nvfuser-cu121-torch25 0.2.25.dev20250201__cp312-cp312-manylinux_2_28_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- nvfuser/_C.cpython-312-x86_64-linux-gnu.so +0 -0
- nvfuser/__init__.py +618 -0
- nvfuser/__init__.pyi +4 -0
- nvfuser/contrib/__init__.py +9 -0
- nvfuser/contrib/nn/__init__.py +13 -0
- nvfuser/contrib/nn/normalization.py +725 -0
- nvfuser/include/nvfuser/alias_analysis.h +116 -0
- nvfuser/include/nvfuser/bfs.h +929 -0
- nvfuser/include/nvfuser/codegen.h +26 -0
- nvfuser/include/nvfuser/compute_at.h +28 -0
- nvfuser/include/nvfuser/compute_at_map.h +394 -0
- nvfuser/include/nvfuser/contiguity.h +351 -0
- nvfuser/include/nvfuser/cuda_utils.h +50 -0
- nvfuser/include/nvfuser/debug.h +50 -0
- nvfuser/include/nvfuser/device_lower/analysis/bank_conflict.h +53 -0
- nvfuser/include/nvfuser/device_lower/analysis/circular_buffer.h +109 -0
- nvfuser/include/nvfuser/device_lower/analysis/device_version.h +65 -0
- nvfuser/include/nvfuser/device_lower/analysis/divisible_split.h +28 -0
- nvfuser/include/nvfuser/device_lower/analysis/fused_reduction.h +36 -0
- nvfuser/include/nvfuser/device_lower/analysis/index_compute.h +322 -0
- nvfuser/include/nvfuser/device_lower/analysis/predicate_elimination.h +71 -0
- nvfuser/include/nvfuser/device_lower/analysis/sync_information.h +47 -0
- nvfuser/include/nvfuser/device_lower/analysis/tensor_memory.h +65 -0
- nvfuser/include/nvfuser/device_lower/analysis/thread_predicate.h +158 -0
- nvfuser/include/nvfuser/device_lower/analysis/tma.h +93 -0
- nvfuser/include/nvfuser/device_lower/analysis/trivial_broadcast.h +75 -0
- nvfuser/include/nvfuser/device_lower/id_model_options.h +135 -0
- nvfuser/include/nvfuser/device_lower/lower2device.h +391 -0
- nvfuser/include/nvfuser/device_lower/pass/alias_memory.h +37 -0
- nvfuser/include/nvfuser/device_lower/pass/allocation.h +32 -0
- nvfuser/include/nvfuser/device_lower/pass/circular_buffer.h +191 -0
- nvfuser/include/nvfuser/device_lower/pass/expr_sort.h +17 -0
- nvfuser/include/nvfuser/device_lower/pass/fusion_simplifier.h +21 -0
- nvfuser/include/nvfuser/device_lower/pass/grid_serialization.h +26 -0
- nvfuser/include/nvfuser/device_lower/pass/index.h +200 -0
- nvfuser/include/nvfuser/device_lower/pass/inline_ptx.h +16 -0
- nvfuser/include/nvfuser/device_lower/pass/insert_syncs.h +39 -0
- nvfuser/include/nvfuser/device_lower/pass/instrument.h +24 -0
- nvfuser/include/nvfuser/device_lower/pass/loop_rotation.h +150 -0
- nvfuser/include/nvfuser/device_lower/pass/loops.h +68 -0
- nvfuser/include/nvfuser/device_lower/pass/magic_zero.h +86 -0
- nvfuser/include/nvfuser/device_lower/pass/misaligned_vectorization.h +118 -0
- nvfuser/include/nvfuser/device_lower/pass/predicate.h +23 -0
- nvfuser/include/nvfuser/device_lower/pass/replace_size.h +24 -0
- nvfuser/include/nvfuser/device_lower/pass/scalar_hoist.h +115 -0
- nvfuser/include/nvfuser/device_lower/pass/unroll.h +98 -0
- nvfuser/include/nvfuser/device_lower/pass/vectorize_welford.h +45 -0
- nvfuser/include/nvfuser/device_lower/pass/warp_reduce.h +23 -0
- nvfuser/include/nvfuser/device_lower/utils.h +382 -0
- nvfuser/include/nvfuser/device_lower/validation.h +74 -0
- nvfuser/include/nvfuser/disjoint_set.h +556 -0
- nvfuser/include/nvfuser/dispatch.h +334 -0
- nvfuser/include/nvfuser/driver_api.h +49 -0
- nvfuser/include/nvfuser/dynamic_transform.h +316 -0
- nvfuser/include/nvfuser/dynamic_type/C++20/type_traits +37 -0
- nvfuser/include/nvfuser/dynamic_type/dynamic_type.h +969 -0
- nvfuser/include/nvfuser/dynamic_type/error.h +24 -0
- nvfuser/include/nvfuser/dynamic_type/type_traits.h +703 -0
- nvfuser/include/nvfuser/evaluator_common.h +295 -0
- nvfuser/include/nvfuser/exceptions.h +283 -0
- nvfuser/include/nvfuser/expr_evaluator.h +125 -0
- nvfuser/include/nvfuser/expr_simplifier.h +218 -0
- nvfuser/include/nvfuser/flatbuffers/allocator.h +68 -0
- nvfuser/include/nvfuser/flatbuffers/array.h +253 -0
- nvfuser/include/nvfuser/flatbuffers/base.h +486 -0
- nvfuser/include/nvfuser/flatbuffers/buffer.h +154 -0
- nvfuser/include/nvfuser/flatbuffers/buffer_ref.h +53 -0
- nvfuser/include/nvfuser/flatbuffers/code_generator.h +80 -0
- nvfuser/include/nvfuser/flatbuffers/code_generators.h +234 -0
- nvfuser/include/nvfuser/flatbuffers/default_allocator.h +64 -0
- nvfuser/include/nvfuser/flatbuffers/detached_buffer.h +114 -0
- nvfuser/include/nvfuser/flatbuffers/flatbuffer_builder.h +1225 -0
- nvfuser/include/nvfuser/flatbuffers/flatbuffers.h +272 -0
- nvfuser/include/nvfuser/flatbuffers/flatc.h +130 -0
- nvfuser/include/nvfuser/flatbuffers/flex_flat_util.h +36 -0
- nvfuser/include/nvfuser/flatbuffers/flexbuffers.h +1889 -0
- nvfuser/include/nvfuser/flatbuffers/grpc.h +300 -0
- nvfuser/include/nvfuser/flatbuffers/hash.h +127 -0
- nvfuser/include/nvfuser/flatbuffers/idl.h +1359 -0
- nvfuser/include/nvfuser/flatbuffers/minireflect.h +420 -0
- nvfuser/include/nvfuser/flatbuffers/reflection.h +522 -0
- nvfuser/include/nvfuser/flatbuffers/reflection_generated.h +1471 -0
- nvfuser/include/nvfuser/flatbuffers/registry.h +128 -0
- nvfuser/include/nvfuser/flatbuffers/stl_emulation.h +513 -0
- nvfuser/include/nvfuser/flatbuffers/string.h +64 -0
- nvfuser/include/nvfuser/flatbuffers/struct.h +53 -0
- nvfuser/include/nvfuser/flatbuffers/table.h +168 -0
- nvfuser/include/nvfuser/flatbuffers/util.h +731 -0
- nvfuser/include/nvfuser/flatbuffers/vector.h +393 -0
- nvfuser/include/nvfuser/flatbuffers/vector_downward.h +273 -0
- nvfuser/include/nvfuser/flatbuffers/verifier.h +317 -0
- nvfuser/include/nvfuser/fusion.h +511 -0
- nvfuser/include/nvfuser/fusion_guard.h +37 -0
- nvfuser/include/nvfuser/fusion_profiler.h +311 -0
- nvfuser/include/nvfuser/fusion_segmenter.h +751 -0
- nvfuser/include/nvfuser/global_allocator.h +27 -0
- nvfuser/include/nvfuser/grouped_reduction.h +47 -0
- nvfuser/include/nvfuser/host_ir/container.h +60 -0
- nvfuser/include/nvfuser/host_ir/executor.h +152 -0
- nvfuser/include/nvfuser/host_ir/host_ir.h +320 -0
- nvfuser/include/nvfuser/host_ir/lower.h +35 -0
- nvfuser/include/nvfuser/id_model/circular_buffer_indexing.h +56 -0
- nvfuser/include/nvfuser/id_model/contiguity.h +166 -0
- nvfuser/include/nvfuser/id_model/id_model.h +359 -0
- nvfuser/include/nvfuser/id_model/id_model_index_compute.h +81 -0
- nvfuser/include/nvfuser/id_model/indexing.h +208 -0
- nvfuser/include/nvfuser/id_model/indexing_traversal.h +72 -0
- nvfuser/include/nvfuser/id_model/indexing_utils.h +62 -0
- nvfuser/include/nvfuser/id_model/loop_promotion.h +180 -0
- nvfuser/include/nvfuser/id_model/predicate_indexing.h +104 -0
- nvfuser/include/nvfuser/id_model/schedule.h +54 -0
- nvfuser/include/nvfuser/id_model/to_string.h +87 -0
- nvfuser/include/nvfuser/id_model/transform_replay.h +58 -0
- nvfuser/include/nvfuser/id_model/utils.h +176 -0
- nvfuser/include/nvfuser/id_model/validation_utils.h +55 -0
- nvfuser/include/nvfuser/index_compute.h +651 -0
- nvfuser/include/nvfuser/instrumentation.h +107 -0
- nvfuser/include/nvfuser/ir/all_nodes.h +14 -0
- nvfuser/include/nvfuser/ir/base_nodes.h +687 -0
- nvfuser/include/nvfuser/ir/builder.h +215 -0
- nvfuser/include/nvfuser/ir/builder_passkey.h +29 -0
- nvfuser/include/nvfuser/ir/cloner.h +185 -0
- nvfuser/include/nvfuser/ir/container.h +226 -0
- nvfuser/include/nvfuser/ir/graphviz.h +119 -0
- nvfuser/include/nvfuser/ir/interface_nodes.h +957 -0
- nvfuser/include/nvfuser/ir/internal_base_nodes.h +744 -0
- nvfuser/include/nvfuser/ir/internal_nodes.h +2792 -0
- nvfuser/include/nvfuser/ir/iostream.h +98 -0
- nvfuser/include/nvfuser/ir/printer.h +57 -0
- nvfuser/include/nvfuser/ir/utils.h +801 -0
- nvfuser/include/nvfuser/iter_visitor.h +661 -0
- nvfuser/include/nvfuser/kernel.h +299 -0
- nvfuser/include/nvfuser/kernel_db/kernel_db.h +109 -0
- nvfuser/include/nvfuser/kernel_db/utils.h +37 -0
- nvfuser/include/nvfuser/kernel_ir.h +1457 -0
- nvfuser/include/nvfuser/kernel_ir_dispatch.h +147 -0
- nvfuser/include/nvfuser/linked_hash_map.h +97 -0
- nvfuser/include/nvfuser/logical_domain_map.h +577 -0
- nvfuser/include/nvfuser/macros.h +23 -0
- nvfuser/include/nvfuser/mma_type.h +257 -0
- nvfuser/include/nvfuser/multidevice/c10d_mock.h +175 -0
- nvfuser/include/nvfuser/multidevice/communication.h +232 -0
- nvfuser/include/nvfuser/multidevice/communicator.h +179 -0
- nvfuser/include/nvfuser/multidevice/device_mesh.h +95 -0
- nvfuser/include/nvfuser/multidevice/executor.h +107 -0
- nvfuser/include/nvfuser/multidevice/multidevice.h +18 -0
- nvfuser/include/nvfuser/multidevice/utils.h +187 -0
- nvfuser/include/nvfuser/non_divisible_split.h +86 -0
- nvfuser/include/nvfuser/opaque_type.h +129 -0
- nvfuser/include/nvfuser/ops/alias.h +192 -0
- nvfuser/include/nvfuser/ops/all_ops.h +13 -0
- nvfuser/include/nvfuser/ops/arith.h +712 -0
- nvfuser/include/nvfuser/ops/composite.h +130 -0
- nvfuser/include/nvfuser/ops/indexing.h +55 -0
- nvfuser/include/nvfuser/ops/normalization.h +263 -0
- nvfuser/include/nvfuser/ops/utils.h +127 -0
- nvfuser/include/nvfuser/options.h +313 -0
- nvfuser/include/nvfuser/parallel_dimension_map.h +95 -0
- nvfuser/include/nvfuser/parallel_type_bitmap.h +365 -0
- nvfuser/include/nvfuser/polymorphic_value.h +432 -0
- nvfuser/include/nvfuser/predicate_compute.h +213 -0
- nvfuser/include/nvfuser/python_frontend/distributed_tensor.h +50 -0
- nvfuser/include/nvfuser/python_frontend/fusion_cache.h +298 -0
- nvfuser/include/nvfuser/python_frontend/fusion_definition.h +372 -0
- nvfuser/include/nvfuser/python_frontend/fusion_record.h +3124 -0
- nvfuser/include/nvfuser/python_frontend/fusion_state.h +143 -0
- nvfuser/include/nvfuser/python_frontend/python_bindings.h +27 -0
- nvfuser/include/nvfuser/python_frontend/segmentation.h +246 -0
- nvfuser/include/nvfuser/python_frontend/translation.h +20 -0
- nvfuser/include/nvfuser/python_frontend/translation_utils.h +308 -0
- nvfuser/include/nvfuser/scheduler/all_schedulers.h +17 -0
- nvfuser/include/nvfuser/scheduler/ampere_multi_matmul.h +206 -0
- nvfuser/include/nvfuser/scheduler/cache_policy_refiner.h +19 -0
- nvfuser/include/nvfuser/scheduler/compile_time_info.h +322 -0
- nvfuser/include/nvfuser/scheduler/debug_utils.h +68 -0
- nvfuser/include/nvfuser/scheduler/expr_eval_sched.h +45 -0
- nvfuser/include/nvfuser/scheduler/heuristic.h +113 -0
- nvfuser/include/nvfuser/scheduler/hopper_multi_matmul.h +204 -0
- nvfuser/include/nvfuser/scheduler/mark_aliases.h +19 -0
- nvfuser/include/nvfuser/scheduler/matmul.h +40 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic.h +293 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin.h +65 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin_api.h +99 -0
- nvfuser/include/nvfuser/scheduler/matmul_utils.h +54 -0
- nvfuser/include/nvfuser/scheduler/mma_utils.h +500 -0
- nvfuser/include/nvfuser/scheduler/multi_matmul.h +74 -0
- nvfuser/include/nvfuser/scheduler/no_op.h +48 -0
- nvfuser/include/nvfuser/scheduler/normalization_inner.h +49 -0
- nvfuser/include/nvfuser/scheduler/normalization_inner_outer.h +51 -0
- nvfuser/include/nvfuser/scheduler/normalization_outer.h +48 -0
- nvfuser/include/nvfuser/scheduler/normalization_utils.h +379 -0
- nvfuser/include/nvfuser/scheduler/pointwise.h +183 -0
- nvfuser/include/nvfuser/scheduler/pointwise_heuristic.h +118 -0
- nvfuser/include/nvfuser/scheduler/pointwise_utils.h +24 -0
- nvfuser/include/nvfuser/scheduler/reduction.h +43 -0
- nvfuser/include/nvfuser/scheduler/reduction_heuristic.h +339 -0
- nvfuser/include/nvfuser/scheduler/reduction_utils.h +159 -0
- nvfuser/include/nvfuser/scheduler/registry.h +97 -0
- nvfuser/include/nvfuser/scheduler/registry_utils.h +111 -0
- nvfuser/include/nvfuser/scheduler/resize.h +41 -0
- nvfuser/include/nvfuser/scheduler/resize_heuristic.h +67 -0
- nvfuser/include/nvfuser/scheduler/runtime_info.h +166 -0
- nvfuser/include/nvfuser/scheduler/scheduler_types.h +80 -0
- nvfuser/include/nvfuser/scheduler/transpose.h +114 -0
- nvfuser/include/nvfuser/scheduler/transpose_heuristic.h +164 -0
- nvfuser/include/nvfuser/scheduler/utils.h +771 -0
- nvfuser/include/nvfuser/scheduler/vectorize_helper.h +349 -0
- nvfuser/include/nvfuser/serde/factory.h +55 -0
- nvfuser/include/nvfuser/serde/fusion_cache_generated.h +4319 -0
- nvfuser/include/nvfuser/serde/fusion_record.h +124 -0
- nvfuser/include/nvfuser/serde/polymorphic_value.h +52 -0
- nvfuser/include/nvfuser/serde/utils.h +34 -0
- nvfuser/include/nvfuser/struct.inl +127 -0
- nvfuser/include/nvfuser/swizzle.h +54 -0
- nvfuser/include/nvfuser/sys_utils.h +40 -0
- nvfuser/include/nvfuser/tensor_metadata.h +118 -0
- nvfuser/include/nvfuser/tma.h +124 -0
- nvfuser/include/nvfuser/transform_iter.h +522 -0
- nvfuser/include/nvfuser/transform_replay.h +297 -0
- nvfuser/include/nvfuser/transform_rfactor.h +33 -0
- nvfuser/include/nvfuser/transform_view.h +136 -0
- nvfuser/include/nvfuser/type.h +1125 -0
- nvfuser/include/nvfuser/type_promotion.h +61 -0
- nvfuser/include/nvfuser/utils.h +619 -0
- nvfuser/include/nvfuser/val_graph.h +446 -0
- nvfuser/include/nvfuser/val_graph_visitor.h +259 -0
- nvfuser/include/nvfuser/validator_utils.h +92 -0
- nvfuser/include/nvfuser/vectorization_info.h +31 -0
- nvfuser/include/nvfuser/visibility.h +21 -0
- nvfuser/lib/libnvfuser_codegen.so +0 -0
- nvfuser/nvfuser_version.py +69 -0
- nvfuser/pytorch_utils.py +184 -0
- nvfuser/share/cmake/nvfuser/NvfuserConfig-release.cmake +20 -0
- nvfuser/share/cmake/nvfuser/NvfuserConfig.cmake +106 -0
- nvfuser/utils.py +18 -0
- nvfuser/version.py +1 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/LICENSE +976 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/METADATA +16 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/RECORD +242 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/WHEEL +5 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/top_level.txt +1 -0
- nvfuser_cu121_torch25.libs/libnvToolsExt-847d78f2.so.1.0.0 +0 -0
@@ -0,0 +1,2792 @@
|
|
1
|
+
// clang-format off
|
2
|
+
/*
|
3
|
+
* SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
|
4
|
+
* All rights reserved.
|
5
|
+
* SPDX-License-Identifier: BSD-3-Clause
|
6
|
+
*/
|
7
|
+
// clang-format on
|
8
|
+
#pragma once
|
9
|
+
|
10
|
+
#include <exceptions.h>
|
11
|
+
#include <ir/interface_nodes.h>
|
12
|
+
|
13
|
+
#include <fusion.h>
|
14
|
+
#include <ir/base_nodes.h>
|
15
|
+
#include <mma_type.h>
|
16
|
+
#include <parallel_type_bitmap.h>
|
17
|
+
#include <visibility.h>
|
18
|
+
|
19
|
+
//! Nodes in here should generally not be used by users. They should be behind
|
20
|
+
//! the scenes and users shouldn't have to be aware of what they do to use the
|
21
|
+
//! code generator
|
22
|
+
//!
|
23
|
+
//! \todo improve implementation bool IterDomain::sameAs(const IterDomain*)
|
24
|
+
//! \todo Add testing of sameAs functions for these nodes
|
25
|
+
//!
|
26
|
+
|
27
|
+
//! IR header hierarchy
|
28
|
+
//! 1. utils.h - PolymorphicBase and NonCopyable
|
29
|
+
//! 2. ir/base_nodes.h - Statement, Expr, and Val
|
30
|
+
//! 3. ir/internal_base_nodes.h - IterDomain and TensorDomain
|
31
|
+
//! 4. ir/interface_nodes.h - TensorView and Scalar
|
32
|
+
//! 5. ** ir/internal_nodes.h ** - Any internal-only IR nodes
|
33
|
+
|
34
|
+
namespace nvfuser {
|
35
|
+
|
36
|
+
class ViewTransform;
|
37
|
+
class Scope;
|
38
|
+
class IrCloner;
|
39
|
+
struct AnalyzeViewResult;
|
40
|
+
|
41
|
+
class NVF_API FullOp : public Expr {
|
42
|
+
public:
|
43
|
+
using Expr::Expr;
|
44
|
+
|
45
|
+
FullOp(IrBuilderPasskey, Val* out, Val* fill_value);
|
46
|
+
|
47
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
48
|
+
|
49
|
+
const char* getOpString() const override {
|
50
|
+
return "FullOp";
|
51
|
+
}
|
52
|
+
|
53
|
+
std::string toString(int indent_size = 0) const override;
|
54
|
+
std::string toInlineString(int indent_size = 0) const override;
|
55
|
+
std::vector<PolymorphicValue> evaluate(
|
56
|
+
const ExpressionEvaluator& ee,
|
57
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
58
|
+
|
59
|
+
Val* getFillValue() const {
|
60
|
+
return inputs().back();
|
61
|
+
}
|
62
|
+
};
|
63
|
+
|
64
|
+
class SelectOp : public Expr {
|
65
|
+
public:
|
66
|
+
using Expr::Expr;
|
67
|
+
|
68
|
+
SelectOp(IrBuilderPasskey, Val* out, Val* in, int64_t dim, Val* index);
|
69
|
+
|
70
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
71
|
+
|
72
|
+
const char* getOpString() const override {
|
73
|
+
return "SelectOp";
|
74
|
+
}
|
75
|
+
|
76
|
+
std::string toString(int indent_size = 0) const override;
|
77
|
+
std::string toInlineString(int indent_size = 0) const override;
|
78
|
+
std::vector<PolymorphicValue> evaluate(
|
79
|
+
const ExpressionEvaluator& ee,
|
80
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
81
|
+
|
82
|
+
TensorView* lookupTv() const {
|
83
|
+
return input(0)->as<TensorView>();
|
84
|
+
}
|
85
|
+
|
86
|
+
int64_t dim() const {
|
87
|
+
return attribute<int64_t>(0);
|
88
|
+
}
|
89
|
+
|
90
|
+
IterDomain* getIndexedID() const;
|
91
|
+
|
92
|
+
std::unordered_map<IterDomain*, Val*> getIndexOverridingMap() const {
|
93
|
+
return {{getIndexedID(), input(1)}};
|
94
|
+
}
|
95
|
+
};
|
96
|
+
|
97
|
+
class IndexSelectOp : public Expr {
|
98
|
+
public:
|
99
|
+
using Expr::Expr;
|
100
|
+
|
101
|
+
IndexSelectOp(IrBuilderPasskey, Val* out, Val* in1, int64_t dim, Val* in3);
|
102
|
+
|
103
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
104
|
+
|
105
|
+
const char* getOpString() const override {
|
106
|
+
return "IndexSelectOp";
|
107
|
+
}
|
108
|
+
|
109
|
+
std::string toString(int indent_size = 0) const override;
|
110
|
+
std::string toInlineString(int indent_size = 0) const override;
|
111
|
+
std::vector<PolymorphicValue> evaluate(
|
112
|
+
const ExpressionEvaluator& ee,
|
113
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
114
|
+
|
115
|
+
TensorView* lookupTv() const {
|
116
|
+
return input(0)->as<TensorView>();
|
117
|
+
}
|
118
|
+
|
119
|
+
TensorView* indexTv() const {
|
120
|
+
return input(1)->as<TensorView>();
|
121
|
+
}
|
122
|
+
|
123
|
+
IterDomain* getIndexedID() const;
|
124
|
+
|
125
|
+
IterDomain* getConsumerOfIndexedID() const;
|
126
|
+
|
127
|
+
int64_t dim() const {
|
128
|
+
return attribute<int64_t>(0);
|
129
|
+
}
|
130
|
+
};
|
131
|
+
|
132
|
+
class NVF_API TorchGatherOp : public Expr {
|
133
|
+
public:
|
134
|
+
using Expr::Expr;
|
135
|
+
|
136
|
+
//! Parameter exact_sizes indicates whether the non-indexed domains
|
137
|
+
//! of the index tensor have the same extents of those of the input
|
138
|
+
//! tensor. It's true in the case of torch.take_along_dim and
|
139
|
+
//! numpy_take_along_axis. torch.take_along_axis does not guarantee
|
140
|
+
//! they are the same.
|
141
|
+
TorchGatherOp(
|
142
|
+
IrBuilderPasskey,
|
143
|
+
Val* out,
|
144
|
+
Val* in,
|
145
|
+
int64_t dim,
|
146
|
+
Val* index,
|
147
|
+
bool exact_sizes);
|
148
|
+
|
149
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
150
|
+
|
151
|
+
const char* getOpString() const override {
|
152
|
+
return "TorchGatherOp";
|
153
|
+
}
|
154
|
+
|
155
|
+
std::string toString(int indent_size = 0) const override;
|
156
|
+
std::string toInlineString(int indent_size = 0) const override;
|
157
|
+
std::vector<PolymorphicValue> evaluate(
|
158
|
+
const ExpressionEvaluator& ee,
|
159
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
160
|
+
|
161
|
+
TensorView* lookupTv() const {
|
162
|
+
return input(0)->as<TensorView>();
|
163
|
+
}
|
164
|
+
|
165
|
+
TensorView* indexTv() const {
|
166
|
+
return input(1)->as<TensorView>();
|
167
|
+
}
|
168
|
+
|
169
|
+
int64_t dim() const {
|
170
|
+
return attribute<int64_t>(0);
|
171
|
+
}
|
172
|
+
|
173
|
+
IterDomain* getIndexedID() const;
|
174
|
+
|
175
|
+
IterDomain* getConsumerOfIndexedID() const;
|
176
|
+
|
177
|
+
bool exactSizes() const {
|
178
|
+
return attribute<bool>(1);
|
179
|
+
}
|
180
|
+
};
|
181
|
+
|
182
|
+
class ScatterOp : public Expr {
|
183
|
+
public:
|
184
|
+
using Expr::Expr;
|
185
|
+
ScatterOp(
|
186
|
+
IrBuilderPasskey,
|
187
|
+
ScatterOpType type,
|
188
|
+
Val* out,
|
189
|
+
Val* self,
|
190
|
+
int64_t dim,
|
191
|
+
Val* index,
|
192
|
+
Val* src);
|
193
|
+
|
194
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
195
|
+
|
196
|
+
const char* getOpString() const override {
|
197
|
+
return "ScatterOp";
|
198
|
+
}
|
199
|
+
|
200
|
+
std::string toString(int indent_size = 0) const override;
|
201
|
+
std::string toInlineString(int indent_size = 0) const override;
|
202
|
+
std::vector<PolymorphicValue> evaluate(
|
203
|
+
const ExpressionEvaluator& ee,
|
204
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
205
|
+
|
206
|
+
TensorView* selfTv() const {
|
207
|
+
return input(0)->as<TensorView>();
|
208
|
+
}
|
209
|
+
|
210
|
+
TensorView* indexTv() const {
|
211
|
+
return input(1)->as<TensorView>();
|
212
|
+
}
|
213
|
+
|
214
|
+
TensorView* srcTv() const {
|
215
|
+
return input(2)->as<TensorView>();
|
216
|
+
}
|
217
|
+
|
218
|
+
int64_t dim() const {
|
219
|
+
return attribute<int64_t>(0);
|
220
|
+
}
|
221
|
+
|
222
|
+
IterDomain* getIndexedID() const;
|
223
|
+
|
224
|
+
ScatterOpType getScatterOpType() const {
|
225
|
+
return attribute<ScatterOpType>(1);
|
226
|
+
}
|
227
|
+
};
|
228
|
+
|
229
|
+
class IotaOp : public Expr {
|
230
|
+
public:
|
231
|
+
using Expr::Expr;
|
232
|
+
|
233
|
+
IotaOp(IrBuilderPasskey, Val* out, Val* length, Val* start, Val* step);
|
234
|
+
|
235
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
236
|
+
|
237
|
+
const char* getOpString() const override {
|
238
|
+
return "IotaOp";
|
239
|
+
}
|
240
|
+
|
241
|
+
std::string toString(int indent_size = 0) const override;
|
242
|
+
std::string toInlineString(int indent_size = 0) const override;
|
243
|
+
std::vector<PolymorphicValue> evaluate(
|
244
|
+
const ExpressionEvaluator& ee,
|
245
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
246
|
+
|
247
|
+
DataType dtype() const {
|
248
|
+
return *start()->getDataType();
|
249
|
+
}
|
250
|
+
|
251
|
+
Val* length() const {
|
252
|
+
return input(0);
|
253
|
+
}
|
254
|
+
|
255
|
+
Val* start() const {
|
256
|
+
return input(1);
|
257
|
+
}
|
258
|
+
|
259
|
+
Val* step() const {
|
260
|
+
return input(2);
|
261
|
+
}
|
262
|
+
};
|
263
|
+
|
264
|
+
// Tensor factory for generating identity matrices like
|
265
|
+
//
|
266
|
+
// [[1, 0, 0],
|
267
|
+
// [0, 1, 0],
|
268
|
+
// [0, 0, 1]]
|
269
|
+
//
|
270
|
+
// or
|
271
|
+
//
|
272
|
+
// [[1, 0, 0],
|
273
|
+
// [0, 1, 0],
|
274
|
+
// [0, 0, 1],
|
275
|
+
// [0, 0, 0]]
|
276
|
+
//
|
277
|
+
// or
|
278
|
+
//
|
279
|
+
// [[1, 0, 0, 0],
|
280
|
+
// [0, 1, 0, 0],
|
281
|
+
// [0, 0, 1, 0]]
|
282
|
+
class EyeOp : public Expr {
|
283
|
+
public:
|
284
|
+
using Expr::Expr;
|
285
|
+
|
286
|
+
EyeOp(IrBuilderPasskey, Val* out, DataType dtype);
|
287
|
+
|
288
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
289
|
+
|
290
|
+
const char* getOpString() const override {
|
291
|
+
return "EyeOp";
|
292
|
+
}
|
293
|
+
|
294
|
+
std::string toString(int indent_size = 0) const override;
|
295
|
+
std::string toInlineString(int indent_size = 0) const override;
|
296
|
+
std::vector<PolymorphicValue> evaluate(
|
297
|
+
const ExpressionEvaluator& ee,
|
298
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
299
|
+
|
300
|
+
DataType dtype() const {
|
301
|
+
return attribute<DataType>(0);
|
302
|
+
}
|
303
|
+
};
|
304
|
+
|
305
|
+
//! A specialization for Unary operations. Unary operations take in a single
|
306
|
+
//! input and produce a single output. Examples include:
|
307
|
+
//! 1) Casting operation i.e. float(a_val)
|
308
|
+
//! 2) Negation i.e. val * -1
|
309
|
+
//! 3) Reduction across a dimension i.e. val.sum(axis=2)
|
310
|
+
//! 4) split/merge
|
311
|
+
class NVF_API UnaryOp : public Expr {
|
312
|
+
public:
|
313
|
+
using Expr::Expr;
|
314
|
+
|
315
|
+
UnaryOp(IrBuilderPasskey, UnaryOpType type, Val* out, Val* in);
|
316
|
+
|
317
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
318
|
+
|
319
|
+
const char* getOpString() const override {
|
320
|
+
return "UnaryOp";
|
321
|
+
}
|
322
|
+
|
323
|
+
std::string getGraphvizLabel() const override;
|
324
|
+
|
325
|
+
std::vector<PolymorphicValue> evaluate(
|
326
|
+
const ExpressionEvaluator& ee,
|
327
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
328
|
+
|
329
|
+
std::string toString(int indent_size = 0) const override;
|
330
|
+
std::string toInlineString(int indent_size = 0) const override;
|
331
|
+
|
332
|
+
Val* out() const {
|
333
|
+
return output(0);
|
334
|
+
}
|
335
|
+
Val* in() const {
|
336
|
+
return input(0);
|
337
|
+
}
|
338
|
+
|
339
|
+
UnaryOpType getUnaryOpType() const {
|
340
|
+
return attribute<UnaryOpType>(0);
|
341
|
+
}
|
342
|
+
|
343
|
+
private:
|
344
|
+
void printHelper(std::stringstream& ss, std::string input) const;
|
345
|
+
};
|
346
|
+
|
347
|
+
//! A specialization for Binary operations. Binary operations take in two inputs
|
348
|
+
//! and produce a single output. Examples include:
|
349
|
+
//! 1) Add/mul/div/mod/sub (A * B)
|
350
|
+
//! 2) LT (A < B)
|
351
|
+
class NVF_API BinaryOp : public Expr {
|
352
|
+
public:
|
353
|
+
using Expr::Expr;
|
354
|
+
|
355
|
+
BinaryOp(IrBuilderPasskey, BinaryOpType type, Val* out, Val* lhs, Val* rhs);
|
356
|
+
|
357
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
358
|
+
|
359
|
+
const char* getOpString() const override {
|
360
|
+
return "BinaryOp";
|
361
|
+
}
|
362
|
+
|
363
|
+
std::string getGraphvizLabel() const override;
|
364
|
+
|
365
|
+
std::vector<PolymorphicValue> evaluate(
|
366
|
+
const ExpressionEvaluator& ee,
|
367
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
368
|
+
|
369
|
+
std::string toString(int indent_size = 0) const override;
|
370
|
+
std::string toInlineString(int indent_size = 0) const override;
|
371
|
+
|
372
|
+
Val* out() const {
|
373
|
+
return output(0);
|
374
|
+
}
|
375
|
+
Val* lhs() const {
|
376
|
+
return input(0);
|
377
|
+
}
|
378
|
+
Val* rhs() const {
|
379
|
+
return input(1);
|
380
|
+
}
|
381
|
+
|
382
|
+
BinaryOpType getBinaryOpType() const {
|
383
|
+
return attribute<BinaryOpType>(0);
|
384
|
+
}
|
385
|
+
|
386
|
+
private:
|
387
|
+
void printHelper(
|
388
|
+
std::stringstream& ss,
|
389
|
+
int indent_size,
|
390
|
+
std::string lhs,
|
391
|
+
std::string rhs) const;
|
392
|
+
};
|
393
|
+
|
394
|
+
class TernaryOp : public Expr {
|
395
|
+
public:
|
396
|
+
using Expr::Expr;
|
397
|
+
|
398
|
+
TernaryOp(
|
399
|
+
IrBuilderPasskey,
|
400
|
+
TernaryOpType type,
|
401
|
+
Val* out,
|
402
|
+
Val* in1,
|
403
|
+
Val* in2,
|
404
|
+
Val* in3);
|
405
|
+
|
406
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
407
|
+
|
408
|
+
const char* getOpString() const override {
|
409
|
+
return "TernaryOp";
|
410
|
+
}
|
411
|
+
|
412
|
+
std::string getGraphvizLabel() const override;
|
413
|
+
|
414
|
+
std::vector<PolymorphicValue> evaluate(
|
415
|
+
const ExpressionEvaluator& ee,
|
416
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
417
|
+
|
418
|
+
std::string toString(int indent_size = 0) const override;
|
419
|
+
std::string toInlineString(int indent_size = 0) const override;
|
420
|
+
|
421
|
+
Val* out() const {
|
422
|
+
return output(0);
|
423
|
+
}
|
424
|
+
|
425
|
+
Val* in1() const {
|
426
|
+
return input(0);
|
427
|
+
}
|
428
|
+
Val* in2() const {
|
429
|
+
return input(1);
|
430
|
+
}
|
431
|
+
Val* in3() const {
|
432
|
+
return input(2);
|
433
|
+
}
|
434
|
+
|
435
|
+
TernaryOpType getTernaryOpType() const {
|
436
|
+
return attribute<TernaryOpType>(0);
|
437
|
+
}
|
438
|
+
|
439
|
+
private:
|
440
|
+
void printHelper(
|
441
|
+
std::stringstream& ss,
|
442
|
+
int indent_size,
|
443
|
+
std::string in1,
|
444
|
+
std::string in2,
|
445
|
+
std::string in3) const;
|
446
|
+
};
|
447
|
+
|
448
|
+
// construct an array from a list of values
|
449
|
+
class ArrayConstruct : public Expr {
|
450
|
+
public:
|
451
|
+
using Expr::Expr;
|
452
|
+
|
453
|
+
NVF_API ArrayConstruct(
|
454
|
+
IrBuilderPasskey,
|
455
|
+
Val* output,
|
456
|
+
std::vector<Val*> inputs);
|
457
|
+
|
458
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
459
|
+
|
460
|
+
const char* getOpString() const override {
|
461
|
+
return "ArrayConstruct";
|
462
|
+
}
|
463
|
+
|
464
|
+
std::string toString(int indent_size = 0) const override;
|
465
|
+
std::string toInlineString(int indent_size = 0) const override;
|
466
|
+
|
467
|
+
std::vector<PolymorphicValue> evaluate(
|
468
|
+
const ExpressionEvaluator& ee,
|
469
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
470
|
+
|
471
|
+
Val* out() const {
|
472
|
+
return output(0);
|
473
|
+
}
|
474
|
+
};
|
475
|
+
|
476
|
+
class ReverseArray : public Expr {
|
477
|
+
public:
|
478
|
+
using Expr::Expr;
|
479
|
+
|
480
|
+
ReverseArray(IrBuilderPasskey, Val* output, Val* input);
|
481
|
+
|
482
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
483
|
+
|
484
|
+
const char* getOpString() const override {
|
485
|
+
return "ReverseArray";
|
486
|
+
}
|
487
|
+
|
488
|
+
std::string toString(int indent_size = 0) const override;
|
489
|
+
std::string toInlineString(int indent_size = 0) const override;
|
490
|
+
|
491
|
+
std::vector<PolymorphicValue> evaluate(
|
492
|
+
const ExpressionEvaluator& ee,
|
493
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
494
|
+
|
495
|
+
Val* out() const {
|
496
|
+
return output(0);
|
497
|
+
}
|
498
|
+
|
499
|
+
Val* in() const {
|
500
|
+
return input(0);
|
501
|
+
}
|
502
|
+
};
|
503
|
+
|
504
|
+
// Get an item from an array, array[index]
|
505
|
+
class GetItem : public Expr {
|
506
|
+
public:
|
507
|
+
using Expr::Expr;
|
508
|
+
|
509
|
+
GetItem(IrBuilderPasskey, Val* output, Val* array, Val* index);
|
510
|
+
|
511
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
512
|
+
|
513
|
+
const char* getOpString() const override {
|
514
|
+
return "GetItem";
|
515
|
+
}
|
516
|
+
|
517
|
+
std::string toString(int indent_size = 0) const override;
|
518
|
+
std::string toInlineString(int indent_size = 0) const override;
|
519
|
+
|
520
|
+
std::vector<PolymorphicValue> evaluate(
|
521
|
+
const ExpressionEvaluator& ee,
|
522
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
523
|
+
|
524
|
+
Val* out() const {
|
525
|
+
return output(0);
|
526
|
+
}
|
527
|
+
|
528
|
+
Val* array() const {
|
529
|
+
return input(0);
|
530
|
+
}
|
531
|
+
|
532
|
+
Val* index() const {
|
533
|
+
return input(1);
|
534
|
+
}
|
535
|
+
};
|
536
|
+
|
537
|
+
// construct a struct from a list of values
|
538
|
+
class StructConstruct : public Expr {
|
539
|
+
public:
|
540
|
+
using Expr::Expr;
|
541
|
+
|
542
|
+
NVF_API StructConstruct(
|
543
|
+
IrBuilderPasskey,
|
544
|
+
Val* output,
|
545
|
+
const std::vector<std::pair<std::string, Val*>>& fields);
|
546
|
+
|
547
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
548
|
+
|
549
|
+
const char* getOpString() const override {
|
550
|
+
return "StructConstruct";
|
551
|
+
}
|
552
|
+
|
553
|
+
std::string toString(int indent_size = 0) const override;
|
554
|
+
std::string toInlineString(int indent_size = 0) const override;
|
555
|
+
|
556
|
+
std::vector<PolymorphicValue> evaluate(
|
557
|
+
const ExpressionEvaluator& ee,
|
558
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
559
|
+
|
560
|
+
std::string fieldName(size_t i) const {
|
561
|
+
return attribute<std::string>(i);
|
562
|
+
}
|
563
|
+
|
564
|
+
Val* out() const {
|
565
|
+
return output(0);
|
566
|
+
}
|
567
|
+
};
|
568
|
+
|
569
|
+
// Get an attribute from a struct, struct.attr
|
570
|
+
class GetAttr : public Expr {
|
571
|
+
public:
|
572
|
+
using Expr::Expr;
|
573
|
+
|
574
|
+
GetAttr(IrBuilderPasskey, Val* output, Val* struct_, std::string attr);
|
575
|
+
|
576
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
577
|
+
|
578
|
+
const char* getOpString() const override {
|
579
|
+
return "GetAttr";
|
580
|
+
}
|
581
|
+
|
582
|
+
std::string toString(int indent_size = 0) const override;
|
583
|
+
std::string toInlineString(int indent_size = 0) const override;
|
584
|
+
|
585
|
+
std::vector<PolymorphicValue> evaluate(
|
586
|
+
const ExpressionEvaluator& ee,
|
587
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
588
|
+
|
589
|
+
Val* out() const {
|
590
|
+
return output(0);
|
591
|
+
}
|
592
|
+
|
593
|
+
Val* struct_() const {
|
594
|
+
return input(0);
|
595
|
+
}
|
596
|
+
|
597
|
+
std::string attr() const {
|
598
|
+
return attribute<std::string>(0);
|
599
|
+
}
|
600
|
+
};
|
601
|
+
|
602
|
+
// Get an attribute from a struct, struct.attr
|
603
|
+
class GetMetaData : public Expr {
|
604
|
+
public:
|
605
|
+
using Expr::Expr;
|
606
|
+
|
607
|
+
GetMetaData(IrBuilderPasskey, Val* output, Val* input);
|
608
|
+
|
609
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
610
|
+
|
611
|
+
const char* getOpString() const override {
|
612
|
+
return "GetMetaData";
|
613
|
+
}
|
614
|
+
|
615
|
+
std::string toString(int indent_size = 0) const override;
|
616
|
+
std::string toInlineString(int indent_size = 0) const override;
|
617
|
+
|
618
|
+
bool sameAs(const Statement* other) const override {
|
619
|
+
auto other_meta = dynamic_cast<const GetMetaData*>(other);
|
620
|
+
if (other_meta == nullptr) {
|
621
|
+
return false;
|
622
|
+
}
|
623
|
+
// Do not recursively check input, because if we have
|
624
|
+
// T1 = set(T0)
|
625
|
+
// T2 = set(T0)
|
626
|
+
// Then even if T1->sameAs(T2), they should not have the same metadata.
|
627
|
+
// For example, T1 and T2 may be different fusion outputs, so their data
|
628
|
+
// pointers are different.
|
629
|
+
return other_meta->in() == in();
|
630
|
+
}
|
631
|
+
|
632
|
+
std::vector<PolymorphicValue> evaluate(
|
633
|
+
const ExpressionEvaluator& ee,
|
634
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
635
|
+
|
636
|
+
Val* out() const {
|
637
|
+
return output(0);
|
638
|
+
}
|
639
|
+
|
640
|
+
Val* in() const {
|
641
|
+
return input(0);
|
642
|
+
}
|
643
|
+
};
|
644
|
+
|
645
|
+
// Construct a tensor from an array
|
646
|
+
class TensorConstruct : public Expr {
|
647
|
+
public:
|
648
|
+
using Expr::Expr;
|
649
|
+
|
650
|
+
TensorConstruct(IrBuilderPasskey, TensorView* output, Val* input);
|
651
|
+
|
652
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
653
|
+
|
654
|
+
const char* getOpString() const override {
|
655
|
+
return "TensorConstruct";
|
656
|
+
}
|
657
|
+
|
658
|
+
std::string toString(int indent_size = 0) const override;
|
659
|
+
std::string toInlineString(int indent_size = 0) const override;
|
660
|
+
|
661
|
+
std::vector<PolymorphicValue> evaluate(
|
662
|
+
const ExpressionEvaluator& ee,
|
663
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
664
|
+
|
665
|
+
TensorView* out() const {
|
666
|
+
return output(0)->as<TensorView>();
|
667
|
+
}
|
668
|
+
|
669
|
+
Val* in() const {
|
670
|
+
return input(0);
|
671
|
+
}
|
672
|
+
};
|
673
|
+
|
674
|
+
//! A specialization for random number generator (RNG) operations. RNG
|
675
|
+
//! operations take in no tensor input and produce a single output.
|
676
|
+
class RNGOp : public Expr {
|
677
|
+
int64_t getOutputDims() const;
|
678
|
+
|
679
|
+
public:
|
680
|
+
struct Attributes {
|
681
|
+
// default initialization for clang-tidy
|
682
|
+
// cppcoreguidelines-pro-type-member-init
|
683
|
+
RNGOpType rtype = RNGOpType::Undefined;
|
684
|
+
DataType dtype;
|
685
|
+
size_t num_parameters = 0;
|
686
|
+
|
687
|
+
// TODO: Enable the following in C++20:
|
688
|
+
// bool operator==(const Attributes &other) const = default;
|
689
|
+
bool operator==(const Attributes& other) const {
|
690
|
+
// Note: we do not need to explicitly compare num_parameters since it is
|
691
|
+
// tied to rtype
|
692
|
+
return rtype == other.rtype && dtype == other.dtype;
|
693
|
+
}
|
694
|
+
};
|
695
|
+
|
696
|
+
using Expr::Expr;
|
697
|
+
|
698
|
+
//! Note that if philox_offset is provided, then rng_offset will be ignored.
|
699
|
+
RNGOp(
|
700
|
+
IrBuilderPasskey,
|
701
|
+
RNGOpType type,
|
702
|
+
Val* out,
|
703
|
+
DataType dtype,
|
704
|
+
std::vector<Val*> parameters = {},
|
705
|
+
Val* philox_seed = nullptr,
|
706
|
+
Val* philox_offset = nullptr,
|
707
|
+
Val* philox_index = nullptr);
|
708
|
+
|
709
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
710
|
+
|
711
|
+
const char* getOpString() const override {
|
712
|
+
return "RNGOp";
|
713
|
+
}
|
714
|
+
|
715
|
+
std::string toString(int indent_size = 0) const override;
|
716
|
+
std::string toInlineString(int indent_size = 0) const override;
|
717
|
+
|
718
|
+
RNGOpType getRNGOpType() const {
|
719
|
+
return attribute<Attributes>(0).rtype;
|
720
|
+
}
|
721
|
+
|
722
|
+
DataType dtype() const {
|
723
|
+
return attribute<Attributes>(0).dtype;
|
724
|
+
}
|
725
|
+
|
726
|
+
size_t getNumParameters() const {
|
727
|
+
return attribute<Attributes>(0).num_parameters;
|
728
|
+
}
|
729
|
+
|
730
|
+
std::vector<Val*> getParameters() const {
|
731
|
+
return {
|
732
|
+
inputs().begin() + getOutputDims(),
|
733
|
+
inputs().begin() + (int64_t)(getOutputDims() + getNumParameters())};
|
734
|
+
}
|
735
|
+
|
736
|
+
std::vector<Val*> getShape() const {
|
737
|
+
return {inputs().begin(), inputs().begin() + getOutputDims()};
|
738
|
+
}
|
739
|
+
|
740
|
+
Val* getRNGSeedVal() const {
|
741
|
+
// Note that inputs() consists of:
|
742
|
+
// output dims | parameters | philox seed | philox_offset
|
743
|
+
auto seed_index = getOutputDims() + getNumParameters();
|
744
|
+
return (inputs().size() > seed_index) ? inputs().at(seed_index) : nullptr;
|
745
|
+
}
|
746
|
+
|
747
|
+
Val* getRNGOffsetVal() const {
|
748
|
+
// Note that inputs() consists of:
|
749
|
+
// output dims | parameters | philox seed | philox_offset
|
750
|
+
auto offset_index = getOutputDims() + getNumParameters() + 1;
|
751
|
+
return (inputs().size() > offset_index) ? inputs().at(offset_index)
|
752
|
+
: nullptr;
|
753
|
+
}
|
754
|
+
|
755
|
+
bool isDeterministic() const {
|
756
|
+
return inputs().size() == getOutputDims() + getNumParameters() + 2;
|
757
|
+
}
|
758
|
+
|
759
|
+
void setSeedAndOffset(Val* seed, Val* offset) {
|
760
|
+
NVF_ERROR(!isDeterministic());
|
761
|
+
addInput(seed);
|
762
|
+
addInput(offset);
|
763
|
+
}
|
764
|
+
|
765
|
+
Val* getPhiloxIndex() const {
|
766
|
+
return attributeVal(1);
|
767
|
+
}
|
768
|
+
|
769
|
+
int getPhiloxMultiple() const {
|
770
|
+
return dtype() == DataType::Double ? 2 : 4;
|
771
|
+
}
|
772
|
+
};
|
773
|
+
|
774
|
+
//! Broadcast in to match out. The semantics are identical to torch.unsqueeze.
|
775
|
+
//! is_broadcast_dims are relative to out. Where
|
776
|
+
//! is_broadcast_dims.size() == out->nDims().
|
777
|
+
class NVF_API BroadcastOp : public Expr {
|
778
|
+
public:
|
779
|
+
using Expr::Expr;
|
780
|
+
|
781
|
+
//! \param out The output tensor
|
782
|
+
//! \param in The input tensor
|
783
|
+
//! \param is_broadcast_dims True when output dim is a new broadcast domain
|
784
|
+
BroadcastOp(
|
785
|
+
IrBuilderPasskey,
|
786
|
+
Val* out,
|
787
|
+
Val* in,
|
788
|
+
std::vector<bool> is_broadcast_dims);
|
789
|
+
|
790
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
791
|
+
|
792
|
+
const char* getOpString() const override {
|
793
|
+
return "BroadcastOp";
|
794
|
+
}
|
795
|
+
|
796
|
+
std::string toString(int indent_size = 0) const override;
|
797
|
+
std::string toInlineString(int indent_size = 0) const override;
|
798
|
+
|
799
|
+
std::vector<PolymorphicValue> evaluate(
|
800
|
+
const ExpressionEvaluator& ee,
|
801
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
802
|
+
|
803
|
+
Val* out() const {
|
804
|
+
return output(0);
|
805
|
+
}
|
806
|
+
Val* in() const {
|
807
|
+
return input(0);
|
808
|
+
}
|
809
|
+
|
810
|
+
bool isBroadcastDim(size_t dim) const {
|
811
|
+
return getBroadcastDimFlags().at(dim);
|
812
|
+
}
|
813
|
+
|
814
|
+
//! The same list passed to the broadcast arithmetic op. Each
|
815
|
+
//! element corresponds to an IterDomain of the output tensor and is
|
816
|
+
//! true when the IterDomain is a new broadcast domain. Note
|
817
|
+
//! that the output tensor may have other broadcast domains whose
|
818
|
+
//! flags are false because the input tensor may already have
|
819
|
+
//! broadcast domains.
|
820
|
+
const std::vector<bool>& getBroadcastDimFlags() const {
|
821
|
+
return attribute<std::vector<bool>>(0);
|
822
|
+
}
|
823
|
+
};
|
824
|
+
|
825
|
+
//! Squeeze in to match out. is_squeeze_dims are relative to in. Where
|
826
|
+
//! is_squeeze_dims.size() == in->nDims(). Squeeze is the opposite of
|
827
|
+
//! broadcast.
|
828
|
+
class NVF_API SqueezeOp : public Expr {
|
829
|
+
public:
|
830
|
+
using Expr::Expr;
|
831
|
+
|
832
|
+
//! \param out The output tensor
|
833
|
+
//! \param in The input tensor
|
834
|
+
//! \param is_squeeze_dims True when input dim is a removed broadcast domain
|
835
|
+
SqueezeOp(
|
836
|
+
IrBuilderPasskey,
|
837
|
+
Val* out,
|
838
|
+
Val* in,
|
839
|
+
std::vector<bool> is_broadcast_dims);
|
840
|
+
|
841
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
842
|
+
|
843
|
+
const char* getOpString() const override {
|
844
|
+
return "SqueezeOp";
|
845
|
+
}
|
846
|
+
|
847
|
+
std::string toString(int indent_size = 0) const override;
|
848
|
+
std::string toInlineString(int indent_size = 0) const override;
|
849
|
+
|
850
|
+
std::vector<PolymorphicValue> evaluate(
|
851
|
+
const ExpressionEvaluator& ee,
|
852
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
853
|
+
|
854
|
+
Val* out() const {
|
855
|
+
return output(0);
|
856
|
+
}
|
857
|
+
Val* in() const {
|
858
|
+
return input(0);
|
859
|
+
}
|
860
|
+
|
861
|
+
bool isSqueezeDim(size_t dim) const {
|
862
|
+
return getSqueezeDimFlags().at(dim);
|
863
|
+
}
|
864
|
+
|
865
|
+
//! The same list passed to the squeeze arithmetic op. Each
|
866
|
+
//! element corresponds to an IterDomain of the input tensor and is
|
867
|
+
//! true when the IterDomain is a broadcast domain that is removed in the
|
868
|
+
//! output. Note that the output tensor may still contain broadcast domains
|
869
|
+
//! because the input tensor may have broadcast domains that we don't want to
|
870
|
+
//! remove (false flag).
|
871
|
+
const std::vector<bool>& getSqueezeDimFlags() const {
|
872
|
+
return attribute<std::vector<bool>>(0);
|
873
|
+
}
|
874
|
+
|
875
|
+
//! Check that squeezed IDs in old_tv concretize to Broadcast IterType
|
876
|
+
void checkConcretization(Val* old_tv, Val* new_tv) const override;
|
877
|
+
};
|
878
|
+
|
879
|
+
//! Reduction operation. Out is first initialized to _init. Then
|
880
|
+
//! reduction_op_type is used to update out as out = reductionOp(out, in).
|
881
|
+
//! Output's axes marked as reduction will be reduced to produce an output
|
882
|
+
//! tensor. The output tensors size will be the size of all
|
883
|
+
//! non-reduction/non-broadcast dimensions.
|
884
|
+
class NVF_API ReductionOp : public Expr {
|
885
|
+
public:
|
886
|
+
using Expr::Expr;
|
887
|
+
|
888
|
+
ReductionOp(
|
889
|
+
IrBuilderPasskey,
|
890
|
+
BinaryOpType reduction_op_type,
|
891
|
+
Val* init,
|
892
|
+
Val* out,
|
893
|
+
Val* in,
|
894
|
+
bool is_allreduce = false);
|
895
|
+
|
896
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
897
|
+
|
898
|
+
const char* getOpString() const override {
|
899
|
+
return "ReductionOp";
|
900
|
+
}
|
901
|
+
|
902
|
+
std::string toString(int indent_size = 0) const override;
|
903
|
+
std::string toInlineString(int indent_size = 0) const override;
|
904
|
+
std::vector<PolymorphicValue> evaluate(
|
905
|
+
const ExpressionEvaluator& ee,
|
906
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
907
|
+
|
908
|
+
Val* out() const {
|
909
|
+
return output(0);
|
910
|
+
}
|
911
|
+
Val* in() const {
|
912
|
+
return input(0);
|
913
|
+
}
|
914
|
+
Val* init() const {
|
915
|
+
return attributeVal(0);
|
916
|
+
}
|
917
|
+
|
918
|
+
BinaryOpType getReductionOpType() const {
|
919
|
+
return attribute<BinaryOpType>(1);
|
920
|
+
}
|
921
|
+
|
922
|
+
bool isAllreduce() const {
|
923
|
+
return attribute<bool>(2);
|
924
|
+
}
|
925
|
+
|
926
|
+
//! Scheduling method to request that this reduction be performed as a
|
927
|
+
//! serial grid reduction. Note that it is an error to use this method on a
|
928
|
+
//! reduction whose output has any of its reduction axes parallelized with a
|
929
|
+
//! threadIdx, even if that parallelization occurs after this method call.
|
930
|
+
//!
|
931
|
+
//! Also note that this operation should not be inlined with other reductions
|
932
|
+
//! unless they use the same parallelization pattern and they are also serial
|
933
|
+
//! gridreductions.
|
934
|
+
void requestSerialGridReduction(bool value = true) {
|
935
|
+
attribute<bool>(3) = value;
|
936
|
+
}
|
937
|
+
|
938
|
+
bool serialGridReductionRequested() const {
|
939
|
+
return attribute<bool>(3);
|
940
|
+
}
|
941
|
+
};
|
942
|
+
|
943
|
+
//! Grouped reduction operation for horizontal fusions. It works like
|
944
|
+
//! batched GEMMs in the sense that multiple independent reductions are
|
945
|
+
//! performed together. The main benefit is when reducing tensors across thread
|
946
|
+
//! blocks, a single grid sync can be done for all individual
|
947
|
+
//! reductions. As grid sync is very expensive, this can be a
|
948
|
+
//! significant performance impact.
|
949
|
+
class GroupedReductionOp : public Expr {
|
950
|
+
public:
|
951
|
+
using Expr::Expr;
|
952
|
+
|
953
|
+
GroupedReductionOp(
|
954
|
+
IrBuilderPasskey,
|
955
|
+
std::vector<BinaryOpType> reduction_op_types,
|
956
|
+
std::vector<Val*> init,
|
957
|
+
std::vector<Val*> out,
|
958
|
+
std::vector<Val*> in,
|
959
|
+
bool is_allreduce = false);
|
960
|
+
|
961
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
962
|
+
|
963
|
+
const char* getOpString() const override {
|
964
|
+
return "GroupedReductionOp";
|
965
|
+
}
|
966
|
+
|
967
|
+
std::string toString(int indent_size = 0) const override;
|
968
|
+
std::string toInlineString(int indent_size = 0) const override;
|
969
|
+
std::vector<PolymorphicValue> evaluate(
|
970
|
+
const ExpressionEvaluator& ee,
|
971
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
972
|
+
|
973
|
+
//! Number of expressions grouped horizontally. It does not reflect
|
974
|
+
//! iteration grouping.
|
975
|
+
size_t numHorizontallyGroupedExprs() const {
|
976
|
+
return getReductionOpTypes().size();
|
977
|
+
}
|
978
|
+
|
979
|
+
std::vector<Val*> initVals() const {
|
980
|
+
auto size = numHorizontallyGroupedExprs();
|
981
|
+
std::vector<Val*> result;
|
982
|
+
result.reserve(size);
|
983
|
+
for (auto i : c10::irange(2, 2 + size)) {
|
984
|
+
result.emplace_back(attribute(i)->as<Val>());
|
985
|
+
}
|
986
|
+
return result;
|
987
|
+
}
|
988
|
+
|
989
|
+
Val* initVal(size_t index) const {
|
990
|
+
return attributeVal(2 + index);
|
991
|
+
}
|
992
|
+
|
993
|
+
const std::vector<BinaryOpType>& getReductionOpTypes() const {
|
994
|
+
return attribute<std::vector<BinaryOpType>>(0);
|
995
|
+
}
|
996
|
+
|
997
|
+
BinaryOpType getReductionOpType(size_t index) const {
|
998
|
+
return getReductionOpTypes().at(index);
|
999
|
+
}
|
1000
|
+
|
1001
|
+
bool isAllreduce() const {
|
1002
|
+
return attribute<bool>(1);
|
1003
|
+
}
|
1004
|
+
|
1005
|
+
//! Return the index of the corresponding reduction expression for
|
1006
|
+
//! a given output val.
|
1007
|
+
int getExprIndexOfOutput(Val* output_val) const;
|
1008
|
+
};
|
1009
|
+
|
1010
|
+
//! Average, variance and N (count) vals for Welford
|
1011
|
+
class WelfordTriplet {
|
1012
|
+
public:
|
1013
|
+
//! Names of the Welford triplet vals
|
1014
|
+
enum class ValName { Avg, Var, N };
|
1015
|
+
|
1016
|
+
WelfordTriplet() = default;
|
1017
|
+
|
1018
|
+
WelfordTriplet(Val* avg, Val* var, Val* N) : vals_({avg, var, N}) {}
|
1019
|
+
|
1020
|
+
Val* const& avg() const {
|
1021
|
+
return get(ValName::Avg);
|
1022
|
+
}
|
1023
|
+
|
1024
|
+
Val*& avg() {
|
1025
|
+
return get(ValName::Avg);
|
1026
|
+
}
|
1027
|
+
|
1028
|
+
TensorView* avgTv() const {
|
1029
|
+
NVF_ERROR(avg()->isA<TensorView>());
|
1030
|
+
return avg()->as<TensorView>();
|
1031
|
+
}
|
1032
|
+
|
1033
|
+
Val* const& var() const {
|
1034
|
+
return get(ValName::Var);
|
1035
|
+
}
|
1036
|
+
|
1037
|
+
Val*& var() {
|
1038
|
+
return get(ValName::Var);
|
1039
|
+
}
|
1040
|
+
|
1041
|
+
TensorView* varTv() const {
|
1042
|
+
NVF_ERROR(var()->isA<TensorView>());
|
1043
|
+
return var()->as<TensorView>();
|
1044
|
+
}
|
1045
|
+
|
1046
|
+
Val* const& N() const {
|
1047
|
+
return get(ValName::N);
|
1048
|
+
}
|
1049
|
+
|
1050
|
+
Val*& N() {
|
1051
|
+
return get(ValName::N);
|
1052
|
+
}
|
1053
|
+
|
1054
|
+
TensorView* NTv() const {
|
1055
|
+
NVF_ERROR(N()->isA<TensorView>());
|
1056
|
+
return N()->as<TensorView>();
|
1057
|
+
}
|
1058
|
+
|
1059
|
+
//! Get the i-th val. Ordering is defined by ValName.
|
1060
|
+
Val* const& get(int i) const {
|
1061
|
+
return vals_.at(i);
|
1062
|
+
}
|
1063
|
+
|
1064
|
+
//! Get the i-th val. Ordering is defined by ValName.
|
1065
|
+
Val*& get(int i) {
|
1066
|
+
return vals_.at(i);
|
1067
|
+
}
|
1068
|
+
|
1069
|
+
Val* const& get(ValName name) const {
|
1070
|
+
return get(valNameToIndex(name));
|
1071
|
+
}
|
1072
|
+
|
1073
|
+
Val*& get(ValName name) {
|
1074
|
+
return get(valNameToIndex(name));
|
1075
|
+
}
|
1076
|
+
|
1077
|
+
//! Get the name of a given val in this triplet. None is returned if
|
1078
|
+
//! not found.
|
1079
|
+
std::optional<ValName> getNameOf(Val* val) const;
|
1080
|
+
|
1081
|
+
//! Return a new triplet with outputs produced by a function applied
|
1082
|
+
//! to each of this triplet
|
1083
|
+
template <typename Func>
|
1084
|
+
WelfordTriplet transform(Func func) const {
|
1085
|
+
return WelfordTriplet(func(avg()), func(var()), func(N()));
|
1086
|
+
}
|
1087
|
+
|
1088
|
+
bool sameAs(const WelfordTriplet& other) const;
|
1089
|
+
|
1090
|
+
WelfordTriplet clone(IrCloner* ir_cloner) const;
|
1091
|
+
|
1092
|
+
//! Clone a vector of triplets
|
1093
|
+
static std::vector<WelfordTriplet> clone(
|
1094
|
+
const std::vector<WelfordTriplet>& src,
|
1095
|
+
IrCloner* ir_cloner);
|
1096
|
+
|
1097
|
+
auto begin() {
|
1098
|
+
return vals_.begin();
|
1099
|
+
}
|
1100
|
+
|
1101
|
+
auto begin() const {
|
1102
|
+
return vals_.begin();
|
1103
|
+
}
|
1104
|
+
|
1105
|
+
auto end() {
|
1106
|
+
return vals_.end();
|
1107
|
+
}
|
1108
|
+
|
1109
|
+
auto end() const {
|
1110
|
+
return vals_.end();
|
1111
|
+
}
|
1112
|
+
|
1113
|
+
private:
|
1114
|
+
//! Convert a given val name to an index
|
1115
|
+
static int valNameToIndex(ValName name) {
|
1116
|
+
return static_cast<int>(name);
|
1117
|
+
}
|
1118
|
+
|
1119
|
+
//! Convert a given index to a name
|
1120
|
+
static ValName indexToValName(int index) {
|
1121
|
+
NVF_ERROR(index >= 0 && index < 3, "Invalid index: ", index);
|
1122
|
+
return static_cast<ValName>(index);
|
1123
|
+
}
|
1124
|
+
|
1125
|
+
private:
|
1126
|
+
//! Holds avg, var and N in this order
|
1127
|
+
std::array<Val*, 3> vals_ = {{nullptr, nullptr, nullptr}};
|
1128
|
+
};
|
1129
|
+
|
1130
|
+
//! Welford Scan operation.
|
1131
|
+
class NVF_API WelfordOp : public Expr {
|
1132
|
+
public:
|
1133
|
+
using Expr::Expr;
|
1134
|
+
static constexpr int kNumAttrs = 4;
|
1135
|
+
|
1136
|
+
WelfordOp(
|
1137
|
+
IrBuilderPasskey,
|
1138
|
+
const WelfordTriplet& output,
|
1139
|
+
const WelfordTriplet& input,
|
1140
|
+
const WelfordTriplet& init,
|
1141
|
+
bool is_fused = false);
|
1142
|
+
|
1143
|
+
WelfordOp(
|
1144
|
+
IrBuilderPasskey,
|
1145
|
+
Val* out_avg,
|
1146
|
+
Val* out_var,
|
1147
|
+
Val* out_N,
|
1148
|
+
Val* in_avg,
|
1149
|
+
Val* in_var,
|
1150
|
+
Val* in_N,
|
1151
|
+
Val* init_avg,
|
1152
|
+
Val* init_var,
|
1153
|
+
Val* init_N,
|
1154
|
+
bool is_fused = false);
|
1155
|
+
|
1156
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1157
|
+
|
1158
|
+
const char* getOpString() const override {
|
1159
|
+
return "WelfordOp";
|
1160
|
+
}
|
1161
|
+
|
1162
|
+
std::string toString(int indent_size = 0) const override;
|
1163
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1164
|
+
std::vector<PolymorphicValue> evaluate(
|
1165
|
+
const ExpressionEvaluator& ee,
|
1166
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
1167
|
+
|
1168
|
+
Val* out() const {
|
1169
|
+
return outputTriplet().avg();
|
1170
|
+
}
|
1171
|
+
|
1172
|
+
Val* in() const {
|
1173
|
+
return inputTriplet().avg();
|
1174
|
+
}
|
1175
|
+
|
1176
|
+
WelfordTriplet outputTriplet() const {
|
1177
|
+
return WelfordTriplet(outAvg(), outVar(), outN());
|
1178
|
+
}
|
1179
|
+
|
1180
|
+
Val* outAvg() const {
|
1181
|
+
return output(0);
|
1182
|
+
}
|
1183
|
+
|
1184
|
+
Val* outVar() const {
|
1185
|
+
return output(1);
|
1186
|
+
}
|
1187
|
+
|
1188
|
+
Val* outN() const {
|
1189
|
+
return output(2);
|
1190
|
+
}
|
1191
|
+
|
1192
|
+
WelfordTriplet inputTriplet() const {
|
1193
|
+
return WelfordTriplet(inAvg(), inVar(), inN());
|
1194
|
+
}
|
1195
|
+
|
1196
|
+
Val* inAvg() const {
|
1197
|
+
return input(0);
|
1198
|
+
}
|
1199
|
+
|
1200
|
+
Val* inVar() const {
|
1201
|
+
return input(1);
|
1202
|
+
}
|
1203
|
+
|
1204
|
+
Val* inN() const {
|
1205
|
+
return input(2);
|
1206
|
+
}
|
1207
|
+
|
1208
|
+
WelfordTriplet initTriplet() const {
|
1209
|
+
return WelfordTriplet(initAvg(), initVar(), initN());
|
1210
|
+
}
|
1211
|
+
|
1212
|
+
Val* initAvg() const {
|
1213
|
+
return attributeVal(0);
|
1214
|
+
}
|
1215
|
+
|
1216
|
+
Val* initVar() const {
|
1217
|
+
return attributeVal(1);
|
1218
|
+
}
|
1219
|
+
|
1220
|
+
Val* initN() const {
|
1221
|
+
return attributeVal(2);
|
1222
|
+
}
|
1223
|
+
|
1224
|
+
bool singleValue() const {
|
1225
|
+
return inN()->isOneInt();
|
1226
|
+
}
|
1227
|
+
|
1228
|
+
bool hasInit() const {
|
1229
|
+
return !initN()->isZeroInt();
|
1230
|
+
}
|
1231
|
+
|
1232
|
+
//! True if using the fused reduction kernel (not implemented yet)
|
1233
|
+
bool isAllreduce() const {
|
1234
|
+
return attribute<bool>(3);
|
1235
|
+
}
|
1236
|
+
|
1237
|
+
std::vector<Val*> getInitVals() const;
|
1238
|
+
|
1239
|
+
//! Return the init val for an output val
|
1240
|
+
Val* getInitValOfOutput(Val* output_val) const;
|
1241
|
+
};
|
1242
|
+
|
1243
|
+
class GroupedWelfordOp : public Expr {
|
1244
|
+
public:
|
1245
|
+
using Expr::Expr;
|
1246
|
+
|
1247
|
+
GroupedWelfordOp(
|
1248
|
+
IrBuilderPasskey,
|
1249
|
+
std::vector<WelfordTriplet> output_vals,
|
1250
|
+
std::vector<WelfordTriplet> input_vals,
|
1251
|
+
std::vector<WelfordTriplet> init_vals,
|
1252
|
+
bool is_allreduce = false);
|
1253
|
+
|
1254
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1255
|
+
|
1256
|
+
const char* getOpString() const override {
|
1257
|
+
return "GroupedWelfordOp";
|
1258
|
+
}
|
1259
|
+
|
1260
|
+
std::string toString(int indent_size = 0) const override;
|
1261
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1262
|
+
|
1263
|
+
//! Number of expressions grouped horizontally. It does not reflect
|
1264
|
+
//! iteration grouping. As horizontal grouping is not supported,
|
1265
|
+
//! this always returns 1.
|
1266
|
+
size_t numHorizontallyGroupedExprs() const {
|
1267
|
+
return 1;
|
1268
|
+
}
|
1269
|
+
|
1270
|
+
Val* out(size_t index) const {
|
1271
|
+
return outAvg(index);
|
1272
|
+
}
|
1273
|
+
|
1274
|
+
Val* in(size_t index) const {
|
1275
|
+
return inAvg(index);
|
1276
|
+
}
|
1277
|
+
|
1278
|
+
std::vector<WelfordTriplet> outputVals() const {
|
1279
|
+
std::vector<WelfordTriplet> result;
|
1280
|
+
auto size = outputs().size() / 3;
|
1281
|
+
result.reserve(size);
|
1282
|
+
for (auto i : c10::irange(size)) {
|
1283
|
+
result.emplace_back(outAvg(i), outVar(i), outN(i));
|
1284
|
+
}
|
1285
|
+
return result;
|
1286
|
+
}
|
1287
|
+
|
1288
|
+
std::vector<WelfordTriplet> inputVals() const {
|
1289
|
+
std::vector<WelfordTriplet> result;
|
1290
|
+
auto size = inputs().size() / 3;
|
1291
|
+
result.reserve(size);
|
1292
|
+
for (auto i : c10::irange(size)) {
|
1293
|
+
result.emplace_back(inAvg(i), inVar(i), inN(i));
|
1294
|
+
}
|
1295
|
+
return result;
|
1296
|
+
}
|
1297
|
+
|
1298
|
+
std::vector<WelfordTriplet> initVals() const {
|
1299
|
+
std::vector<WelfordTriplet> result;
|
1300
|
+
auto size = inputs().size() / 3;
|
1301
|
+
result.reserve(size);
|
1302
|
+
for (auto i : c10::irange(size)) {
|
1303
|
+
result.emplace_back(initAvg(i), initVar(i), initN(i));
|
1304
|
+
}
|
1305
|
+
return result;
|
1306
|
+
}
|
1307
|
+
|
1308
|
+
Val* outAvg(size_t index) const {
|
1309
|
+
return output(index * 3);
|
1310
|
+
}
|
1311
|
+
|
1312
|
+
Val* outVar(size_t index) const {
|
1313
|
+
return output(index * 3 + 1);
|
1314
|
+
}
|
1315
|
+
|
1316
|
+
Val* outN(size_t index) const {
|
1317
|
+
return output(index * 3 + 2);
|
1318
|
+
}
|
1319
|
+
|
1320
|
+
Val* inAvg(size_t index) const {
|
1321
|
+
return input(index * 3);
|
1322
|
+
}
|
1323
|
+
|
1324
|
+
Val* inVar(size_t index) const {
|
1325
|
+
return input(index * 3 + 1);
|
1326
|
+
}
|
1327
|
+
|
1328
|
+
Val* inN(size_t index) const {
|
1329
|
+
return input(index * 3 + 2);
|
1330
|
+
}
|
1331
|
+
|
1332
|
+
Val* initAvg(size_t index) const {
|
1333
|
+
return attributeVal(1 + index * 3);
|
1334
|
+
}
|
1335
|
+
|
1336
|
+
Val* initVar(size_t index) const {
|
1337
|
+
return attributeVal(2 + index * 3);
|
1338
|
+
}
|
1339
|
+
|
1340
|
+
Val* initN(size_t index) const {
|
1341
|
+
return attributeVal(3 + index * 3);
|
1342
|
+
}
|
1343
|
+
|
1344
|
+
//! Return the index of the corresponding welford expression for
|
1345
|
+
//! a given output val
|
1346
|
+
int getExprIndexOfOutput(Val* output_val) const;
|
1347
|
+
|
1348
|
+
//! Return the init val for an output val
|
1349
|
+
Val* getInitValOfOutput(Val* output_val) const;
|
1350
|
+
|
1351
|
+
bool singleValue(size_t index) const {
|
1352
|
+
return inN(index)->isOneInt();
|
1353
|
+
}
|
1354
|
+
|
1355
|
+
bool hasInit(size_t index) const {
|
1356
|
+
return !initN(index)->isZeroInt();
|
1357
|
+
}
|
1358
|
+
|
1359
|
+
bool isAllreduce() const {
|
1360
|
+
return attribute<bool>(0);
|
1361
|
+
}
|
1362
|
+
};
|
1363
|
+
|
1364
|
+
//! Fused Matmul operation
|
1365
|
+
class NVF_API MmaOp : public Expr {
|
1366
|
+
public:
|
1367
|
+
using AxesData = std::vector<int64_t>;
|
1368
|
+
// AxisMapping denotes the pairing of two input dimensions to produce an
|
1369
|
+
// output dimension. It holds two vectors of integers indicating the
|
1370
|
+
// corresponding position of each output axis in either the A or B input.
|
1371
|
+
// Positions refer to the noReductions logical domain of each input.
|
1372
|
+
// NOTE: Axis positions are absolute, meaning you cannot specify them
|
1373
|
+
// relative to the last dimension since -1 has special meaning.
|
1374
|
+
// NOTE: -1 indicates that the axis does not exist, so Broadcast input
|
1375
|
+
// domains should be listed with their actual position and not -1.
|
1376
|
+
//
|
1377
|
+
// Example 1:
|
1378
|
+
// a [ K, 1, M ]
|
1379
|
+
// b [ 1, N, K ]
|
1380
|
+
// out [ M, N, rK ]
|
1381
|
+
// axisMapping:
|
1382
|
+
// a_axes = [ 2, 1, 0 ]
|
1383
|
+
// b_axes = [ 0, 1, 2 ]
|
1384
|
+
// This results in the following groups of mapped axes:
|
1385
|
+
// { tv_a->axis(2), tv_b->axis(0), out->axis(0) }
|
1386
|
+
// { tv_a->axis(1), tv_b->axis(1), out->axis(1) }
|
1387
|
+
// { tv_a->axis(0), tv_b->axis(2), out->axis(2) }
|
1388
|
+
//
|
1389
|
+
// Example 1:
|
1390
|
+
// a [ K, M ]
|
1391
|
+
// b [ 1, N, K ]
|
1392
|
+
// out [ M, N, rK ]
|
1393
|
+
// axisMapping:
|
1394
|
+
// a_axes = [ 1, -1, 0 ]
|
1395
|
+
// b_axes = [ 0, 1, 2 ]
|
1396
|
+
// This results in the following groups of mapped axes:
|
1397
|
+
// { tv_a->axis(1), tv_b->axis(0), out->axis(0) }
|
1398
|
+
// { tv_b->axis(1), out->axis(1) }
|
1399
|
+
// { tv_a->axis(0), tv_b->axis(2), out->axis(2) }
|
1400
|
+
struct AxisMapping {
|
1401
|
+
AxesData a_axes;
|
1402
|
+
AxesData b_axes;
|
1403
|
+
|
1404
|
+
static AxisMapping trivialMapping(size_t dimension);
|
1405
|
+
};
|
1406
|
+
using Expr::Expr;
|
1407
|
+
|
1408
|
+
MmaOp(
|
1409
|
+
IrBuilderPasskey,
|
1410
|
+
Val* out,
|
1411
|
+
Val* in_a,
|
1412
|
+
Val* in_b,
|
1413
|
+
Val* init,
|
1414
|
+
const AxisMapping& axis_mapping);
|
1415
|
+
|
1416
|
+
MmaOp(
|
1417
|
+
IrBuilderPasskey,
|
1418
|
+
Val* out,
|
1419
|
+
Val* in_a,
|
1420
|
+
Val* in_b,
|
1421
|
+
Val* init,
|
1422
|
+
const AxisMapping& axis_mapping,
|
1423
|
+
const MmaMacro& options);
|
1424
|
+
|
1425
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1426
|
+
|
1427
|
+
const char* getOpString() const override {
|
1428
|
+
return "MmaOp";
|
1429
|
+
}
|
1430
|
+
|
1431
|
+
std::string toString(int indent_size = 0) const override;
|
1432
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1433
|
+
|
1434
|
+
Val* out() const {
|
1435
|
+
return output(0);
|
1436
|
+
}
|
1437
|
+
|
1438
|
+
Val* inA() const {
|
1439
|
+
return input(0);
|
1440
|
+
}
|
1441
|
+
|
1442
|
+
Val* inB() const {
|
1443
|
+
return input(1);
|
1444
|
+
}
|
1445
|
+
|
1446
|
+
Val* init() const {
|
1447
|
+
return attributeVal(0);
|
1448
|
+
}
|
1449
|
+
|
1450
|
+
const auto& macro() const {
|
1451
|
+
return attribute<MmaMacro>(ATTR_POS_MACRO);
|
1452
|
+
}
|
1453
|
+
|
1454
|
+
int64_t m() const {
|
1455
|
+
return getM(macro());
|
1456
|
+
}
|
1457
|
+
|
1458
|
+
int64_t n() const {
|
1459
|
+
return getN(macro());
|
1460
|
+
}
|
1461
|
+
|
1462
|
+
int64_t k() const {
|
1463
|
+
return getK(macro());
|
1464
|
+
}
|
1465
|
+
|
1466
|
+
bool isTuring() const {
|
1467
|
+
return nvfuser::isTuring(macro());
|
1468
|
+
}
|
1469
|
+
|
1470
|
+
bool isAmpere() const {
|
1471
|
+
return nvfuser::isAmpere(macro());
|
1472
|
+
}
|
1473
|
+
|
1474
|
+
bool isHopper() const {
|
1475
|
+
return nvfuser::isHopper(macro());
|
1476
|
+
}
|
1477
|
+
|
1478
|
+
void setMacro(MmaMacro options);
|
1479
|
+
|
1480
|
+
const AxisMapping& axisMapping() const {
|
1481
|
+
return attribute<AxisMapping>(ATTR_POS_AXIS_MAPPING);
|
1482
|
+
}
|
1483
|
+
|
1484
|
+
private:
|
1485
|
+
// Predefined indices of attributes stored for this IR node, to avoid
|
1486
|
+
// magic numbers, based on order in which attributes are initialized
|
1487
|
+
// in constructor
|
1488
|
+
static constexpr size_t ATTR_POS_INIT = 0;
|
1489
|
+
static constexpr size_t ATTR_POS_MACRO = 1;
|
1490
|
+
static constexpr size_t ATTR_POS_AXIS_MAPPING = 2;
|
1491
|
+
};
|
1492
|
+
|
1493
|
+
//! The semantics are identical to torch.broadcast_to.
|
1494
|
+
class ExpandOp : public Expr {
|
1495
|
+
public:
|
1496
|
+
using Expr::Expr;
|
1497
|
+
|
1498
|
+
ExpandOp(
|
1499
|
+
IrBuilderPasskey,
|
1500
|
+
TensorView* out,
|
1501
|
+
TensorView* in,
|
1502
|
+
std::vector<Val*> _expanded_extents);
|
1503
|
+
|
1504
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1505
|
+
|
1506
|
+
const char* getOpString() const override {
|
1507
|
+
return "ExpandOp";
|
1508
|
+
}
|
1509
|
+
|
1510
|
+
std::string toString(int indent_size = 0) const override;
|
1511
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1512
|
+
|
1513
|
+
TensorView* out() const {
|
1514
|
+
return output(0)->as<TensorView>();
|
1515
|
+
}
|
1516
|
+
|
1517
|
+
TensorView* in() const {
|
1518
|
+
return input(0)->as<TensorView>();
|
1519
|
+
}
|
1520
|
+
|
1521
|
+
std::vector<Val*> expanded_extents() const {
|
1522
|
+
return {inputs().begin() + 1, inputs().end()};
|
1523
|
+
}
|
1524
|
+
|
1525
|
+
std::vector<PolymorphicValue> evaluate(
|
1526
|
+
const ExpressionEvaluator& ee,
|
1527
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
1528
|
+
};
|
1529
|
+
|
1530
|
+
// Represents a repetition of broadcast IDs. Repetitions of
|
1531
|
+
// non-broadcast IDs are represented using the broadcast, expand and
|
1532
|
+
// reshape pattern. See the repeat op implementation in ops/alias.cpp
|
1533
|
+
// as well as the TranslateRepeatToExpand preseg pass.
|
1534
|
+
class RepeatOp : public Expr {
|
1535
|
+
public:
|
1536
|
+
using Expr::Expr;
|
1537
|
+
|
1538
|
+
// in: Input tensor that have broadcast logical IDs.
|
1539
|
+
// out: Output tensor where some of the input broadcast logical IDs
|
1540
|
+
// are converted to concrete IDs. Their extents represent the
|
1541
|
+
// repetition factor of each ID.
|
1542
|
+
RepeatOp(IrBuilderPasskey, TensorView* out, TensorView* in);
|
1543
|
+
|
1544
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1545
|
+
|
1546
|
+
const char* getOpString() const override {
|
1547
|
+
return "RepeatOp";
|
1548
|
+
}
|
1549
|
+
|
1550
|
+
std::string toString(int indent_size = 0) const override;
|
1551
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1552
|
+
|
1553
|
+
TensorView* out() const {
|
1554
|
+
return output(0)->as<TensorView>();
|
1555
|
+
}
|
1556
|
+
|
1557
|
+
TensorView* in() const {
|
1558
|
+
return input(0)->as<TensorView>();
|
1559
|
+
}
|
1560
|
+
|
1561
|
+
std::vector<PolymorphicValue> evaluate(
|
1562
|
+
const ExpressionEvaluator& ee,
|
1563
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
1564
|
+
};
|
1565
|
+
|
1566
|
+
class ViewAsScalar : public Expr {
|
1567
|
+
public:
|
1568
|
+
using Expr::Expr;
|
1569
|
+
|
1570
|
+
ViewAsScalar(IrBuilderPasskey, Val* out, Val* in, IterDomain* vector_id);
|
1571
|
+
|
1572
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1573
|
+
|
1574
|
+
const char* getOpString() const override {
|
1575
|
+
return "ViewAsScalar";
|
1576
|
+
}
|
1577
|
+
|
1578
|
+
std::string toString(int indent_size = 0) const override;
|
1579
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1580
|
+
std::vector<PolymorphicValue> evaluate(
|
1581
|
+
const ExpressionEvaluator& ee,
|
1582
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
1583
|
+
|
1584
|
+
Val* out() const {
|
1585
|
+
return output(0);
|
1586
|
+
}
|
1587
|
+
|
1588
|
+
Val* in() const {
|
1589
|
+
return input(0);
|
1590
|
+
}
|
1591
|
+
|
1592
|
+
// The IterDomain of type VectorComponent newly appended to the output
|
1593
|
+
IterDomain* vector_id() const {
|
1594
|
+
return attribute(0)->as<IterDomain>();
|
1595
|
+
}
|
1596
|
+
};
|
1597
|
+
|
1598
|
+
class NVF_API ViewOp : public Expr {
|
1599
|
+
public:
|
1600
|
+
using Expr::Expr;
|
1601
|
+
|
1602
|
+
ViewOp(IrBuilderPasskey, Val* out, Val* in);
|
1603
|
+
|
1604
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1605
|
+
|
1606
|
+
const char* getOpString() const override {
|
1607
|
+
return "ViewOp";
|
1608
|
+
}
|
1609
|
+
|
1610
|
+
std::string toString(int indent_size = 0) const override;
|
1611
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1612
|
+
|
1613
|
+
TensorView* out() const {
|
1614
|
+
return output(0)->as<TensorView>();
|
1615
|
+
}
|
1616
|
+
|
1617
|
+
TensorView* in() const {
|
1618
|
+
return input(0)->as<TensorView>();
|
1619
|
+
}
|
1620
|
+
|
1621
|
+
std::vector<PolymorphicValue> evaluate(
|
1622
|
+
const ExpressionEvaluator& ee,
|
1623
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
1624
|
+
};
|
1625
|
+
|
1626
|
+
//! This operator explicitly models data movement between
|
1627
|
+
//! state spaces on GPU. Currently the modeled state spaces include
|
1628
|
+
//! global memory, shared memory and register.
|
1629
|
+
//!
|
1630
|
+
//! The main usage of this op is to facilitate generation of hardware
|
1631
|
+
//! accelerated memory ops, i.e. ldmatrix, cp.async and more to come.
|
1632
|
+
class NVF_API LoadStoreOp : public Expr {
|
1633
|
+
public:
|
1634
|
+
using Expr::Expr;
|
1635
|
+
|
1636
|
+
LoadStoreOp(
|
1637
|
+
IrBuilderPasskey,
|
1638
|
+
LoadStoreOpType op_type,
|
1639
|
+
Val* out,
|
1640
|
+
Val* in,
|
1641
|
+
CacheOp cache_op = CacheOp::Unspecified);
|
1642
|
+
|
1643
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1644
|
+
|
1645
|
+
const char* getOpString() const override {
|
1646
|
+
return "LoadStoreOp";
|
1647
|
+
}
|
1648
|
+
|
1649
|
+
std::vector<PolymorphicValue> evaluate(
|
1650
|
+
const ExpressionEvaluator& ee,
|
1651
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
1652
|
+
|
1653
|
+
std::string toString(int indent_size = 0) const override;
|
1654
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1655
|
+
|
1656
|
+
Val* out() const {
|
1657
|
+
return output(0);
|
1658
|
+
}
|
1659
|
+
|
1660
|
+
Val* in() const {
|
1661
|
+
return input(0);
|
1662
|
+
}
|
1663
|
+
|
1664
|
+
LoadStoreOpType opType() const {
|
1665
|
+
return attribute<LoadStoreOpType>(0);
|
1666
|
+
}
|
1667
|
+
|
1668
|
+
CacheOp cacheOp() const {
|
1669
|
+
return attribute<CacheOp>(1);
|
1670
|
+
}
|
1671
|
+
|
1672
|
+
void setOpType(LoadStoreOpType op) {
|
1673
|
+
attribute<LoadStoreOpType>(0) = op;
|
1674
|
+
if (op != LoadStoreOpType::Set && op != LoadStoreOpType::CpAsync) {
|
1675
|
+
attribute<CacheOp>(1) = CacheOp::Unspecified;
|
1676
|
+
}
|
1677
|
+
}
|
1678
|
+
|
1679
|
+
void setCacheOp(CacheOp cache_op) {
|
1680
|
+
attribute<CacheOp>(1) = cache_op;
|
1681
|
+
}
|
1682
|
+
};
|
1683
|
+
|
1684
|
+
//! Representation a split on an IterDomain by "factor"
|
1685
|
+
//! inner_split dictates if the factor section of the split should be inside the
|
1686
|
+
//! remainer or outside.
|
1687
|
+
class NVF_API Split : public Expr {
|
1688
|
+
public:
|
1689
|
+
using Expr::Expr;
|
1690
|
+
|
1691
|
+
Split(
|
1692
|
+
IrBuilderPasskey,
|
1693
|
+
IterDomain* outer,
|
1694
|
+
IterDomain* inner,
|
1695
|
+
IterDomain* in,
|
1696
|
+
Val* factor,
|
1697
|
+
bool inner_split = true);
|
1698
|
+
|
1699
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1700
|
+
|
1701
|
+
const char* getOpString() const override {
|
1702
|
+
return "Split";
|
1703
|
+
}
|
1704
|
+
|
1705
|
+
std::string toString(int indent_size = 0) const override;
|
1706
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1707
|
+
|
1708
|
+
IterDomain* outer() const {
|
1709
|
+
return output(0)->as<IterDomain>();
|
1710
|
+
}
|
1711
|
+
IterDomain* inner() const {
|
1712
|
+
return output(1)->as<IterDomain>();
|
1713
|
+
}
|
1714
|
+
IterDomain* in() const {
|
1715
|
+
return input(0)->as<IterDomain>();
|
1716
|
+
}
|
1717
|
+
Val* factor() const {
|
1718
|
+
return attributeVal(0);
|
1719
|
+
}
|
1720
|
+
Val* isDivisible() const;
|
1721
|
+
|
1722
|
+
bool innerSplit() const {
|
1723
|
+
return attribute<bool>(1);
|
1724
|
+
}
|
1725
|
+
};
|
1726
|
+
|
1727
|
+
//! Merge the IterDomains outer and inner into one domain, outer and inner
|
1728
|
+
//! dictate which will be traversed first (inner). Both IterDomains must be of
|
1729
|
+
//! the same iter or reduction type, as well as the same parallelization
|
1730
|
+
//! strategy if there is one
|
1731
|
+
class NVF_API Merge : public Expr {
|
1732
|
+
public:
|
1733
|
+
using Expr::Expr;
|
1734
|
+
|
1735
|
+
Merge(
|
1736
|
+
IrBuilderPasskey,
|
1737
|
+
IterDomain* out,
|
1738
|
+
IterDomain* outer,
|
1739
|
+
IterDomain* inner);
|
1740
|
+
|
1741
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1742
|
+
|
1743
|
+
const char* getOpString() const override {
|
1744
|
+
return "Merge";
|
1745
|
+
}
|
1746
|
+
|
1747
|
+
std::string toString(int indent_size = 0) const override;
|
1748
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1749
|
+
|
1750
|
+
IterDomain* out() const {
|
1751
|
+
return output(0)->as<IterDomain>();
|
1752
|
+
}
|
1753
|
+
IterDomain* outer() const {
|
1754
|
+
return input(0)->as<IterDomain>();
|
1755
|
+
}
|
1756
|
+
IterDomain* inner() const {
|
1757
|
+
return input(1)->as<IterDomain>();
|
1758
|
+
}
|
1759
|
+
};
|
1760
|
+
|
1761
|
+
class Swizzle : public Expr {
|
1762
|
+
public:
|
1763
|
+
using Expr::Expr;
|
1764
|
+
|
1765
|
+
Swizzle(
|
1766
|
+
IrBuilderPasskey,
|
1767
|
+
IterDomain* out_x,
|
1768
|
+
IterDomain* out_y,
|
1769
|
+
IterDomain* in_x,
|
1770
|
+
IterDomain* in_y,
|
1771
|
+
SwizzleType swizzle_type = SwizzleType::NoSwizzle);
|
1772
|
+
|
1773
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1774
|
+
|
1775
|
+
const char* getOpString() const override {
|
1776
|
+
return "Swizzle";
|
1777
|
+
}
|
1778
|
+
|
1779
|
+
std::string toString(int indent_size = 0) const override;
|
1780
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1781
|
+
|
1782
|
+
// Output iterdomain pair corresponding
|
1783
|
+
// to the original input iterdomain pair.
|
1784
|
+
IterDomain* outX() const {
|
1785
|
+
return output(0)->as<IterDomain>();
|
1786
|
+
}
|
1787
|
+
|
1788
|
+
IterDomain* outY() const {
|
1789
|
+
return output(1)->as<IterDomain>();
|
1790
|
+
}
|
1791
|
+
|
1792
|
+
// Input iterdomain pair.
|
1793
|
+
IterDomain* inX() const {
|
1794
|
+
return input(0)->as<IterDomain>();
|
1795
|
+
}
|
1796
|
+
|
1797
|
+
IterDomain* inY() const {
|
1798
|
+
return input(1)->as<IterDomain>();
|
1799
|
+
}
|
1800
|
+
|
1801
|
+
// The type of predefined 1-to-1 functions
|
1802
|
+
// used for swizzling math.
|
1803
|
+
auto swizzleType() const {
|
1804
|
+
return attribute<SwizzleType>(0);
|
1805
|
+
}
|
1806
|
+
};
|
1807
|
+
|
1808
|
+
//! Applies 2D swizzles on a rectangular tile defined by 2 iterdomains.
|
1809
|
+
class NVF_API Swizzle2D : public Expr {
|
1810
|
+
public:
|
1811
|
+
using Expr::Expr;
|
1812
|
+
|
1813
|
+
Swizzle2D(
|
1814
|
+
IrBuilderPasskey,
|
1815
|
+
IterDomain* out_x,
|
1816
|
+
IterDomain* out_y,
|
1817
|
+
IterDomain* in_x,
|
1818
|
+
IterDomain* in_y,
|
1819
|
+
Swizzle2DType swizzle_type = Swizzle2DType::NoSwizzle,
|
1820
|
+
SwizzleMode swizzle_mode = SwizzleMode::Data);
|
1821
|
+
|
1822
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1823
|
+
|
1824
|
+
const char* getOpString() const override {
|
1825
|
+
return "Swizzle2D";
|
1826
|
+
}
|
1827
|
+
|
1828
|
+
std::string toString(int indent_size = 0) const override;
|
1829
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1830
|
+
|
1831
|
+
// Output iterdomain pair corresponding
|
1832
|
+
// to the original input iterdomain pair.
|
1833
|
+
IterDomain* outX() const {
|
1834
|
+
return output(0)->as<IterDomain>();
|
1835
|
+
}
|
1836
|
+
|
1837
|
+
IterDomain* outY() const {
|
1838
|
+
return output(1)->as<IterDomain>();
|
1839
|
+
}
|
1840
|
+
|
1841
|
+
// Input iterdomain pair.
|
1842
|
+
IterDomain* inX() const {
|
1843
|
+
return input(0)->as<IterDomain>();
|
1844
|
+
}
|
1845
|
+
|
1846
|
+
IterDomain* inY() const {
|
1847
|
+
return input(1)->as<IterDomain>();
|
1848
|
+
}
|
1849
|
+
|
1850
|
+
// The type of predefined 1-to-1 functions
|
1851
|
+
// used for swizzling math.
|
1852
|
+
auto swizzleType() const {
|
1853
|
+
return attribute<Swizzle2DType>(0);
|
1854
|
+
}
|
1855
|
+
|
1856
|
+
// Swizzle mode of this swizzle instance.
|
1857
|
+
// [Note on swizzle mode]
|
1858
|
+
// On the current implementations we support two modes of
|
1859
|
+
// swizzle math, namely, data mode and loop mode.
|
1860
|
+
// `Data` mode swizzling is a swizzle that will change the
|
1861
|
+
// data layout in shared memory, likely in global memory buffers
|
1862
|
+
// as well in the future. see also IndexSwizzle in index_compute.cpp.
|
1863
|
+
//
|
1864
|
+
// Most important use cases are transpose bank conflict removal, and mma
|
1865
|
+
// swizzled shared memory layout. Example illustrated in 1D case:
|
1866
|
+
//
|
1867
|
+
// for (int i = 0; i<I; i++){
|
1868
|
+
// # This is a `Data` mode swizzle.
|
1869
|
+
// Tshared [swizzled(i)] = Tin[i];
|
1870
|
+
// }
|
1871
|
+
// # Now Tshared holds swizzled data, i.e. the data layout of
|
1872
|
+
// Tshared does not map to Tin with affine relationships.
|
1873
|
+
//
|
1874
|
+
// for(int i=0;i<I;i++){
|
1875
|
+
// Tout = Tshared[swizzled(i)];
|
1876
|
+
// }
|
1877
|
+
//
|
1878
|
+
// `Loop` mode swizzling does not affect the data layout of any buffer
|
1879
|
+
// but only permutes the iteration order of serial or parallel loop.
|
1880
|
+
// This is useful when we want to designate non-affine mapping of thread
|
1881
|
+
// to data or we want to generate non-affine loops.
|
1882
|
+
// Exampe illustrated in 1D case:
|
1883
|
+
// for (int i = 0; i<I; i++){
|
1884
|
+
// # This is a `Loop` mode swizzle
|
1885
|
+
// Tshared [swizzled(i)] = Tin[swizzled(i)];
|
1886
|
+
// }
|
1887
|
+
// # Now Tshared holds normal data, i.e. it still has
|
1888
|
+
// the same data layout as if the swizzle wasn't there.
|
1889
|
+
//
|
1890
|
+
// # Consumers of Tshared does not need to know about the
|
1891
|
+
// loop swizzle at previous op if not inlined.
|
1892
|
+
// for(int i=0;i<I;i++){
|
1893
|
+
// Tout = Tshared[i];
|
1894
|
+
// }
|
1895
|
+
// TODO: Loop swizzles eventually will be piped through in all mappings
|
1896
|
+
// and replay of the fusion IR infrastructure.
|
1897
|
+
auto swizzleMode() const {
|
1898
|
+
return attribute<SwizzleMode>(1);
|
1899
|
+
}
|
1900
|
+
};
|
1901
|
+
|
1902
|
+
//! IterDomain expression to resize
|
1903
|
+
class NVF_API Resize : public Expr {
|
1904
|
+
public:
|
1905
|
+
using Expr::Expr;
|
1906
|
+
|
1907
|
+
// Expand the input domain by left_expand and right_expand for each
|
1908
|
+
// of the start and end sides, respectively
|
1909
|
+
Resize(
|
1910
|
+
IrBuilderPasskey,
|
1911
|
+
IterDomain* out,
|
1912
|
+
IterDomain* in,
|
1913
|
+
Val* left_expand,
|
1914
|
+
Val* right_expand);
|
1915
|
+
|
1916
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
1917
|
+
|
1918
|
+
const char* getOpString() const override {
|
1919
|
+
return "Resize";
|
1920
|
+
}
|
1921
|
+
|
1922
|
+
std::string toString(int indent_size = 0) const override;
|
1923
|
+
std::string toInlineString(int indent_size = 0) const override;
|
1924
|
+
|
1925
|
+
IterDomain* out() const {
|
1926
|
+
return output(0)->as<IterDomain>();
|
1927
|
+
}
|
1928
|
+
|
1929
|
+
IterDomain* in() const {
|
1930
|
+
return input(0)->as<IterDomain>();
|
1931
|
+
}
|
1932
|
+
|
1933
|
+
Val* leftExpand() const {
|
1934
|
+
return attributeVal(0);
|
1935
|
+
}
|
1936
|
+
|
1937
|
+
Val* rightExpand() const {
|
1938
|
+
return attributeVal(1);
|
1939
|
+
}
|
1940
|
+
};
|
1941
|
+
|
1942
|
+
//! Integer value which has a special name
|
1943
|
+
//!
|
1944
|
+
//! These could be:
|
1945
|
+
//! - threadIdx.x
|
1946
|
+
//! - blockIdx.y
|
1947
|
+
//! - blockDim.z
|
1948
|
+
//! - T3.stride[2]
|
1949
|
+
//!
|
1950
|
+
class NVF_API NamedScalar : public Val {
|
1951
|
+
public:
|
1952
|
+
NamedScalar(IrBuilderPasskey passkey, std::string name, DataType dtype);
|
1953
|
+
|
1954
|
+
NamedScalar(const NamedScalar* src, IrCloner* ir_cloner);
|
1955
|
+
|
1956
|
+
NVFUSER_DECLARE_CLONE
|
1957
|
+
|
1958
|
+
const std::string& name() const {
|
1959
|
+
return name_;
|
1960
|
+
}
|
1961
|
+
|
1962
|
+
bool sameAs(const Statement* other) const override;
|
1963
|
+
|
1964
|
+
std::string toString(int indent_size = 0) const override {
|
1965
|
+
return name_;
|
1966
|
+
}
|
1967
|
+
|
1968
|
+
std::string toInlineString(int indent_size = 0) const override {
|
1969
|
+
return name_;
|
1970
|
+
}
|
1971
|
+
|
1972
|
+
//! Check if this is threadIdx.{x,y,z}
|
1973
|
+
bool isThreadIdx() const {
|
1974
|
+
auto p = getParallelIndex();
|
1975
|
+
return (
|
1976
|
+
p == ParallelType::TIDx || p == ParallelType::TIDy ||
|
1977
|
+
p == ParallelType::TIDz);
|
1978
|
+
}
|
1979
|
+
|
1980
|
+
//! Check if this is blockIdx.{x,y,z}
|
1981
|
+
bool isBlockIdx() const {
|
1982
|
+
auto p = getParallelIndex();
|
1983
|
+
return (
|
1984
|
+
p == ParallelType::BIDx || p == ParallelType::BIDy ||
|
1985
|
+
p == ParallelType::BIDz);
|
1986
|
+
}
|
1987
|
+
|
1988
|
+
//! Check if this is blockDim.{x,y,z}
|
1989
|
+
bool isBlockDim() const {
|
1990
|
+
auto p = getParallelDim();
|
1991
|
+
return (
|
1992
|
+
p == ParallelType::TIDx || p == ParallelType::TIDy ||
|
1993
|
+
p == ParallelType::TIDz);
|
1994
|
+
}
|
1995
|
+
|
1996
|
+
//! Check if this is gridDim.{x,y,z}
|
1997
|
+
bool isGridDim() const {
|
1998
|
+
auto p = getParallelDim();
|
1999
|
+
return (
|
2000
|
+
p == ParallelType::BIDx || p == ParallelType::BIDy ||
|
2001
|
+
p == ParallelType::BIDz);
|
2002
|
+
}
|
2003
|
+
|
2004
|
+
//! Return the named scalar extent of a parallel dimension (e.g. blockDim.x)
|
2005
|
+
//! WARNING: Only works with Fusion container at the moment
|
2006
|
+
static NamedScalar* getParallelDim(ParallelType p_type);
|
2007
|
+
|
2008
|
+
//! Return the named scalar index of a parallel dimension (e.g. threadIdx.x)
|
2009
|
+
//! WARNING: Only works with Fusion container at the moment
|
2010
|
+
static NamedScalar* getParallelIndex(ParallelType p_type);
|
2011
|
+
|
2012
|
+
//! Return the parallel type of this NamedScalar if it is an extent of a
|
2013
|
+
//! parallel dimension
|
2014
|
+
std::optional<ParallelType> getParallelDim() const;
|
2015
|
+
|
2016
|
+
//! Return the parallel type of this NamedScalar if it is an index of a
|
2017
|
+
//! parallel dimension
|
2018
|
+
std::optional<ParallelType> getParallelIndex() const;
|
2019
|
+
|
2020
|
+
private:
|
2021
|
+
std::string name_;
|
2022
|
+
};
|
2023
|
+
|
2024
|
+
class PadOp : public Expr {
|
2025
|
+
public:
|
2026
|
+
using Expr::Expr;
|
2027
|
+
|
2028
|
+
//! Pad a tensor as specified by a vector of integer scalars. For
|
2029
|
+
//! the actual semantics, see the torch.pad documentation. Note that
|
2030
|
+
//! unlike torch.pad, the pad_widths vector parameter must contain
|
2031
|
+
//! width vals for all dimensions. For non-padded dimensions, width
|
2032
|
+
//! vals should be integer zero.
|
2033
|
+
PadOp(
|
2034
|
+
IrBuilderPasskey passkey,
|
2035
|
+
TensorView* out,
|
2036
|
+
TensorView* inp,
|
2037
|
+
const std::vector<Val*>& pad_widths,
|
2038
|
+
Val* value);
|
2039
|
+
|
2040
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2041
|
+
|
2042
|
+
const char* getOpString() const override {
|
2043
|
+
return "PadOp";
|
2044
|
+
}
|
2045
|
+
|
2046
|
+
std::string toString(int indent_size = 0) const override;
|
2047
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2048
|
+
|
2049
|
+
std::vector<PolymorphicValue> evaluate(
|
2050
|
+
const ExpressionEvaluator& ee,
|
2051
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
2052
|
+
|
2053
|
+
Val* out() const {
|
2054
|
+
return output(0);
|
2055
|
+
}
|
2056
|
+
|
2057
|
+
Val* in() const {
|
2058
|
+
return input(0);
|
2059
|
+
}
|
2060
|
+
|
2061
|
+
Val* value() const {
|
2062
|
+
return input(1);
|
2063
|
+
}
|
2064
|
+
|
2065
|
+
//! Return axes that are actually paded, i.e., those that have
|
2066
|
+
//! non-zero pad widths
|
2067
|
+
std::vector<int64_t> getPaddedAxes() const;
|
2068
|
+
|
2069
|
+
//! Return pad widths of the given axis, which are just zero for non padded
|
2070
|
+
//! dimensions
|
2071
|
+
std::pair<Val*, Val*> getPadWidths(int64_t axis) const;
|
2072
|
+
|
2073
|
+
//! Return the pad widths of all dimensions, including non-padded ones
|
2074
|
+
std::vector<Val*> getPadWidths() const;
|
2075
|
+
|
2076
|
+
private:
|
2077
|
+
//! Offset of pad_width inputs in the input vector
|
2078
|
+
int64_t getPadWidthInputOffset() const {
|
2079
|
+
return 2;
|
2080
|
+
}
|
2081
|
+
|
2082
|
+
//! Iterator to the first pad_width input
|
2083
|
+
auto getPadWidthInputBegin() const {
|
2084
|
+
return inputs().cbegin() + getPadWidthInputOffset();
|
2085
|
+
}
|
2086
|
+
|
2087
|
+
//! Iterator to the end of the pad_width inputs
|
2088
|
+
auto getPadWidthInputEnd() const {
|
2089
|
+
return inputs().cend();
|
2090
|
+
}
|
2091
|
+
};
|
2092
|
+
|
2093
|
+
// Similar to at::indexing::Slice
|
2094
|
+
struct Slice {
|
2095
|
+
Val* start = nullptr;
|
2096
|
+
Val* stop = nullptr;
|
2097
|
+
Val* step = nullptr;
|
2098
|
+
};
|
2099
|
+
|
2100
|
+
class SliceOp : public Expr {
|
2101
|
+
public:
|
2102
|
+
using Expr::Expr;
|
2103
|
+
|
2104
|
+
SliceOp(
|
2105
|
+
IrBuilderPasskey passkey,
|
2106
|
+
TensorView* out,
|
2107
|
+
TensorView* inp,
|
2108
|
+
const std::vector<Slice>& ranges);
|
2109
|
+
|
2110
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2111
|
+
|
2112
|
+
const char* getOpString() const override {
|
2113
|
+
return "SliceOp";
|
2114
|
+
}
|
2115
|
+
|
2116
|
+
std::string toString(int indent_size = 0) const override;
|
2117
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2118
|
+
std::vector<PolymorphicValue> evaluate(
|
2119
|
+
const ExpressionEvaluator& ee,
|
2120
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
2121
|
+
|
2122
|
+
TensorView* out() const {
|
2123
|
+
return output(0)->as<TensorView>();
|
2124
|
+
}
|
2125
|
+
|
2126
|
+
TensorView* in() const {
|
2127
|
+
return input(0)->as<TensorView>();
|
2128
|
+
}
|
2129
|
+
|
2130
|
+
//! Get normalized ranges for SliceOp.
|
2131
|
+
std::vector<Slice> getRanges() const;
|
2132
|
+
|
2133
|
+
private:
|
2134
|
+
//! Offset of ranges input in the input vector
|
2135
|
+
int getRangeInputOffset() const {
|
2136
|
+
return 1;
|
2137
|
+
}
|
2138
|
+
|
2139
|
+
//! Iterator to the first range inputs
|
2140
|
+
auto getRangeInputBegin() const {
|
2141
|
+
return inputs().cbegin() + getRangeInputOffset();
|
2142
|
+
}
|
2143
|
+
|
2144
|
+
//! Iterator to the end of the range inputs
|
2145
|
+
auto getRangeInputEnd() const {
|
2146
|
+
return inputs().cend();
|
2147
|
+
}
|
2148
|
+
};
|
2149
|
+
|
2150
|
+
class NVF_API CatOp : public Expr {
|
2151
|
+
public:
|
2152
|
+
using Expr::Expr;
|
2153
|
+
|
2154
|
+
CatOp(
|
2155
|
+
IrBuilderPasskey passkey,
|
2156
|
+
Val* out,
|
2157
|
+
const std::vector<Val*>& inputs,
|
2158
|
+
int64_t concatenated_dim);
|
2159
|
+
|
2160
|
+
//! Create a cat op with the index and predicates for codegen. Only
|
2161
|
+
//! used for the Kernel container
|
2162
|
+
CatOp(
|
2163
|
+
IrBuilderPasskey passkey,
|
2164
|
+
Val* out,
|
2165
|
+
const std::vector<Val*>& inputs,
|
2166
|
+
int64_t concatenated_dim,
|
2167
|
+
Val* concatenated_domain_index,
|
2168
|
+
const std::vector<Val*>& preds);
|
2169
|
+
|
2170
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2171
|
+
|
2172
|
+
const char* getOpString() const override {
|
2173
|
+
return "CatOp";
|
2174
|
+
}
|
2175
|
+
|
2176
|
+
std::string toString(int indent_size = 0) const override;
|
2177
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2178
|
+
std::vector<PolymorphicValue> evaluate(
|
2179
|
+
const ExpressionEvaluator& ee,
|
2180
|
+
std::unordered_map<const Val*, PolymorphicValue>& known_values)
|
2181
|
+
const override;
|
2182
|
+
|
2183
|
+
int64_t concatenatedDim() const {
|
2184
|
+
return attribute<int64_t>(0);
|
2185
|
+
}
|
2186
|
+
|
2187
|
+
//! The index val that determines which input tensor should be used
|
2188
|
+
//! to fill the particular output position of this expression. Only
|
2189
|
+
//! valid after indexing
|
2190
|
+
Val* getConcatenatedDomainIndex() const;
|
2191
|
+
|
2192
|
+
//! Gets a Bool indicating if the input tensor specified by
|
2193
|
+
//! tensor_idx should be used to fill the output tensor. Only valid
|
2194
|
+
//! with the Kernel container
|
2195
|
+
Val* getPred(int input_idx) const;
|
2196
|
+
};
|
2197
|
+
|
2198
|
+
//! Matmul Operator to be expression evaluated without decomposition.
|
2199
|
+
class MatmulOp : public Expr {
|
2200
|
+
public:
|
2201
|
+
using Expr::Expr;
|
2202
|
+
|
2203
|
+
MatmulOp(IrBuilderPasskey, Val* out, Val* in_a, Val* in_b);
|
2204
|
+
|
2205
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2206
|
+
|
2207
|
+
const char* getOpString() const override {
|
2208
|
+
return "MatmulOp";
|
2209
|
+
}
|
2210
|
+
|
2211
|
+
std::string toString(int indent_size = 0) const override;
|
2212
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2213
|
+
|
2214
|
+
TensorView* out() const {
|
2215
|
+
return output(0)->as<TensorView>();
|
2216
|
+
}
|
2217
|
+
|
2218
|
+
TensorView* inA() const {
|
2219
|
+
return input(0)->as<TensorView>();
|
2220
|
+
}
|
2221
|
+
|
2222
|
+
TensorView* inB() const {
|
2223
|
+
return input(1)->as<TensorView>();
|
2224
|
+
}
|
2225
|
+
|
2226
|
+
std::vector<PolymorphicValue> evaluate(
|
2227
|
+
const ExpressionEvaluator& ee,
|
2228
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
2229
|
+
};
|
2230
|
+
|
2231
|
+
// Linear node with same functionality as F.linear
|
2232
|
+
// (https://pytorch.org/docs/stable/generated/torch.nn.functional.linear.html#torch.nn.functional.linear)
|
2233
|
+
class LinearOp : public Expr {
|
2234
|
+
public:
|
2235
|
+
using Expr::Expr;
|
2236
|
+
|
2237
|
+
LinearOp(IrBuilderPasskey, Val* out, Val* in_a, Val* in_b, Val* bias);
|
2238
|
+
|
2239
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2240
|
+
|
2241
|
+
const char* getOpString() const override {
|
2242
|
+
return "LinearOp";
|
2243
|
+
}
|
2244
|
+
|
2245
|
+
std::string toString(int indent_size = 0) const override;
|
2246
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2247
|
+
|
2248
|
+
TensorView* out() const {
|
2249
|
+
return output(0)->as<TensorView>();
|
2250
|
+
}
|
2251
|
+
|
2252
|
+
TensorView* inA() const {
|
2253
|
+
return input(0)->as<TensorView>();
|
2254
|
+
}
|
2255
|
+
|
2256
|
+
TensorView* inB() const {
|
2257
|
+
return input(1)->as<TensorView>();
|
2258
|
+
}
|
2259
|
+
|
2260
|
+
TensorView* bias() const {
|
2261
|
+
if (has_bias()) {
|
2262
|
+
return input(2)->as<TensorView>();
|
2263
|
+
} else {
|
2264
|
+
return nullptr;
|
2265
|
+
}
|
2266
|
+
}
|
2267
|
+
|
2268
|
+
std::vector<PolymorphicValue> evaluate(
|
2269
|
+
const ExpressionEvaluator& ee,
|
2270
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
2271
|
+
|
2272
|
+
bool has_bias() const {
|
2273
|
+
return inputs().size() == 3;
|
2274
|
+
}
|
2275
|
+
};
|
2276
|
+
|
2277
|
+
/*
|
2278
|
+
SDPA node with same functionality at::_scaled_dot_product_flash_attention
|
2279
|
+
output = [N, H, L, Ev]
|
2280
|
+
logsumexp = [N, H, L]
|
2281
|
+
query_seq_len = scalar(int)
|
2282
|
+
key_seq_len = scalar(int)
|
2283
|
+
philox_seed = scalar tensor
|
2284
|
+
philox_offset = scalar tensor
|
2285
|
+
debug_attn_mask = scalar tensor (Thunder does not return a debug attn mask by
|
2286
|
+
setting `return_debug_mask=False` when invoking flash attention)
|
2287
|
+
|
2288
|
+
query = [N, H, L, E]
|
2289
|
+
key = [N, H, S, E]
|
2290
|
+
value = [N, H, S, Ev]
|
2291
|
+
dropout_p = scalar(double)
|
2292
|
+
is_causal = scalar(bool)
|
2293
|
+
scale = scalar(double)
|
2294
|
+
|
2295
|
+
N = number of sequences / batch size
|
2296
|
+
H = num of heads
|
2297
|
+
L = query sequence length / target sequence length
|
2298
|
+
S = key/value sequence length / src sequence length
|
2299
|
+
E = query/key embd dimension
|
2300
|
+
Ev = value embd dimension
|
2301
|
+
|
2302
|
+
For flash attention, E = Ev
|
2303
|
+
*/
|
2304
|
+
|
2305
|
+
class SdpaFwdOp : public Expr {
|
2306
|
+
public:
|
2307
|
+
using Expr::Expr;
|
2308
|
+
|
2309
|
+
SdpaFwdOp(
|
2310
|
+
IrBuilderPasskey,
|
2311
|
+
TensorView* output,
|
2312
|
+
TensorView* log_sumexp,
|
2313
|
+
TensorView* philox_seed,
|
2314
|
+
TensorView* philox_offset,
|
2315
|
+
Val* query,
|
2316
|
+
Val* key,
|
2317
|
+
Val* value,
|
2318
|
+
Val* dropout_p,
|
2319
|
+
Val* is_causal,
|
2320
|
+
Val* scale);
|
2321
|
+
|
2322
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2323
|
+
|
2324
|
+
const char* getOpString() const override {
|
2325
|
+
return "SdpaFwdOp";
|
2326
|
+
}
|
2327
|
+
|
2328
|
+
std::string toString(int indent_size = 0) const override;
|
2329
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2330
|
+
|
2331
|
+
TensorView* attn_out() const {
|
2332
|
+
return output(0)->as<TensorView>();
|
2333
|
+
}
|
2334
|
+
|
2335
|
+
TensorView* logsumexp() const {
|
2336
|
+
return output(1)->as<TensorView>();
|
2337
|
+
}
|
2338
|
+
|
2339
|
+
TensorView* philox_seed() const {
|
2340
|
+
return output(2)->as<TensorView>();
|
2341
|
+
}
|
2342
|
+
|
2343
|
+
TensorView* philox_offset() const {
|
2344
|
+
return output(3)->as<TensorView>();
|
2345
|
+
}
|
2346
|
+
|
2347
|
+
TensorView* query() const {
|
2348
|
+
return input(0)->as<TensorView>();
|
2349
|
+
}
|
2350
|
+
|
2351
|
+
TensorView* key() const {
|
2352
|
+
return input(1)->as<TensorView>();
|
2353
|
+
}
|
2354
|
+
|
2355
|
+
TensorView* value() const {
|
2356
|
+
return input(2)->as<TensorView>();
|
2357
|
+
}
|
2358
|
+
|
2359
|
+
Val* dropout_p() const {
|
2360
|
+
return input(3);
|
2361
|
+
}
|
2362
|
+
|
2363
|
+
Val* is_causal() const {
|
2364
|
+
return input(4);
|
2365
|
+
}
|
2366
|
+
|
2367
|
+
Val* scale() const {
|
2368
|
+
if (inputs().size() > 5) {
|
2369
|
+
return input(5);
|
2370
|
+
}
|
2371
|
+
return nullptr;
|
2372
|
+
}
|
2373
|
+
|
2374
|
+
std::vector<PolymorphicValue> evaluate(
|
2375
|
+
const ExpressionEvaluator& ee,
|
2376
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
2377
|
+
};
|
2378
|
+
|
2379
|
+
class Scope {
|
2380
|
+
public:
|
2381
|
+
explicit Scope(Expr* owner) : owner_(owner) {}
|
2382
|
+
|
2383
|
+
std::string toString(int indent_size = 0) const;
|
2384
|
+
|
2385
|
+
const std::vector<Expr*>& exprs() const {
|
2386
|
+
return exprs_;
|
2387
|
+
}
|
2388
|
+
|
2389
|
+
bool empty() const {
|
2390
|
+
return exprs_.empty();
|
2391
|
+
}
|
2392
|
+
|
2393
|
+
auto size() const {
|
2394
|
+
return exprs_.size();
|
2395
|
+
}
|
2396
|
+
|
2397
|
+
auto& at(size_t i) {
|
2398
|
+
return exprs_.at(i);
|
2399
|
+
}
|
2400
|
+
|
2401
|
+
auto& at(size_t i) const {
|
2402
|
+
return exprs_.at(i);
|
2403
|
+
}
|
2404
|
+
|
2405
|
+
auto& operator[](size_t i) {
|
2406
|
+
return at(i);
|
2407
|
+
}
|
2408
|
+
|
2409
|
+
auto& operator[](size_t i) const {
|
2410
|
+
return at(i);
|
2411
|
+
}
|
2412
|
+
|
2413
|
+
// Insert expr before expression at pos
|
2414
|
+
std::vector<Expr*>::iterator insert(size_t pos, Expr* expr);
|
2415
|
+
|
2416
|
+
// Insert expr before ref
|
2417
|
+
std::vector<Expr*>::iterator insert_before(Expr* ref, Expr* expr);
|
2418
|
+
|
2419
|
+
// Insert expr after ref
|
2420
|
+
std::vector<Expr*>::iterator insert_after(Expr* ref, Expr* expr);
|
2421
|
+
|
2422
|
+
void push_back(Expr* e) {
|
2423
|
+
exprs_.push_back(e);
|
2424
|
+
}
|
2425
|
+
|
2426
|
+
// Erase expr at pos
|
2427
|
+
void erase(size_t pos);
|
2428
|
+
|
2429
|
+
// Erase expr ref
|
2430
|
+
void erase(Expr* ref);
|
2431
|
+
|
2432
|
+
bool contains(Expr* expr) const;
|
2433
|
+
|
2434
|
+
void clear();
|
2435
|
+
|
2436
|
+
Expr* owner() const {
|
2437
|
+
return owner_;
|
2438
|
+
}
|
2439
|
+
|
2440
|
+
bool operator==(const Scope&) const {
|
2441
|
+
NVF_THROW("Should not reach here");
|
2442
|
+
}
|
2443
|
+
|
2444
|
+
// Insert expr before pos
|
2445
|
+
std::vector<Expr*>::iterator insert(
|
2446
|
+
std::vector<Expr*>::const_iterator pos,
|
2447
|
+
Expr* expr);
|
2448
|
+
|
2449
|
+
private:
|
2450
|
+
// Erase expr at pos
|
2451
|
+
void erase(std::vector<Expr*>::const_iterator pos);
|
2452
|
+
|
2453
|
+
private:
|
2454
|
+
std::vector<Expr*> exprs_;
|
2455
|
+
|
2456
|
+
//! Owner exprssion of this scope, e.g., IfThenElse
|
2457
|
+
Expr* owner_ = nullptr;
|
2458
|
+
};
|
2459
|
+
|
2460
|
+
//! ForLoop provides scoping around an int iterator from 0 to range. Exprs
|
2461
|
+
//! placed in its body are considered inside the scope of the for loop. In the
|
2462
|
+
//! future the implementation should look quite different so that we can do
|
2463
|
+
//! proper dependency annalysis like in Fusion.
|
2464
|
+
//!
|
2465
|
+
//! TODO(kir): this is not a real expression
|
2466
|
+
//!
|
2467
|
+
//! ForLoop may represent a part of an iteration domain representend
|
2468
|
+
//! by iter_domain_. In that case, the loop extent field, extent_, may
|
2469
|
+
//! be smaller than the extent of iter_domain_.
|
2470
|
+
class ForLoop final : public Expr {
|
2471
|
+
public:
|
2472
|
+
using Expr::Expr;
|
2473
|
+
|
2474
|
+
//! By default, start and stop are the same as those of iter_domain.
|
2475
|
+
//! Step is one by default.
|
2476
|
+
//!
|
2477
|
+
//! TODO: cleaner way to set options?
|
2478
|
+
ForLoop(
|
2479
|
+
IrBuilderPasskey passkey,
|
2480
|
+
IterDomain* iter_domain,
|
2481
|
+
Val* index,
|
2482
|
+
Val* start,
|
2483
|
+
Val* stop,
|
2484
|
+
Val* step,
|
2485
|
+
bool vectorize,
|
2486
|
+
Val* vectorize_shift,
|
2487
|
+
bool unroll_required,
|
2488
|
+
CircularBufferLoopStage circular_buffer_loop_stage,
|
2489
|
+
int64_t circular_buffer_loop_stage_depth);
|
2490
|
+
|
2491
|
+
ForLoop(
|
2492
|
+
IrBuilderPasskey passkey,
|
2493
|
+
IterDomain* iter_domain,
|
2494
|
+
Val* index,
|
2495
|
+
CircularBufferLoopStage circular_buffer_loop_stage,
|
2496
|
+
int64_t circular_buffer_loop_stage_depth);
|
2497
|
+
|
2498
|
+
ForLoop(IrBuilderPasskey passkey, IterDomain* iter_domain);
|
2499
|
+
|
2500
|
+
ForLoop(IrBuilderPasskey passkey, const ForLoop* other);
|
2501
|
+
|
2502
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2503
|
+
|
2504
|
+
const char* getOpString() const override {
|
2505
|
+
return "ForLoop";
|
2506
|
+
}
|
2507
|
+
|
2508
|
+
std::string toString(int indent_size = 0) const override;
|
2509
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2510
|
+
|
2511
|
+
Val* index() const {
|
2512
|
+
return input(0);
|
2513
|
+
}
|
2514
|
+
|
2515
|
+
Val* indexOrStartIfTrivial() const {
|
2516
|
+
return isTrivial() ? start() : index();
|
2517
|
+
}
|
2518
|
+
|
2519
|
+
Val* start() const;
|
2520
|
+
|
2521
|
+
Val* stop() const;
|
2522
|
+
|
2523
|
+
Val* step() const;
|
2524
|
+
|
2525
|
+
Val* simplifiedStop() const;
|
2526
|
+
|
2527
|
+
// [pre | vectorize | post] <= inner-most, merged root domain
|
2528
|
+
// shift_ is applied to vectorize and post sections.
|
2529
|
+
Val* vectorize_shift() const {
|
2530
|
+
return attributeVal(4);
|
2531
|
+
}
|
2532
|
+
|
2533
|
+
IterDomain* iter_domain() const {
|
2534
|
+
return input(1)->as<IterDomain>();
|
2535
|
+
}
|
2536
|
+
|
2537
|
+
// TODO: Return pointer instead of reference to be more consistent
|
2538
|
+
Scope& body() {
|
2539
|
+
return attribute<Scope>(8);
|
2540
|
+
}
|
2541
|
+
|
2542
|
+
const Scope& body() const {
|
2543
|
+
return attribute<Scope>(8);
|
2544
|
+
}
|
2545
|
+
|
2546
|
+
bool empty() const {
|
2547
|
+
return body().empty();
|
2548
|
+
}
|
2549
|
+
|
2550
|
+
// vectorize is true when the for-loop contains a vectorize set
|
2551
|
+
// the flag is used to omit the for-loop from the kernel
|
2552
|
+
bool vectorize() const {
|
2553
|
+
return attribute<bool>(3);
|
2554
|
+
}
|
2555
|
+
|
2556
|
+
//! True if unrolled (i.e., "#pragma unroll" is attached)
|
2557
|
+
bool isUnrolled() const;
|
2558
|
+
|
2559
|
+
//! True if unroll is required for avoiding stack allocation
|
2560
|
+
bool isUnrollRequired() const {
|
2561
|
+
return attribute<bool>(5);
|
2562
|
+
}
|
2563
|
+
|
2564
|
+
//! Set unrolling required
|
2565
|
+
void requireUnroll() {
|
2566
|
+
attribute<bool>(5) = true;
|
2567
|
+
}
|
2568
|
+
|
2569
|
+
//! True if no actual for-loop is materialized
|
2570
|
+
bool isTrivial() const;
|
2571
|
+
|
2572
|
+
//! True if loop is grouped reduction/welford
|
2573
|
+
bool isGroup() const;
|
2574
|
+
|
2575
|
+
//! Returns the stage of a circular buffered iterdomain
|
2576
|
+
//! that this for loop materializes.
|
2577
|
+
auto circularBufferLoopStage() const {
|
2578
|
+
return attribute<CircularBufferLoopStage>(6);
|
2579
|
+
}
|
2580
|
+
auto circularBufferLoopStageDepth() const {
|
2581
|
+
return attribute<int64_t>(7);
|
2582
|
+
}
|
2583
|
+
|
2584
|
+
private:
|
2585
|
+
//! Returns if a loop could be unrolled.
|
2586
|
+
bool isUnrollable() const;
|
2587
|
+
|
2588
|
+
//! Not storing this as an attribute because this is only a cache for
|
2589
|
+
//! simplifiedStop. We are not interested in keeping this across clone/serde,
|
2590
|
+
//! etc.
|
2591
|
+
mutable Val* simplified_stop_ = nullptr;
|
2592
|
+
};
|
2593
|
+
|
2594
|
+
/*
|
2595
|
+
SDPA bwd node with same functionality
|
2596
|
+
at::_scaled_dot_product_flash_attention_backward
|
2597
|
+
grad_query = [N, H, L, E]
|
2598
|
+
grad_key = [N, H, S, E]
|
2599
|
+
grad_value = [N, H, S, Ev]
|
2600
|
+
|
2601
|
+
grad_output = [N, H, L, Ev]
|
2602
|
+
query = [N, H, L, E]
|
2603
|
+
key = [N, H, S, E]
|
2604
|
+
value = [N, H, S, Ev]
|
2605
|
+
output = [N, H, L, Ev]
|
2606
|
+
logsumexp = [N, H, L]
|
2607
|
+
dropout_p = scalar(double)
|
2608
|
+
is_causal = scalar(bool)
|
2609
|
+
philox_seed = scalar CPU tensor
|
2610
|
+
philox_offset = scalar CPU tensor
|
2611
|
+
scale = scalar(double)
|
2612
|
+
|
2613
|
+
N = number of sequences / batch size
|
2614
|
+
H = num of heads
|
2615
|
+
L = query sequence length / target sequence length
|
2616
|
+
S = key/value sequence length / src sequence length
|
2617
|
+
E = query/key embd dimension
|
2618
|
+
Ev = value embd dimension
|
2619
|
+
|
2620
|
+
For flash attention, E = Ev
|
2621
|
+
*/
|
2622
|
+
|
2623
|
+
class SdpaBwdOp : public Expr {
|
2624
|
+
public:
|
2625
|
+
using Expr::Expr;
|
2626
|
+
|
2627
|
+
SdpaBwdOp(
|
2628
|
+
IrBuilderPasskey,
|
2629
|
+
TensorView* grad_query,
|
2630
|
+
TensorView* grad_key,
|
2631
|
+
TensorView* grad_value,
|
2632
|
+
TensorView* grad_output,
|
2633
|
+
TensorView* query,
|
2634
|
+
TensorView* key,
|
2635
|
+
TensorView* value,
|
2636
|
+
TensorView* output,
|
2637
|
+
TensorView* log_sumexp,
|
2638
|
+
Val* dropout_p,
|
2639
|
+
Val* is_causal,
|
2640
|
+
TensorView* philox_seed,
|
2641
|
+
TensorView* philox_offset,
|
2642
|
+
Val* scale);
|
2643
|
+
|
2644
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2645
|
+
|
2646
|
+
const char* getOpString() const override {
|
2647
|
+
return "SdpaBwdOp";
|
2648
|
+
}
|
2649
|
+
|
2650
|
+
std::string toString(int indent_size = 0) const override;
|
2651
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2652
|
+
|
2653
|
+
TensorView* grad_query() const {
|
2654
|
+
return output(0)->as<TensorView>();
|
2655
|
+
}
|
2656
|
+
|
2657
|
+
TensorView* grad_key() const {
|
2658
|
+
return output(1)->as<TensorView>();
|
2659
|
+
}
|
2660
|
+
|
2661
|
+
TensorView* grad_value() const {
|
2662
|
+
return output(2)->as<TensorView>();
|
2663
|
+
}
|
2664
|
+
|
2665
|
+
TensorView* grad_attn() const {
|
2666
|
+
return input(0)->as<TensorView>();
|
2667
|
+
}
|
2668
|
+
|
2669
|
+
TensorView* query() const {
|
2670
|
+
return input(1)->as<TensorView>();
|
2671
|
+
}
|
2672
|
+
|
2673
|
+
TensorView* key() const {
|
2674
|
+
return input(2)->as<TensorView>();
|
2675
|
+
}
|
2676
|
+
|
2677
|
+
TensorView* value() const {
|
2678
|
+
return input(3)->as<TensorView>();
|
2679
|
+
}
|
2680
|
+
|
2681
|
+
TensorView* attn_out() const {
|
2682
|
+
return input(4)->as<TensorView>();
|
2683
|
+
}
|
2684
|
+
|
2685
|
+
TensorView* logsumexp() const {
|
2686
|
+
return input(5)->as<TensorView>();
|
2687
|
+
}
|
2688
|
+
|
2689
|
+
Val* dropout_p() const {
|
2690
|
+
return input(6);
|
2691
|
+
}
|
2692
|
+
|
2693
|
+
Val* is_causal() const {
|
2694
|
+
return input(7);
|
2695
|
+
}
|
2696
|
+
|
2697
|
+
Val* philox_seed() const {
|
2698
|
+
return input(8);
|
2699
|
+
}
|
2700
|
+
|
2701
|
+
Val* philox_offset() const {
|
2702
|
+
return input(9);
|
2703
|
+
}
|
2704
|
+
|
2705
|
+
Val* scale() const {
|
2706
|
+
if (inputs().size() > 10) {
|
2707
|
+
return input(10);
|
2708
|
+
}
|
2709
|
+
return nullptr;
|
2710
|
+
}
|
2711
|
+
|
2712
|
+
std::vector<PolymorphicValue> evaluate(
|
2713
|
+
const ExpressionEvaluator& ee,
|
2714
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
2715
|
+
};
|
2716
|
+
|
2717
|
+
class EmbeddingFwdOp : public Expr {
|
2718
|
+
public:
|
2719
|
+
using Expr::Expr;
|
2720
|
+
|
2721
|
+
EmbeddingFwdOp(
|
2722
|
+
IrBuilderPasskey,
|
2723
|
+
TensorView* output,
|
2724
|
+
TensorView* input,
|
2725
|
+
TensorView* weight,
|
2726
|
+
Val* padding_idx,
|
2727
|
+
Val* max_norm,
|
2728
|
+
Val* norm_type,
|
2729
|
+
Val* scale_grad_by_freq,
|
2730
|
+
Val* sparse);
|
2731
|
+
|
2732
|
+
NVFUSER_DECLARE_CLONE_AND_CREATE
|
2733
|
+
|
2734
|
+
const char* getOpString() const override {
|
2735
|
+
return "EmbeddingFwdOp";
|
2736
|
+
}
|
2737
|
+
|
2738
|
+
std::string toString(int indent_size = 0) const override;
|
2739
|
+
std::string toInlineString(int indent_size = 0) const override;
|
2740
|
+
|
2741
|
+
TensorView* out() const {
|
2742
|
+
return output(0)->as<TensorView>();
|
2743
|
+
}
|
2744
|
+
|
2745
|
+
TensorView* in() const {
|
2746
|
+
return input(0)->as<TensorView>();
|
2747
|
+
}
|
2748
|
+
|
2749
|
+
TensorView* weight() const {
|
2750
|
+
return input(1)->as<TensorView>();
|
2751
|
+
}
|
2752
|
+
|
2753
|
+
Val* norm_type() const {
|
2754
|
+
return input(2);
|
2755
|
+
}
|
2756
|
+
|
2757
|
+
Val* scale_grad_by_freq() const {
|
2758
|
+
return input(3);
|
2759
|
+
}
|
2760
|
+
|
2761
|
+
Val* sparse() const {
|
2762
|
+
return input(4);
|
2763
|
+
}
|
2764
|
+
|
2765
|
+
Val* padding_idx() const {
|
2766
|
+
if (has_padding_idx()) {
|
2767
|
+
return input(5);
|
2768
|
+
}
|
2769
|
+
return nullptr;
|
2770
|
+
}
|
2771
|
+
|
2772
|
+
Val* max_norm() const {
|
2773
|
+
if (has_max_norm()) {
|
2774
|
+
return input(5 + has_padding_idx());
|
2775
|
+
}
|
2776
|
+
return nullptr;
|
2777
|
+
}
|
2778
|
+
|
2779
|
+
bool has_padding_idx() const {
|
2780
|
+
return attribute<bool>(0);
|
2781
|
+
}
|
2782
|
+
|
2783
|
+
bool has_max_norm() const {
|
2784
|
+
return attribute<bool>(1);
|
2785
|
+
}
|
2786
|
+
|
2787
|
+
std::vector<PolymorphicValue> evaluate(
|
2788
|
+
const ExpressionEvaluator& ee,
|
2789
|
+
const std::vector<PolymorphicValue>& inputs) const override;
|
2790
|
+
};
|
2791
|
+
|
2792
|
+
} // namespace nvfuser
|