nvfuser-cu121-torch25 0.2.25.dev20250201__cp312-cp312-manylinux_2_28_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- nvfuser/_C.cpython-312-x86_64-linux-gnu.so +0 -0
- nvfuser/__init__.py +618 -0
- nvfuser/__init__.pyi +4 -0
- nvfuser/contrib/__init__.py +9 -0
- nvfuser/contrib/nn/__init__.py +13 -0
- nvfuser/contrib/nn/normalization.py +725 -0
- nvfuser/include/nvfuser/alias_analysis.h +116 -0
- nvfuser/include/nvfuser/bfs.h +929 -0
- nvfuser/include/nvfuser/codegen.h +26 -0
- nvfuser/include/nvfuser/compute_at.h +28 -0
- nvfuser/include/nvfuser/compute_at_map.h +394 -0
- nvfuser/include/nvfuser/contiguity.h +351 -0
- nvfuser/include/nvfuser/cuda_utils.h +50 -0
- nvfuser/include/nvfuser/debug.h +50 -0
- nvfuser/include/nvfuser/device_lower/analysis/bank_conflict.h +53 -0
- nvfuser/include/nvfuser/device_lower/analysis/circular_buffer.h +109 -0
- nvfuser/include/nvfuser/device_lower/analysis/device_version.h +65 -0
- nvfuser/include/nvfuser/device_lower/analysis/divisible_split.h +28 -0
- nvfuser/include/nvfuser/device_lower/analysis/fused_reduction.h +36 -0
- nvfuser/include/nvfuser/device_lower/analysis/index_compute.h +322 -0
- nvfuser/include/nvfuser/device_lower/analysis/predicate_elimination.h +71 -0
- nvfuser/include/nvfuser/device_lower/analysis/sync_information.h +47 -0
- nvfuser/include/nvfuser/device_lower/analysis/tensor_memory.h +65 -0
- nvfuser/include/nvfuser/device_lower/analysis/thread_predicate.h +158 -0
- nvfuser/include/nvfuser/device_lower/analysis/tma.h +93 -0
- nvfuser/include/nvfuser/device_lower/analysis/trivial_broadcast.h +75 -0
- nvfuser/include/nvfuser/device_lower/id_model_options.h +135 -0
- nvfuser/include/nvfuser/device_lower/lower2device.h +391 -0
- nvfuser/include/nvfuser/device_lower/pass/alias_memory.h +37 -0
- nvfuser/include/nvfuser/device_lower/pass/allocation.h +32 -0
- nvfuser/include/nvfuser/device_lower/pass/circular_buffer.h +191 -0
- nvfuser/include/nvfuser/device_lower/pass/expr_sort.h +17 -0
- nvfuser/include/nvfuser/device_lower/pass/fusion_simplifier.h +21 -0
- nvfuser/include/nvfuser/device_lower/pass/grid_serialization.h +26 -0
- nvfuser/include/nvfuser/device_lower/pass/index.h +200 -0
- nvfuser/include/nvfuser/device_lower/pass/inline_ptx.h +16 -0
- nvfuser/include/nvfuser/device_lower/pass/insert_syncs.h +39 -0
- nvfuser/include/nvfuser/device_lower/pass/instrument.h +24 -0
- nvfuser/include/nvfuser/device_lower/pass/loop_rotation.h +150 -0
- nvfuser/include/nvfuser/device_lower/pass/loops.h +68 -0
- nvfuser/include/nvfuser/device_lower/pass/magic_zero.h +86 -0
- nvfuser/include/nvfuser/device_lower/pass/misaligned_vectorization.h +118 -0
- nvfuser/include/nvfuser/device_lower/pass/predicate.h +23 -0
- nvfuser/include/nvfuser/device_lower/pass/replace_size.h +24 -0
- nvfuser/include/nvfuser/device_lower/pass/scalar_hoist.h +115 -0
- nvfuser/include/nvfuser/device_lower/pass/unroll.h +98 -0
- nvfuser/include/nvfuser/device_lower/pass/vectorize_welford.h +45 -0
- nvfuser/include/nvfuser/device_lower/pass/warp_reduce.h +23 -0
- nvfuser/include/nvfuser/device_lower/utils.h +382 -0
- nvfuser/include/nvfuser/device_lower/validation.h +74 -0
- nvfuser/include/nvfuser/disjoint_set.h +556 -0
- nvfuser/include/nvfuser/dispatch.h +334 -0
- nvfuser/include/nvfuser/driver_api.h +49 -0
- nvfuser/include/nvfuser/dynamic_transform.h +316 -0
- nvfuser/include/nvfuser/dynamic_type/C++20/type_traits +37 -0
- nvfuser/include/nvfuser/dynamic_type/dynamic_type.h +969 -0
- nvfuser/include/nvfuser/dynamic_type/error.h +24 -0
- nvfuser/include/nvfuser/dynamic_type/type_traits.h +703 -0
- nvfuser/include/nvfuser/evaluator_common.h +295 -0
- nvfuser/include/nvfuser/exceptions.h +283 -0
- nvfuser/include/nvfuser/expr_evaluator.h +125 -0
- nvfuser/include/nvfuser/expr_simplifier.h +218 -0
- nvfuser/include/nvfuser/flatbuffers/allocator.h +68 -0
- nvfuser/include/nvfuser/flatbuffers/array.h +253 -0
- nvfuser/include/nvfuser/flatbuffers/base.h +486 -0
- nvfuser/include/nvfuser/flatbuffers/buffer.h +154 -0
- nvfuser/include/nvfuser/flatbuffers/buffer_ref.h +53 -0
- nvfuser/include/nvfuser/flatbuffers/code_generator.h +80 -0
- nvfuser/include/nvfuser/flatbuffers/code_generators.h +234 -0
- nvfuser/include/nvfuser/flatbuffers/default_allocator.h +64 -0
- nvfuser/include/nvfuser/flatbuffers/detached_buffer.h +114 -0
- nvfuser/include/nvfuser/flatbuffers/flatbuffer_builder.h +1225 -0
- nvfuser/include/nvfuser/flatbuffers/flatbuffers.h +272 -0
- nvfuser/include/nvfuser/flatbuffers/flatc.h +130 -0
- nvfuser/include/nvfuser/flatbuffers/flex_flat_util.h +36 -0
- nvfuser/include/nvfuser/flatbuffers/flexbuffers.h +1889 -0
- nvfuser/include/nvfuser/flatbuffers/grpc.h +300 -0
- nvfuser/include/nvfuser/flatbuffers/hash.h +127 -0
- nvfuser/include/nvfuser/flatbuffers/idl.h +1359 -0
- nvfuser/include/nvfuser/flatbuffers/minireflect.h +420 -0
- nvfuser/include/nvfuser/flatbuffers/reflection.h +522 -0
- nvfuser/include/nvfuser/flatbuffers/reflection_generated.h +1471 -0
- nvfuser/include/nvfuser/flatbuffers/registry.h +128 -0
- nvfuser/include/nvfuser/flatbuffers/stl_emulation.h +513 -0
- nvfuser/include/nvfuser/flatbuffers/string.h +64 -0
- nvfuser/include/nvfuser/flatbuffers/struct.h +53 -0
- nvfuser/include/nvfuser/flatbuffers/table.h +168 -0
- nvfuser/include/nvfuser/flatbuffers/util.h +731 -0
- nvfuser/include/nvfuser/flatbuffers/vector.h +393 -0
- nvfuser/include/nvfuser/flatbuffers/vector_downward.h +273 -0
- nvfuser/include/nvfuser/flatbuffers/verifier.h +317 -0
- nvfuser/include/nvfuser/fusion.h +511 -0
- nvfuser/include/nvfuser/fusion_guard.h +37 -0
- nvfuser/include/nvfuser/fusion_profiler.h +311 -0
- nvfuser/include/nvfuser/fusion_segmenter.h +751 -0
- nvfuser/include/nvfuser/global_allocator.h +27 -0
- nvfuser/include/nvfuser/grouped_reduction.h +47 -0
- nvfuser/include/nvfuser/host_ir/container.h +60 -0
- nvfuser/include/nvfuser/host_ir/executor.h +152 -0
- nvfuser/include/nvfuser/host_ir/host_ir.h +320 -0
- nvfuser/include/nvfuser/host_ir/lower.h +35 -0
- nvfuser/include/nvfuser/id_model/circular_buffer_indexing.h +56 -0
- nvfuser/include/nvfuser/id_model/contiguity.h +166 -0
- nvfuser/include/nvfuser/id_model/id_model.h +359 -0
- nvfuser/include/nvfuser/id_model/id_model_index_compute.h +81 -0
- nvfuser/include/nvfuser/id_model/indexing.h +208 -0
- nvfuser/include/nvfuser/id_model/indexing_traversal.h +72 -0
- nvfuser/include/nvfuser/id_model/indexing_utils.h +62 -0
- nvfuser/include/nvfuser/id_model/loop_promotion.h +180 -0
- nvfuser/include/nvfuser/id_model/predicate_indexing.h +104 -0
- nvfuser/include/nvfuser/id_model/schedule.h +54 -0
- nvfuser/include/nvfuser/id_model/to_string.h +87 -0
- nvfuser/include/nvfuser/id_model/transform_replay.h +58 -0
- nvfuser/include/nvfuser/id_model/utils.h +176 -0
- nvfuser/include/nvfuser/id_model/validation_utils.h +55 -0
- nvfuser/include/nvfuser/index_compute.h +651 -0
- nvfuser/include/nvfuser/instrumentation.h +107 -0
- nvfuser/include/nvfuser/ir/all_nodes.h +14 -0
- nvfuser/include/nvfuser/ir/base_nodes.h +687 -0
- nvfuser/include/nvfuser/ir/builder.h +215 -0
- nvfuser/include/nvfuser/ir/builder_passkey.h +29 -0
- nvfuser/include/nvfuser/ir/cloner.h +185 -0
- nvfuser/include/nvfuser/ir/container.h +226 -0
- nvfuser/include/nvfuser/ir/graphviz.h +119 -0
- nvfuser/include/nvfuser/ir/interface_nodes.h +957 -0
- nvfuser/include/nvfuser/ir/internal_base_nodes.h +744 -0
- nvfuser/include/nvfuser/ir/internal_nodes.h +2792 -0
- nvfuser/include/nvfuser/ir/iostream.h +98 -0
- nvfuser/include/nvfuser/ir/printer.h +57 -0
- nvfuser/include/nvfuser/ir/utils.h +801 -0
- nvfuser/include/nvfuser/iter_visitor.h +661 -0
- nvfuser/include/nvfuser/kernel.h +299 -0
- nvfuser/include/nvfuser/kernel_db/kernel_db.h +109 -0
- nvfuser/include/nvfuser/kernel_db/utils.h +37 -0
- nvfuser/include/nvfuser/kernel_ir.h +1457 -0
- nvfuser/include/nvfuser/kernel_ir_dispatch.h +147 -0
- nvfuser/include/nvfuser/linked_hash_map.h +97 -0
- nvfuser/include/nvfuser/logical_domain_map.h +577 -0
- nvfuser/include/nvfuser/macros.h +23 -0
- nvfuser/include/nvfuser/mma_type.h +257 -0
- nvfuser/include/nvfuser/multidevice/c10d_mock.h +175 -0
- nvfuser/include/nvfuser/multidevice/communication.h +232 -0
- nvfuser/include/nvfuser/multidevice/communicator.h +179 -0
- nvfuser/include/nvfuser/multidevice/device_mesh.h +95 -0
- nvfuser/include/nvfuser/multidevice/executor.h +107 -0
- nvfuser/include/nvfuser/multidevice/multidevice.h +18 -0
- nvfuser/include/nvfuser/multidevice/utils.h +187 -0
- nvfuser/include/nvfuser/non_divisible_split.h +86 -0
- nvfuser/include/nvfuser/opaque_type.h +129 -0
- nvfuser/include/nvfuser/ops/alias.h +192 -0
- nvfuser/include/nvfuser/ops/all_ops.h +13 -0
- nvfuser/include/nvfuser/ops/arith.h +712 -0
- nvfuser/include/nvfuser/ops/composite.h +130 -0
- nvfuser/include/nvfuser/ops/indexing.h +55 -0
- nvfuser/include/nvfuser/ops/normalization.h +263 -0
- nvfuser/include/nvfuser/ops/utils.h +127 -0
- nvfuser/include/nvfuser/options.h +313 -0
- nvfuser/include/nvfuser/parallel_dimension_map.h +95 -0
- nvfuser/include/nvfuser/parallel_type_bitmap.h +365 -0
- nvfuser/include/nvfuser/polymorphic_value.h +432 -0
- nvfuser/include/nvfuser/predicate_compute.h +213 -0
- nvfuser/include/nvfuser/python_frontend/distributed_tensor.h +50 -0
- nvfuser/include/nvfuser/python_frontend/fusion_cache.h +298 -0
- nvfuser/include/nvfuser/python_frontend/fusion_definition.h +372 -0
- nvfuser/include/nvfuser/python_frontend/fusion_record.h +3124 -0
- nvfuser/include/nvfuser/python_frontend/fusion_state.h +143 -0
- nvfuser/include/nvfuser/python_frontend/python_bindings.h +27 -0
- nvfuser/include/nvfuser/python_frontend/segmentation.h +246 -0
- nvfuser/include/nvfuser/python_frontend/translation.h +20 -0
- nvfuser/include/nvfuser/python_frontend/translation_utils.h +308 -0
- nvfuser/include/nvfuser/scheduler/all_schedulers.h +17 -0
- nvfuser/include/nvfuser/scheduler/ampere_multi_matmul.h +206 -0
- nvfuser/include/nvfuser/scheduler/cache_policy_refiner.h +19 -0
- nvfuser/include/nvfuser/scheduler/compile_time_info.h +322 -0
- nvfuser/include/nvfuser/scheduler/debug_utils.h +68 -0
- nvfuser/include/nvfuser/scheduler/expr_eval_sched.h +45 -0
- nvfuser/include/nvfuser/scheduler/heuristic.h +113 -0
- nvfuser/include/nvfuser/scheduler/hopper_multi_matmul.h +204 -0
- nvfuser/include/nvfuser/scheduler/mark_aliases.h +19 -0
- nvfuser/include/nvfuser/scheduler/matmul.h +40 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic.h +293 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin.h +65 -0
- nvfuser/include/nvfuser/scheduler/matmul_heuristic_plugin_api.h +99 -0
- nvfuser/include/nvfuser/scheduler/matmul_utils.h +54 -0
- nvfuser/include/nvfuser/scheduler/mma_utils.h +500 -0
- nvfuser/include/nvfuser/scheduler/multi_matmul.h +74 -0
- nvfuser/include/nvfuser/scheduler/no_op.h +48 -0
- nvfuser/include/nvfuser/scheduler/normalization_inner.h +49 -0
- nvfuser/include/nvfuser/scheduler/normalization_inner_outer.h +51 -0
- nvfuser/include/nvfuser/scheduler/normalization_outer.h +48 -0
- nvfuser/include/nvfuser/scheduler/normalization_utils.h +379 -0
- nvfuser/include/nvfuser/scheduler/pointwise.h +183 -0
- nvfuser/include/nvfuser/scheduler/pointwise_heuristic.h +118 -0
- nvfuser/include/nvfuser/scheduler/pointwise_utils.h +24 -0
- nvfuser/include/nvfuser/scheduler/reduction.h +43 -0
- nvfuser/include/nvfuser/scheduler/reduction_heuristic.h +339 -0
- nvfuser/include/nvfuser/scheduler/reduction_utils.h +159 -0
- nvfuser/include/nvfuser/scheduler/registry.h +97 -0
- nvfuser/include/nvfuser/scheduler/registry_utils.h +111 -0
- nvfuser/include/nvfuser/scheduler/resize.h +41 -0
- nvfuser/include/nvfuser/scheduler/resize_heuristic.h +67 -0
- nvfuser/include/nvfuser/scheduler/runtime_info.h +166 -0
- nvfuser/include/nvfuser/scheduler/scheduler_types.h +80 -0
- nvfuser/include/nvfuser/scheduler/transpose.h +114 -0
- nvfuser/include/nvfuser/scheduler/transpose_heuristic.h +164 -0
- nvfuser/include/nvfuser/scheduler/utils.h +771 -0
- nvfuser/include/nvfuser/scheduler/vectorize_helper.h +349 -0
- nvfuser/include/nvfuser/serde/factory.h +55 -0
- nvfuser/include/nvfuser/serde/fusion_cache_generated.h +4319 -0
- nvfuser/include/nvfuser/serde/fusion_record.h +124 -0
- nvfuser/include/nvfuser/serde/polymorphic_value.h +52 -0
- nvfuser/include/nvfuser/serde/utils.h +34 -0
- nvfuser/include/nvfuser/struct.inl +127 -0
- nvfuser/include/nvfuser/swizzle.h +54 -0
- nvfuser/include/nvfuser/sys_utils.h +40 -0
- nvfuser/include/nvfuser/tensor_metadata.h +118 -0
- nvfuser/include/nvfuser/tma.h +124 -0
- nvfuser/include/nvfuser/transform_iter.h +522 -0
- nvfuser/include/nvfuser/transform_replay.h +297 -0
- nvfuser/include/nvfuser/transform_rfactor.h +33 -0
- nvfuser/include/nvfuser/transform_view.h +136 -0
- nvfuser/include/nvfuser/type.h +1125 -0
- nvfuser/include/nvfuser/type_promotion.h +61 -0
- nvfuser/include/nvfuser/utils.h +619 -0
- nvfuser/include/nvfuser/val_graph.h +446 -0
- nvfuser/include/nvfuser/val_graph_visitor.h +259 -0
- nvfuser/include/nvfuser/validator_utils.h +92 -0
- nvfuser/include/nvfuser/vectorization_info.h +31 -0
- nvfuser/include/nvfuser/visibility.h +21 -0
- nvfuser/lib/libnvfuser_codegen.so +0 -0
- nvfuser/nvfuser_version.py +69 -0
- nvfuser/pytorch_utils.py +184 -0
- nvfuser/share/cmake/nvfuser/NvfuserConfig-release.cmake +20 -0
- nvfuser/share/cmake/nvfuser/NvfuserConfig.cmake +106 -0
- nvfuser/utils.py +18 -0
- nvfuser/version.py +1 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/LICENSE +976 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/METADATA +16 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/RECORD +242 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/WHEEL +5 -0
- nvfuser_cu121_torch25-0.2.25.dev20250201.dist-info/top_level.txt +1 -0
- nvfuser_cu121_torch25.libs/libnvToolsExt-847d78f2.so.1.0.0 +0 -0
@@ -0,0 +1,349 @@
|
|
1
|
+
// clang-format off
|
2
|
+
/*
|
3
|
+
* SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
|
4
|
+
* All rights reserved.
|
5
|
+
* SPDX-License-Identifier: BSD-3-Clause
|
6
|
+
*/
|
7
|
+
// clang-format on
|
8
|
+
#pragma once
|
9
|
+
|
10
|
+
#include <compute_at_map.h>
|
11
|
+
#include <device_lower/analysis/divisible_split.h>
|
12
|
+
#include <exceptions.h>
|
13
|
+
#include <fusion.h>
|
14
|
+
#include <ir/all_nodes.h>
|
15
|
+
#include <scheduler/tools/maxinfo_propagator.h>
|
16
|
+
#include <visibility.h>
|
17
|
+
// TODO: Move to cpp file.
|
18
|
+
#include <ir/builder.h>
|
19
|
+
|
20
|
+
#include <sstream>
|
21
|
+
#include <unordered_map>
|
22
|
+
#include <utility>
|
23
|
+
#include <vector>
|
24
|
+
|
25
|
+
namespace nvfuser {
|
26
|
+
|
27
|
+
class SchedulerRuntimeInfo;
|
28
|
+
class HeuristicDataCache;
|
29
|
+
|
30
|
+
namespace vectorize_helper {
|
31
|
+
|
32
|
+
// Projects IterDomains through the fusion starting at provided reference. IDs
|
33
|
+
// in the reference are expected to be "contiguous", simply means dimensions
|
34
|
+
// that the iter domains are consecutive and next to each other in the
|
35
|
+
// reference. This property is not enforced, but mapping can have some
|
36
|
+
// unpredictbale results if they are not. The reason we want contiguity here
|
37
|
+
// is this class is primarily used for vectorization analysis. Domains may be
|
38
|
+
// inserted or removed while propogating through the fusion and this class has
|
39
|
+
// to be senstitive to that.
|
40
|
+
//
|
41
|
+
// For example:
|
42
|
+
// Input: T0[i0, i2]
|
43
|
+
// Reference: T5[i0, i1, i2]
|
44
|
+
// If we want to base the vectorization size on the reference being contiguous
|
45
|
+
// in a 1D scheduler, we'd start the proces on the reference with {i0, i1,
|
46
|
+
// i2}. When we propogate to the input what we would still like is: {i0, i1,
|
47
|
+
// i2} to signify to us that the root domains in the input that map to the
|
48
|
+
// reference are not contiguous. So when we think of vector word, if we want
|
49
|
+
// the input to be included in the vectorized dimensions, we can only check
|
50
|
+
// multiples based on i2, not i0*i1*i2 like the reference would indicate.
|
51
|
+
//
|
52
|
+
// Another example:
|
53
|
+
// Input:[i1, i0, i2]
|
54
|
+
// Refrence [i0, i1, i2]
|
55
|
+
// Similarly as above when we propogate from the reference to the Input we'd
|
56
|
+
// like {i0, i1, i2}, which is the order of the reference, not the input. This
|
57
|
+
// is because we can compare that with the input domains to understand it's
|
58
|
+
// not ordered consistently, so once again we can only take into consideration
|
59
|
+
// vectorization based on i2.
|
60
|
+
//
|
61
|
+
// Another example:
|
62
|
+
// Input:[i0, i1, i2]
|
63
|
+
// Intermediate: [i1, i0, i2]
|
64
|
+
// Refrence [i0, i1, i2]
|
65
|
+
// Keeping the ordering relative to the reference also allows us to look
|
66
|
+
// though transpose operations without missing out in a case like this that
|
67
|
+
// the reference and input are consistently ordered so we can look at i0*i1*i2
|
68
|
+
// for our vector multiple even though there are transposes in between them.
|
69
|
+
//
|
70
|
+
// The tricky part of this class is what happens through combinations of view
|
71
|
+
// and transpose. IterDomains are projected for example:
|
72
|
+
// tv0[2*3, 5*7, 11]
|
73
|
+
// tv1[2*3, 5, 7*11] = view(tv0)
|
74
|
+
// With tv1 and 7*11 as the reference and ids. When we project from tv1 to
|
75
|
+
// tv0, we'd map the inner most 11, but we also want to map the 5*7 with an
|
76
|
+
// extent of 7. This can get tricky though as:
|
77
|
+
// tv0[2, 3*5*7, 11]
|
78
|
+
// tv1[2*3, 5, 7*11] = view(tv0)
|
79
|
+
// with tv1 and [2*3, 7*11] as the reference and ids. tv0's 2 and 11 dim are
|
80
|
+
// easily identified as being mapped. The 3*5*7 dimension however, is
|
81
|
+
// partially mapped on the left and right side. Since this class is intended to
|
82
|
+
// line up "inner dimensions" of tensors through out the graph for the purpose
|
83
|
+
// of unrolling and vectorization, it only tracks partial dimensions as they are
|
84
|
+
// on the right hand side of iteration domains. For example in the last case we
|
85
|
+
// would only identify tv0's 3*5*7 dimension as being a mapping with extent 7.
|
86
|
+
// If we further had:
|
87
|
+
// tv0[5*7*11]
|
88
|
+
// tv1[5*7, 11] = view(tv0)
|
89
|
+
// tv2[5, 7*11] = view(tv1)
|
90
|
+
// with tv2 and [7*11] as the reference and ids (this could be a valid example
|
91
|
+
// from the pointwise scheduler).
|
92
|
+
// (1) tv1 would:
|
93
|
+
// map on 5*7 with extent 7
|
94
|
+
// map on 11 with extent 11.
|
95
|
+
// (1) tv0 would:
|
96
|
+
// map on 5*7*11 with size 7*11
|
97
|
+
//
|
98
|
+
// Finally if we have:
|
99
|
+
// tv0[3, 5, 7]
|
100
|
+
// tv1[7, 5, 3] = view(tv0)
|
101
|
+
// tv2[3, 5, 7] = view(tv1)
|
102
|
+
// with tv2 mapping on 5, 7
|
103
|
+
// We use fractional, symbolic, and conditional mappings so tv1:
|
104
|
+
// maps on 3 with extent 3
|
105
|
+
// maps on 5 with extent 5
|
106
|
+
// maps on 7 with extent (5*7)/(5*3)
|
107
|
+
// Then tv0:
|
108
|
+
// maps on 7 with extent 7
|
109
|
+
// maps on 5 with extent 5
|
110
|
+
//
|
111
|
+
// This class is responsible for both computing the spanning tree and running
|
112
|
+
// the spanning tree.
|
113
|
+
//
|
114
|
+
// In other words this class implements:
|
115
|
+
// MaxInfoSpanningTree::computeInfoC2P
|
116
|
+
// and
|
117
|
+
// MaxInfoSpanningTree::Propagator::propagateC2P
|
118
|
+
//
|
119
|
+
// The challenge here is the information we need for
|
120
|
+
// MaxInfoSpanningTree::computeInfoC2P is the same information we need to
|
121
|
+
// compute for MaxInfoSpanningTree::Propagator::propagateC2P
|
122
|
+
//
|
123
|
+
// We could compute both of these passes at the same time, only saving the
|
124
|
+
// result produced from processing the edge that's chosen from
|
125
|
+
// MaxInfoSpanningTree::computeInfoC2P while processing based on
|
126
|
+
// MaxInfoSpanningTree::Propagator::propagateC2P. However, this would require
|
127
|
+
// refactoring of MaxInfoSpanningTree so for right now this class just uses
|
128
|
+
// two passes.
|
129
|
+
//
|
130
|
+
// MaxInfoSpanningTree::computeInfoC2P runs first with recording_=false and
|
131
|
+
// will effectively compute the values of projected_root_ids_ and
|
132
|
+
// projected_logical_ids_. However it will compute these by running all edges
|
133
|
+
// between expressions. Therefore,
|
134
|
+
// MaxInfoSpanningTree::Propagator::propagateC2P later simply calls
|
135
|
+
// MaxInfoSpanningTree::computeInfoC2P with recording_=true where it will
|
136
|
+
// actually record the computed information since it will be then projected
|
137
|
+
// through the DAG maximizing saving information.
|
138
|
+
class NVF_API ContiguousInnerDimensionsMapper
|
139
|
+
: public MaxInfoSpanningTree,
|
140
|
+
MaxInfoSpanningTree::Propagator {
|
141
|
+
public:
|
142
|
+
ContiguousInnerDimensionsMapper() = delete;
|
143
|
+
|
144
|
+
static ContiguousInnerDimensionsMapper map(
|
145
|
+
TensorView* reference,
|
146
|
+
const std::vector<IterDomain*>& ids,
|
147
|
+
std::shared_ptr<const ComputeAtMap> ca_map,
|
148
|
+
const std::unordered_set<Split*>& divisible_splits);
|
149
|
+
|
150
|
+
static ContiguousInnerDimensionsMapper map(
|
151
|
+
TensorView* reference,
|
152
|
+
const std::vector<IterDomain*>& ids) {
|
153
|
+
auto ca_map = std::make_shared<ComputeAtMap>(reference->fusion());
|
154
|
+
auto divisible_splits =
|
155
|
+
getAllDivisibleSplits(reference->fusion(), ca_map.get());
|
156
|
+
return ContiguousInnerDimensionsMapper::map(
|
157
|
+
reference, ids, ca_map, divisible_splits);
|
158
|
+
}
|
159
|
+
|
160
|
+
bool hasMappedDims(TensorView* tv) const {
|
161
|
+
return tv_infos_.find(tv) != tv_infos_.end();
|
162
|
+
}
|
163
|
+
|
164
|
+
const std::vector<IterDomain*>& mappedRootIds(TensorView* tv) const {
|
165
|
+
NVF_ERROR(
|
166
|
+
tv_infos_.find(tv) != tv_infos_.end(),
|
167
|
+
"TensorView not found: ",
|
168
|
+
tv->toString());
|
169
|
+
return std::dynamic_pointer_cast<const MappedDomain>(tv_infos_.at(tv))
|
170
|
+
->mapped_root_ids_;
|
171
|
+
}
|
172
|
+
|
173
|
+
const std::vector<IterDomain*>& mappedLogicalIds(TensorView* tv) const {
|
174
|
+
NVF_ERROR(
|
175
|
+
tv_infos_.find(tv) != tv_infos_.end(),
|
176
|
+
"TensorView not found: ",
|
177
|
+
tv->toString());
|
178
|
+
return std::dynamic_pointer_cast<const MappedDomain>(tv_infos_.at(tv))
|
179
|
+
->mapped_logical_ids_;
|
180
|
+
}
|
181
|
+
|
182
|
+
Val* getProjectedExtent(IterDomain* id) const {
|
183
|
+
if (projected_extent_.find(id) == projected_extent_.end()) {
|
184
|
+
NVF_THROW("Not projected: ", id->toString());
|
185
|
+
}
|
186
|
+
return projected_extent_.at(id);
|
187
|
+
}
|
188
|
+
|
189
|
+
std::unordered_map<TensorView*, Val*> getTvToContigMergeOfInnerSizeMap();
|
190
|
+
|
191
|
+
private:
|
192
|
+
ContiguousInnerDimensionsMapper(
|
193
|
+
TensorView* reference,
|
194
|
+
const std::vector<IterDomain*>& ids,
|
195
|
+
std::shared_ptr<const ComputeAtMap> ca_map,
|
196
|
+
const std::unordered_set<Split*>& divisible_splits);
|
197
|
+
|
198
|
+
class MappedDomain : public Information {
|
199
|
+
public:
|
200
|
+
MappedDomain() = default;
|
201
|
+
|
202
|
+
static std::shared_ptr<MappedDomain> build(
|
203
|
+
std::vector<IterDomain*> root_ids,
|
204
|
+
std::vector<IterDomain*> logical_ids,
|
205
|
+
bool is_c2p) {
|
206
|
+
auto ptr = std::make_shared<MappedDomain>();
|
207
|
+
ptr->mapped_root_ids_ = root_ids;
|
208
|
+
ptr->mapped_logical_ids_ = logical_ids;
|
209
|
+
ptr->is_c2p_ = is_c2p;
|
210
|
+
return ptr;
|
211
|
+
}
|
212
|
+
|
213
|
+
operator bool() const final {
|
214
|
+
return !mapped_root_ids_.empty() || !mapped_logical_ids_.empty();
|
215
|
+
}
|
216
|
+
|
217
|
+
bool operator<(const Information& other_info) const final {
|
218
|
+
auto other_mapped_domain = dynamic_cast<const MappedDomain&>(other_info);
|
219
|
+
|
220
|
+
if (is_c2p_) {
|
221
|
+
return mapped_logical_ids_.size() <
|
222
|
+
other_mapped_domain.mapped_logical_ids_.size();
|
223
|
+
}
|
224
|
+
return mapped_root_ids_.size() <
|
225
|
+
other_mapped_domain.mapped_root_ids_.size();
|
226
|
+
}
|
227
|
+
|
228
|
+
std::vector<IterDomain*> mapped_root_ids_;
|
229
|
+
std::vector<IterDomain*> mapped_logical_ids_;
|
230
|
+
// Information is not symmetric between c2p and p2c, track which direction
|
231
|
+
// the computation is in for the < operator
|
232
|
+
bool is_c2p_ = true;
|
233
|
+
};
|
234
|
+
|
235
|
+
// TODO: make pe a lanmda function so it is not evaluated if not needed
|
236
|
+
void addProjectedExtent(IterDomain* id, Val* pe) {
|
237
|
+
if (!recording_) {
|
238
|
+
return;
|
239
|
+
}
|
240
|
+
|
241
|
+
NVF_ERROR(
|
242
|
+
projected_extent_.count(id) == 0,
|
243
|
+
"Already registered: ",
|
244
|
+
id->toString(),
|
245
|
+
", existing: ",
|
246
|
+
projected_extent_.at(id)->toInlineString(),
|
247
|
+
", new: ",
|
248
|
+
pe->toInlineString());
|
249
|
+
|
250
|
+
projected_extent_[id] = pe;
|
251
|
+
}
|
252
|
+
|
253
|
+
// Return a boolean predicate indicating if the given ID is fully projected.
|
254
|
+
Val* isFullyProjected(IterDomain* id);
|
255
|
+
|
256
|
+
// From the projected extent (PE) of I1 and I2, update the PE of I1*I2.
|
257
|
+
template <typename MergeOrSplit>
|
258
|
+
void combinePE(const MergeOrSplit* merge_or_split, bool outer_maps);
|
259
|
+
// From the projected extent (PE) of I1*I2, update the PE of I1 and I2.
|
260
|
+
template <typename MergeOrSplit>
|
261
|
+
void distributePE(const MergeOrSplit* merge_or_split);
|
262
|
+
|
263
|
+
// Returns the projected inner size. Contiguous inner dimensions are merged.
|
264
|
+
Val* getContigMergeOfInnerSize(TensorView* of_tv);
|
265
|
+
|
266
|
+
// MaxInfoSpanningTree functions
|
267
|
+
std::shared_ptr<Information> computeInfoC2P(
|
268
|
+
TensorView* from,
|
269
|
+
TensorView* to,
|
270
|
+
std::shared_ptr<Information> from_info) final;
|
271
|
+
|
272
|
+
std::shared_ptr<Information> computeInfoP2C(
|
273
|
+
TensorView* from,
|
274
|
+
TensorView* to,
|
275
|
+
std::shared_ptr<Information> from_info) final;
|
276
|
+
|
277
|
+
std::shared_ptr<Information> computeInfoSibling(
|
278
|
+
TensorView* from,
|
279
|
+
TensorView* to,
|
280
|
+
std::shared_ptr<Information> from_info) final;
|
281
|
+
|
282
|
+
// Projection from root<->logical domains
|
283
|
+
std::vector<IterDomain*> projectId(
|
284
|
+
const std::vector<IterDomain*>& from,
|
285
|
+
const std::vector<IterDomain*>& to);
|
286
|
+
|
287
|
+
// Propagator functions
|
288
|
+
void propagateC2P(TensorView* from, TensorView* to) final;
|
289
|
+
void propagateP2C(TensorView* from, TensorView* to) final;
|
290
|
+
void propagateSibling(TensorView* from, TensorView* to) final;
|
291
|
+
|
292
|
+
// Initialized to false, series of compute... calls will be performed to find
|
293
|
+
// the spanning tree. Then propagate... calls will call the compute... calls.
|
294
|
+
// recording_ starts as false, and stays that way during the first series of
|
295
|
+
// compute... calls. As soon as the first propagate... calls are called,
|
296
|
+
// recording_ will perpetually stay on.
|
297
|
+
bool recording_ = false;
|
298
|
+
|
299
|
+
std::shared_ptr<const ComputeAtMap> ca_map_;
|
300
|
+
const std::unordered_set<Split*>& divisible_splits_;
|
301
|
+
|
302
|
+
// Mapped root dimensions for each TensorView as we propogate. These
|
303
|
+
// mappings are in the order of the reference.
|
304
|
+
|
305
|
+
std::unordered_map<
|
306
|
+
TensorView*,
|
307
|
+
std::shared_ptr<MaxInfoSpanningTree::Information>>
|
308
|
+
tv_infos_;
|
309
|
+
|
310
|
+
std::unordered_map<IterDomain*, Val*> projected_extent_;
|
311
|
+
};
|
312
|
+
|
313
|
+
// logical_reorder_map is provided to assume reference_tv will be reordered per
|
314
|
+
// the map, hence changing the order of IterDomain in the reference
|
315
|
+
int64_t getVectorizationFactor(
|
316
|
+
SchedulerRuntimeInfo& runtime_info,
|
317
|
+
TensorView* reference_tv,
|
318
|
+
HeuristicDataCache* data_cache,
|
319
|
+
int64_t break_point,
|
320
|
+
const std::unordered_map<int64_t, int64_t>& logical_reorder = {});
|
321
|
+
|
322
|
+
int64_t getVectorizationFactorTransposeGroup(
|
323
|
+
SchedulerRuntimeInfo& runtime_info,
|
324
|
+
TensorView* reference,
|
325
|
+
int64_t inner_most_dim,
|
326
|
+
const std::vector<int64_t>& dims_to_merge,
|
327
|
+
const std::vector<TensorView*>& vec_tv,
|
328
|
+
int64_t max_vectorization);
|
329
|
+
|
330
|
+
//! Find the break point for vectorization. Here, we vectorize either
|
331
|
+
//! the innermost reduction or iteration domains. We use the producer
|
332
|
+
//! of the reduction as a reference of the vectorization
|
333
|
+
//! analsis.
|
334
|
+
//
|
335
|
+
//! Since this is for the reduction and normalization schedulers, the
|
336
|
+
//! producer of the reduction should not have reduction domains,
|
337
|
+
//! except when it's a fusion input, in which case the reduction
|
338
|
+
//! domains of the producer should just be ignored.
|
339
|
+
//
|
340
|
+
//! \param reduction_consumer
|
341
|
+
//! \param reduction_producer
|
342
|
+
//! \param consumer_innermost_ndims Innermost consumer domains to vectorize
|
343
|
+
int64_t getVectorizationBreakPointOfReductionProducer(
|
344
|
+
TensorView* reduction_consumer,
|
345
|
+
TensorView* reduction_producer,
|
346
|
+
int64_t consumer_innermost_ndims);
|
347
|
+
|
348
|
+
} // namespace vectorize_helper
|
349
|
+
} // namespace nvfuser
|
@@ -0,0 +1,55 @@
|
|
1
|
+
// clang-format off
|
2
|
+
/*
|
3
|
+
* SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES.
|
4
|
+
* All rights reserved.
|
5
|
+
* SPDX-License-Identifier: BSD-3-Clause
|
6
|
+
*/
|
7
|
+
// clang-format on
|
8
|
+
#pragma once
|
9
|
+
|
10
|
+
#include <exceptions.h>
|
11
|
+
#include <type.h>
|
12
|
+
#include <functional>
|
13
|
+
|
14
|
+
namespace nvfuser::serde {
|
15
|
+
|
16
|
+
// Flatbuffer enum are represented as an unscoped enumeration, so we can map
|
17
|
+
// them to an Integer type. This Factory class contains a vector that maps from
|
18
|
+
// an enum integer to its corresponding parser function.
|
19
|
+
//
|
20
|
+
// All parser functions have the same signature. We use lambdas to support
|
21
|
+
// functions that require extra arguments.
|
22
|
+
|
23
|
+
template <typename SerdeBuffer, typename BaseTypePtr>
|
24
|
+
class Factory {
|
25
|
+
public:
|
26
|
+
// A function pointer that creates a BaseType object given a Buffer
|
27
|
+
typedef std::function<BaseTypePtr(const SerdeBuffer*)> SerdeParser;
|
28
|
+
|
29
|
+
Factory(size_t num_parsers) : parsers_(num_parsers, nullptr) {};
|
30
|
+
|
31
|
+
template <typename SerdeEnum>
|
32
|
+
void registerParser(SerdeEnum serde_type, SerdeParser parser) {
|
33
|
+
auto serde_integer = nvfuser::toUnderlying(serde_type);
|
34
|
+
NVF_ERROR(
|
35
|
+
serde_integer >= 0 && serde_integer < (int)parsers_.size(),
|
36
|
+
"RegisterParser: Invalid serde type: ",
|
37
|
+
serde_integer);
|
38
|
+
parsers_.at(serde_integer) = parser;
|
39
|
+
}
|
40
|
+
|
41
|
+
template <typename SerdeEnum>
|
42
|
+
BaseTypePtr parse(SerdeEnum serde_type, const SerdeBuffer* buffer) {
|
43
|
+
auto serde_integer = nvfuser::toUnderlying(serde_type);
|
44
|
+
NVF_ERROR(
|
45
|
+
serde_integer >= 0 && serde_integer < (int)parsers_.size(),
|
46
|
+
"Deserialize: Invalid serde type: ",
|
47
|
+
serde_integer);
|
48
|
+
return parsers_.at(serde_integer)(buffer);
|
49
|
+
}
|
50
|
+
|
51
|
+
private:
|
52
|
+
std::vector<SerdeParser> parsers_;
|
53
|
+
};
|
54
|
+
|
55
|
+
} // namespace nvfuser::serde
|