numpy 2.4.2__cp313-cp313t-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (929) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +203 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.cp313t-win32.lib +0 -0
  30. numpy/_core/_multiarray_tests.cp313t-win32.pyd +0 -0
  31. numpy/_core/_multiarray_umath.cp313t-win32.lib +0 -0
  32. numpy/_core/_multiarray_umath.cp313t-win32.pyd +0 -0
  33. numpy/_core/_operand_flag_tests.cp313t-win32.lib +0 -0
  34. numpy/_core/_operand_flag_tests.cp313t-win32.pyd +0 -0
  35. numpy/_core/_rational_tests.cp313t-win32.lib +0 -0
  36. numpy/_core/_rational_tests.cp313t-win32.pyd +0 -0
  37. numpy/_core/_simd.cp313t-win32.lib +0 -0
  38. numpy/_core/_simd.cp313t-win32.pyd +0 -0
  39. numpy/_core/_simd.pyi +35 -0
  40. numpy/_core/_string_helpers.py +100 -0
  41. numpy/_core/_string_helpers.pyi +12 -0
  42. numpy/_core/_struct_ufunc_tests.cp313t-win32.lib +0 -0
  43. numpy/_core/_struct_ufunc_tests.cp313t-win32.pyd +0 -0
  44. numpy/_core/_type_aliases.py +131 -0
  45. numpy/_core/_type_aliases.pyi +86 -0
  46. numpy/_core/_ufunc_config.py +515 -0
  47. numpy/_core/_ufunc_config.pyi +69 -0
  48. numpy/_core/_umath_tests.cp313t-win32.lib +0 -0
  49. numpy/_core/_umath_tests.cp313t-win32.pyd +0 -0
  50. numpy/_core/_umath_tests.pyi +47 -0
  51. numpy/_core/arrayprint.py +1779 -0
  52. numpy/_core/arrayprint.pyi +158 -0
  53. numpy/_core/cversions.py +13 -0
  54. numpy/_core/defchararray.py +1414 -0
  55. numpy/_core/defchararray.pyi +1150 -0
  56. numpy/_core/einsumfunc.py +1650 -0
  57. numpy/_core/einsumfunc.pyi +184 -0
  58. numpy/_core/fromnumeric.py +4233 -0
  59. numpy/_core/fromnumeric.pyi +1735 -0
  60. numpy/_core/function_base.py +547 -0
  61. numpy/_core/function_base.pyi +276 -0
  62. numpy/_core/getlimits.py +462 -0
  63. numpy/_core/getlimits.pyi +124 -0
  64. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  65. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  66. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  67. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  68. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  69. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  70. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  71. numpy/_core/include/numpy/arrayobject.h +7 -0
  72. numpy/_core/include/numpy/arrayscalars.h +198 -0
  73. numpy/_core/include/numpy/dtype_api.h +547 -0
  74. numpy/_core/include/numpy/halffloat.h +70 -0
  75. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  76. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  77. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  78. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  79. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  80. numpy/_core/include/numpy/npy_common.h +989 -0
  81. numpy/_core/include/numpy/npy_cpu.h +126 -0
  82. numpy/_core/include/numpy/npy_endian.h +79 -0
  83. numpy/_core/include/numpy/npy_math.h +602 -0
  84. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  85. numpy/_core/include/numpy/npy_os.h +42 -0
  86. numpy/_core/include/numpy/numpyconfig.h +185 -0
  87. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  88. numpy/_core/include/numpy/random/bitgen.h +20 -0
  89. numpy/_core/include/numpy/random/distributions.h +209 -0
  90. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  91. numpy/_core/include/numpy/ufuncobject.h +343 -0
  92. numpy/_core/include/numpy/utils.h +37 -0
  93. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  94. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  95. numpy/_core/lib/npymath.lib +0 -0
  96. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  97. numpy/_core/memmap.py +363 -0
  98. numpy/_core/memmap.pyi +3 -0
  99. numpy/_core/multiarray.py +1740 -0
  100. numpy/_core/multiarray.pyi +1328 -0
  101. numpy/_core/numeric.py +2771 -0
  102. numpy/_core/numeric.pyi +1276 -0
  103. numpy/_core/numerictypes.py +633 -0
  104. numpy/_core/numerictypes.pyi +196 -0
  105. numpy/_core/overrides.py +188 -0
  106. numpy/_core/overrides.pyi +47 -0
  107. numpy/_core/printoptions.py +32 -0
  108. numpy/_core/printoptions.pyi +28 -0
  109. numpy/_core/records.py +1088 -0
  110. numpy/_core/records.pyi +340 -0
  111. numpy/_core/shape_base.py +996 -0
  112. numpy/_core/shape_base.pyi +182 -0
  113. numpy/_core/strings.py +1813 -0
  114. numpy/_core/strings.pyi +536 -0
  115. numpy/_core/tests/_locales.py +72 -0
  116. numpy/_core/tests/_natype.py +144 -0
  117. numpy/_core/tests/data/astype_copy.pkl +0 -0
  118. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  119. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  120. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  121. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  122. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  124. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  127. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  128. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  129. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  130. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  131. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  134. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  135. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  136. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  137. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  138. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  139. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  140. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  141. numpy/_core/tests/examples/cython/checks.pyx +374 -0
  142. numpy/_core/tests/examples/cython/meson.build +43 -0
  143. numpy/_core/tests/examples/cython/setup.py +39 -0
  144. numpy/_core/tests/examples/limited_api/limited_api1.c +15 -0
  145. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  146. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  147. numpy/_core/tests/examples/limited_api/meson.build +63 -0
  148. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  149. numpy/_core/tests/test__exceptions.py +90 -0
  150. numpy/_core/tests/test_abc.py +54 -0
  151. numpy/_core/tests/test_api.py +655 -0
  152. numpy/_core/tests/test_argparse.py +90 -0
  153. numpy/_core/tests/test_array_api_info.py +113 -0
  154. numpy/_core/tests/test_array_coercion.py +928 -0
  155. numpy/_core/tests/test_array_interface.py +222 -0
  156. numpy/_core/tests/test_arraymethod.py +84 -0
  157. numpy/_core/tests/test_arrayobject.py +95 -0
  158. numpy/_core/tests/test_arrayprint.py +1324 -0
  159. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  160. numpy/_core/tests/test_casting_unittests.py +955 -0
  161. numpy/_core/tests/test_conversion_utils.py +209 -0
  162. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  163. numpy/_core/tests/test_cpu_features.py +450 -0
  164. numpy/_core/tests/test_custom_dtypes.py +393 -0
  165. numpy/_core/tests/test_cython.py +352 -0
  166. numpy/_core/tests/test_datetime.py +2792 -0
  167. numpy/_core/tests/test_defchararray.py +858 -0
  168. numpy/_core/tests/test_deprecations.py +460 -0
  169. numpy/_core/tests/test_dlpack.py +190 -0
  170. numpy/_core/tests/test_dtype.py +2110 -0
  171. numpy/_core/tests/test_einsum.py +1351 -0
  172. numpy/_core/tests/test_errstate.py +131 -0
  173. numpy/_core/tests/test_extint128.py +217 -0
  174. numpy/_core/tests/test_finfo.py +86 -0
  175. numpy/_core/tests/test_function_base.py +504 -0
  176. numpy/_core/tests/test_getlimits.py +171 -0
  177. numpy/_core/tests/test_half.py +593 -0
  178. numpy/_core/tests/test_hashtable.py +36 -0
  179. numpy/_core/tests/test_indexerrors.py +122 -0
  180. numpy/_core/tests/test_indexing.py +1692 -0
  181. numpy/_core/tests/test_item_selection.py +167 -0
  182. numpy/_core/tests/test_limited_api.py +102 -0
  183. numpy/_core/tests/test_longdouble.py +370 -0
  184. numpy/_core/tests/test_mem_overlap.py +933 -0
  185. numpy/_core/tests/test_mem_policy.py +453 -0
  186. numpy/_core/tests/test_memmap.py +248 -0
  187. numpy/_core/tests/test_multiarray.py +11008 -0
  188. numpy/_core/tests/test_multiprocessing.py +55 -0
  189. numpy/_core/tests/test_multithreading.py +406 -0
  190. numpy/_core/tests/test_nditer.py +3533 -0
  191. numpy/_core/tests/test_nep50_promotions.py +287 -0
  192. numpy/_core/tests/test_numeric.py +4301 -0
  193. numpy/_core/tests/test_numerictypes.py +650 -0
  194. numpy/_core/tests/test_overrides.py +800 -0
  195. numpy/_core/tests/test_print.py +202 -0
  196. numpy/_core/tests/test_protocols.py +46 -0
  197. numpy/_core/tests/test_records.py +544 -0
  198. numpy/_core/tests/test_regression.py +2677 -0
  199. numpy/_core/tests/test_scalar_ctors.py +203 -0
  200. numpy/_core/tests/test_scalar_methods.py +328 -0
  201. numpy/_core/tests/test_scalarbuffer.py +153 -0
  202. numpy/_core/tests/test_scalarinherit.py +105 -0
  203. numpy/_core/tests/test_scalarmath.py +1168 -0
  204. numpy/_core/tests/test_scalarprint.py +403 -0
  205. numpy/_core/tests/test_shape_base.py +904 -0
  206. numpy/_core/tests/test_simd.py +1345 -0
  207. numpy/_core/tests/test_simd_module.py +105 -0
  208. numpy/_core/tests/test_stringdtype.py +1855 -0
  209. numpy/_core/tests/test_strings.py +1523 -0
  210. numpy/_core/tests/test_ufunc.py +3405 -0
  211. numpy/_core/tests/test_umath.py +4962 -0
  212. numpy/_core/tests/test_umath_accuracy.py +132 -0
  213. numpy/_core/tests/test_umath_complex.py +631 -0
  214. numpy/_core/tests/test_unicode.py +369 -0
  215. numpy/_core/umath.py +60 -0
  216. numpy/_core/umath.pyi +232 -0
  217. numpy/_distributor_init.py +15 -0
  218. numpy/_distributor_init.pyi +1 -0
  219. numpy/_expired_attrs_2_0.py +78 -0
  220. numpy/_expired_attrs_2_0.pyi +61 -0
  221. numpy/_globals.py +121 -0
  222. numpy/_globals.pyi +17 -0
  223. numpy/_pyinstaller/__init__.py +0 -0
  224. numpy/_pyinstaller/__init__.pyi +0 -0
  225. numpy/_pyinstaller/hook-numpy.py +36 -0
  226. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  227. numpy/_pyinstaller/tests/__init__.py +16 -0
  228. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  229. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  230. numpy/_pytesttester.py +201 -0
  231. numpy/_pytesttester.pyi +18 -0
  232. numpy/_typing/__init__.py +173 -0
  233. numpy/_typing/_add_docstring.py +153 -0
  234. numpy/_typing/_array_like.py +106 -0
  235. numpy/_typing/_char_codes.py +213 -0
  236. numpy/_typing/_dtype_like.py +114 -0
  237. numpy/_typing/_extended_precision.py +15 -0
  238. numpy/_typing/_nbit.py +19 -0
  239. numpy/_typing/_nbit_base.py +94 -0
  240. numpy/_typing/_nbit_base.pyi +39 -0
  241. numpy/_typing/_nested_sequence.py +79 -0
  242. numpy/_typing/_scalars.py +20 -0
  243. numpy/_typing/_shape.py +8 -0
  244. numpy/_typing/_ufunc.py +7 -0
  245. numpy/_typing/_ufunc.pyi +975 -0
  246. numpy/_utils/__init__.py +95 -0
  247. numpy/_utils/__init__.pyi +28 -0
  248. numpy/_utils/_convertions.py +18 -0
  249. numpy/_utils/_convertions.pyi +4 -0
  250. numpy/_utils/_inspect.py +192 -0
  251. numpy/_utils/_inspect.pyi +70 -0
  252. numpy/_utils/_pep440.py +486 -0
  253. numpy/_utils/_pep440.pyi +118 -0
  254. numpy/char/__init__.py +2 -0
  255. numpy/char/__init__.pyi +111 -0
  256. numpy/conftest.py +248 -0
  257. numpy/core/__init__.py +33 -0
  258. numpy/core/__init__.pyi +0 -0
  259. numpy/core/_dtype.py +10 -0
  260. numpy/core/_dtype.pyi +0 -0
  261. numpy/core/_dtype_ctypes.py +10 -0
  262. numpy/core/_dtype_ctypes.pyi +0 -0
  263. numpy/core/_internal.py +27 -0
  264. numpy/core/_multiarray_umath.py +57 -0
  265. numpy/core/_utils.py +21 -0
  266. numpy/core/arrayprint.py +10 -0
  267. numpy/core/defchararray.py +10 -0
  268. numpy/core/einsumfunc.py +10 -0
  269. numpy/core/fromnumeric.py +10 -0
  270. numpy/core/function_base.py +10 -0
  271. numpy/core/getlimits.py +10 -0
  272. numpy/core/multiarray.py +25 -0
  273. numpy/core/numeric.py +12 -0
  274. numpy/core/numerictypes.py +10 -0
  275. numpy/core/overrides.py +10 -0
  276. numpy/core/overrides.pyi +7 -0
  277. numpy/core/records.py +10 -0
  278. numpy/core/shape_base.py +10 -0
  279. numpy/core/umath.py +10 -0
  280. numpy/ctypeslib/__init__.py +13 -0
  281. numpy/ctypeslib/__init__.pyi +15 -0
  282. numpy/ctypeslib/_ctypeslib.py +603 -0
  283. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  284. numpy/doc/ufuncs.py +138 -0
  285. numpy/dtypes.py +41 -0
  286. numpy/dtypes.pyi +630 -0
  287. numpy/exceptions.py +246 -0
  288. numpy/exceptions.pyi +27 -0
  289. numpy/f2py/__init__.py +86 -0
  290. numpy/f2py/__init__.pyi +5 -0
  291. numpy/f2py/__main__.py +5 -0
  292. numpy/f2py/__version__.py +1 -0
  293. numpy/f2py/__version__.pyi +1 -0
  294. numpy/f2py/_backends/__init__.py +9 -0
  295. numpy/f2py/_backends/__init__.pyi +5 -0
  296. numpy/f2py/_backends/_backend.py +44 -0
  297. numpy/f2py/_backends/_backend.pyi +46 -0
  298. numpy/f2py/_backends/_distutils.py +76 -0
  299. numpy/f2py/_backends/_distutils.pyi +13 -0
  300. numpy/f2py/_backends/_meson.py +244 -0
  301. numpy/f2py/_backends/_meson.pyi +62 -0
  302. numpy/f2py/_backends/meson.build.template +58 -0
  303. numpy/f2py/_isocbind.py +62 -0
  304. numpy/f2py/_isocbind.pyi +13 -0
  305. numpy/f2py/_src_pyf.py +247 -0
  306. numpy/f2py/_src_pyf.pyi +28 -0
  307. numpy/f2py/auxfuncs.py +1004 -0
  308. numpy/f2py/auxfuncs.pyi +262 -0
  309. numpy/f2py/capi_maps.py +811 -0
  310. numpy/f2py/capi_maps.pyi +33 -0
  311. numpy/f2py/cb_rules.py +665 -0
  312. numpy/f2py/cb_rules.pyi +17 -0
  313. numpy/f2py/cfuncs.py +1563 -0
  314. numpy/f2py/cfuncs.pyi +31 -0
  315. numpy/f2py/common_rules.py +143 -0
  316. numpy/f2py/common_rules.pyi +9 -0
  317. numpy/f2py/crackfortran.py +3725 -0
  318. numpy/f2py/crackfortran.pyi +266 -0
  319. numpy/f2py/diagnose.py +149 -0
  320. numpy/f2py/diagnose.pyi +1 -0
  321. numpy/f2py/f2py2e.py +788 -0
  322. numpy/f2py/f2py2e.pyi +74 -0
  323. numpy/f2py/f90mod_rules.py +269 -0
  324. numpy/f2py/f90mod_rules.pyi +16 -0
  325. numpy/f2py/func2subr.py +329 -0
  326. numpy/f2py/func2subr.pyi +7 -0
  327. numpy/f2py/rules.py +1629 -0
  328. numpy/f2py/rules.pyi +41 -0
  329. numpy/f2py/setup.cfg +3 -0
  330. numpy/f2py/src/fortranobject.c +1436 -0
  331. numpy/f2py/src/fortranobject.h +173 -0
  332. numpy/f2py/symbolic.py +1518 -0
  333. numpy/f2py/symbolic.pyi +219 -0
  334. numpy/f2py/tests/__init__.py +16 -0
  335. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  336. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  337. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  338. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  339. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  340. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  341. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  342. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  343. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  344. numpy/f2py/tests/src/callback/foo.f +62 -0
  345. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  346. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  347. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  348. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  349. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  350. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  351. numpy/f2py/tests/src/cli/hi77.f +3 -0
  352. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  353. numpy/f2py/tests/src/common/block.f +11 -0
  354. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  355. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  356. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  357. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  358. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  359. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  360. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  361. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  362. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  363. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  364. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  365. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  366. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  367. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  368. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  369. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  370. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  371. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  372. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  373. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  374. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  375. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  376. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  377. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  378. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  379. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  380. numpy/f2py/tests/src/mixed/foo.f +5 -0
  381. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  382. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  383. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  384. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  385. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  386. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  387. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  388. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  389. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  390. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  391. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  392. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  393. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  394. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  395. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  396. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  397. numpy/f2py/tests/src/regression/AB.inc +1 -0
  398. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  399. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  400. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  401. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  402. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  403. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  404. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  405. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  406. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  407. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  408. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  409. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  410. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  411. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  412. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  413. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  414. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  415. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  416. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  417. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  418. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  419. numpy/f2py/tests/src/routines/subrout.f +4 -0
  420. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  421. numpy/f2py/tests/src/size/foo.f90 +44 -0
  422. numpy/f2py/tests/src/string/char.f90 +29 -0
  423. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  424. numpy/f2py/tests/src/string/gh24008.f +8 -0
  425. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  426. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  427. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  428. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  429. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  430. numpy/f2py/tests/src/string/string.f +12 -0
  431. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  432. numpy/f2py/tests/test_abstract_interface.py +26 -0
  433. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  434. numpy/f2py/tests/test_assumed_shape.py +50 -0
  435. numpy/f2py/tests/test_block_docstring.py +20 -0
  436. numpy/f2py/tests/test_callback.py +263 -0
  437. numpy/f2py/tests/test_character.py +641 -0
  438. numpy/f2py/tests/test_common.py +23 -0
  439. numpy/f2py/tests/test_crackfortran.py +421 -0
  440. numpy/f2py/tests/test_data.py +71 -0
  441. numpy/f2py/tests/test_docs.py +66 -0
  442. numpy/f2py/tests/test_f2cmap.py +17 -0
  443. numpy/f2py/tests/test_f2py2e.py +983 -0
  444. numpy/f2py/tests/test_isoc.py +56 -0
  445. numpy/f2py/tests/test_kind.py +52 -0
  446. numpy/f2py/tests/test_mixed.py +35 -0
  447. numpy/f2py/tests/test_modules.py +83 -0
  448. numpy/f2py/tests/test_parameter.py +129 -0
  449. numpy/f2py/tests/test_pyf_src.py +43 -0
  450. numpy/f2py/tests/test_quoted_character.py +18 -0
  451. numpy/f2py/tests/test_regression.py +187 -0
  452. numpy/f2py/tests/test_return_character.py +48 -0
  453. numpy/f2py/tests/test_return_complex.py +67 -0
  454. numpy/f2py/tests/test_return_integer.py +55 -0
  455. numpy/f2py/tests/test_return_logical.py +65 -0
  456. numpy/f2py/tests/test_return_real.py +109 -0
  457. numpy/f2py/tests/test_routines.py +29 -0
  458. numpy/f2py/tests/test_semicolon_split.py +75 -0
  459. numpy/f2py/tests/test_size.py +45 -0
  460. numpy/f2py/tests/test_string.py +100 -0
  461. numpy/f2py/tests/test_symbolic.py +500 -0
  462. numpy/f2py/tests/test_value_attrspec.py +15 -0
  463. numpy/f2py/tests/util.py +442 -0
  464. numpy/f2py/use_rules.py +99 -0
  465. numpy/f2py/use_rules.pyi +9 -0
  466. numpy/fft/__init__.py +213 -0
  467. numpy/fft/__init__.pyi +38 -0
  468. numpy/fft/_helper.py +235 -0
  469. numpy/fft/_helper.pyi +44 -0
  470. numpy/fft/_pocketfft.py +1693 -0
  471. numpy/fft/_pocketfft.pyi +137 -0
  472. numpy/fft/_pocketfft_umath.cp313t-win32.lib +0 -0
  473. numpy/fft/_pocketfft_umath.cp313t-win32.pyd +0 -0
  474. numpy/fft/tests/__init__.py +0 -0
  475. numpy/fft/tests/test_helper.py +167 -0
  476. numpy/fft/tests/test_pocketfft.py +589 -0
  477. numpy/lib/__init__.py +97 -0
  478. numpy/lib/__init__.pyi +52 -0
  479. numpy/lib/_array_utils_impl.py +62 -0
  480. numpy/lib/_array_utils_impl.pyi +10 -0
  481. numpy/lib/_arraypad_impl.py +926 -0
  482. numpy/lib/_arraypad_impl.pyi +88 -0
  483. numpy/lib/_arraysetops_impl.py +1158 -0
  484. numpy/lib/_arraysetops_impl.pyi +462 -0
  485. numpy/lib/_arrayterator_impl.py +224 -0
  486. numpy/lib/_arrayterator_impl.pyi +45 -0
  487. numpy/lib/_datasource.py +700 -0
  488. numpy/lib/_datasource.pyi +30 -0
  489. numpy/lib/_format_impl.py +1036 -0
  490. numpy/lib/_format_impl.pyi +56 -0
  491. numpy/lib/_function_base_impl.py +5760 -0
  492. numpy/lib/_function_base_impl.pyi +2324 -0
  493. numpy/lib/_histograms_impl.py +1085 -0
  494. numpy/lib/_histograms_impl.pyi +40 -0
  495. numpy/lib/_index_tricks_impl.py +1048 -0
  496. numpy/lib/_index_tricks_impl.pyi +267 -0
  497. numpy/lib/_iotools.py +900 -0
  498. numpy/lib/_iotools.pyi +116 -0
  499. numpy/lib/_nanfunctions_impl.py +2006 -0
  500. numpy/lib/_nanfunctions_impl.pyi +48 -0
  501. numpy/lib/_npyio_impl.py +2583 -0
  502. numpy/lib/_npyio_impl.pyi +299 -0
  503. numpy/lib/_polynomial_impl.py +1465 -0
  504. numpy/lib/_polynomial_impl.pyi +338 -0
  505. numpy/lib/_scimath_impl.py +642 -0
  506. numpy/lib/_scimath_impl.pyi +93 -0
  507. numpy/lib/_shape_base_impl.py +1289 -0
  508. numpy/lib/_shape_base_impl.pyi +236 -0
  509. numpy/lib/_stride_tricks_impl.py +582 -0
  510. numpy/lib/_stride_tricks_impl.pyi +73 -0
  511. numpy/lib/_twodim_base_impl.py +1201 -0
  512. numpy/lib/_twodim_base_impl.pyi +408 -0
  513. numpy/lib/_type_check_impl.py +710 -0
  514. numpy/lib/_type_check_impl.pyi +348 -0
  515. numpy/lib/_ufunclike_impl.py +199 -0
  516. numpy/lib/_ufunclike_impl.pyi +60 -0
  517. numpy/lib/_user_array_impl.py +310 -0
  518. numpy/lib/_user_array_impl.pyi +226 -0
  519. numpy/lib/_utils_impl.py +784 -0
  520. numpy/lib/_utils_impl.pyi +22 -0
  521. numpy/lib/_version.py +153 -0
  522. numpy/lib/_version.pyi +17 -0
  523. numpy/lib/array_utils.py +7 -0
  524. numpy/lib/array_utils.pyi +6 -0
  525. numpy/lib/format.py +24 -0
  526. numpy/lib/format.pyi +24 -0
  527. numpy/lib/introspect.py +94 -0
  528. numpy/lib/introspect.pyi +3 -0
  529. numpy/lib/mixins.py +180 -0
  530. numpy/lib/mixins.pyi +78 -0
  531. numpy/lib/npyio.py +1 -0
  532. numpy/lib/npyio.pyi +5 -0
  533. numpy/lib/recfunctions.py +1681 -0
  534. numpy/lib/recfunctions.pyi +444 -0
  535. numpy/lib/scimath.py +13 -0
  536. numpy/lib/scimath.pyi +12 -0
  537. numpy/lib/stride_tricks.py +1 -0
  538. numpy/lib/stride_tricks.pyi +4 -0
  539. numpy/lib/tests/__init__.py +0 -0
  540. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  541. numpy/lib/tests/data/py2-objarr.npy +0 -0
  542. numpy/lib/tests/data/py2-objarr.npz +0 -0
  543. numpy/lib/tests/data/py3-objarr.npy +0 -0
  544. numpy/lib/tests/data/py3-objarr.npz +0 -0
  545. numpy/lib/tests/data/python3.npy +0 -0
  546. numpy/lib/tests/data/win64python2.npy +0 -0
  547. numpy/lib/tests/test__datasource.py +328 -0
  548. numpy/lib/tests/test__iotools.py +358 -0
  549. numpy/lib/tests/test__version.py +64 -0
  550. numpy/lib/tests/test_array_utils.py +32 -0
  551. numpy/lib/tests/test_arraypad.py +1427 -0
  552. numpy/lib/tests/test_arraysetops.py +1302 -0
  553. numpy/lib/tests/test_arrayterator.py +45 -0
  554. numpy/lib/tests/test_format.py +1054 -0
  555. numpy/lib/tests/test_function_base.py +4756 -0
  556. numpy/lib/tests/test_histograms.py +855 -0
  557. numpy/lib/tests/test_index_tricks.py +693 -0
  558. numpy/lib/tests/test_io.py +2857 -0
  559. numpy/lib/tests/test_loadtxt.py +1099 -0
  560. numpy/lib/tests/test_mixins.py +215 -0
  561. numpy/lib/tests/test_nanfunctions.py +1438 -0
  562. numpy/lib/tests/test_packbits.py +376 -0
  563. numpy/lib/tests/test_polynomial.py +325 -0
  564. numpy/lib/tests/test_recfunctions.py +1042 -0
  565. numpy/lib/tests/test_regression.py +231 -0
  566. numpy/lib/tests/test_shape_base.py +813 -0
  567. numpy/lib/tests/test_stride_tricks.py +655 -0
  568. numpy/lib/tests/test_twodim_base.py +559 -0
  569. numpy/lib/tests/test_type_check.py +473 -0
  570. numpy/lib/tests/test_ufunclike.py +97 -0
  571. numpy/lib/tests/test_utils.py +80 -0
  572. numpy/lib/user_array.py +1 -0
  573. numpy/lib/user_array.pyi +1 -0
  574. numpy/linalg/__init__.py +95 -0
  575. numpy/linalg/__init__.pyi +71 -0
  576. numpy/linalg/_linalg.py +3657 -0
  577. numpy/linalg/_linalg.pyi +548 -0
  578. numpy/linalg/_umath_linalg.cp313t-win32.lib +0 -0
  579. numpy/linalg/_umath_linalg.cp313t-win32.pyd +0 -0
  580. numpy/linalg/_umath_linalg.pyi +60 -0
  581. numpy/linalg/lapack_lite.cp313t-win32.lib +0 -0
  582. numpy/linalg/lapack_lite.cp313t-win32.pyd +0 -0
  583. numpy/linalg/lapack_lite.pyi +143 -0
  584. numpy/linalg/tests/__init__.py +0 -0
  585. numpy/linalg/tests/test_deprecations.py +21 -0
  586. numpy/linalg/tests/test_linalg.py +2442 -0
  587. numpy/linalg/tests/test_regression.py +182 -0
  588. numpy/ma/API_CHANGES.txt +135 -0
  589. numpy/ma/LICENSE +24 -0
  590. numpy/ma/README.rst +236 -0
  591. numpy/ma/__init__.py +53 -0
  592. numpy/ma/__init__.pyi +458 -0
  593. numpy/ma/core.py +8929 -0
  594. numpy/ma/core.pyi +3733 -0
  595. numpy/ma/extras.py +2266 -0
  596. numpy/ma/extras.pyi +297 -0
  597. numpy/ma/mrecords.py +762 -0
  598. numpy/ma/mrecords.pyi +96 -0
  599. numpy/ma/tests/__init__.py +0 -0
  600. numpy/ma/tests/test_arrayobject.py +40 -0
  601. numpy/ma/tests/test_core.py +6008 -0
  602. numpy/ma/tests/test_deprecations.py +65 -0
  603. numpy/ma/tests/test_extras.py +1945 -0
  604. numpy/ma/tests/test_mrecords.py +495 -0
  605. numpy/ma/tests/test_old_ma.py +939 -0
  606. numpy/ma/tests/test_regression.py +83 -0
  607. numpy/ma/tests/test_subclassing.py +469 -0
  608. numpy/ma/testutils.py +294 -0
  609. numpy/ma/testutils.pyi +69 -0
  610. numpy/matlib.py +380 -0
  611. numpy/matlib.pyi +580 -0
  612. numpy/matrixlib/__init__.py +12 -0
  613. numpy/matrixlib/__init__.pyi +3 -0
  614. numpy/matrixlib/defmatrix.py +1119 -0
  615. numpy/matrixlib/defmatrix.pyi +218 -0
  616. numpy/matrixlib/tests/__init__.py +0 -0
  617. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  618. numpy/matrixlib/tests/test_interaction.py +360 -0
  619. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  620. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  621. numpy/matrixlib/tests/test_multiarray.py +17 -0
  622. numpy/matrixlib/tests/test_numeric.py +18 -0
  623. numpy/matrixlib/tests/test_regression.py +31 -0
  624. numpy/polynomial/__init__.py +187 -0
  625. numpy/polynomial/__init__.pyi +31 -0
  626. numpy/polynomial/_polybase.py +1191 -0
  627. numpy/polynomial/_polybase.pyi +262 -0
  628. numpy/polynomial/_polytypes.pyi +501 -0
  629. numpy/polynomial/chebyshev.py +2001 -0
  630. numpy/polynomial/chebyshev.pyi +180 -0
  631. numpy/polynomial/hermite.py +1738 -0
  632. numpy/polynomial/hermite.pyi +106 -0
  633. numpy/polynomial/hermite_e.py +1640 -0
  634. numpy/polynomial/hermite_e.pyi +106 -0
  635. numpy/polynomial/laguerre.py +1673 -0
  636. numpy/polynomial/laguerre.pyi +100 -0
  637. numpy/polynomial/legendre.py +1603 -0
  638. numpy/polynomial/legendre.pyi +100 -0
  639. numpy/polynomial/polynomial.py +1625 -0
  640. numpy/polynomial/polynomial.pyi +109 -0
  641. numpy/polynomial/polyutils.py +759 -0
  642. numpy/polynomial/polyutils.pyi +307 -0
  643. numpy/polynomial/tests/__init__.py +0 -0
  644. numpy/polynomial/tests/test_chebyshev.py +618 -0
  645. numpy/polynomial/tests/test_classes.py +613 -0
  646. numpy/polynomial/tests/test_hermite.py +553 -0
  647. numpy/polynomial/tests/test_hermite_e.py +554 -0
  648. numpy/polynomial/tests/test_laguerre.py +535 -0
  649. numpy/polynomial/tests/test_legendre.py +566 -0
  650. numpy/polynomial/tests/test_polynomial.py +691 -0
  651. numpy/polynomial/tests/test_polyutils.py +123 -0
  652. numpy/polynomial/tests/test_printing.py +557 -0
  653. numpy/polynomial/tests/test_symbol.py +217 -0
  654. numpy/py.typed +0 -0
  655. numpy/random/LICENSE.md +71 -0
  656. numpy/random/__init__.pxd +14 -0
  657. numpy/random/__init__.py +213 -0
  658. numpy/random/__init__.pyi +124 -0
  659. numpy/random/_bounded_integers.cp313t-win32.lib +0 -0
  660. numpy/random/_bounded_integers.cp313t-win32.pyd +0 -0
  661. numpy/random/_bounded_integers.pxd +38 -0
  662. numpy/random/_bounded_integers.pyi +1 -0
  663. numpy/random/_common.cp313t-win32.lib +0 -0
  664. numpy/random/_common.cp313t-win32.pyd +0 -0
  665. numpy/random/_common.pxd +110 -0
  666. numpy/random/_common.pyi +16 -0
  667. numpy/random/_examples/cffi/extending.py +44 -0
  668. numpy/random/_examples/cffi/parse.py +53 -0
  669. numpy/random/_examples/cython/extending.pyx +77 -0
  670. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  671. numpy/random/_examples/cython/meson.build +53 -0
  672. numpy/random/_examples/numba/extending.py +86 -0
  673. numpy/random/_examples/numba/extending_distributions.py +67 -0
  674. numpy/random/_generator.cp313t-win32.lib +0 -0
  675. numpy/random/_generator.cp313t-win32.pyd +0 -0
  676. numpy/random/_generator.pyi +862 -0
  677. numpy/random/_mt19937.cp313t-win32.lib +0 -0
  678. numpy/random/_mt19937.cp313t-win32.pyd +0 -0
  679. numpy/random/_mt19937.pyi +27 -0
  680. numpy/random/_pcg64.cp313t-win32.lib +0 -0
  681. numpy/random/_pcg64.cp313t-win32.pyd +0 -0
  682. numpy/random/_pcg64.pyi +41 -0
  683. numpy/random/_philox.cp313t-win32.lib +0 -0
  684. numpy/random/_philox.cp313t-win32.pyd +0 -0
  685. numpy/random/_philox.pyi +36 -0
  686. numpy/random/_pickle.py +88 -0
  687. numpy/random/_pickle.pyi +43 -0
  688. numpy/random/_sfc64.cp313t-win32.lib +0 -0
  689. numpy/random/_sfc64.cp313t-win32.pyd +0 -0
  690. numpy/random/_sfc64.pyi +25 -0
  691. numpy/random/bit_generator.cp313t-win32.lib +0 -0
  692. numpy/random/bit_generator.cp313t-win32.pyd +0 -0
  693. numpy/random/bit_generator.pxd +40 -0
  694. numpy/random/bit_generator.pyi +123 -0
  695. numpy/random/c_distributions.pxd +119 -0
  696. numpy/random/lib/npyrandom.lib +0 -0
  697. numpy/random/mtrand.cp313t-win32.lib +0 -0
  698. numpy/random/mtrand.cp313t-win32.pyd +0 -0
  699. numpy/random/mtrand.pyi +759 -0
  700. numpy/random/tests/__init__.py +0 -0
  701. numpy/random/tests/data/__init__.py +0 -0
  702. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  703. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  704. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  705. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  706. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  707. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  708. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  709. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  710. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  711. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  712. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  713. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  714. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  715. numpy/random/tests/test_direct.py +595 -0
  716. numpy/random/tests/test_extending.py +131 -0
  717. numpy/random/tests/test_generator_mt19937.py +2825 -0
  718. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  719. numpy/random/tests/test_random.py +1724 -0
  720. numpy/random/tests/test_randomstate.py +2099 -0
  721. numpy/random/tests/test_randomstate_regression.py +213 -0
  722. numpy/random/tests/test_regression.py +175 -0
  723. numpy/random/tests/test_seed_sequence.py +79 -0
  724. numpy/random/tests/test_smoke.py +882 -0
  725. numpy/rec/__init__.py +2 -0
  726. numpy/rec/__init__.pyi +23 -0
  727. numpy/strings/__init__.py +2 -0
  728. numpy/strings/__init__.pyi +97 -0
  729. numpy/testing/__init__.py +22 -0
  730. numpy/testing/__init__.pyi +107 -0
  731. numpy/testing/_private/__init__.py +0 -0
  732. numpy/testing/_private/__init__.pyi +0 -0
  733. numpy/testing/_private/extbuild.py +250 -0
  734. numpy/testing/_private/extbuild.pyi +25 -0
  735. numpy/testing/_private/utils.py +2830 -0
  736. numpy/testing/_private/utils.pyi +505 -0
  737. numpy/testing/overrides.py +84 -0
  738. numpy/testing/overrides.pyi +10 -0
  739. numpy/testing/print_coercion_tables.py +207 -0
  740. numpy/testing/print_coercion_tables.pyi +26 -0
  741. numpy/testing/tests/__init__.py +0 -0
  742. numpy/testing/tests/test_utils.py +2123 -0
  743. numpy/tests/__init__.py +0 -0
  744. numpy/tests/test__all__.py +10 -0
  745. numpy/tests/test_configtool.py +51 -0
  746. numpy/tests/test_ctypeslib.py +383 -0
  747. numpy/tests/test_lazyloading.py +42 -0
  748. numpy/tests/test_matlib.py +59 -0
  749. numpy/tests/test_numpy_config.py +47 -0
  750. numpy/tests/test_numpy_version.py +54 -0
  751. numpy/tests/test_public_api.py +807 -0
  752. numpy/tests/test_reloading.py +76 -0
  753. numpy/tests/test_scripts.py +48 -0
  754. numpy/tests/test_warnings.py +79 -0
  755. numpy/typing/__init__.py +233 -0
  756. numpy/typing/__init__.pyi +3 -0
  757. numpy/typing/mypy_plugin.py +200 -0
  758. numpy/typing/tests/__init__.py +0 -0
  759. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  760. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  761. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  762. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  763. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  764. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  765. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  766. numpy/typing/tests/data/fail/char.pyi +63 -0
  767. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  768. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  769. numpy/typing/tests/data/fail/constants.pyi +3 -0
  770. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  771. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  772. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  773. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  774. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  775. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  776. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  777. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  778. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  779. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  780. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  781. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  782. numpy/typing/tests/data/fail/ma.pyi +155 -0
  783. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  784. numpy/typing/tests/data/fail/modules.pyi +17 -0
  785. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  786. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  787. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  788. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  789. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  790. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  791. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  792. numpy/typing/tests/data/fail/random.pyi +62 -0
  793. numpy/typing/tests/data/fail/rec.pyi +17 -0
  794. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  795. numpy/typing/tests/data/fail/shape.pyi +7 -0
  796. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  797. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  798. numpy/typing/tests/data/fail/strings.pyi +52 -0
  799. numpy/typing/tests/data/fail/testing.pyi +28 -0
  800. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  801. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  802. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  803. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  804. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  805. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  806. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  807. numpy/typing/tests/data/mypy.ini +8 -0
  808. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  809. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  810. numpy/typing/tests/data/pass/array_like.py +43 -0
  811. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  812. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  813. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  814. numpy/typing/tests/data/pass/comparisons.py +316 -0
  815. numpy/typing/tests/data/pass/dtype.py +57 -0
  816. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  817. numpy/typing/tests/data/pass/flatiter.py +26 -0
  818. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  819. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  820. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  821. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  822. numpy/typing/tests/data/pass/lib_version.py +18 -0
  823. numpy/typing/tests/data/pass/literal.py +52 -0
  824. numpy/typing/tests/data/pass/ma.py +199 -0
  825. numpy/typing/tests/data/pass/mod.py +149 -0
  826. numpy/typing/tests/data/pass/modules.py +45 -0
  827. numpy/typing/tests/data/pass/multiarray.py +77 -0
  828. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  829. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  830. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  831. numpy/typing/tests/data/pass/nditer.py +4 -0
  832. numpy/typing/tests/data/pass/numeric.py +90 -0
  833. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  834. numpy/typing/tests/data/pass/random.py +1498 -0
  835. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  836. numpy/typing/tests/data/pass/scalars.py +249 -0
  837. numpy/typing/tests/data/pass/shape.py +19 -0
  838. numpy/typing/tests/data/pass/simple.py +170 -0
  839. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  840. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  841. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  842. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  843. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  844. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  845. numpy/typing/tests/data/reveal/array_constructors.pyi +279 -0
  846. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  847. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  848. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  849. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  850. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  851. numpy/typing/tests/data/reveal/char.pyi +225 -0
  852. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  853. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  854. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  855. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  856. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  857. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  858. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  859. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  860. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  861. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  862. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  863. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  864. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  865. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  866. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  867. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  868. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  869. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  870. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  871. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  872. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  873. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  874. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  875. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  876. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  877. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  878. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  879. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  880. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  881. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  882. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  883. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  884. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  885. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  886. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  887. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  888. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  889. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  890. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  891. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  892. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  893. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  894. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  895. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  896. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  897. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  898. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  899. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  900. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  901. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  902. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  903. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  904. numpy/typing/tests/test_isfile.py +38 -0
  905. numpy/typing/tests/test_runtime.py +110 -0
  906. numpy/typing/tests/test_typing.py +205 -0
  907. numpy/version.py +11 -0
  908. numpy/version.pyi +9 -0
  909. numpy-2.4.2.dist-info/METADATA +139 -0
  910. numpy-2.4.2.dist-info/RECORD +929 -0
  911. numpy-2.4.2.dist-info/WHEEL +4 -0
  912. numpy-2.4.2.dist-info/entry_points.txt +13 -0
  913. numpy-2.4.2.dist-info/licenses/LICENSE.txt +914 -0
  914. numpy-2.4.2.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  915. numpy-2.4.2.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  916. numpy-2.4.2.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  917. numpy-2.4.2.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  918. numpy-2.4.2.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  919. numpy-2.4.2.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  920. numpy-2.4.2.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  921. numpy-2.4.2.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  922. numpy-2.4.2.dist-info/licenses/numpy/ma/LICENSE +24 -0
  923. numpy-2.4.2.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  924. numpy-2.4.2.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  925. numpy-2.4.2.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  926. numpy-2.4.2.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  927. numpy-2.4.2.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  928. numpy-2.4.2.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  929. numpy-2.4.2.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,1738 @@
1
+ """
2
+ ==============================================================
3
+ Hermite Series, "Physicists" (:mod:`numpy.polynomial.hermite`)
4
+ ==============================================================
5
+
6
+ This module provides a number of objects (mostly functions) useful for
7
+ dealing with Hermite series, including a `Hermite` class that
8
+ encapsulates the usual arithmetic operations. (General information
9
+ on how this module represents and works with such polynomials is in the
10
+ docstring for its "parent" sub-package, `numpy.polynomial`).
11
+
12
+ Classes
13
+ -------
14
+ .. autosummary::
15
+ :toctree: generated/
16
+
17
+ Hermite
18
+
19
+ Constants
20
+ ---------
21
+ .. autosummary::
22
+ :toctree: generated/
23
+
24
+ hermdomain
25
+ hermzero
26
+ hermone
27
+ hermx
28
+
29
+ Arithmetic
30
+ ----------
31
+ .. autosummary::
32
+ :toctree: generated/
33
+
34
+ hermadd
35
+ hermsub
36
+ hermmulx
37
+ hermmul
38
+ hermdiv
39
+ hermpow
40
+ hermval
41
+ hermval2d
42
+ hermval3d
43
+ hermgrid2d
44
+ hermgrid3d
45
+
46
+ Calculus
47
+ --------
48
+ .. autosummary::
49
+ :toctree: generated/
50
+
51
+ hermder
52
+ hermint
53
+
54
+ Misc Functions
55
+ --------------
56
+ .. autosummary::
57
+ :toctree: generated/
58
+
59
+ hermfromroots
60
+ hermroots
61
+ hermvander
62
+ hermvander2d
63
+ hermvander3d
64
+ hermgauss
65
+ hermweight
66
+ hermcompanion
67
+ hermfit
68
+ hermtrim
69
+ hermline
70
+ herm2poly
71
+ poly2herm
72
+
73
+ See also
74
+ --------
75
+ `numpy.polynomial`
76
+
77
+ """
78
+ import numpy as np
79
+
80
+ from . import polyutils as pu
81
+ from ._polybase import ABCPolyBase
82
+
83
+ __all__ = [
84
+ 'hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline', 'hermadd',
85
+ 'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermpow', 'hermval',
86
+ 'hermder', 'hermint', 'herm2poly', 'poly2herm', 'hermfromroots',
87
+ 'hermvander', 'hermfit', 'hermtrim', 'hermroots', 'Hermite',
88
+ 'hermval2d', 'hermval3d', 'hermgrid2d', 'hermgrid3d', 'hermvander2d',
89
+ 'hermvander3d', 'hermcompanion', 'hermgauss', 'hermweight']
90
+
91
+ hermtrim = pu.trimcoef
92
+
93
+
94
+ def poly2herm(pol):
95
+ """
96
+ poly2herm(pol)
97
+
98
+ Convert a polynomial to a Hermite series.
99
+
100
+ Convert an array representing the coefficients of a polynomial (relative
101
+ to the "standard" basis) ordered from lowest degree to highest, to an
102
+ array of the coefficients of the equivalent Hermite series, ordered
103
+ from lowest to highest degree.
104
+
105
+ Parameters
106
+ ----------
107
+ pol : array_like
108
+ 1-D array containing the polynomial coefficients
109
+
110
+ Returns
111
+ -------
112
+ c : ndarray
113
+ 1-D array containing the coefficients of the equivalent Hermite
114
+ series.
115
+
116
+ See Also
117
+ --------
118
+ herm2poly
119
+
120
+ Notes
121
+ -----
122
+ The easy way to do conversions between polynomial basis sets
123
+ is to use the convert method of a class instance.
124
+
125
+ Examples
126
+ --------
127
+ >>> from numpy.polynomial.hermite import poly2herm
128
+ >>> poly2herm(np.arange(4))
129
+ array([1. , 2.75 , 0.5 , 0.375])
130
+
131
+ """
132
+ [pol] = pu.as_series([pol])
133
+ deg = len(pol) - 1
134
+ res = 0
135
+ for i in range(deg, -1, -1):
136
+ res = hermadd(hermmulx(res), pol[i])
137
+ return res
138
+
139
+
140
+ def herm2poly(c):
141
+ """
142
+ Convert a Hermite series to a polynomial.
143
+
144
+ Convert an array representing the coefficients of a Hermite series,
145
+ ordered from lowest degree to highest, to an array of the coefficients
146
+ of the equivalent polynomial (relative to the "standard" basis) ordered
147
+ from lowest to highest degree.
148
+
149
+ Parameters
150
+ ----------
151
+ c : array_like
152
+ 1-D array containing the Hermite series coefficients, ordered
153
+ from lowest order term to highest.
154
+
155
+ Returns
156
+ -------
157
+ pol : ndarray
158
+ 1-D array containing the coefficients of the equivalent polynomial
159
+ (relative to the "standard" basis) ordered from lowest order term
160
+ to highest.
161
+
162
+ See Also
163
+ --------
164
+ poly2herm
165
+
166
+ Notes
167
+ -----
168
+ The easy way to do conversions between polynomial basis sets
169
+ is to use the convert method of a class instance.
170
+
171
+ Examples
172
+ --------
173
+ >>> from numpy.polynomial.hermite import herm2poly
174
+ >>> herm2poly([ 1. , 2.75 , 0.5 , 0.375])
175
+ array([0., 1., 2., 3.])
176
+
177
+ """
178
+ from .polynomial import polyadd, polymulx, polysub
179
+
180
+ [c] = pu.as_series([c])
181
+ n = len(c)
182
+ if n == 1:
183
+ return c
184
+ if n == 2:
185
+ c[1] *= 2
186
+ return c
187
+ else:
188
+ c0 = c[-2]
189
+ c1 = c[-1]
190
+ # i is the current degree of c1
191
+ for i in range(n - 1, 1, -1):
192
+ tmp = c0
193
+ c0 = polysub(c[i - 2], c1 * (2 * (i - 1)))
194
+ c1 = polyadd(tmp, polymulx(c1) * 2)
195
+ return polyadd(c0, polymulx(c1) * 2)
196
+
197
+
198
+ #
199
+ # These are constant arrays are of integer type so as to be compatible
200
+ # with the widest range of other types, such as Decimal.
201
+ #
202
+
203
+ # Hermite
204
+ hermdomain = np.array([-1., 1.])
205
+
206
+ # Hermite coefficients representing zero.
207
+ hermzero = np.array([0])
208
+
209
+ # Hermite coefficients representing one.
210
+ hermone = np.array([1])
211
+
212
+ # Hermite coefficients representing the identity x.
213
+ hermx = np.array([0, 1 / 2])
214
+
215
+
216
+ def hermline(off, scl):
217
+ """
218
+ Hermite series whose graph is a straight line.
219
+
220
+
221
+
222
+ Parameters
223
+ ----------
224
+ off, scl : scalars
225
+ The specified line is given by ``off + scl*x``.
226
+
227
+ Returns
228
+ -------
229
+ y : ndarray
230
+ This module's representation of the Hermite series for
231
+ ``off + scl*x``.
232
+
233
+ See Also
234
+ --------
235
+ numpy.polynomial.polynomial.polyline
236
+ numpy.polynomial.chebyshev.chebline
237
+ numpy.polynomial.legendre.legline
238
+ numpy.polynomial.laguerre.lagline
239
+ numpy.polynomial.hermite_e.hermeline
240
+
241
+ Examples
242
+ --------
243
+ >>> from numpy.polynomial.hermite import hermline, hermval
244
+ >>> hermval(0,hermline(3, 2))
245
+ 3.0
246
+ >>> hermval(1,hermline(3, 2))
247
+ 5.0
248
+
249
+ """
250
+ if scl != 0:
251
+ return np.array([off, scl / 2])
252
+ else:
253
+ return np.array([off])
254
+
255
+
256
+ def hermfromroots(roots):
257
+ """
258
+ Generate a Hermite series with given roots.
259
+
260
+ The function returns the coefficients of the polynomial
261
+
262
+ .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
263
+
264
+ in Hermite form, where the :math:`r_n` are the roots specified in `roots`.
265
+ If a zero has multiplicity n, then it must appear in `roots` n times.
266
+ For instance, if 2 is a root of multiplicity three and 3 is a root of
267
+ multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
268
+ roots can appear in any order.
269
+
270
+ If the returned coefficients are `c`, then
271
+
272
+ .. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x)
273
+
274
+ The coefficient of the last term is not generally 1 for monic
275
+ polynomials in Hermite form.
276
+
277
+ Parameters
278
+ ----------
279
+ roots : array_like
280
+ Sequence containing the roots.
281
+
282
+ Returns
283
+ -------
284
+ out : ndarray
285
+ 1-D array of coefficients. If all roots are real then `out` is a
286
+ real array, if some of the roots are complex, then `out` is complex
287
+ even if all the coefficients in the result are real (see Examples
288
+ below).
289
+
290
+ See Also
291
+ --------
292
+ numpy.polynomial.polynomial.polyfromroots
293
+ numpy.polynomial.legendre.legfromroots
294
+ numpy.polynomial.laguerre.lagfromroots
295
+ numpy.polynomial.chebyshev.chebfromroots
296
+ numpy.polynomial.hermite_e.hermefromroots
297
+
298
+ Examples
299
+ --------
300
+ >>> from numpy.polynomial.hermite import hermfromroots, hermval
301
+ >>> coef = hermfromroots((-1, 0, 1))
302
+ >>> hermval((-1, 0, 1), coef)
303
+ array([0., 0., 0.])
304
+ >>> coef = hermfromroots((-1j, 1j))
305
+ >>> hermval((-1j, 1j), coef)
306
+ array([0.+0.j, 0.+0.j])
307
+
308
+ """
309
+ return pu._fromroots(hermline, hermmul, roots)
310
+
311
+
312
+ def hermadd(c1, c2):
313
+ """
314
+ Add one Hermite series to another.
315
+
316
+ Returns the sum of two Hermite series `c1` + `c2`. The arguments
317
+ are sequences of coefficients ordered from lowest order term to
318
+ highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
319
+
320
+ Parameters
321
+ ----------
322
+ c1, c2 : array_like
323
+ 1-D arrays of Hermite series coefficients ordered from low to
324
+ high.
325
+
326
+ Returns
327
+ -------
328
+ out : ndarray
329
+ Array representing the Hermite series of their sum.
330
+
331
+ See Also
332
+ --------
333
+ hermsub, hermmulx, hermmul, hermdiv, hermpow
334
+
335
+ Notes
336
+ -----
337
+ Unlike multiplication, division, etc., the sum of two Hermite series
338
+ is a Hermite series (without having to "reproject" the result onto
339
+ the basis set) so addition, just like that of "standard" polynomials,
340
+ is simply "component-wise."
341
+
342
+ Examples
343
+ --------
344
+ >>> from numpy.polynomial.hermite import hermadd
345
+ >>> hermadd([1, 2, 3], [1, 2, 3, 4])
346
+ array([2., 4., 6., 4.])
347
+
348
+ """
349
+ return pu._add(c1, c2)
350
+
351
+
352
+ def hermsub(c1, c2):
353
+ """
354
+ Subtract one Hermite series from another.
355
+
356
+ Returns the difference of two Hermite series `c1` - `c2`. The
357
+ sequences of coefficients are from lowest order term to highest, i.e.,
358
+ [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
359
+
360
+ Parameters
361
+ ----------
362
+ c1, c2 : array_like
363
+ 1-D arrays of Hermite series coefficients ordered from low to
364
+ high.
365
+
366
+ Returns
367
+ -------
368
+ out : ndarray
369
+ Of Hermite series coefficients representing their difference.
370
+
371
+ See Also
372
+ --------
373
+ hermadd, hermmulx, hermmul, hermdiv, hermpow
374
+
375
+ Notes
376
+ -----
377
+ Unlike multiplication, division, etc., the difference of two Hermite
378
+ series is a Hermite series (without having to "reproject" the result
379
+ onto the basis set) so subtraction, just like that of "standard"
380
+ polynomials, is simply "component-wise."
381
+
382
+ Examples
383
+ --------
384
+ >>> from numpy.polynomial.hermite import hermsub
385
+ >>> hermsub([1, 2, 3, 4], [1, 2, 3])
386
+ array([0., 0., 0., 4.])
387
+
388
+ """
389
+ return pu._sub(c1, c2)
390
+
391
+
392
+ def hermmulx(c):
393
+ """Multiply a Hermite series by x.
394
+
395
+ Multiply the Hermite series `c` by x, where x is the independent
396
+ variable.
397
+
398
+
399
+ Parameters
400
+ ----------
401
+ c : array_like
402
+ 1-D array of Hermite series coefficients ordered from low to
403
+ high.
404
+
405
+ Returns
406
+ -------
407
+ out : ndarray
408
+ Array representing the result of the multiplication.
409
+
410
+ See Also
411
+ --------
412
+ hermadd, hermsub, hermmul, hermdiv, hermpow
413
+
414
+ Notes
415
+ -----
416
+ The multiplication uses the recursion relationship for Hermite
417
+ polynomials in the form
418
+
419
+ .. math::
420
+
421
+ xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))
422
+
423
+ Examples
424
+ --------
425
+ >>> from numpy.polynomial.hermite import hermmulx
426
+ >>> hermmulx([1, 2, 3])
427
+ array([2. , 6.5, 1. , 1.5])
428
+
429
+ """
430
+ # c is a trimmed copy
431
+ [c] = pu.as_series([c])
432
+ # The zero series needs special treatment
433
+ if len(c) == 1 and c[0] == 0:
434
+ return c
435
+
436
+ prd = np.empty(len(c) + 1, dtype=c.dtype)
437
+ prd[0] = c[0] * 0
438
+ prd[1] = c[0] / 2
439
+ for i in range(1, len(c)):
440
+ prd[i + 1] = c[i] / 2
441
+ prd[i - 1] += c[i] * i
442
+ return prd
443
+
444
+
445
+ def hermmul(c1, c2):
446
+ """
447
+ Multiply one Hermite series by another.
448
+
449
+ Returns the product of two Hermite series `c1` * `c2`. The arguments
450
+ are sequences of coefficients, from lowest order "term" to highest,
451
+ e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
452
+
453
+ Parameters
454
+ ----------
455
+ c1, c2 : array_like
456
+ 1-D arrays of Hermite series coefficients ordered from low to
457
+ high.
458
+
459
+ Returns
460
+ -------
461
+ out : ndarray
462
+ Of Hermite series coefficients representing their product.
463
+
464
+ See Also
465
+ --------
466
+ hermadd, hermsub, hermmulx, hermdiv, hermpow
467
+
468
+ Notes
469
+ -----
470
+ In general, the (polynomial) product of two C-series results in terms
471
+ that are not in the Hermite polynomial basis set. Thus, to express
472
+ the product as a Hermite series, it is necessary to "reproject" the
473
+ product onto said basis set, which may produce "unintuitive" (but
474
+ correct) results; see Examples section below.
475
+
476
+ Examples
477
+ --------
478
+ >>> from numpy.polynomial.hermite import hermmul
479
+ >>> hermmul([1, 2, 3], [0, 1, 2])
480
+ array([52., 29., 52., 7., 6.])
481
+
482
+ """
483
+ # s1, s2 are trimmed copies
484
+ [c1, c2] = pu.as_series([c1, c2])
485
+
486
+ if len(c1) > len(c2):
487
+ c = c2
488
+ xs = c1
489
+ else:
490
+ c = c1
491
+ xs = c2
492
+
493
+ if len(c) == 1:
494
+ c0 = c[0] * xs
495
+ c1 = 0
496
+ elif len(c) == 2:
497
+ c0 = c[0] * xs
498
+ c1 = c[1] * xs
499
+ else:
500
+ nd = len(c)
501
+ c0 = c[-2] * xs
502
+ c1 = c[-1] * xs
503
+ for i in range(3, len(c) + 1):
504
+ tmp = c0
505
+ nd = nd - 1
506
+ c0 = hermsub(c[-i] * xs, c1 * (2 * (nd - 1)))
507
+ c1 = hermadd(tmp, hermmulx(c1) * 2)
508
+ return hermadd(c0, hermmulx(c1) * 2)
509
+
510
+
511
+ def hermdiv(c1, c2):
512
+ """
513
+ Divide one Hermite series by another.
514
+
515
+ Returns the quotient-with-remainder of two Hermite series
516
+ `c1` / `c2`. The arguments are sequences of coefficients from lowest
517
+ order "term" to highest, e.g., [1,2,3] represents the series
518
+ ``P_0 + 2*P_1 + 3*P_2``.
519
+
520
+ Parameters
521
+ ----------
522
+ c1, c2 : array_like
523
+ 1-D arrays of Hermite series coefficients ordered from low to
524
+ high.
525
+
526
+ Returns
527
+ -------
528
+ [quo, rem] : ndarrays
529
+ Of Hermite series coefficients representing the quotient and
530
+ remainder.
531
+
532
+ See Also
533
+ --------
534
+ hermadd, hermsub, hermmulx, hermmul, hermpow
535
+
536
+ Notes
537
+ -----
538
+ In general, the (polynomial) division of one Hermite series by another
539
+ results in quotient and remainder terms that are not in the Hermite
540
+ polynomial basis set. Thus, to express these results as a Hermite
541
+ series, it is necessary to "reproject" the results onto the Hermite
542
+ basis set, which may produce "unintuitive" (but correct) results; see
543
+ Examples section below.
544
+
545
+ Examples
546
+ --------
547
+ >>> from numpy.polynomial.hermite import hermdiv
548
+ >>> hermdiv([ 52., 29., 52., 7., 6.], [0, 1, 2])
549
+ (array([1., 2., 3.]), array([0.]))
550
+ >>> hermdiv([ 54., 31., 52., 7., 6.], [0, 1, 2])
551
+ (array([1., 2., 3.]), array([2., 2.]))
552
+ >>> hermdiv([ 53., 30., 52., 7., 6.], [0, 1, 2])
553
+ (array([1., 2., 3.]), array([1., 1.]))
554
+
555
+ """
556
+ return pu._div(hermmul, c1, c2)
557
+
558
+
559
+ def hermpow(c, pow, maxpower=16):
560
+ """Raise a Hermite series to a power.
561
+
562
+ Returns the Hermite series `c` raised to the power `pow`. The
563
+ argument `c` is a sequence of coefficients ordered from low to high.
564
+ i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.``
565
+
566
+ Parameters
567
+ ----------
568
+ c : array_like
569
+ 1-D array of Hermite series coefficients ordered from low to
570
+ high.
571
+ pow : integer
572
+ Power to which the series will be raised
573
+ maxpower : integer, optional
574
+ Maximum power allowed. This is mainly to limit growth of the series
575
+ to unmanageable size. Default is 16
576
+
577
+ Returns
578
+ -------
579
+ coef : ndarray
580
+ Hermite series of power.
581
+
582
+ See Also
583
+ --------
584
+ hermadd, hermsub, hermmulx, hermmul, hermdiv
585
+
586
+ Examples
587
+ --------
588
+ >>> from numpy.polynomial.hermite import hermpow
589
+ >>> hermpow([1, 2, 3], 2)
590
+ array([81., 52., 82., 12., 9.])
591
+
592
+ """
593
+ return pu._pow(hermmul, c, pow, maxpower)
594
+
595
+
596
+ def hermder(c, m=1, scl=1, axis=0):
597
+ """
598
+ Differentiate a Hermite series.
599
+
600
+ Returns the Hermite series coefficients `c` differentiated `m` times
601
+ along `axis`. At each iteration the result is multiplied by `scl` (the
602
+ scaling factor is for use in a linear change of variable). The argument
603
+ `c` is an array of coefficients from low to high degree along each
604
+ axis, e.g., [1,2,3] represents the series ``1*H_0 + 2*H_1 + 3*H_2``
605
+ while [[1,2],[1,2]] represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
606
+ 2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is
607
+ ``y``.
608
+
609
+ Parameters
610
+ ----------
611
+ c : array_like
612
+ Array of Hermite series coefficients. If `c` is multidimensional the
613
+ different axis correspond to different variables with the degree in
614
+ each axis given by the corresponding index.
615
+ m : int, optional
616
+ Number of derivatives taken, must be non-negative. (Default: 1)
617
+ scl : scalar, optional
618
+ Each differentiation is multiplied by `scl`. The end result is
619
+ multiplication by ``scl**m``. This is for use in a linear change of
620
+ variable. (Default: 1)
621
+ axis : int, optional
622
+ Axis over which the derivative is taken. (Default: 0).
623
+
624
+ Returns
625
+ -------
626
+ der : ndarray
627
+ Hermite series of the derivative.
628
+
629
+ See Also
630
+ --------
631
+ hermint
632
+
633
+ Notes
634
+ -----
635
+ In general, the result of differentiating a Hermite series does not
636
+ resemble the same operation on a power series. Thus the result of this
637
+ function may be "unintuitive," albeit correct; see Examples section
638
+ below.
639
+
640
+ Examples
641
+ --------
642
+ >>> from numpy.polynomial.hermite import hermder
643
+ >>> hermder([ 1. , 0.5, 0.5, 0.5])
644
+ array([1., 2., 3.])
645
+ >>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
646
+ array([1., 2., 3.])
647
+
648
+ """
649
+ c = np.array(c, ndmin=1, copy=True)
650
+ if c.dtype.char in '?bBhHiIlLqQpP':
651
+ c = c.astype(np.double)
652
+ cnt = pu._as_int(m, "the order of derivation")
653
+ iaxis = pu._as_int(axis, "the axis")
654
+ if cnt < 0:
655
+ raise ValueError("The order of derivation must be non-negative")
656
+ iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
657
+
658
+ if cnt == 0:
659
+ return c
660
+
661
+ c = np.moveaxis(c, iaxis, 0)
662
+ n = len(c)
663
+ if cnt >= n:
664
+ c = c[:1] * 0
665
+ else:
666
+ for i in range(cnt):
667
+ n = n - 1
668
+ c *= scl
669
+ der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
670
+ for j in range(n, 0, -1):
671
+ der[j - 1] = (2 * j) * c[j]
672
+ c = der
673
+ c = np.moveaxis(c, 0, iaxis)
674
+ return c
675
+
676
+
677
+ def hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
678
+ """
679
+ Integrate a Hermite series.
680
+
681
+ Returns the Hermite series coefficients `c` integrated `m` times from
682
+ `lbnd` along `axis`. At each iteration the resulting series is
683
+ **multiplied** by `scl` and an integration constant, `k`, is added.
684
+ The scaling factor is for use in a linear change of variable. ("Buyer
685
+ beware": note that, depending on what one is doing, one may want `scl`
686
+ to be the reciprocal of what one might expect; for more information,
687
+ see the Notes section below.) The argument `c` is an array of
688
+ coefficients from low to high degree along each axis, e.g., [1,2,3]
689
+ represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]]
690
+ represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
691
+ 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
692
+
693
+ Parameters
694
+ ----------
695
+ c : array_like
696
+ Array of Hermite series coefficients. If c is multidimensional the
697
+ different axis correspond to different variables with the degree in
698
+ each axis given by the corresponding index.
699
+ m : int, optional
700
+ Order of integration, must be positive. (Default: 1)
701
+ k : {[], list, scalar}, optional
702
+ Integration constant(s). The value of the first integral at
703
+ ``lbnd`` is the first value in the list, the value of the second
704
+ integral at ``lbnd`` is the second value, etc. If ``k == []`` (the
705
+ default), all constants are set to zero. If ``m == 1``, a single
706
+ scalar can be given instead of a list.
707
+ lbnd : scalar, optional
708
+ The lower bound of the integral. (Default: 0)
709
+ scl : scalar, optional
710
+ Following each integration the result is *multiplied* by `scl`
711
+ before the integration constant is added. (Default: 1)
712
+ axis : int, optional
713
+ Axis over which the integral is taken. (Default: 0).
714
+
715
+ Returns
716
+ -------
717
+ S : ndarray
718
+ Hermite series coefficients of the integral.
719
+
720
+ Raises
721
+ ------
722
+ ValueError
723
+ If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
724
+ ``np.ndim(scl) != 0``.
725
+
726
+ See Also
727
+ --------
728
+ hermder
729
+
730
+ Notes
731
+ -----
732
+ Note that the result of each integration is *multiplied* by `scl`.
733
+ Why is this important to note? Say one is making a linear change of
734
+ variable :math:`u = ax + b` in an integral relative to `x`. Then
735
+ :math:`dx = du/a`, so one will need to set `scl` equal to
736
+ :math:`1/a` - perhaps not what one would have first thought.
737
+
738
+ Also note that, in general, the result of integrating a C-series needs
739
+ to be "reprojected" onto the C-series basis set. Thus, typically,
740
+ the result of this function is "unintuitive," albeit correct; see
741
+ Examples section below.
742
+
743
+ Examples
744
+ --------
745
+ >>> from numpy.polynomial.hermite import hermint
746
+ >>> hermint([1,2,3]) # integrate once, value 0 at 0.
747
+ array([1. , 0.5, 0.5, 0.5])
748
+ >>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
749
+ array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
750
+ >>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
751
+ array([2. , 0.5, 0.5, 0.5])
752
+ >>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
753
+ array([-2. , 0.5, 0.5, 0.5])
754
+ >>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
755
+ array([ 1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
756
+
757
+ """
758
+ c = np.array(c, ndmin=1, copy=True)
759
+ if c.dtype.char in '?bBhHiIlLqQpP':
760
+ c = c.astype(np.double)
761
+ if not np.iterable(k):
762
+ k = [k]
763
+ cnt = pu._as_int(m, "the order of integration")
764
+ iaxis = pu._as_int(axis, "the axis")
765
+ if cnt < 0:
766
+ raise ValueError("The order of integration must be non-negative")
767
+ if len(k) > cnt:
768
+ raise ValueError("Too many integration constants")
769
+ if np.ndim(lbnd) != 0:
770
+ raise ValueError("lbnd must be a scalar.")
771
+ if np.ndim(scl) != 0:
772
+ raise ValueError("scl must be a scalar.")
773
+ iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
774
+
775
+ if cnt == 0:
776
+ return c
777
+
778
+ c = np.moveaxis(c, iaxis, 0)
779
+ k = list(k) + [0] * (cnt - len(k))
780
+ for i in range(cnt):
781
+ n = len(c)
782
+ c *= scl
783
+ if n == 1 and np.all(c[0] == 0):
784
+ c[0] += k[i]
785
+ else:
786
+ tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
787
+ tmp[0] = c[0] * 0
788
+ tmp[1] = c[0] / 2
789
+ for j in range(1, n):
790
+ tmp[j + 1] = c[j] / (2 * (j + 1))
791
+ tmp[0] += k[i] - hermval(lbnd, tmp)
792
+ c = tmp
793
+ c = np.moveaxis(c, 0, iaxis)
794
+ return c
795
+
796
+
797
+ def hermval(x, c, tensor=True):
798
+ """
799
+ Evaluate a Hermite series at points x.
800
+
801
+ If `c` is of length ``n + 1``, this function returns the value:
802
+
803
+ .. math:: p(x) = c_0 * H_0(x) + c_1 * H_1(x) + ... + c_n * H_n(x)
804
+
805
+ The parameter `x` is converted to an array only if it is a tuple or a
806
+ list, otherwise it is treated as a scalar. In either case, either `x`
807
+ or its elements must support multiplication and addition both with
808
+ themselves and with the elements of `c`.
809
+
810
+ If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If
811
+ `c` is multidimensional, then the shape of the result depends on the
812
+ value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
813
+ x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
814
+ scalars have shape (,).
815
+
816
+ Trailing zeros in the coefficients will be used in the evaluation, so
817
+ they should be avoided if efficiency is a concern.
818
+
819
+ Parameters
820
+ ----------
821
+ x : array_like, compatible object
822
+ If `x` is a list or tuple, it is converted to an ndarray, otherwise
823
+ it is left unchanged and treated as a scalar. In either case, `x`
824
+ or its elements must support addition and multiplication with
825
+ themselves and with the elements of `c`.
826
+ c : array_like
827
+ Array of coefficients ordered so that the coefficients for terms of
828
+ degree n are contained in c[n]. If `c` is multidimensional the
829
+ remaining indices enumerate multiple polynomials. In the two
830
+ dimensional case the coefficients may be thought of as stored in
831
+ the columns of `c`.
832
+ tensor : boolean, optional
833
+ If True, the shape of the coefficient array is extended with ones
834
+ on the right, one for each dimension of `x`. Scalars have dimension 0
835
+ for this action. The result is that every column of coefficients in
836
+ `c` is evaluated for every element of `x`. If False, `x` is broadcast
837
+ over the columns of `c` for the evaluation. This keyword is useful
838
+ when `c` is multidimensional. The default value is True.
839
+
840
+ Returns
841
+ -------
842
+ values : ndarray, algebra_like
843
+ The shape of the return value is described above.
844
+
845
+ See Also
846
+ --------
847
+ hermval2d, hermgrid2d, hermval3d, hermgrid3d
848
+
849
+ Notes
850
+ -----
851
+ The evaluation uses Clenshaw recursion, aka synthetic division.
852
+
853
+ Examples
854
+ --------
855
+ >>> from numpy.polynomial.hermite import hermval
856
+ >>> coef = [1,2,3]
857
+ >>> hermval(1, coef)
858
+ 11.0
859
+ >>> hermval([[1,2],[3,4]], coef)
860
+ array([[ 11., 51.],
861
+ [115., 203.]])
862
+
863
+ """
864
+ c = np.array(c, ndmin=1, copy=None)
865
+ if c.dtype.char in '?bBhHiIlLqQpP':
866
+ c = c.astype(np.double)
867
+ if isinstance(x, (tuple, list)):
868
+ x = np.asarray(x)
869
+ if isinstance(x, np.ndarray) and tensor:
870
+ c = c.reshape(c.shape + (1,) * x.ndim)
871
+
872
+ x2 = x * 2
873
+ if len(c) == 1:
874
+ c0 = c[0]
875
+ c1 = 0
876
+ elif len(c) == 2:
877
+ c0 = c[0]
878
+ c1 = c[1]
879
+ else:
880
+ nd = len(c)
881
+ c0 = c[-2]
882
+ c1 = c[-1]
883
+ for i in range(3, len(c) + 1):
884
+ tmp = c0
885
+ nd = nd - 1
886
+ c0 = c[-i] - c1 * (2 * (nd - 1))
887
+ c1 = tmp + c1 * x2
888
+ return c0 + c1 * x2
889
+
890
+
891
+ def hermval2d(x, y, c):
892
+ """
893
+ Evaluate a 2-D Hermite series at points (x, y).
894
+
895
+ This function returns the values:
896
+
897
+ .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * H_i(x) * H_j(y)
898
+
899
+ The parameters `x` and `y` are converted to arrays only if they are
900
+ tuples or a lists, otherwise they are treated as a scalars and they
901
+ must have the same shape after conversion. In either case, either `x`
902
+ and `y` or their elements must support multiplication and addition both
903
+ with themselves and with the elements of `c`.
904
+
905
+ If `c` is a 1-D array a one is implicitly appended to its shape to make
906
+ it 2-D. The shape of the result will be c.shape[2:] + x.shape.
907
+
908
+ Parameters
909
+ ----------
910
+ x, y : array_like, compatible objects
911
+ The two dimensional series is evaluated at the points ``(x, y)``,
912
+ where `x` and `y` must have the same shape. If `x` or `y` is a list
913
+ or tuple, it is first converted to an ndarray, otherwise it is left
914
+ unchanged and if it isn't an ndarray it is treated as a scalar.
915
+ c : array_like
916
+ Array of coefficients ordered so that the coefficient of the term
917
+ of multi-degree i,j is contained in ``c[i,j]``. If `c` has
918
+ dimension greater than two the remaining indices enumerate multiple
919
+ sets of coefficients.
920
+
921
+ Returns
922
+ -------
923
+ values : ndarray, compatible object
924
+ The values of the two dimensional polynomial at points formed with
925
+ pairs of corresponding values from `x` and `y`.
926
+
927
+ See Also
928
+ --------
929
+ hermval, hermgrid2d, hermval3d, hermgrid3d
930
+
931
+ Examples
932
+ --------
933
+ >>> from numpy.polynomial.hermite import hermval2d
934
+ >>> x = [1, 2]
935
+ >>> y = [4, 5]
936
+ >>> c = [[1, 2, 3], [4, 5, 6]]
937
+ >>> hermval2d(x, y, c)
938
+ array([1035., 2883.])
939
+
940
+ """
941
+ return pu._valnd(hermval, c, x, y)
942
+
943
+
944
+ def hermgrid2d(x, y, c):
945
+ """
946
+ Evaluate a 2-D Hermite series on the Cartesian product of x and y.
947
+
948
+ This function returns the values:
949
+
950
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
951
+
952
+ where the points ``(a, b)`` consist of all pairs formed by taking
953
+ `a` from `x` and `b` from `y`. The resulting points form a grid with
954
+ `x` in the first dimension and `y` in the second.
955
+
956
+ The parameters `x` and `y` are converted to arrays only if they are
957
+ tuples or a lists, otherwise they are treated as a scalars. In either
958
+ case, either `x` and `y` or their elements must support multiplication
959
+ and addition both with themselves and with the elements of `c`.
960
+
961
+ If `c` has fewer than two dimensions, ones are implicitly appended to
962
+ its shape to make it 2-D. The shape of the result will be c.shape[2:] +
963
+ x.shape.
964
+
965
+ Parameters
966
+ ----------
967
+ x, y : array_like, compatible objects
968
+ The two dimensional series is evaluated at the points in the
969
+ Cartesian product of `x` and `y`. If `x` or `y` is a list or
970
+ tuple, it is first converted to an ndarray, otherwise it is left
971
+ unchanged and, if it isn't an ndarray, it is treated as a scalar.
972
+ c : array_like
973
+ Array of coefficients ordered so that the coefficients for terms of
974
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
975
+ greater than two the remaining indices enumerate multiple sets of
976
+ coefficients.
977
+
978
+ Returns
979
+ -------
980
+ values : ndarray, compatible object
981
+ The values of the two dimensional polynomial at points in the Cartesian
982
+ product of `x` and `y`.
983
+
984
+ See Also
985
+ --------
986
+ hermval, hermval2d, hermval3d, hermgrid3d
987
+
988
+ Examples
989
+ --------
990
+ >>> from numpy.polynomial.hermite import hermgrid2d
991
+ >>> x = [1, 2, 3]
992
+ >>> y = [4, 5]
993
+ >>> c = [[1, 2, 3], [4, 5, 6]]
994
+ >>> hermgrid2d(x, y, c)
995
+ array([[1035., 1599.],
996
+ [1867., 2883.],
997
+ [2699., 4167.]])
998
+
999
+ """
1000
+ return pu._gridnd(hermval, c, x, y)
1001
+
1002
+
1003
+ def hermval3d(x, y, z, c):
1004
+ """
1005
+ Evaluate a 3-D Hermite series at points (x, y, z).
1006
+
1007
+ This function returns the values:
1008
+
1009
+ .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * H_i(x) * H_j(y) * H_k(z)
1010
+
1011
+ The parameters `x`, `y`, and `z` are converted to arrays only if
1012
+ they are tuples or a lists, otherwise they are treated as a scalars and
1013
+ they must have the same shape after conversion. In either case, either
1014
+ `x`, `y`, and `z` or their elements must support multiplication and
1015
+ addition both with themselves and with the elements of `c`.
1016
+
1017
+ If `c` has fewer than 3 dimensions, ones are implicitly appended to its
1018
+ shape to make it 3-D. The shape of the result will be c.shape[3:] +
1019
+ x.shape.
1020
+
1021
+ Parameters
1022
+ ----------
1023
+ x, y, z : array_like, compatible object
1024
+ The three dimensional series is evaluated at the points
1025
+ ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If
1026
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
1027
+ to an ndarray, otherwise it is left unchanged and if it isn't an
1028
+ ndarray it is treated as a scalar.
1029
+ c : array_like
1030
+ Array of coefficients ordered so that the coefficient of the term of
1031
+ multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
1032
+ greater than 3 the remaining indices enumerate multiple sets of
1033
+ coefficients.
1034
+
1035
+ Returns
1036
+ -------
1037
+ values : ndarray, compatible object
1038
+ The values of the multidimensional polynomial on points formed with
1039
+ triples of corresponding values from `x`, `y`, and `z`.
1040
+
1041
+ See Also
1042
+ --------
1043
+ hermval, hermval2d, hermgrid2d, hermgrid3d
1044
+
1045
+ Examples
1046
+ --------
1047
+ >>> from numpy.polynomial.hermite import hermval3d
1048
+ >>> x = [1, 2]
1049
+ >>> y = [4, 5]
1050
+ >>> z = [6, 7]
1051
+ >>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
1052
+ >>> hermval3d(x, y, z, c)
1053
+ array([ 40077., 120131.])
1054
+
1055
+ """
1056
+ return pu._valnd(hermval, c, x, y, z)
1057
+
1058
+
1059
+ def hermgrid3d(x, y, z, c):
1060
+ """
1061
+ Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.
1062
+
1063
+ This function returns the values:
1064
+
1065
+ .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * H_i(a) * H_j(b) * H_k(c)
1066
+
1067
+ where the points ``(a, b, c)`` consist of all triples formed by taking
1068
+ `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
1069
+ a grid with `x` in the first dimension, `y` in the second, and `z` in
1070
+ the third.
1071
+
1072
+ The parameters `x`, `y`, and `z` are converted to arrays only if they
1073
+ are tuples or a lists, otherwise they are treated as a scalars. In
1074
+ either case, either `x`, `y`, and `z` or their elements must support
1075
+ multiplication and addition both with themselves and with the elements
1076
+ of `c`.
1077
+
1078
+ If `c` has fewer than three dimensions, ones are implicitly appended to
1079
+ its shape to make it 3-D. The shape of the result will be c.shape[3:] +
1080
+ x.shape + y.shape + z.shape.
1081
+
1082
+ Parameters
1083
+ ----------
1084
+ x, y, z : array_like, compatible objects
1085
+ The three dimensional series is evaluated at the points in the
1086
+ Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a
1087
+ list or tuple, it is first converted to an ndarray, otherwise it is
1088
+ left unchanged and, if it isn't an ndarray, it is treated as a
1089
+ scalar.
1090
+ c : array_like
1091
+ Array of coefficients ordered so that the coefficients for terms of
1092
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
1093
+ greater than two the remaining indices enumerate multiple sets of
1094
+ coefficients.
1095
+
1096
+ Returns
1097
+ -------
1098
+ values : ndarray, compatible object
1099
+ The values of the two dimensional polynomial at points in the Cartesian
1100
+ product of `x` and `y`.
1101
+
1102
+ See Also
1103
+ --------
1104
+ hermval, hermval2d, hermgrid2d, hermval3d
1105
+
1106
+ Examples
1107
+ --------
1108
+ >>> from numpy.polynomial.hermite import hermgrid3d
1109
+ >>> x = [1, 2]
1110
+ >>> y = [4, 5]
1111
+ >>> z = [6, 7]
1112
+ >>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
1113
+ >>> hermgrid3d(x, y, z, c)
1114
+ array([[[ 40077., 54117.],
1115
+ [ 49293., 66561.]],
1116
+ [[ 72375., 97719.],
1117
+ [ 88975., 120131.]]])
1118
+
1119
+ """
1120
+ return pu._gridnd(hermval, c, x, y, z)
1121
+
1122
+
1123
+ def hermvander(x, deg):
1124
+ """Pseudo-Vandermonde matrix of given degree.
1125
+
1126
+ Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
1127
+ `x`. The pseudo-Vandermonde matrix is defined by
1128
+
1129
+ .. math:: V[..., i] = H_i(x),
1130
+
1131
+ where ``0 <= i <= deg``. The leading indices of `V` index the elements of
1132
+ `x` and the last index is the degree of the Hermite polynomial.
1133
+
1134
+ If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the
1135
+ array ``V = hermvander(x, n)``, then ``np.dot(V, c)`` and
1136
+ ``hermval(x, c)`` are the same up to roundoff. This equivalence is
1137
+ useful both for least squares fitting and for the evaluation of a large
1138
+ number of Hermite series of the same degree and sample points.
1139
+
1140
+ Parameters
1141
+ ----------
1142
+ x : array_like
1143
+ Array of points. The dtype is converted to float64 or complex128
1144
+ depending on whether any of the elements are complex. If `x` is
1145
+ scalar it is converted to a 1-D array.
1146
+ deg : int
1147
+ Degree of the resulting matrix.
1148
+
1149
+ Returns
1150
+ -------
1151
+ vander : ndarray
1152
+ The pseudo-Vandermonde matrix. The shape of the returned matrix is
1153
+ ``x.shape + (deg + 1,)``, where The last index is the degree of the
1154
+ corresponding Hermite polynomial. The dtype will be the same as
1155
+ the converted `x`.
1156
+
1157
+ Examples
1158
+ --------
1159
+ >>> import numpy as np
1160
+ >>> from numpy.polynomial.hermite import hermvander
1161
+ >>> x = np.array([-1, 0, 1])
1162
+ >>> hermvander(x, 3)
1163
+ array([[ 1., -2., 2., 4.],
1164
+ [ 1., 0., -2., -0.],
1165
+ [ 1., 2., 2., -4.]])
1166
+
1167
+ """
1168
+ ideg = pu._as_int(deg, "deg")
1169
+ if ideg < 0:
1170
+ raise ValueError("deg must be non-negative")
1171
+
1172
+ x = np.array(x, copy=None, ndmin=1) + 0.0
1173
+ dims = (ideg + 1,) + x.shape
1174
+ dtyp = x.dtype
1175
+ v = np.empty(dims, dtype=dtyp)
1176
+ v[0] = x * 0 + 1
1177
+ if ideg > 0:
1178
+ x2 = x * 2
1179
+ v[1] = x2
1180
+ for i in range(2, ideg + 1):
1181
+ v[i] = (v[i - 1] * x2 - v[i - 2] * (2 * (i - 1)))
1182
+ return np.moveaxis(v, 0, -1)
1183
+
1184
+
1185
+ def hermvander2d(x, y, deg):
1186
+ """Pseudo-Vandermonde matrix of given degrees.
1187
+
1188
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1189
+ points ``(x, y)``. The pseudo-Vandermonde matrix is defined by
1190
+
1191
+ .. math:: V[..., (deg[1] + 1)*i + j] = H_i(x) * H_j(y),
1192
+
1193
+ where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of
1194
+ `V` index the points ``(x, y)`` and the last index encodes the degrees of
1195
+ the Hermite polynomials.
1196
+
1197
+ If ``V = hermvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
1198
+ correspond to the elements of a 2-D coefficient array `c` of shape
1199
+ (xdeg + 1, ydeg + 1) in the order
1200
+
1201
+ .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
1202
+
1203
+ and ``np.dot(V, c.flat)`` and ``hermval2d(x, y, c)`` will be the same
1204
+ up to roundoff. This equivalence is useful both for least squares
1205
+ fitting and for the evaluation of a large number of 2-D Hermite
1206
+ series of the same degrees and sample points.
1207
+
1208
+ Parameters
1209
+ ----------
1210
+ x, y : array_like
1211
+ Arrays of point coordinates, all of the same shape. The dtypes
1212
+ will be converted to either float64 or complex128 depending on
1213
+ whether any of the elements are complex. Scalars are converted to 1-D
1214
+ arrays.
1215
+ deg : list of ints
1216
+ List of maximum degrees of the form [x_deg, y_deg].
1217
+
1218
+ Returns
1219
+ -------
1220
+ vander2d : ndarray
1221
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1222
+ :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
1223
+ as the converted `x` and `y`.
1224
+
1225
+ See Also
1226
+ --------
1227
+ hermvander, hermvander3d, hermval2d, hermval3d
1228
+
1229
+ Examples
1230
+ --------
1231
+ >>> import numpy as np
1232
+ >>> from numpy.polynomial.hermite import hermvander2d
1233
+ >>> x = np.array([-1, 0, 1])
1234
+ >>> y = np.array([-1, 0, 1])
1235
+ >>> hermvander2d(x, y, [2, 2])
1236
+ array([[ 1., -2., 2., -2., 4., -4., 2., -4., 4.],
1237
+ [ 1., 0., -2., 0., 0., -0., -2., -0., 4.],
1238
+ [ 1., 2., 2., 2., 4., 4., 2., 4., 4.]])
1239
+
1240
+ """
1241
+ return pu._vander_nd_flat((hermvander, hermvander), (x, y), deg)
1242
+
1243
+
1244
+ def hermvander3d(x, y, z, deg):
1245
+ """Pseudo-Vandermonde matrix of given degrees.
1246
+
1247
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1248
+ points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`,
1249
+ then The pseudo-Vandermonde matrix is defined by
1250
+
1251
+ .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = H_i(x)*H_j(y)*H_k(z),
1252
+
1253
+ where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading
1254
+ indices of `V` index the points ``(x, y, z)`` and the last index encodes
1255
+ the degrees of the Hermite polynomials.
1256
+
1257
+ If ``V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
1258
+ of `V` correspond to the elements of a 3-D coefficient array `c` of
1259
+ shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
1260
+
1261
+ .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
1262
+
1263
+ and ``np.dot(V, c.flat)`` and ``hermval3d(x, y, z, c)`` will be the
1264
+ same up to roundoff. This equivalence is useful both for least squares
1265
+ fitting and for the evaluation of a large number of 3-D Hermite
1266
+ series of the same degrees and sample points.
1267
+
1268
+ Parameters
1269
+ ----------
1270
+ x, y, z : array_like
1271
+ Arrays of point coordinates, all of the same shape. The dtypes will
1272
+ be converted to either float64 or complex128 depending on whether
1273
+ any of the elements are complex. Scalars are converted to 1-D
1274
+ arrays.
1275
+ deg : list of ints
1276
+ List of maximum degrees of the form [x_deg, y_deg, z_deg].
1277
+
1278
+ Returns
1279
+ -------
1280
+ vander3d : ndarray
1281
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1282
+ :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
1283
+ be the same as the converted `x`, `y`, and `z`.
1284
+
1285
+ See Also
1286
+ --------
1287
+ hermvander, hermvander3d, hermval2d, hermval3d
1288
+
1289
+ Examples
1290
+ --------
1291
+ >>> from numpy.polynomial.hermite import hermvander3d
1292
+ >>> x = np.array([-1, 0, 1])
1293
+ >>> y = np.array([-1, 0, 1])
1294
+ >>> z = np.array([-1, 0, 1])
1295
+ >>> hermvander3d(x, y, z, [0, 1, 2])
1296
+ array([[ 1., -2., 2., -2., 4., -4.],
1297
+ [ 1., 0., -2., 0., 0., -0.],
1298
+ [ 1., 2., 2., 2., 4., 4.]])
1299
+
1300
+ """
1301
+ return pu._vander_nd_flat((hermvander, hermvander, hermvander), (x, y, z), deg)
1302
+
1303
+
1304
+ def hermfit(x, y, deg, rcond=None, full=False, w=None):
1305
+ """
1306
+ Least squares fit of Hermite series to data.
1307
+
1308
+ Return the coefficients of a Hermite series of degree `deg` that is the
1309
+ least squares fit to the data values `y` given at points `x`. If `y` is
1310
+ 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
1311
+ fits are done, one for each column of `y`, and the resulting
1312
+ coefficients are stored in the corresponding columns of a 2-D return.
1313
+ The fitted polynomial(s) are in the form
1314
+
1315
+ .. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x),
1316
+
1317
+ where `n` is `deg`.
1318
+
1319
+ Parameters
1320
+ ----------
1321
+ x : array_like, shape (M,)
1322
+ x-coordinates of the M sample points ``(x[i], y[i])``.
1323
+ y : array_like, shape (M,) or (M, K)
1324
+ y-coordinates of the sample points. Several data sets of sample
1325
+ points sharing the same x-coordinates can be fitted at once by
1326
+ passing in a 2D-array that contains one dataset per column.
1327
+ deg : int or 1-D array_like
1328
+ Degree(s) of the fitting polynomials. If `deg` is a single integer
1329
+ all terms up to and including the `deg`'th term are included in the
1330
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
1331
+ degrees of the terms to include may be used instead.
1332
+ rcond : float, optional
1333
+ Relative condition number of the fit. Singular values smaller than
1334
+ this relative to the largest singular value will be ignored. The
1335
+ default value is len(x)*eps, where eps is the relative precision of
1336
+ the float type, about 2e-16 in most cases.
1337
+ full : bool, optional
1338
+ Switch determining nature of return value. When it is False (the
1339
+ default) just the coefficients are returned, when True diagnostic
1340
+ information from the singular value decomposition is also returned.
1341
+ w : array_like, shape (`M`,), optional
1342
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
1343
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
1344
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
1345
+ same variance. When using inverse-variance weighting, use
1346
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
1347
+
1348
+ Returns
1349
+ -------
1350
+ coef : ndarray, shape (M,) or (M, K)
1351
+ Hermite coefficients ordered from low to high. If `y` was 2-D,
1352
+ the coefficients for the data in column k of `y` are in column
1353
+ `k`.
1354
+
1355
+ [residuals, rank, singular_values, rcond] : list
1356
+ These values are only returned if ``full == True``
1357
+
1358
+ - residuals -- sum of squared residuals of the least squares fit
1359
+ - rank -- the numerical rank of the scaled Vandermonde matrix
1360
+ - singular_values -- singular values of the scaled Vandermonde matrix
1361
+ - rcond -- value of `rcond`.
1362
+
1363
+ For more details, see `numpy.linalg.lstsq`.
1364
+
1365
+ Warns
1366
+ -----
1367
+ RankWarning
1368
+ The rank of the coefficient matrix in the least-squares fit is
1369
+ deficient. The warning is only raised if ``full == False``. The
1370
+ warnings can be turned off by
1371
+
1372
+ >>> import warnings
1373
+ >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)
1374
+
1375
+ See Also
1376
+ --------
1377
+ numpy.polynomial.chebyshev.chebfit
1378
+ numpy.polynomial.legendre.legfit
1379
+ numpy.polynomial.laguerre.lagfit
1380
+ numpy.polynomial.polynomial.polyfit
1381
+ numpy.polynomial.hermite_e.hermefit
1382
+ hermval : Evaluates a Hermite series.
1383
+ hermvander : Vandermonde matrix of Hermite series.
1384
+ hermweight : Hermite weight function
1385
+ numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
1386
+ scipy.interpolate.UnivariateSpline : Computes spline fits.
1387
+
1388
+ Notes
1389
+ -----
1390
+ The solution is the coefficients of the Hermite series `p` that
1391
+ minimizes the sum of the weighted squared errors
1392
+
1393
+ .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
1394
+
1395
+ where the :math:`w_j` are the weights. This problem is solved by
1396
+ setting up the (typically) overdetermined matrix equation
1397
+
1398
+ .. math:: V(x) * c = w * y,
1399
+
1400
+ where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
1401
+ coefficients to be solved for, `w` are the weights, `y` are the
1402
+ observed values. This equation is then solved using the singular value
1403
+ decomposition of `V`.
1404
+
1405
+ If some of the singular values of `V` are so small that they are
1406
+ neglected, then a `~exceptions.RankWarning` will be issued. This means that
1407
+ the coefficient values may be poorly determined. Using a lower order fit
1408
+ will usually get rid of the warning. The `rcond` parameter can also be
1409
+ set to a value smaller than its default, but the resulting fit may be
1410
+ spurious and have large contributions from roundoff error.
1411
+
1412
+ Fits using Hermite series are probably most useful when the data can be
1413
+ approximated by ``sqrt(w(x)) * p(x)``, where ``w(x)`` is the Hermite
1414
+ weight. In that case the weight ``sqrt(w(x[i]))`` should be used
1415
+ together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is
1416
+ available as `hermweight`.
1417
+
1418
+ References
1419
+ ----------
1420
+ .. [1] Wikipedia, "Curve fitting",
1421
+ https://en.wikipedia.org/wiki/Curve_fitting
1422
+
1423
+ Examples
1424
+ --------
1425
+ >>> import numpy as np
1426
+ >>> from numpy.polynomial.hermite import hermfit, hermval
1427
+ >>> x = np.linspace(-10, 10)
1428
+ >>> rng = np.random.default_rng()
1429
+ >>> err = rng.normal(scale=1./10, size=len(x))
1430
+ >>> y = hermval(x, [1, 2, 3]) + err
1431
+ >>> hermfit(x, y, 2)
1432
+ array([1.02294967, 2.00016403, 2.99994614]) # may vary
1433
+
1434
+ """
1435
+ return pu._fit(hermvander, x, y, deg, rcond, full, w)
1436
+
1437
+
1438
+ def hermcompanion(c):
1439
+ """Return the scaled companion matrix of c.
1440
+
1441
+ The basis polynomials are scaled so that the companion matrix is
1442
+ symmetric when `c` is a Hermite basis polynomial. This provides
1443
+ better eigenvalue estimates than the unscaled case and for basis
1444
+ polynomials the eigenvalues are guaranteed to be real if
1445
+ `numpy.linalg.eigvalsh` is used to obtain them.
1446
+
1447
+ Parameters
1448
+ ----------
1449
+ c : array_like
1450
+ 1-D array of Hermite series coefficients ordered from low to high
1451
+ degree.
1452
+
1453
+ Returns
1454
+ -------
1455
+ mat : ndarray
1456
+ Scaled companion matrix of dimensions (deg, deg).
1457
+
1458
+ Examples
1459
+ --------
1460
+ >>> from numpy.polynomial.hermite import hermcompanion
1461
+ >>> hermcompanion([1, 0, 1])
1462
+ array([[0. , 0.35355339],
1463
+ [0.70710678, 0. ]])
1464
+
1465
+ """
1466
+ # c is a trimmed copy
1467
+ [c] = pu.as_series([c])
1468
+ if len(c) < 2:
1469
+ raise ValueError('Series must have maximum degree of at least 1.')
1470
+ if len(c) == 2:
1471
+ return np.array([[-.5 * c[0] / c[1]]])
1472
+
1473
+ n = len(c) - 1
1474
+ mat = np.zeros((n, n), dtype=c.dtype)
1475
+ scl = np.hstack((1., 1. / np.sqrt(2. * np.arange(n - 1, 0, -1))))
1476
+ scl = np.multiply.accumulate(scl)[::-1]
1477
+ top = mat.reshape(-1)[1::n + 1]
1478
+ bot = mat.reshape(-1)[n::n + 1]
1479
+ top[...] = np.sqrt(.5 * np.arange(1, n))
1480
+ bot[...] = top
1481
+ mat[:, -1] -= scl * c[:-1] / (2.0 * c[-1])
1482
+ return mat
1483
+
1484
+
1485
+ def hermroots(c):
1486
+ """
1487
+ Compute the roots of a Hermite series.
1488
+
1489
+ Return the roots (a.k.a. "zeros") of the polynomial
1490
+
1491
+ .. math:: p(x) = \\sum_i c[i] * H_i(x).
1492
+
1493
+ Parameters
1494
+ ----------
1495
+ c : 1-D array_like
1496
+ 1-D array of coefficients.
1497
+
1498
+ Returns
1499
+ -------
1500
+ out : ndarray
1501
+ Array of the roots of the series. If all the roots are real,
1502
+ then `out` is also real, otherwise it is complex.
1503
+
1504
+ See Also
1505
+ --------
1506
+ numpy.polynomial.polynomial.polyroots
1507
+ numpy.polynomial.legendre.legroots
1508
+ numpy.polynomial.laguerre.lagroots
1509
+ numpy.polynomial.chebyshev.chebroots
1510
+ numpy.polynomial.hermite_e.hermeroots
1511
+
1512
+ Notes
1513
+ -----
1514
+ The root estimates are obtained as the eigenvalues of the companion
1515
+ matrix, Roots far from the origin of the complex plane may have large
1516
+ errors due to the numerical instability of the series for such
1517
+ values. Roots with multiplicity greater than 1 will also show larger
1518
+ errors as the value of the series near such points is relatively
1519
+ insensitive to errors in the roots. Isolated roots near the origin can
1520
+ be improved by a few iterations of Newton's method.
1521
+
1522
+ The Hermite series basis polynomials aren't powers of `x` so the
1523
+ results of this function may seem unintuitive.
1524
+
1525
+ Examples
1526
+ --------
1527
+ >>> from numpy.polynomial.hermite import hermroots, hermfromroots
1528
+ >>> coef = hermfromroots([-1, 0, 1])
1529
+ >>> coef
1530
+ array([0. , 0.25 , 0. , 0.125])
1531
+ >>> hermroots(coef)
1532
+ array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00])
1533
+
1534
+ """
1535
+ # c is a trimmed copy
1536
+ [c] = pu.as_series([c])
1537
+ if len(c) <= 1:
1538
+ return np.array([], dtype=c.dtype)
1539
+ if len(c) == 2:
1540
+ return np.array([-.5 * c[0] / c[1]])
1541
+
1542
+ # rotated companion matrix reduces error
1543
+ m = hermcompanion(c)[::-1, ::-1]
1544
+ r = np.linalg.eigvals(m)
1545
+ r.sort()
1546
+ return r
1547
+
1548
+
1549
+ def _normed_hermite_n(x, n):
1550
+ """
1551
+ Evaluate a normalized Hermite polynomial.
1552
+
1553
+ Compute the value of the normalized Hermite polynomial of degree ``n``
1554
+ at the points ``x``.
1555
+
1556
+
1557
+ Parameters
1558
+ ----------
1559
+ x : ndarray of double.
1560
+ Points at which to evaluate the function
1561
+ n : int
1562
+ Degree of the normalized Hermite function to be evaluated.
1563
+
1564
+ Returns
1565
+ -------
1566
+ values : ndarray
1567
+ The shape of the return value is described above.
1568
+
1569
+ Notes
1570
+ -----
1571
+ This function is needed for finding the Gauss points and integration
1572
+ weights for high degrees. The values of the standard Hermite functions
1573
+ overflow when n >= 207.
1574
+
1575
+ """
1576
+ if n == 0:
1577
+ return np.full(x.shape, 1 / np.sqrt(np.sqrt(np.pi)))
1578
+
1579
+ c0 = 0.
1580
+ c1 = 1. / np.sqrt(np.sqrt(np.pi))
1581
+ nd = float(n)
1582
+ for i in range(n - 1):
1583
+ tmp = c0
1584
+ c0 = -c1 * np.sqrt((nd - 1.) / nd)
1585
+ c1 = tmp + c1 * x * np.sqrt(2. / nd)
1586
+ nd = nd - 1.0
1587
+ return c0 + c1 * x * np.sqrt(2)
1588
+
1589
+
1590
+ def hermgauss(deg):
1591
+ """
1592
+ Gauss-Hermite quadrature.
1593
+
1594
+ Computes the sample points and weights for Gauss-Hermite quadrature.
1595
+ These sample points and weights will correctly integrate polynomials of
1596
+ degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
1597
+ with the weight function :math:`f(x) = \\exp(-x^2)`.
1598
+
1599
+ Parameters
1600
+ ----------
1601
+ deg : int
1602
+ Number of sample points and weights. It must be >= 1.
1603
+
1604
+ Returns
1605
+ -------
1606
+ x : ndarray
1607
+ 1-D ndarray containing the sample points.
1608
+ y : ndarray
1609
+ 1-D ndarray containing the weights.
1610
+
1611
+ Notes
1612
+ -----
1613
+ The results have only been tested up to degree 100, higher degrees may
1614
+ be problematic. The weights are determined by using the fact that
1615
+
1616
+ .. math:: w_k = c / (H'_n(x_k) * H_{n-1}(x_k))
1617
+
1618
+ where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
1619
+ is the k'th root of :math:`H_n`, and then scaling the results to get
1620
+ the right value when integrating 1.
1621
+
1622
+ Examples
1623
+ --------
1624
+ >>> from numpy.polynomial.hermite import hermgauss
1625
+ >>> hermgauss(2)
1626
+ (array([-0.70710678, 0.70710678]), array([0.88622693, 0.88622693]))
1627
+
1628
+ """
1629
+ ideg = pu._as_int(deg, "deg")
1630
+ if ideg <= 0:
1631
+ raise ValueError("deg must be a positive integer")
1632
+
1633
+ # first approximation of roots. We use the fact that the companion
1634
+ # matrix is symmetric in this case in order to obtain better zeros.
1635
+ c = np.array([0] * deg + [1], dtype=np.float64)
1636
+ m = hermcompanion(c)
1637
+ x = np.linalg.eigvalsh(m)
1638
+
1639
+ # improve roots by one application of Newton
1640
+ dy = _normed_hermite_n(x, ideg)
1641
+ df = _normed_hermite_n(x, ideg - 1) * np.sqrt(2 * ideg)
1642
+ x -= dy / df
1643
+
1644
+ # compute the weights. We scale the factor to avoid possible numerical
1645
+ # overflow.
1646
+ fm = _normed_hermite_n(x, ideg - 1)
1647
+ fm /= np.abs(fm).max()
1648
+ w = 1 / (fm * fm)
1649
+
1650
+ # for Hermite we can also symmetrize
1651
+ w = (w + w[::-1]) / 2
1652
+ x = (x - x[::-1]) / 2
1653
+
1654
+ # scale w to get the right value
1655
+ w *= np.sqrt(np.pi) / w.sum()
1656
+
1657
+ return x, w
1658
+
1659
+
1660
+ def hermweight(x):
1661
+ """
1662
+ Weight function of the Hermite polynomials.
1663
+
1664
+ The weight function is :math:`\\exp(-x^2)` and the interval of
1665
+ integration is :math:`[-\\inf, \\inf]`. the Hermite polynomials are
1666
+ orthogonal, but not normalized, with respect to this weight function.
1667
+
1668
+ Parameters
1669
+ ----------
1670
+ x : array_like
1671
+ Values at which the weight function will be computed.
1672
+
1673
+ Returns
1674
+ -------
1675
+ w : ndarray
1676
+ The weight function at `x`.
1677
+
1678
+ Examples
1679
+ --------
1680
+ >>> import numpy as np
1681
+ >>> from numpy.polynomial.hermite import hermweight
1682
+ >>> x = np.arange(-2, 2)
1683
+ >>> hermweight(x)
1684
+ array([0.01831564, 0.36787944, 1. , 0.36787944])
1685
+
1686
+ """
1687
+ w = np.exp(-x**2)
1688
+ return w
1689
+
1690
+
1691
+ #
1692
+ # Hermite series class
1693
+ #
1694
+
1695
+ class Hermite(ABCPolyBase):
1696
+ """A Hermite series class.
1697
+
1698
+ The Hermite class provides the standard Python numerical methods
1699
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
1700
+ attributes and methods listed below.
1701
+
1702
+ Parameters
1703
+ ----------
1704
+ coef : array_like
1705
+ Hermite coefficients in order of increasing degree, i.e,
1706
+ ``(1, 2, 3)`` gives ``1*H_0(x) + 2*H_1(x) + 3*H_2(x)``.
1707
+ domain : (2,) array_like, optional
1708
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
1709
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
1710
+ The default value is [-1., 1.].
1711
+ window : (2,) array_like, optional
1712
+ Window, see `domain` for its use. The default value is [-1., 1.].
1713
+ symbol : str, optional
1714
+ Symbol used to represent the independent variable in string
1715
+ representations of the polynomial expression, e.g. for printing.
1716
+ The symbol must be a valid Python identifier. Default value is 'x'.
1717
+
1718
+ .. versionadded:: 1.24
1719
+
1720
+ """
1721
+ # Virtual Functions
1722
+ _add = staticmethod(hermadd)
1723
+ _sub = staticmethod(hermsub)
1724
+ _mul = staticmethod(hermmul)
1725
+ _div = staticmethod(hermdiv)
1726
+ _pow = staticmethod(hermpow)
1727
+ _val = staticmethod(hermval)
1728
+ _int = staticmethod(hermint)
1729
+ _der = staticmethod(hermder)
1730
+ _fit = staticmethod(hermfit)
1731
+ _line = staticmethod(hermline)
1732
+ _roots = staticmethod(hermroots)
1733
+ _fromroots = staticmethod(hermfromroots)
1734
+
1735
+ # Virtual properties
1736
+ domain = np.array(hermdomain)
1737
+ window = np.array(hermdomain)
1738
+ basis_name = 'H'