, b2o, b2i, i3]
331
+ // -> T[i0*b1i*b2o, b1o, b2i, i3]
332
+ // -> T[i0*b1i*b2o*i3, b1o, b2i]
333
+ // If we forwarded i0 -> i0*b1i*b2o*i3, we need to know that b1o and b2i
334
+ // are loop nodes even though their split wasn't part of targets replay. These
335
+ // are important IterDomains to track for transformation replays as otherwise
336
+ // we could easily drop axes we need by accident
337
+
338
+ // Counter to make sure best effort replay loop_ids can be grabbed
339
+ // deterministicly, important to make sure replays are run to run
340
+ // deterministic.
341
+ size_t counter = 0;
342
+
343
+ // Determine if current replay will ignore swizzle ops.
344
+ // When not skipping swizzles, swizzle ops will have to be matched
345
+ // same way as split and merge to progress forward on the mapping.
346
+ //
347
+ // When skipping swizzles, mismatched swizzle ops will not stop matching
348
+ // further down the tensor domains but only the swizzle outputs will be on
349
+ // the target to replay map, since we only generate one-to-one maps in
350
+ // BestEffortReplay and the swizzle outputs is just picked as a convention
351
+ // for simpler and uniform mapping behavior. The swizzle op inputs will be
352
+ // added by the disjoint set passes when building the iterdomain graph.
353
+ //
354
+ // Example:
355
+ // Target:
356
+ // I0o, I0i = split I0
357
+ // Ix0o, Ix0i = swizzle I0o, I0i
358
+ // I02 = merge Ix0o, Ix0i
359
+ // Replay:
360
+ // I1o, I1i = split I1
361
+ // I12 = merge I1o, I1i
362
+ //
363
+ // BestEffortReplay **no** skip swizzle gives:
364
+ // {
365
+ // I0->I1,
366
+ // I0o->I1o,
367
+ // I0i->I1i,
368
+ // }
369
+ //
370
+ // BestEffortReplay skip swizzle gives:
371
+ // {
372
+ // I0->I1,
373
+ // Ix0o->I1o,
374
+ // Ix0i->I1i,
375
+ // I02->I12
376
+ // }
377
+ //
378
+ // TODO: Reevaluate swizzle and transform replays. We have some concepts on
379
+ // iter domain mapping we should formalize. It would be good to have these
380
+ // options accessible while specified in a consistent manner.
381
+ // https://github.com/ftxj/pytorch/pull/1#pullrequestreview-1210168522
382
+ bool skip_replay_swizzle_ = true;
383
+ bool skip_target_swizzle_ = true;
384
+
385
+ bool error_on_failure_ = true;
386
+
387
+ bool inReplayForwardMap(IterDomain* id) const {
388
+ return replay_forward_id_map_.find(id) != replay_forward_id_map_.end();
389
+ }
390
+
391
+ bool inTargetForwardMap(IterDomain* id) const {
392
+ return target_forward_id_map_.find(id) != target_forward_id_map_.end();
393
+ }
394
+
395
+ IterDomain* getReplayForwardedId(IterDomain* id) const {
396
+ auto forwarded_id_it = replay_forward_id_map_.find(id);
397
+ if (forwarded_id_it == replay_forward_id_map_.end()) {
398
+ return id;
399
+ } else {
400
+ return getReplayForwardedId(forwarded_id_it->second);
401
+ }
402
+ }
403
+
404
+ IterDomain* getTargetForwardedId(IterDomain* id) const {
405
+ auto forwarded_id_it = target_forward_id_map_.find(id);
406
+ if (forwarded_id_it == target_forward_id_map_.end()) {
407
+ return id;
408
+ } else {
409
+ return getTargetForwardedId(forwarded_id_it->second);
410
+ }
411
+ }
412
+
413
+ //! Adds complimenting IDs of forwarded IDs to the loop map
414
+ void addComplimentLeafIDs(
415
+ const std::unordered_map<IterDomain*, IterDomain*>& forwarding_map,
416
+ const std::unordered_map<IterDomain*, std::vector<IterDomain*>>&
417
+ compliment_map);
418
+
419
+ // Skip swizzle step to make sure both target and
420
+ // replay swizzles are skipped while the mapping
421
+ // makes progress. This makes sure that, for example
422
+ // different tensors can still be inlined despite
423
+ // different local swizzle patterns.
424
+ void skipSwizzles(
425
+ const std::unordered_map<IterDomain*, Expr*>& target_id2expr,
426
+ const std::unordered_map<IterDomain*, Expr*>& replay_id2expr);
427
+
428
+ // Skip resize in both target and replay domains
429
+ void skipResizes(
430
+ const std::vector<Expr*>& target_exprs,
431
+ const std::vector<Expr*>& replay_exprs);
432
+
433
+ public:
434
+ // When skip_resize is true, resize is ignored or in other words forwarded
435
+ BestEffortReplay(
436
+ const std::vector<IterDomain*>& replay_domain,
437
+ const std::vector<IterDomain*>& target_domain,
438
+ std::unordered_map<IterDomain*, IterDomain*> target2replay_map,
439
+ std::unordered_map<IterDomain*, IterDomain*> replay_forward_id_map = {},
440
+ std::unordered_map<IterDomain*, IterDomain*> target_forward_id_map = {},
441
+ bool skip_replay_swizzle = true,
442
+ bool skip_target_swizzle = true,
443
+ bool skip_resize = false,
444
+ bool error_on_failure = true);
445
+
446
+ // Return iter domain map from target_domain IDs to their "replayed"
447
+ // replay_domain IDs. If not in map, was not replayed.
448
+ const std::unordered_map<IterDomain*, IterDomain*>& getReplay() const {
449
+ return target2replay_id_map_;
450
+ }
451
+
452
+ // ids in replay that did not have matching transforms in target_domain
453
+ const std::unordered_map<IterDomain*, size_t>& getUnorderedLeafIDs() {
454
+ return loop_ids_;
455
+ }
456
+
457
+ // Returned ordered set of IDs in getUnorderedLeafIDs
458
+ std::vector<IterDomain*> getLeafIDs() {
459
+ std::set<std::pair<IterDomain*, size_t>, id_int_lt> ordered_set;
460
+ for (auto entry : loop_ids_) {
461
+ ordered_set.emplace(entry);
462
+ }
463
+
464
+ std::vector<IterDomain*> loop_vec_;
465
+ loop_vec_.resize(ordered_set.size());
466
+ std::transform(
467
+ ordered_set.begin(),
468
+ ordered_set.end(),
469
+ loop_vec_.begin(),
470
+ [](std::pair<IterDomain*, size_t> entry) { return entry.first; });
471
+ return loop_vec_;
472
+ }
473
+
474
+ // Get a disjoint sets representing the equivalence of IterDomains. The
475
+ // equivalence is defined by forwarding and replay. Two IterDomains are
476
+ // equivalent if:
477
+ // - They are mapped together through forwarding, or
478
+ // - They are mapped together through replay
479
+ // For example, if I have the following producer-consumer pair:
480
+ // T0[I0, I1]
481
+ // T1[(I0'*b1)*b2, I1'] = broadcast(T0)
482
+ // Then there will be two equivalent sets"
483
+ // - {I1, I1'}
484
+ // - {I0, I0', I0'*b1, (I0'*b1)*b2}
485
+ NVF_API DisjointSets<IterDomain*> getIterDomainEquivalence();
486
+
487
+ // Runs a best effort replay that ignores broadcast axes that appear in
488
+ // consumer that are not mapped to producer in logical_map.
489
+ //
490
+ // When skip_resize is true, resize is ignored or in other words forwarded
491
+ NVF_API static BestEffortReplay replayCasP(
492
+ const TensorView* consumer,
493
+ const TensorView* producer,
494
+ int64_t producer_compute_at_axis,
495
+ const LogicalDomainMap& logical_map,
496
+ bool skip_consumer_swizzle = true,
497
+ bool skip_producer_swizzle = true,
498
+ bool skip_resize = true);
499
+
500
+ // Runs a best effort replay that ignores broadcast axes that appear in
501
+ // consumer that are not mapped to producer in logical_map.
502
+ //
503
+ // When skip_resize is true, resize is ignored or in other words forwarded
504
+ NVF_API static BestEffortReplay replayPasC(
505
+ const TensorView* producer,
506
+ const TensorView* consumer,
507
+ int64_t consumer_compute_at_axis,
508
+ const LogicalDomainMap& logical_map,
509
+ bool skip_producer_swizzle = true,
510
+ bool skip_consumer_swizzle = true,
511
+ bool skip_resize = true);
512
+
513
+ // Find the first position i where td1[i] is not the same as td2[i]. "Same"
514
+ // means the DAG and input IDs to generate td1[i] and td2[i] are the same.
515
+ // td1 and td2 are assumed to have some matching iter domains, as this is a
516
+ // strict same-ness check.
517
+ static int64_t findFirstMismatchedID(
518
+ const TensorDomain* td1,
519
+ const TensorDomain* td2);
520
+ };
521
+
522
+ } // namespace nvfuser