nvfuser-cu121-torch25 0.2.25.dev20250201__cp312-cp312-manylinux_2_28_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- nvfuser/_C.cpython-312-x86_64-linux-gnu.so +0 -0
- nvfuser/__init__.py +618 -0
- nvfuser/__init__.pyi +4 -0
- nvfuser/contrib/__init__.py +9 -0
- nvfuser/contrib/nn/__init__.py +13 -0
- nvfuser/contrib/nn/normalization.py +725 -0
- nvfuser/include/nvfuser/alias_analysis.h +116 -0
- nvfuser/include/nvfuser/bfs.h +929 -0
- nvfuser/include/nvfuser/codegen.h +26 -0
- nvfuser/include/nvfuser/compute_at.h +28 -0
- nvfuser/include/nvfuser/compute_at_map.h +394 -0
- nvfuser/include/nvfuser/contiguity.h +351 -0
- nvfuser/include/nvfuser/cuda_utils.h +50 -0
- nvfuser/include/nvfuser/debug.h +50 -0
- nvfuser/include/nvfuser/device_lower/analysis/bank_conflict.h +53 -0
- nvfuser/include/nvfuser/device_lower/analysis/circular_buffer.h +109 -0
- nvfuser/include/nvfuser/device_lower/analysis/device_version.h +65 -0
- nvfuser/include/nvfuser/device_lower/analysis/divisible_split.h +28 -0
- nvfuser/include/nvfuser/device_lower/analysis/fused_reduction.h +36 -0
- nvfuser/include/nvfuser/device_lower/analysis/index_compute.h +322 -0
- nvfuser/include/nvfuser/device_lower/analysis/predicate_elimination.h +71 -0
- nvfuser/include/nvfuser/device_lower/analysis/sync_information.h +47 -0
- nvfuser/include/nvfuser/device_lower/analysis/tensor_memory.h +65 -0
- nvfuser/include/nvfuser/device_lower/analysis/thread_predicate.h +158 -0
- nvfuser/include/nvfuser/device_lower/analysis/tma.h +93 -0
- nvfuser/include/nvfuser/device_lower/analysis/trivial_broadcast.h +75 -0
- nvfuser/include/nvfuser/device_lower/id_model_options.h +135 -0
- nvfuser/include/nvfuser/device_lower/lower2device.h +391 -0
- nvfuser/include/nvfuser/device_lower/pass/alias_memory.h +37 -0
- nvfuser/include/nvfuser/device_lower/pass/allocation.h +32 -0
- nvfuser/include/nvfuser/device_lower/pass/circular_buffer.h +191 -0
- nvfuser/include/nvfuser/device_lower/pass/expr_sort.h +17 -0
- nvfuser/include/nvfuser/device_lower/pass/fusion_simplifier.h +21 -0
- nvfuser/include/nvfuser/device_lower/pass/grid_serialization.h +26 -0
- nvfuser/include/nvfuser/device_lower/pass/index.h +200 -0
- nvfuser/include/nvfuser/device_lower/pass/inline_ptx.h +16 -0
- nvfuser/include/nvfuser/device_lower/pass/insert_syncs.h +39 -0
- nvfuser/include/nvfuser/device_lower/pass/instrument.h +24 -0
- nvfuser/include/nvfuser/device_lower/pass/loop_rotation.h +150 -0
- nvfuser/include/nvfuser/device_lower/pass/loops.h +68 -0
- nvfuser/include/nvfuser/device_lower/pass/magic_zero.h +86 -0
- nvfuser/include/nvfuser/device_lower/pass/misaligned_vectorization.h +118 -0
- nvfuser/include/nvfuser/device_lower/pass/predicate.h +23 -0
- nvfuser/include/nvfuser/device_lower/pass/replace_size.h +24 -0
- nvfuser/include/nvfuser/device_lower/pass/scalar_hoist.h +115 -0
- nvfuser/include/nvfuser/device_lower/pass/unroll.h +98 -0
- nvfuser/include/nvfuser/device_lower/pass/vectorize_welford.h +45 -0
- nvfuser/include/nvfuser/device_lower/pass/warp_reduce.h +23 -0
- nvfuser/include/nvfuser/device_lower/utils.h +382 -0
- nvfuser/include/nvfuser/device_lower/validation.h +74 -0
- nvfuser/include/nvfuser/disjoint_set.h +556 -0
- nvfuser/include/nvfuser/dispatch.h +334 -0
- nvfuser/include/nvfuser/driver_api.h +49 -0
- nvfuser/include/nvfuser/dynamic_transform.h +316 -0
- nvfuser/include/nvfuser/dynamic_type/C++20/type_traits +37 -0
- nvfuser/include/nvfuser/dynamic_type/dynamic_type.h +969 -0
- nvfuser/include/nvfuser/dynamic_type/error.h +24 -0
- nvfuser/include/nvfuser/dynamic_type/type_traits.h +703 -0
- nvfuser/include/nvfuser/evaluator_common.h +295 -0
- nvfuser/include/nvfuser/exceptions.h +283 -0
- nvfuser/include/nvfuser/expr_evaluator.h +125 -0
- nvfuser/include/nvfuser/expr_simplifier.h +218 -0
- nvfuser/include/nvfuser/flatbuffers/allocator.h +68 -0
- nvfuser/include/nvfuser/flatbuffers/array.h +253 -0
- nvfuser/include/nvfuser/flatbuffers/base.h +486 -0
- nvfuser/include/nvfuser/flatbuffers/buffer.h +154 -0
- nvfuser/include/nvfuser/flatbuffers/buffer_ref.h +53 -0
- nvfuser/include/nvfuser/flatbuffers/code_generator.h +80 -0
- nvfuser/include/nvfuser/flatbuffers/code_generators.h +234 -0
- nvfuser/include/nvfuser/flatbuffers/default_allocator.h +64 -0
- nvfuser/include/nvfuser/flatbuffers/detached_buffer.h +114 -0
- nvfuser/include/nvfuser/flatbuffers/flatbuffer_builder.h +1225 -0
- nvfuser/include/nvfuser/flatbuffers/flatbuffers.h +272 -0
- nvfuser/include/nvfuser/flatbuffers/flatc.h +130 -0
- nvfuser/include/nvfuser/flatbuffers/flex_flat_util.h +36 -0
- nvfuser/include/nvfuser/flatbuffers/flexbuffers.h +1889 -0
- nvfuser/include/nvfuser/flatbuffers/grpc.h +300 -0
- nvfuser/include/nvfuser/flatbuffers/hash.h +127 -0
- nvfuser/include/nvfuser/flatbuffers/idl.h +1359 -0
- nvfuser/include/nvfuser/flatbuffers/minireflect.h +420 -0
- nvfuser/include/nvfuser/flatbuffers/reflection.h +522 -0
- nvfuser/include/nvfuser/flatbuffers/reflection_generated.h +1471 -0
- nvfuser/include/nvfuser/flatbuffers/registry.h +128 -0
- nvfuser/include/nvfuser/flatbuffers/stl_emulation.h +513 -0
- nvfuser/include/nvfuser/flatbuffers/string.h +64 -0
- nvfuser/include/nvfuser/flatbuffers/struct.h +53 -0
- nvfuser/include/nvfuser/flatbuffers/table.h +168 -0
- nvfuser/include/nvfuser/flatbuffers/util.h +731 -0
- nvfuser/include/nvfuser/flatbuffers/vector.h +393 -0
- nvfuser/include/nvfuser/flatbuffers/vector_downward.h +273 -0
- nvfuser/include/nvfuser/flatbuffers/verifier.h +317 -0
- nvfuser/include/nvfuser/fusion.h +511 -0
- nvfuser/include/nvfuser/fusion_guard.h +37 -0
- nvfuser/include/nvfuser/fusion_profiler.h +311 -0
- nvfuser/include/nvfuser/fusion_segmenter.h +751 -0
- nvfuser/include/nvfuser/global_allocator.h +27 -0
- nvfuser/include/nvfuser/grouped_reduction.h +47 -0
- nvfuser/include/nvfuser/host_ir/container.h +60 -0
- nvfuser/include/nvfuser/host_ir/executor.h +152 -0
- nvfuser/include/nvfuser/host_ir/host_ir.h +320 -0
- nvfuser/include/nvfuser/host_ir/lower.h +35 -0
- nvfuser/include/nvfuser/id_model/circular_buffer_indexing.h +56 -0
- nvfuser/include/nvfuser/id_model/contiguity.h +166 -0
- nvfuser/include/nvfuser/id_model/id_model.h +359 -0
- nvfuser/include/nvfuser/id_model/id_model_index_compute.h +81 -0
- nvfuser/include/nvfuser/id_model/indexing.h +208 -0
- nvfuser/include/nvfuser/id_model/indexing_traversal.h +72 -0
- nvfuser/include/nvfuser/id_model/indexing_utils.h +62 -0
- nvfuser/include/nvfuser/id_model/loop_promotion.h +180 -0
- nvfuser/include/nvfuser/id_model/predicate_indexing.h +104 -0
- nvfuser/include/nvfuser/id_model/schedule.h +54 -0
- nvfuser/include/nvfuser/id_model/to_string.h +87 -0
- nvfuser/include/nvfuser/id_model/transform_replay.h +58 -0
- nvfuser/include/nvfuser/id_model/utils.h +176 -0
- nvfuser/include/nvfuser/id_model/validation_utils.h +55 -0
- nvfuser/include/nvfuser/index_compute.h +651 -0
- nvfuser/include/nvfuser/instrumentation.h +107 -0
- nvfuser/include/nvfuser/ir/all_nodes.h +14 -0
- nvfuser/include/nvfuser/ir/base_nodes.h +687 -0
- nvfuser/include/nvfuser/ir/builder.h +215 -0
- nvfuser/include/nvfuser/ir/builder_passkey.h +29 -0
- nvfuser/include/nvfuser/ir/cloner.h +185 -0
- nvfuser/include/nvfuser/ir/container.h +226 -0
- nvfuser/include/nvfuser/ir/graphviz.h +119 -0
- nvfuser/include/nvfuser/ir/interface_nodes.h +957 -0
- nvfuser/include/nvfuser/ir/internal_base_nodes.h +744 -0
- nvfuser/include/nvfuser/ir/internal_nodes.h +2792 -0
- nvfuser/include/nvfuser/ir/iostream.h +98 -0
- nvfuser/include/nvfuser/ir/printer.h +57 -0
- nvfuser/include/nvfuser/ir/utils.h +801 -0
- nvfuser/include/nvfuser/iter_visitor.h +661 -0
- nvfuser/include/nvfuser/kernel.h +299 -0
- nvfuser/include/nvfuser/kernel_db/kernel_db.h +109 -0
- nvfuser/include/nvfuser/kernel_db/utils.h +37 -0
- nvfuser/include/nvfuser/kernel_ir.h +1457 -0
- nvfuser/include/nvfuser/kernel_ir_dispatch.h +147 -0
- nvfuser/include/nvfuser/linked_hash_map.h +97 -0
- nvfuser/include/nvfuser/logical_domain_map.h +577 -0
- nvfuser/include/nvfuser/macros.h +23 -0
- nvfuser/include/nvfuser/mma_type.h +257 -0
- nvfuser/include/nvfuser/multidevice/c10d_mock.h +175 -0
- nvfuser/include/nvfuser/multidevice/communication.h +232 -0
- nvfuser/include/nvfuser/multidevice/communicator.h +179 -0
- nvfuser/include/nvfuser/multidevice/device_mesh.h +95 -0
- nvfuser/include/nvfuser/multidevice/executor.h +107 -0
- nvfuser/include/nvfuser/multidevice/multidevice.h +18 -0
- nvfuser/include/nvfuser/multidevice/utils.h +187 -0
- nvfuser/include/nvfuser/non_divisible_split.h +86 -0
- nvfuser/include/nvfuser/opaque_type.h +129 -0
- nvfuser/include/nvfuser/ops/alias.h +192 -0
- nvfuser/include/nvfuser/ops/all_ops.h +13 -0
- nvfuser/include/nvfuser/ops/arith.h +712 -0
- nvfuser/include/nvfuser/ops/composite.h +130 -0
- nvfuser/include/nvfuser/ops/indexing.h +55 -0
- nvfuser/include/nvfuser/ops/normalization.h +263 -0
- nvfuser/include/nvfuser/ops/utils.h +127 -0
- nvfuser/include/nvfuser/options.h +313 -0
- nvfuser/include/nvfuser/parallel_dimension_map.h +95 -0
- nvfuser/include/nvfuser/parallel_type_bitmap.h +365 -0
- nvfuser/include/nvfuser/polymorphic_value.h +432 -0
- nvfuser/include/nvfuser/predicate_compute.h +213 -0
- nvfuser/include/nvfuser/python_frontend/distributed_tensor.h +50 -0
- nvfuser/include/nvfuser/python_frontend/fusion_cache.h +298 -0
- nvfuser/include/nvfuser/python_frontend/fusion_definition.h +372 -0
- nvfuser/include/nvfuser/python_frontend/fusion_record.h +3124 -0
- nvfuser/include/nvfuser/python_frontend/fusion_state.h +143 -0
- nvfuser/include/nvfuser/python_frontend/python_bindings.h +27 -0
- nvfuser/include/nvfuser/python_frontend/segmentation.h +246 -0
- nvfuser/include/nvfuser/python_frontend/translation.h +20 -0
- nvfuser/include/nvfuser/python_frontend/translation_utils.h +308 -0
- nvfuser/include/nvfuser/scheduler/all_schedulers.h +17 -0
- nvfuser/include/nvfuser/scheduler/ampere_multi_matmul.h +206 -0
- nvfuser/include/nvfuser/scheduler/cache_policy_refiner.h +19 -0
- nvfuser/include/nvfuser/scheduler/compile_time_info.h +322 -0
- nvfuser/include/nvfuser/scheduler/debug_utils.h +68 -0
- nvfuser/include/nvfuser/scheduler/expr_eval_sched.h +45 -0
- nvfuser/include/nvfuser/scheduler/heuristic.h +113 -0
- nvfuser/include/nvfuser/scheduler/hopper_multi_matmul.h +204 -0
- nvfuser/include/nvfuser/scheduler/mark_aliases.h +19 -0
- nvfuser/include/nvfuser/scheduler/matmul.h +40 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic.h +293 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin.h +65 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin_api.h +99 -0
- nvfuser/include/nvfuser/scheduler/matmul_utils.h +54 -0
- nvfuser/include/nvfuser/scheduler/mma_utils.h +500 -0
- nvfuser/include/nvfuser/scheduler/multi_matmul.h +74 -0
- nvfuser/include/nvfuser/scheduler/no_op.h +48 -0
- nvfuser/include/nvfuser/scheduler/normalization_inner.h +49 -0
- nvfuser/include/nvfuser/scheduler/normalization_inner_outer.h +51 -0
- nvfuser/include/nvfuser/scheduler/normalization_outer.h +48 -0
- nvfuser/include/nvfuser/scheduler/normalization_utils.h +379 -0
- nvfuser/include/nvfuser/scheduler/pointwise.h +183 -0
- nvfuser/include/nvfuser/scheduler/pointwise_heuristic.h +118 -0
- nvfuser/include/nvfuser/scheduler/pointwise_utils.h +24 -0
- nvfuser/include/nvfuser/scheduler/reduction.h +43 -0
- nvfuser/include/nvfuser/scheduler/reduction_heuristic.h +339 -0
- nvfuser/include/nvfuser/scheduler/reduction_utils.h +159 -0
- nvfuser/include/nvfuser/scheduler/registry.h +97 -0
- nvfuser/include/nvfuser/scheduler/registry_utils.h +111 -0
- nvfuser/include/nvfuser/scheduler/resize.h +41 -0
- nvfuser/include/nvfuser/scheduler/resize_heuristic.h +67 -0
- nvfuser/include/nvfuser/scheduler/runtime_info.h +166 -0
- nvfuser/include/nvfuser/scheduler/scheduler_types.h +80 -0
- nvfuser/include/nvfuser/scheduler/transpose.h +114 -0
- nvfuser/include/nvfuser/scheduler/transpose_heuristic.h +164 -0
- nvfuser/include/nvfuser/scheduler/utils.h +771 -0
- nvfuser/include/nvfuser/scheduler/vectorize_helper.h +349 -0
- nvfuser/include/nvfuser/serde/factory.h +55 -0
- nvfuser/include/nvfuser/serde/fusion_cache_generated.h +4319 -0
- nvfuser/include/nvfuser/serde/fusion_record.h +124 -0
- nvfuser/include/nvfuser/serde/polymorphic_value.h +52 -0
- nvfuser/include/nvfuser/serde/utils.h +34 -0
- nvfuser/include/nvfuser/struct.inl +127 -0
- nvfuser/include/nvfuser/swizzle.h +54 -0
- nvfuser/include/nvfuser/sys_utils.h +40 -0
- nvfuser/include/nvfuser/tensor_metadata.h +118 -0
- nvfuser/include/nvfuser/tma.h +124 -0
- nvfuser/include/nvfuser/transform_iter.h +522 -0
- nvfuser/include/nvfuser/transform_replay.h +297 -0
- nvfuser/include/nvfuser/transform_rfactor.h +33 -0
- nvfuser/include/nvfuser/transform_view.h +136 -0
- nvfuser/include/nvfuser/type.h +1125 -0
- nvfuser/include/nvfuser/type_promotion.h +61 -0
- nvfuser/include/nvfuser/utils.h +619 -0
- nvfuser/include/nvfuser/val_graph.h +446 -0
- nvfuser/include/nvfuser/val_graph_visitor.h +259 -0
- nvfuser/include/nvfuser/validator_utils.h +92 -0
- nvfuser/include/nvfuser/vectorization_info.h +31 -0
- nvfuser/include/nvfuser/visibility.h +21 -0
- nvfuser/lib/libnvfuser_codegen.so +0 -0
- nvfuser/nvfuser_version.py +69 -0
- nvfuser/pytorch_utils.py +184 -0
- nvfuser/share/cmake/nvfuser/NvfuserConfig-release.cmake +20 -0
- nvfuser/share/cmake/nvfuser/NvfuserConfig.cmake +106 -0
- nvfuser/utils.py +18 -0
- nvfuser/version.py +1 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/LICENSE +976 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/METADATA +16 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/RECORD +242 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/WHEEL +5 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/top_level.txt +1 -0
- nvfuser_cu121_torch25.libs/libnvToolsExt-847d78f2.so.1.0.0 +0 -0
@@ -0,0 +1,957 @@
|
|
1
|
+
// clang-format off
|
2
|
+
/*
|
3
|
+
* SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
|
4
|
+
* All rights reserved.
|
5
|
+
* SPDX-License-Identifier: BSD-3-Clause
|
6
|
+
*/
|
7
|
+
// clang-format on
|
8
|
+
#pragma once
|
9
|
+
|
10
|
+
#include <exceptions.h>
|
11
|
+
|
12
|
+
#include <fusion.h>
|
13
|
+
#include <ir/builder_passkey.h>
|
14
|
+
#include <ir/internal_base_nodes.h>
|
15
|
+
#include <ir/internal_nodes.h>
|
16
|
+
#include <mma_type.h>
|
17
|
+
#include <multidevice/device_mesh.h>
|
18
|
+
#include <type.h>
|
19
|
+
#include <visibility.h>
|
20
|
+
|
21
|
+
#include <torch/csrc/jit/ir/ir.h>
|
22
|
+
|
23
|
+
#include <complex>
|
24
|
+
#include <limits>
|
25
|
+
#include <sstream>
|
26
|
+
|
27
|
+
//! Nodes in here are intended to be "user facing" users in this sense being
|
28
|
+
//! those that want to be able to generate CUDA code.
|
29
|
+
|
30
|
+
//! IR header hierarchy
|
31
|
+
//! 1. utils.h - PolymorphicBase and NonCopyable
|
32
|
+
//! 2. ir/base_nodes.h - Statement, Expr, and Val
|
33
|
+
//! 3. ir/internal_base_nodes.h - IterDomain and TensorDomain
|
34
|
+
//! 4. ** ir/interface_nodes.h ** - TensorView and Scalar
|
35
|
+
//! 5. ir/internal_nodes.h - Any internal-only IR nodes
|
36
|
+
|
37
|
+
namespace nvfuser {
|
38
|
+
|
39
|
+
class WelfordResult;
|
40
|
+
class ViewTransform;
|
41
|
+
|
42
|
+
class IrCloner;
|
43
|
+
|
44
|
+
namespace ir_utils {
|
45
|
+
std::string varName(const Val* val);
|
46
|
+
}
|
47
|
+
|
48
|
+
template <typename T>
|
49
|
+
T& Expr::attribute(size_t index) const {
|
50
|
+
if constexpr (PolymorphicValue::is_candidate_type<T>) {
|
51
|
+
return attributeVal(index)->value().as<T>();
|
52
|
+
} else {
|
53
|
+
return attributeVal(index)->value().as<Opaque>().as<T>();
|
54
|
+
}
|
55
|
+
}
|
56
|
+
|
57
|
+
//! Mode during propagation of computeAt, standard will throw an error if
|
58
|
+
//! computeAt position provided can't be satisfied, best effort will lower the
|
59
|
+
//! computeAt position as needed during traversal, most inlined will increase
|
60
|
+
//! the compute at position to maximum possible through traversal.
|
61
|
+
enum class ComputeAtMode { Standard, BestEffort, MostInlined };
|
62
|
+
|
63
|
+
class TransformPropagator;
|
64
|
+
struct MostInlinedTransformPropagator;
|
65
|
+
class TransformIter;
|
66
|
+
class TransformReplay;
|
67
|
+
class OptOutMutator;
|
68
|
+
class TensorDomain;
|
69
|
+
|
70
|
+
class MaxPosCalculator;
|
71
|
+
|
72
|
+
namespace ir_utils {
|
73
|
+
class TVDomainGuard;
|
74
|
+
}
|
75
|
+
|
76
|
+
// [Circular buffering]
|
77
|
+
//
|
78
|
+
// A non-circle-buffered loop looks like below (assuming both the load and the
|
79
|
+
// compute are async ops):
|
80
|
+
// for i in range(data.size):
|
81
|
+
// load data[i] to buffer
|
82
|
+
// wait buffer to be ready (RAW sync)
|
83
|
+
// compute buffer
|
84
|
+
// wait compute to be done (WAR sync)
|
85
|
+
//
|
86
|
+
// Circular buffering allows removing RAW and WAR hazards to maximize
|
87
|
+
// overlapping of memory load and compute. Both the load and compute operations
|
88
|
+
// are pipelined. In order to pipeline the load operations, the RAW hazards need
|
89
|
+
// to be removed, so that at every iteration, the data needed for computation is
|
90
|
+
// already prefetched a few iterations ago. In order to pipeline the compute,
|
91
|
+
// WAR hazards need to be removed, so that each iterations's compute is not
|
92
|
+
// required to be completed immediately in this iteration to avoid next
|
93
|
+
// iteration's load overwriting the current iteration's operand for the compute
|
94
|
+
// operation.
|
95
|
+
//
|
96
|
+
// With circular buffering, we want to prefetch a few iterations ahead of the
|
97
|
+
// compute, and defer the load to the just-used buffer a few iterations, so that
|
98
|
+
// both the load and the compute can be pipelined, minimizing the idle time.
|
99
|
+
//
|
100
|
+
// Circular buffering is controlled by two parameters: stage and prefetch. The
|
101
|
+
// stage parameter determines the size of the circular buffer, and the prefetch
|
102
|
+
// parameter determines how many iterations ahead of the compute the data is
|
103
|
+
// prefetched. Note that prefetch must be < stage. Both the removal of RAW and
|
104
|
+
// WAR hazards require additional storage space. The prefetch parameter
|
105
|
+
// determines how buffers are partitioned between RAW and WAR hazards. If we are
|
106
|
+
// not interested in pipelining the compute, then use prefetch = stage - 1, so
|
107
|
+
// that all buffers are used for RAW removal.
|
108
|
+
//
|
109
|
+
// The figure below illustrates the timeline of a circular buffered loop, where
|
110
|
+
// each row represents an iteration:
|
111
|
+
|
112
|
+
// clang-format off
|
113
|
+
|
114
|
+
//
|
115
|
+
// /load 0;\ \.
|
116
|
+
// / load 1; [prefetch = 3] | [prefetching]
|
117
|
+
// [stage] load 2;/ /'
|
118
|
+
// [ = 6 ] load 3; wait load 0; compute 0; \.
|
119
|
+
// \ load 4; wait load 1; compute 1; |
|
120
|
+
// \load 5; wait load 2; compute 2; wait compute 0; |
|
121
|
+
// load 0; wait load 3; compute 3; wait compute 1; |
|
122
|
+
// load 1; wait load 4; compute 4; wait compute 2; |
|
123
|
+
// load 2; wait load 5; compute 5; wait compute 3; |
|
124
|
+
// load 3; wait load 0; compute 0; wait compute 4; |
|
125
|
+
// load 4; wait load 1; compute 1; wait compute 5; | [main]
|
126
|
+
// load 5; wait load 2; compute 2; wait compute 0; |
|
127
|
+
// .................................................. |
|
128
|
+
// .................................................. |
|
129
|
+
// .................................................. |
|
130
|
+
// load ; wait load ; compute ; wait compute ; |
|
131
|
+
// load ; wait load ; compute ; wait compute ; |
|
132
|
+
// load ; wait load ; compute ; wait compute ; |
|
133
|
+
// load ; wait load ; compute ; /'
|
134
|
+
// /wait load ; compute ; \.
|
135
|
+
// [same number as prefetch] wait load ; compute ; | [draining]
|
136
|
+
// \wait load ; compute ; wait all computes; /'
|
137
|
+
|
138
|
+
// clang-format on
|
139
|
+
|
140
|
+
// In the above figure, we have:
|
141
|
+
// storage required = stage * tile_size
|
142
|
+
// load pipeline depth = prefetch + 1
|
143
|
+
// compute pipeline depth = stage - prefetch
|
144
|
+
//
|
145
|
+
// There are two ways to implement the above timeline: pipelined, and
|
146
|
+
// warp-specialization.
|
147
|
+
//
|
148
|
+
// In the pipelined way, the prefetching stage is implemented as a prologue
|
149
|
+
// loop, and main stage is implemented as a main loop, and the draining stage is
|
150
|
+
// implemented as an epilogue loop. That is, we will have the following loop
|
151
|
+
// structure:
|
152
|
+
//
|
153
|
+
// Prologue loop:
|
154
|
+
// for i in range(prefetch):
|
155
|
+
// load data[i] to buffer[i]
|
156
|
+
//
|
157
|
+
// Main loop (using syncthreads to avoid WAR harzard):
|
158
|
+
// for i in range(data.size - prefetch):
|
159
|
+
// load data[i + prefetch] to buffer[(i + prefetch) % stage]
|
160
|
+
// wait buffer[i % stage] to be loaded
|
161
|
+
// compute buffer[i % stage]
|
162
|
+
// wait until the first compute in the queue is done
|
163
|
+
// (i.e. stage - prefetch - 1 in flight computes remaining)
|
164
|
+
// __syncthreads();
|
165
|
+
//
|
166
|
+
// Main loop (using mbarrier to avoid WAR harzard):
|
167
|
+
// for i in range(data.size - prefetch):
|
168
|
+
// wait buffer[(i + prefetch) % stage] to be empty
|
169
|
+
// load data[i + prefetch] to buffer[(i + prefetch) % stage]
|
170
|
+
// wait buffer[i % stage] to be loaded
|
171
|
+
// compute buffer[i % stage]
|
172
|
+
// wait until the first compute in the queue is done
|
173
|
+
// (i.e. stage - prefetch - 1 in flight computes remaining)
|
174
|
+
// signal that buffer (i + prefetch + 1) % stage is empty and ready to be
|
175
|
+
// loaded again
|
176
|
+
//
|
177
|
+
// Epilogue loop:
|
178
|
+
// for i in range(data.size - prefetch, data.size):
|
179
|
+
// wait buffer[i % stage] to be ready
|
180
|
+
// compute buffer[i % stage]
|
181
|
+
// wait until all computes are done
|
182
|
+
//
|
183
|
+
// Note that in the above loop structure, the "wait compute" in the first
|
184
|
+
// stage - prefetch - 1 iterations and last iteration of the main loop is
|
185
|
+
// redundant. We can remove them to further optimize the performance, but
|
186
|
+
// we decide to keep them for simplicity.
|
187
|
+
//
|
188
|
+
// In the warp-specialized approach, we will use different warp/warp-group
|
189
|
+
// for loading and computing. We will generate code like below (assuming warp
|
190
|
+
// specialized on TIDy):
|
191
|
+
//
|
192
|
+
// if (threadIdx.y == blockDim.y - 1) {
|
193
|
+
// // If we use warp specialization on TIDy, then the blockDim.y of the
|
194
|
+
// // kernel will be (whatever_value_inferred_from_schedule + 1), and the
|
195
|
+
// // last threadIdx.y will be used as load warp
|
196
|
+
// for i in range(data.size):
|
197
|
+
// wait buffer[i % stage] to be empty
|
198
|
+
// load data[i] to buffer[i % stage]
|
199
|
+
// } else {
|
200
|
+
// // Every threadIdx.y other than the last will be used for compute
|
201
|
+
// for i in range(prefetch + 1):
|
202
|
+
// signal that buffer i % stage is empty and ready to load
|
203
|
+
// for i in range(data.size):
|
204
|
+
// wait buffer[i % stage] to be loaded
|
205
|
+
// compute buffer[i % stage]
|
206
|
+
// wait until the first compute in the queue is done
|
207
|
+
// (i.e. stage - prefetch - 1 in flight computes remaining)
|
208
|
+
// signal that buffer (i + prefetch + 1) % stage is empty and ready to be
|
209
|
+
// loaded again
|
210
|
+
// }
|
211
|
+
|
212
|
+
struct Pipelined {
|
213
|
+
bool uses_mbarrier_for_war = false;
|
214
|
+
explicit Pipelined(bool uses_mbarrier_for_war)
|
215
|
+
: uses_mbarrier_for_war(uses_mbarrier_for_war) {}
|
216
|
+
Pipelined() = default;
|
217
|
+
bool operator==(const Pipelined& other) const {
|
218
|
+
return uses_mbarrier_for_war == other.uses_mbarrier_for_war;
|
219
|
+
}
|
220
|
+
};
|
221
|
+
|
222
|
+
inline std::ostream& operator<<(std::ostream& os, const Pipelined& pipelined) {
|
223
|
+
if (pipelined.uses_mbarrier_for_war) {
|
224
|
+
return os << "PipelinedMBarrierForWAR";
|
225
|
+
}
|
226
|
+
return os << "Pipelined";
|
227
|
+
}
|
228
|
+
|
229
|
+
struct WarpSpecialized {
|
230
|
+
ParallelType on = ParallelType::Serial;
|
231
|
+
// The number of registers for load and compute warps respectively.
|
232
|
+
std::optional<std::pair<int64_t, int64_t>> num_registers = std::nullopt;
|
233
|
+
|
234
|
+
explicit WarpSpecialized(
|
235
|
+
ParallelType on,
|
236
|
+
std::pair<int64_t, int64_t> num_registers)
|
237
|
+
: on(on), num_registers(num_registers) {
|
238
|
+
validateRegisterSharing();
|
239
|
+
}
|
240
|
+
explicit WarpSpecialized(ParallelType on)
|
241
|
+
: on(on), num_registers(std::nullopt) {}
|
242
|
+
WarpSpecialized() = default;
|
243
|
+
|
244
|
+
void validateRegisterSharing() {
|
245
|
+
// short-circuit: register sharing is not used.
|
246
|
+
if (!num_registers.has_value()) {
|
247
|
+
return;
|
248
|
+
}
|
249
|
+
auto validate_num_registers = [](int64_t a) {
|
250
|
+
NVF_ERROR(
|
251
|
+
a >= 24 && a <= 256 && a % 8 == 0,
|
252
|
+
"The number of registers for setmaxnreg must be between 24 and",
|
253
|
+
" 256 (inclusive) and be a multiple of 8.");
|
254
|
+
};
|
255
|
+
validate_num_registers(num_registers.value().first);
|
256
|
+
validate_num_registers(num_registers.value().second);
|
257
|
+
NVF_ERROR(
|
258
|
+
num_registers.value().first <= num_registers.value().second,
|
259
|
+
"The number of registers for load warp group must be <= to the number",
|
260
|
+
" of registers for the compute warp groups.");
|
261
|
+
}
|
262
|
+
|
263
|
+
bool operator==(const WarpSpecialized& other) const {
|
264
|
+
return on == other.on && num_registers == other.num_registers;
|
265
|
+
}
|
266
|
+
};
|
267
|
+
|
268
|
+
inline std::ostream& operator<<(
|
269
|
+
std::ostream& os,
|
270
|
+
const WarpSpecialized& warp_specialized) {
|
271
|
+
std::string parallel_type_str = "";
|
272
|
+
switch (warp_specialized.on) {
|
273
|
+
case ParallelType::TIDx:
|
274
|
+
parallel_type_str = "TIDx";
|
275
|
+
break;
|
276
|
+
case ParallelType::TIDy:
|
277
|
+
parallel_type_str = "TIDy";
|
278
|
+
break;
|
279
|
+
case ParallelType::TIDz:
|
280
|
+
parallel_type_str = "TIDz";
|
281
|
+
break;
|
282
|
+
default:
|
283
|
+
NVF_THROW("Invalid parallel type");
|
284
|
+
}
|
285
|
+
std::string num_registers = "RegisterSharing_None";
|
286
|
+
if (warp_specialized.num_registers.has_value()) {
|
287
|
+
auto&& [decrease_num_reg, increase_num_reg] =
|
288
|
+
warp_specialized.num_registers.value();
|
289
|
+
std::stringstream s;
|
290
|
+
s << "RegisterSharing_" << decrease_num_reg << "_" << increase_num_reg;
|
291
|
+
num_registers = s.str();
|
292
|
+
}
|
293
|
+
return os << "WarpSpecializedOn" << parallel_type_str << num_registers;
|
294
|
+
}
|
295
|
+
|
296
|
+
using CircularBufferType = std::variant<Pipelined, WarpSpecialized>;
|
297
|
+
|
298
|
+
inline std::ostream& operator<<(
|
299
|
+
std::ostream& os,
|
300
|
+
const CircularBufferType& type) {
|
301
|
+
return std::visit(
|
302
|
+
[&os](const auto& t) -> std::ostream& { return os << t; }, type);
|
303
|
+
}
|
304
|
+
|
305
|
+
struct CircularBufferOptions {
|
306
|
+
CircularBufferType type =
|
307
|
+
Pipelined(false); // Type of circular buffer. Currently supports:
|
308
|
+
// - pipelined using syncthreads for WAR hazards
|
309
|
+
// - pipelined using mbarrier for WAR hazards.
|
310
|
+
int64_t stage = 0; // Size of the circular buffer (number of buffers)
|
311
|
+
int64_t prefetch = 0; // Number of iterations ahead of the compute to
|
312
|
+
// prefetch, can only be < stage.
|
313
|
+
|
314
|
+
bool isEnable() const {
|
315
|
+
return stage > 1;
|
316
|
+
}
|
317
|
+
|
318
|
+
bool usesMBarrierForWAR() const {
|
319
|
+
return (std::holds_alternative<Pipelined>(type) &&
|
320
|
+
std::get<Pipelined>(type).uses_mbarrier_for_war) ||
|
321
|
+
std::holds_alternative<WarpSpecialized>(type);
|
322
|
+
return false;
|
323
|
+
}
|
324
|
+
|
325
|
+
bool operator==(const CircularBufferOptions& other) const {
|
326
|
+
return type == other.type && stage == other.stage &&
|
327
|
+
prefetch == other.prefetch;
|
328
|
+
}
|
329
|
+
};
|
330
|
+
|
331
|
+
inline std::ostream& operator<<(
|
332
|
+
std::ostream& os,
|
333
|
+
const CircularBufferOptions& options) {
|
334
|
+
return os << "CircularBufferOptions{ stage=" << options.stage
|
335
|
+
<< ", prefetch=" << options.prefetch << ", type=" << options.type
|
336
|
+
<< " }";
|
337
|
+
}
|
338
|
+
|
339
|
+
//! TensorView is our primitive Tensor Type used in code generation. It can be
|
340
|
+
//! thought of as representing physical memory, however, its dimensionality is
|
341
|
+
//! modifed as split/merge/computeAt functions are called. The history of
|
342
|
+
//! these transformations are kept and used for generating actual code
|
343
|
+
//! referencing physical memory. Generally when users are thinking of code
|
344
|
+
//! generation in reference to a Tensor, this is the class they should be
|
345
|
+
//! interacting with.
|
346
|
+
//!
|
347
|
+
//! The reason we need both TensorView and TensorDomain is that we need to have
|
348
|
+
//! a record of both what is being computed and how it is being computed. For
|
349
|
+
//! example we may have the operation:
|
350
|
+
//!
|
351
|
+
//! TV3[I, J, K] = TV2[I, J, K] + TV1[I, J, K]
|
352
|
+
//!
|
353
|
+
//! The mathematical operations here are on the tensor views TV1, TV2, and
|
354
|
+
//! TV3. This operation is a pointwise operation. To compute this pointwise
|
355
|
+
//! operation we iterate over the 3D TensorDomain [I, J, K], where K is the
|
356
|
+
//! fastest changing dimension.
|
357
|
+
//!
|
358
|
+
//! \todo Need to work on the const model for TensorView, making all functions
|
359
|
+
//! that should be const, const. Gave this a try but expanded really quickly.
|
360
|
+
//! getComputeAtAxis not being const because it can return a TV that some expect
|
361
|
+
//! to be non-const is the biggest headache.
|
362
|
+
//!
|
363
|
+
class NVF_API TensorView : public Val {
|
364
|
+
public:
|
365
|
+
TensorView(
|
366
|
+
IrBuilderPasskey passkey,
|
367
|
+
TensorDomain* domain,
|
368
|
+
DataType dtype,
|
369
|
+
MemoryType mtype = MemoryType::Local);
|
370
|
+
|
371
|
+
TensorView(const TensorView* src, IrCloner* ir_cloner);
|
372
|
+
|
373
|
+
NVFUSER_DECLARE_CLONE
|
374
|
+
|
375
|
+
std::string toString(int indent_size = 0) const override;
|
376
|
+
|
377
|
+
std::string toInlineString(int indent_size = 0) const override;
|
378
|
+
|
379
|
+
void printTransforms() const;
|
380
|
+
|
381
|
+
TensorDomain* domain() const {
|
382
|
+
return domain_;
|
383
|
+
}
|
384
|
+
|
385
|
+
void setContiguity(const std::vector<std::optional<bool>>& contig) {
|
386
|
+
domain()->setContiguity(contig);
|
387
|
+
}
|
388
|
+
|
389
|
+
void setContiguity(bool contig) {
|
390
|
+
setContiguity(TensorDomain::getContiguityFilledWith(
|
391
|
+
getMaybeAllocationDomain(), contig));
|
392
|
+
}
|
393
|
+
|
394
|
+
const std::vector<std::optional<bool>>& getContiguity() const {
|
395
|
+
return domain()->contiguity();
|
396
|
+
}
|
397
|
+
|
398
|
+
bool hasReduction() const {
|
399
|
+
return domain()->hasReduction();
|
400
|
+
}
|
401
|
+
|
402
|
+
bool hasBlockReduction() const {
|
403
|
+
return domain()->hasBlockReduction();
|
404
|
+
}
|
405
|
+
|
406
|
+
bool hasGridReduction() const {
|
407
|
+
return domain()->hasGridReduction();
|
408
|
+
}
|
409
|
+
|
410
|
+
bool hasBroadcast() const {
|
411
|
+
return domain()->hasBroadcast();
|
412
|
+
}
|
413
|
+
|
414
|
+
bool hasRoot() const {
|
415
|
+
return domain()->hasRoot();
|
416
|
+
}
|
417
|
+
|
418
|
+
bool hasAllocation() const {
|
419
|
+
return domain()->hasAllocation();
|
420
|
+
}
|
421
|
+
|
422
|
+
//! Returns true if this tensor is zero dimensional,
|
423
|
+
//! i.e. a wrapped scalar or an empty placeholder.
|
424
|
+
bool isZeroDim() const {
|
425
|
+
return nDims() == 0;
|
426
|
+
}
|
427
|
+
|
428
|
+
//! Returns true if this tensor does not contain
|
429
|
+
//! any value.
|
430
|
+
bool isEmptyTensor() const;
|
431
|
+
|
432
|
+
std::optional<int64_t> getReductionAxis() const {
|
433
|
+
return domain()->getReductionAxis();
|
434
|
+
}
|
435
|
+
|
436
|
+
const std::vector<IterDomain*>& getRootDomain() const {
|
437
|
+
return domain()->root();
|
438
|
+
};
|
439
|
+
|
440
|
+
const std::vector<IterDomain*>& getMaybeRootDomain() const {
|
441
|
+
return domain()->maybeRoot();
|
442
|
+
};
|
443
|
+
|
444
|
+
const std::vector<IterDomain*>& getLogicalDomain() const {
|
445
|
+
return domain()->logical();
|
446
|
+
};
|
447
|
+
|
448
|
+
const std::vector<IterDomain*>& getAllocationDomain() const {
|
449
|
+
return domain()->allocation();
|
450
|
+
};
|
451
|
+
|
452
|
+
const std::vector<IterDomain*>& getLoopDomain() const {
|
453
|
+
return domain()->loop();
|
454
|
+
};
|
455
|
+
|
456
|
+
const std::vector<IterDomain*>& getInitialLoopDomain() const {
|
457
|
+
return domain()->initialLoop();
|
458
|
+
};
|
459
|
+
|
460
|
+
// If allocation domain exists in domain() return it, otherwise return
|
461
|
+
// logical domain
|
462
|
+
const std::vector<IterDomain*>& getMaybeAllocationDomain() const {
|
463
|
+
return domain()->maybeAllocation();
|
464
|
+
};
|
465
|
+
|
466
|
+
void setLoopDomain(std::vector<IterDomain*> new_loop_domain) {
|
467
|
+
domain()->setLoopDomain(std::move(new_loop_domain));
|
468
|
+
}
|
469
|
+
|
470
|
+
void setAllocationDomain(
|
471
|
+
std::vector<IterDomain*> new_allocation_domain,
|
472
|
+
std::vector<std::optional<bool>> new_contiguity) {
|
473
|
+
domain()->setAllocationDomain(
|
474
|
+
std::move(new_allocation_domain), std::move(new_contiguity));
|
475
|
+
}
|
476
|
+
|
477
|
+
void setAllocationDomain(
|
478
|
+
std::vector<IterDomain*> new_allocation_domain,
|
479
|
+
bool new_contiguity) {
|
480
|
+
domain()->setAllocationDomain(
|
481
|
+
std::move(new_allocation_domain), new_contiguity);
|
482
|
+
}
|
483
|
+
|
484
|
+
IterDomain* axis(int64_t pos) const;
|
485
|
+
|
486
|
+
// Does it share outer axes with other tensors?
|
487
|
+
bool hasComputeAt() const {
|
488
|
+
return compute_at_pos_ > 0;
|
489
|
+
}
|
490
|
+
|
491
|
+
bool hasMaxProducerPosition() const {
|
492
|
+
return max_producer_pos_ > 0;
|
493
|
+
}
|
494
|
+
|
495
|
+
int64_t nDims() const {
|
496
|
+
return (int64_t)domain()->nDims();
|
497
|
+
}
|
498
|
+
|
499
|
+
// sets cpu_scalar_ value, which is special handling for CPU based zero-dim
|
500
|
+
// tensors (i.e. CPU Tensors that only have one value). This is only used if
|
501
|
+
// on an input value, otherwise ignored. This is important as special handling
|
502
|
+
// because these "scalars" should be type promoted as a tensor, but we want to
|
503
|
+
// avoid explicit copying of the data, so we want to pass the data value as a
|
504
|
+
// standard kernel argument value.
|
505
|
+
void setCpuScalar(bool is_cpu_scalar);
|
506
|
+
|
507
|
+
// returns cpu_scalar_ value, which is special handling for CPU based zero-dim
|
508
|
+
// tensors (i.e. CPU Tensors that only have one value). This is only used if
|
509
|
+
// on an input value, otherwise ignored. This is important as special handling
|
510
|
+
// because these "scalars" should be type promoted as a tensor, but we want to
|
511
|
+
// avoid explicit copying of the data, so we want to pass the data value as a
|
512
|
+
// standard kernel argument value.
|
513
|
+
bool isCpuScalar() const {
|
514
|
+
return cpu_scalar_;
|
515
|
+
}
|
516
|
+
|
517
|
+
// Returns the position that this tensor is produced at relative to its axes.
|
518
|
+
int64_t getComputeAtPosition() const {
|
519
|
+
return compute_at_pos_;
|
520
|
+
}
|
521
|
+
|
522
|
+
// Returns the maximum position of producers are being computed at relative to
|
523
|
+
// this tensor. This position dictates the clear expectations of producers.
|
524
|
+
int64_t getMaxProducerPosition() const {
|
525
|
+
return max_producer_pos_;
|
526
|
+
}
|
527
|
+
|
528
|
+
int64_t getMaybeMaxProducerPosition() const {
|
529
|
+
return maybe_max_producer_pos_;
|
530
|
+
}
|
531
|
+
|
532
|
+
//! This is used when we disconnect a tensorview from a reduction
|
533
|
+
//! operation and connect it to a non-reduction operator. We need
|
534
|
+
//! to remove the reduction ids on the tv in this case.
|
535
|
+
//! Currently only used in translate welford, and this function may
|
536
|
+
//! be refactored or extended if any more use cases appear.
|
537
|
+
void clearReductionIterDomains();
|
538
|
+
|
539
|
+
//! Compute this TensorView relative to a consumer position, -1 will
|
540
|
+
//! compute tensors inline with each other, 0 doesn't share
|
541
|
+
//! any loop nests between the tensors. It's an error when the given
|
542
|
+
//! position is not legally viable. Alternatively, when the mode
|
543
|
+
//! parameter is ComputeAtMode::BestEffort, the position is lowered
|
544
|
+
//! one by one until a valid position is found. When
|
545
|
+
//! ComputeAtMode::MostInlined is given, the position parameter is
|
546
|
+
//! ignored, and the deepest possible position is searched.
|
547
|
+
TensorView* computeAt(
|
548
|
+
TensorView* consumer,
|
549
|
+
int64_t position,
|
550
|
+
ComputeAtMode mode = ComputeAtMode::Standard);
|
551
|
+
|
552
|
+
//! Create a new broadcast IterDomain with the given extent in the loop domain
|
553
|
+
TensorView* broadcast(int64_t axis, int64_t extent = 1);
|
554
|
+
TensorView* broadcast(int64_t axis, Val* extent);
|
555
|
+
|
556
|
+
// Split "axis" into 2 axes
|
557
|
+
//! inner_split dictates if the factor section of the split should be inside
|
558
|
+
//! the
|
559
|
+
//! remainer or outside.
|
560
|
+
//! e.g. split(0, 4, inner_split = true) will result in:
|
561
|
+
//! tv[id{extent}] -> tv[id{ceilDiv(extent, factor)}, id{factor}]
|
562
|
+
//! e.g. split(0, 4, inner_split = false) will result in:
|
563
|
+
//! tv[id{extent}] -> tv[id{factor}, id{ceilDiv(extent, factor)}]
|
564
|
+
TensorView* split(int64_t axis, int64_t factor, bool inner_split = true);
|
565
|
+
|
566
|
+
// Split "axis" into 2 axes where the inner axes is size of "factor"
|
567
|
+
// and outer axis is size axis.size() / factor. Factor can be a symbolic
|
568
|
+
// value instead of constant. This requires setting the symbolic value as an
|
569
|
+
// input, or using a parallel dim from NamedScalar::getParallelDim
|
570
|
+
TensorView* split(int64_t axis, Val* factor, bool inner_split = true);
|
571
|
+
|
572
|
+
// Merge axis_o and axis_i into 1 IterDomain
|
573
|
+
TensorView* merge(int64_t axis_o, int64_t axis_i);
|
574
|
+
|
575
|
+
// Merge axis and axis+1 into 1 IterDomain
|
576
|
+
TensorView* merge(int64_t axis) {
|
577
|
+
return merge(axis, axis + 1);
|
578
|
+
}
|
579
|
+
|
580
|
+
// Flatten the axis from `from` to `to` into a single axis.
|
581
|
+
// Both `from` and `to` are inclusive.
|
582
|
+
TensorView* flatten(int64_t from = 0, int64_t to = -1);
|
583
|
+
|
584
|
+
// Reorder axes according to old2new[old_pos] = new_pos
|
585
|
+
TensorView* reorder(const std::unordered_map<int64_t, int64_t>& old2new);
|
586
|
+
TensorView* reorder(
|
587
|
+
const std::initializer_list<std::pair<const int64_t, int64_t>>& old2new);
|
588
|
+
|
589
|
+
// Reorder axes based on the vector permutation.
|
590
|
+
// In terms of the function above, this can be seen as old2new[index] =
|
591
|
+
// permutation[index]
|
592
|
+
TensorView* reorder(const std::vector<int64_t>& permutation);
|
593
|
+
TensorView* reorder(const std::initializer_list<int64_t>& permutation);
|
594
|
+
|
595
|
+
//! Swizzle the rectangular tile defined by the iterdomains corresponding
|
596
|
+
//! to the 2 given indices.
|
597
|
+
TensorView* swizzle(SwizzleType swizzle_type, int64_t x, int64_t y);
|
598
|
+
TensorView* swizzle(
|
599
|
+
Swizzle2DType swizzle_type,
|
600
|
+
int64_t x,
|
601
|
+
int64_t y,
|
602
|
+
SwizzleMode swizzle_mode = SwizzleMode::Data);
|
603
|
+
|
604
|
+
// WARNING: rFactor does not return this TensorView, ir returns a new
|
605
|
+
// tensorview consumed by this!
|
606
|
+
//
|
607
|
+
// Take reduction axes out of this domain, and create a new
|
608
|
+
// domain. New domain will be used to create this domain.
|
609
|
+
//
|
610
|
+
// For example:
|
611
|
+
// TV1[I0, R1, R2, I3] = TV0[I0, I1, I2, I3]
|
612
|
+
//
|
613
|
+
// After:
|
614
|
+
// TV1->rfactor({1}), TV1 is transformed to -> TV1[I0, R2, I3]
|
615
|
+
//
|
616
|
+
// The TensorView returned is: TV2[I0, R1, I2, I3]
|
617
|
+
//
|
618
|
+
// The reduction will now beset as:
|
619
|
+
// TV2[I0, R1, I2, I3] = TV0[I0, I1, I2, I3]
|
620
|
+
// TV1[I0, R2, I3] = TV2[I0, R1, I2, I3]
|
621
|
+
//
|
622
|
+
TensorView* rFactor(const std::vector<int64_t>& axes);
|
623
|
+
|
624
|
+
//! Multi-output version of rFactor, semantically similar with
|
625
|
+
//! the reduction version except that the rfactor is done
|
626
|
+
//! for all outputs in a consistent way
|
627
|
+
std::vector<TensorView*> rFactor(
|
628
|
+
const std::vector<int64_t>& axes,
|
629
|
+
const std::vector<TensorView*>& tvs);
|
630
|
+
|
631
|
+
//! Create a TensorView before the original tensor. A common use case is to
|
632
|
+
//! write results into shared memory or registers before moving to global
|
633
|
+
//! memory. Analogous to TVM Cache_Write
|
634
|
+
//!
|
635
|
+
//! @param op_type: memory operator to use for the inserted op between
|
636
|
+
//! the the data tensor and the cache tensor
|
637
|
+
TensorView* cacheBefore(LoadStoreOpType op_type = LoadStoreOpType::Set);
|
638
|
+
|
639
|
+
//! Create a TensorView after the original tensor. A common use case is to
|
640
|
+
//! read tensor into shared memory or registers. Analogous to TVM Cache_Read
|
641
|
+
//!
|
642
|
+
//! @param op_type: memory operator to use for the inserted op between
|
643
|
+
//! the the data tensor and the cache tensor
|
644
|
+
//! @param cache_op: cache operator, see enum class CacheOp
|
645
|
+
//! @param propagate_allocation_domain: replay allocation domain on cached
|
646
|
+
//! load
|
647
|
+
//! @param cached_uses: if empty, cache all uses; otherwise, only try to cache
|
648
|
+
//! uses in cached_uses.
|
649
|
+
TensorView* cacheAfter(
|
650
|
+
LoadStoreOpType op_type = LoadStoreOpType::Set,
|
651
|
+
CacheOp cache_op = CacheOp::Unspecified,
|
652
|
+
bool propagate_allocation_domain = true,
|
653
|
+
std::vector<Expr*> cached_uses = {});
|
654
|
+
|
655
|
+
// For a fusion output with other uses, we want to avoid writing to global
|
656
|
+
// memory and then reading the output again. We write to global memory
|
657
|
+
// separately after an operation. We replace this fusion output with the
|
658
|
+
// direct write TensorView.
|
659
|
+
TensorView* cacheFork();
|
660
|
+
|
661
|
+
MemoryType getMemoryType() const {
|
662
|
+
return memory_type_;
|
663
|
+
}
|
664
|
+
|
665
|
+
void setMemoryType(MemoryType mt);
|
666
|
+
|
667
|
+
// Apply circular buffering transformation. Negative prefetch_distance
|
668
|
+
// means "all but", for example, -1 means number_of_stages - 1.
|
669
|
+
void circularBuffer(
|
670
|
+
int64_t number_of_stages,
|
671
|
+
int64_t prefetch_distance = -1,
|
672
|
+
CircularBufferType type = Pipelined(false));
|
673
|
+
|
674
|
+
// Returns true if this tensor is circular buffered.
|
675
|
+
bool isCircularBuffered() const {
|
676
|
+
return circular_buffer_options_.isEnable();
|
677
|
+
}
|
678
|
+
|
679
|
+
const CircularBufferOptions& circularBufferOptions() const {
|
680
|
+
return circular_buffer_options_;
|
681
|
+
}
|
682
|
+
|
683
|
+
//! Transforms the innermost iterdomains according to the given mma swizzle,
|
684
|
+
//! this should be used on the tvs that are either inputs/outputs of an
|
685
|
+
//! MmaOp, or any tv's that are involved in prolog/epilog fusions and need to
|
686
|
+
//! have a matching thread swizzle with the mma operand/result.
|
687
|
+
//! More detail on usage see [MmaSwizzler] in scheduler/mma_utils.h .
|
688
|
+
void applyMmaSwizzle(MmaOperand operand);
|
689
|
+
void applyMmaSwizzle(MmaInputSmemSwizzle swizzle);
|
690
|
+
|
691
|
+
//! Function to schedule the swizzled TMA box.
|
692
|
+
//! This functions works on the assumption that the TMA box is 2D
|
693
|
+
//! and the inner-dimension is less or equal to the swizzle size.
|
694
|
+
//! This doesn't work for the swizzle none mode. For more details
|
695
|
+
//! refer to the figure doc/dev/tma/swizzle.svg
|
696
|
+
void swizzleTMABox(MmaInputSmemSwizzle swizzle);
|
697
|
+
|
698
|
+
//! Transforms the innermost iterdomains according to the given mma swizzle,
|
699
|
+
//! this should be used on the tvs that are inputs of a MmaOp or are loaded
|
700
|
+
//! using TMA.
|
701
|
+
void applyMmaSwizzleForTMALoad(MmaInputSmemSwizzle swizzle);
|
702
|
+
|
703
|
+
//! Returns if this tensor view has swizzle operator on its tensor domain.
|
704
|
+
//! This is the temporary flag for indicating that the new swizzle
|
705
|
+
//! implementation is used and will be removed in follow ups.
|
706
|
+
bool hasSwizzleOp() const {
|
707
|
+
return has_swizzle_op_;
|
708
|
+
}
|
709
|
+
|
710
|
+
//! A temporary helper function for the transition from Swizzle2D to Swizzle
|
711
|
+
void setHasSwizzleOp() {
|
712
|
+
has_swizzle_op_ = true;
|
713
|
+
}
|
714
|
+
|
715
|
+
friend TransformPropagator;
|
716
|
+
friend MostInlinedTransformPropagator;
|
717
|
+
friend TransformReplay;
|
718
|
+
friend OptOutMutator;
|
719
|
+
friend class InlineBatchingGuard;
|
720
|
+
friend class ir_utils::TVDomainGuard;
|
721
|
+
|
722
|
+
// Inline the computation of this tensor into its consumer at the given
|
723
|
+
// position. If this tensor is already inlined in a higher position, then this
|
724
|
+
// call is a no-op. If the right most dimensions before `pos` are
|
725
|
+
// broadcasting, then will not inline into these broadcastings. If
|
726
|
+
// best_effort, then will inline into the highest allowed position that is <=
|
727
|
+
// `pos`.
|
728
|
+
void inlineAt(
|
729
|
+
int64_t pos,
|
730
|
+
bool best_effort = false,
|
731
|
+
MaxPosCalculator* calc = nullptr);
|
732
|
+
|
733
|
+
//! Inline the computation of this tensor into a consumer at the given
|
734
|
+
//! position. The consumer to compute with is determined when the
|
735
|
+
//! fusion is lowered. Specifically, it is the first consumer tensor
|
736
|
+
//! in the topologically ordered dependency graph. Before the
|
737
|
+
//! lowering, its compute-with consumer is considered unresolved,
|
738
|
+
//! which is then resolved by resolveComputeWith below.
|
739
|
+
//!
|
740
|
+
//! The position is relative to its own domain. It is an
|
741
|
+
//! error if the position is smaller than the compute-at position. If this
|
742
|
+
//! tensor is already inlined in a higher position with the same
|
743
|
+
//! consumer, then this call is a no-op. The actual position is
|
744
|
+
//! computed in the same way as inlineAt, except that computeWith
|
745
|
+
//! does not have the constraint of the persistent data-dependency pattern.
|
746
|
+
void computeWith(int64_t pos, bool best_effort = false);
|
747
|
+
|
748
|
+
//! Set the actual consumer tensors that this tensor is
|
749
|
+
//! computed with. Requires a topologically sorted list expressions,
|
750
|
+
//! which can be obtained reorderExprsForComputeAt. Return true if
|
751
|
+
//! resolution is actually done. This should only be done in the
|
752
|
+
//! Kernel container.
|
753
|
+
bool resolveComputeWith(const std::vector<Expr*>& sorted_exprs);
|
754
|
+
|
755
|
+
bool hasComputeWith() const {
|
756
|
+
return getComputeWithPosition() > getComputeAtPosition();
|
757
|
+
}
|
758
|
+
|
759
|
+
bool hasResolvedComputeWith() const {
|
760
|
+
return !compute_with_consumers_.empty();
|
761
|
+
}
|
762
|
+
|
763
|
+
//! Query if this tensor is computed with a given consumer.
|
764
|
+
bool isComputedWith(const TensorView* consumer) const;
|
765
|
+
|
766
|
+
//! Return the tensors with which this tensor is computed. It is an
|
767
|
+
//! error to use this function without first resolving computeWith.
|
768
|
+
const std::vector<TensorView*>& getComputeWithConsumers() const;
|
769
|
+
|
770
|
+
int64_t getComputeWithPosition() const {
|
771
|
+
return compute_with_pos_;
|
772
|
+
}
|
773
|
+
|
774
|
+
int64_t getMaxComputePosition() const {
|
775
|
+
return std::max(getComputeWithPosition(), getComputeAtPosition());
|
776
|
+
}
|
777
|
+
|
778
|
+
//! Returns the position that this tensor is produced at for a given
|
779
|
+
//! consumer. If this tensor is computed with the given consumer,
|
780
|
+
//! which also means its computeWith needs to have been resolved, the
|
781
|
+
//! computeWith position is returned. Otherwise, the default computeAt
|
782
|
+
//! position is retured.
|
783
|
+
int64_t getComputePosition(const TensorView* consumer) const;
|
784
|
+
|
785
|
+
// Update the max producer position of the current tensor. This is required
|
786
|
+
// when we modify producer-consumer relationship of a scheduled tensor, for
|
787
|
+
// example, grouping multiple reductions.
|
788
|
+
void updateMaxProducerPosition();
|
789
|
+
|
790
|
+
// Commit the current changes in loop domain into rFactor domain. This
|
791
|
+
// function can be used to do implicit transpose and view, but today, only
|
792
|
+
// implicit transpose is being tested. This function can be dangerous: it
|
793
|
+
// changes the the semantics of the current tensor without updating its
|
794
|
+
// consumers consistently, and there is no reliable way to detect this
|
795
|
+
// inconsistency. It is the responsibility of the caller of this function to
|
796
|
+
// ensure consistency.
|
797
|
+
void commitLeafToLogical();
|
798
|
+
|
799
|
+
//! Request that we reclaim the memory of this tv before any subsequent
|
800
|
+
//! tensors are allocated.
|
801
|
+
//!
|
802
|
+
//! This method influences the shared memory allocator that assigns shared
|
803
|
+
//! memory addresses at lowering. It ensures that the proper synchronization
|
804
|
+
//! is present in the kernel to reuse memory and inserts new block
|
805
|
+
//! synchronizations if necessary.
|
806
|
+
void promoteReuse(bool b = true) {
|
807
|
+
NVF_CHECK(
|
808
|
+
memory_type_ == MemoryType::Shared,
|
809
|
+
"promoteReuse should only be called on shared memory tensors");
|
810
|
+
promote_reuse_ = b;
|
811
|
+
}
|
812
|
+
|
813
|
+
//! Returns whether we should insert syncs if needed in order to reuse the
|
814
|
+
//! memory of this tensor.
|
815
|
+
bool shouldPromoteReuse() const {
|
816
|
+
return promote_reuse_;
|
817
|
+
}
|
818
|
+
|
819
|
+
void setDeviceMesh(const DeviceMesh& mesh) {
|
820
|
+
mesh_ = mesh;
|
821
|
+
}
|
822
|
+
|
823
|
+
const DeviceMesh& getDeviceMesh() const {
|
824
|
+
return mesh_;
|
825
|
+
}
|
826
|
+
|
827
|
+
bool hasDeviceMesh() const {
|
828
|
+
return !mesh_.vector().empty();
|
829
|
+
}
|
830
|
+
|
831
|
+
protected:
|
832
|
+
void setDomain(TensorDomain* td) {
|
833
|
+
domain_ = td;
|
834
|
+
}
|
835
|
+
|
836
|
+
private:
|
837
|
+
int64_t wrapDim(int64_t dim) const {
|
838
|
+
return nvfuser::wrapDim(dim, nDims());
|
839
|
+
}
|
840
|
+
|
841
|
+
//! A helper function to maintain the consistency of schedules of
|
842
|
+
//! multiple outputs wheen doing rfactor on multi-output reduction ops.
|
843
|
+
TensorView* multiOutputRFactorHelper(
|
844
|
+
TensorView* tv,
|
845
|
+
const std::vector<int64_t>& axes);
|
846
|
+
|
847
|
+
void clearComputeWith();
|
848
|
+
|
849
|
+
private:
|
850
|
+
TensorDomain* domain_ = nullptr;
|
851
|
+
int64_t compute_at_pos_ = 0;
|
852
|
+
int64_t max_producer_pos_ = 0;
|
853
|
+
MemoryType memory_type_ = MemoryType::Local;
|
854
|
+
|
855
|
+
//! Indicates the circular buffering options if applicable.
|
856
|
+
CircularBufferOptions circular_buffer_options_;
|
857
|
+
|
858
|
+
// special handling for CPU based zero-dim tensors (i.e. CPU Tensors that
|
859
|
+
// only have one value). This is only used if on an input value, otherwise
|
860
|
+
// ignored. This is important as special handling because these "scalars"
|
861
|
+
// should be type promoted as a tensor, but we want to avoid explicit
|
862
|
+
// copying of the data, so we want to pass the data value as a standard
|
863
|
+
// kernel argument value.
|
864
|
+
bool cpu_scalar_ = false;
|
865
|
+
|
866
|
+
//! Indicates if this tensor view has swizzle operator on its tensor domain.
|
867
|
+
//! This is the temporary flag for indicating that the new swizzle
|
868
|
+
//! implementation is used and will be removed in follow ups.
|
869
|
+
bool has_swizzle_op_ = false;
|
870
|
+
|
871
|
+
//! Direct consumer tensors that this tensor is computed with
|
872
|
+
std::vector<TensorView*> compute_with_consumers_;
|
873
|
+
|
874
|
+
//! Position where this tensor is computed with the compute-with
|
875
|
+
//! consumer tensors. It should be always be equal or greater than
|
876
|
+
//! the computeAt position
|
877
|
+
int64_t compute_with_pos_ = 0;
|
878
|
+
|
879
|
+
//! Maximum position where producers may be computed at, including
|
880
|
+
//! unresolved computeWith. This is equal to max_producer_pos_ when
|
881
|
+
//! no producer has unresolved computeWith. It is only used before
|
882
|
+
//! resolving computeWith so that no IterDomain should never be
|
883
|
+
//! transformed when there may actually be a producer tensor that
|
884
|
+
//! may be computed at.
|
885
|
+
int64_t maybe_max_producer_pos_ = 0;
|
886
|
+
|
887
|
+
//! When this is true, it indicates, if this is a shared memory tensor and
|
888
|
+
//! there other shared memory tensors whose lifetimes do not overlap and come
|
889
|
+
//! later than this tensor's lifetime, that we should ensure that thread
|
890
|
+
//! blocks are synchronized such that all threads have performed their last
|
891
|
+
//! read of this tensor (or any tensors aliasing in) before writing to the
|
892
|
+
//! current tensor. This will then allow us to safely reuse the memory
|
893
|
+
//! allocated to this tensor.
|
894
|
+
bool promote_reuse_ = false;
|
895
|
+
|
896
|
+
// Device Mesh on which the Tensor is sharded
|
897
|
+
DeviceMesh mesh_;
|
898
|
+
};
|
899
|
+
|
900
|
+
//! A simple TensorView builder
|
901
|
+
//!
|
902
|
+
//! Example usage:
|
903
|
+
//!
|
904
|
+
//! auto tv = TensorViewBuilder()
|
905
|
+
//! .ndims(ndims)
|
906
|
+
//! .dtype(dtype)
|
907
|
+
//! .contiguity(contiguity)
|
908
|
+
//! .build();
|
909
|
+
//!
|
910
|
+
class NVF_API TensorViewBuilder {
|
911
|
+
public:
|
912
|
+
//! Set the number of dimensions of the tensor (default 0, meaning scalar)
|
913
|
+
TensorViewBuilder& ndims(int64_t ndims);
|
914
|
+
|
915
|
+
//! Set the data type of the tensor (default DataType::Float)
|
916
|
+
TensorViewBuilder& dtype(DataType dtype);
|
917
|
+
|
918
|
+
//! Set the contiguity information (default non-contiguous)
|
919
|
+
TensorViewBuilder& contiguity(std::vector<std::optional<bool>> contiguity);
|
920
|
+
TensorViewBuilder& contiguity(bool contiguity);
|
921
|
+
|
922
|
+
//! Set the shape (default 0 dimensional, ie. scalar)
|
923
|
+
TensorViewBuilder& shape(std::vector<Val*> shape);
|
924
|
+
TensorViewBuilder& shape(const std::vector<int64_t>& shape);
|
925
|
+
|
926
|
+
//! Set if a dimension is expanded
|
927
|
+
TensorViewBuilder& expanded(std::vector<bool> expanded);
|
928
|
+
|
929
|
+
//! Set the permutation from allocation domain on root domain
|
930
|
+
TensorViewBuilder& strideOrder(std::vector<int64_t> stride_order);
|
931
|
+
|
932
|
+
//! Creates a new TensorView with the specified options
|
933
|
+
TensorView* build() const;
|
934
|
+
|
935
|
+
private:
|
936
|
+
int64_t ndims_ = 0;
|
937
|
+
DataType dtype_ = DataType::Float;
|
938
|
+
|
939
|
+
// contiguity_ is the vector that you will pass to the constructor of
|
940
|
+
// TensorDomain. However, constructing this vector can be non-trivial, because
|
941
|
+
// it is required to be nullopt for broadcast dimensions. We often want to
|
942
|
+
// create contiguity vector that represents all contiguous or all
|
943
|
+
// discontiguous. uniform_contiguity_ is there to make this use case more
|
944
|
+
// convenient. If set, then TensorViewBuilder will automatically fill the
|
945
|
+
// contiguity with the value of uniform_contiguity_ where it is not required
|
946
|
+
// to be nullopt. Note that you can only set one of contiguity_ or
|
947
|
+
// uniform_contiguity_.
|
948
|
+
std::vector<std::optional<bool>> contiguity_;
|
949
|
+
std::optional<bool> uniform_contiguity_ = std::nullopt;
|
950
|
+
|
951
|
+
std::vector<Val*> shape_;
|
952
|
+
|
953
|
+
std::vector<int64_t> stride_order_;
|
954
|
+
std::vector<bool> expanded_;
|
955
|
+
};
|
956
|
+
|
957
|
+
} // namespace nvfuser
|