numpy 2.4.2__cp313-cp313t-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numpy/__config__.py +170 -0
- numpy/__config__.pyi +108 -0
- numpy/__init__.cython-30.pxd +1242 -0
- numpy/__init__.pxd +1155 -0
- numpy/__init__.py +942 -0
- numpy/__init__.pyi +6202 -0
- numpy/_array_api_info.py +346 -0
- numpy/_array_api_info.pyi +206 -0
- numpy/_configtool.py +39 -0
- numpy/_configtool.pyi +1 -0
- numpy/_core/__init__.py +203 -0
- numpy/_core/__init__.pyi +666 -0
- numpy/_core/_add_newdocs.py +7151 -0
- numpy/_core/_add_newdocs.pyi +2 -0
- numpy/_core/_add_newdocs_scalars.py +381 -0
- numpy/_core/_add_newdocs_scalars.pyi +16 -0
- numpy/_core/_asarray.py +130 -0
- numpy/_core/_asarray.pyi +43 -0
- numpy/_core/_dtype.py +366 -0
- numpy/_core/_dtype.pyi +56 -0
- numpy/_core/_dtype_ctypes.py +120 -0
- numpy/_core/_dtype_ctypes.pyi +83 -0
- numpy/_core/_exceptions.py +162 -0
- numpy/_core/_exceptions.pyi +54 -0
- numpy/_core/_internal.py +968 -0
- numpy/_core/_internal.pyi +61 -0
- numpy/_core/_methods.py +252 -0
- numpy/_core/_methods.pyi +22 -0
- numpy/_core/_multiarray_tests.cp313t-win32.lib +0 -0
- numpy/_core/_multiarray_tests.cp313t-win32.pyd +0 -0
- numpy/_core/_multiarray_umath.cp313t-win32.lib +0 -0
- numpy/_core/_multiarray_umath.cp313t-win32.pyd +0 -0
- numpy/_core/_operand_flag_tests.cp313t-win32.lib +0 -0
- numpy/_core/_operand_flag_tests.cp313t-win32.pyd +0 -0
- numpy/_core/_rational_tests.cp313t-win32.lib +0 -0
- numpy/_core/_rational_tests.cp313t-win32.pyd +0 -0
- numpy/_core/_simd.cp313t-win32.lib +0 -0
- numpy/_core/_simd.cp313t-win32.pyd +0 -0
- numpy/_core/_simd.pyi +35 -0
- numpy/_core/_string_helpers.py +100 -0
- numpy/_core/_string_helpers.pyi +12 -0
- numpy/_core/_struct_ufunc_tests.cp313t-win32.lib +0 -0
- numpy/_core/_struct_ufunc_tests.cp313t-win32.pyd +0 -0
- numpy/_core/_type_aliases.py +131 -0
- numpy/_core/_type_aliases.pyi +86 -0
- numpy/_core/_ufunc_config.py +515 -0
- numpy/_core/_ufunc_config.pyi +69 -0
- numpy/_core/_umath_tests.cp313t-win32.lib +0 -0
- numpy/_core/_umath_tests.cp313t-win32.pyd +0 -0
- numpy/_core/_umath_tests.pyi +47 -0
- numpy/_core/arrayprint.py +1779 -0
- numpy/_core/arrayprint.pyi +158 -0
- numpy/_core/cversions.py +13 -0
- numpy/_core/defchararray.py +1414 -0
- numpy/_core/defchararray.pyi +1150 -0
- numpy/_core/einsumfunc.py +1650 -0
- numpy/_core/einsumfunc.pyi +184 -0
- numpy/_core/fromnumeric.py +4233 -0
- numpy/_core/fromnumeric.pyi +1735 -0
- numpy/_core/function_base.py +547 -0
- numpy/_core/function_base.pyi +276 -0
- numpy/_core/getlimits.py +462 -0
- numpy/_core/getlimits.pyi +124 -0
- numpy/_core/include/numpy/__multiarray_api.c +376 -0
- numpy/_core/include/numpy/__multiarray_api.h +1628 -0
- numpy/_core/include/numpy/__ufunc_api.c +55 -0
- numpy/_core/include/numpy/__ufunc_api.h +349 -0
- numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
- numpy/_core/include/numpy/_numpyconfig.h +33 -0
- numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
- numpy/_core/include/numpy/arrayobject.h +7 -0
- numpy/_core/include/numpy/arrayscalars.h +198 -0
- numpy/_core/include/numpy/dtype_api.h +547 -0
- numpy/_core/include/numpy/halffloat.h +70 -0
- numpy/_core/include/numpy/ndarrayobject.h +304 -0
- numpy/_core/include/numpy/ndarraytypes.h +1982 -0
- numpy/_core/include/numpy/npy_2_compat.h +249 -0
- numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
- numpy/_core/include/numpy/npy_3kcompat.h +374 -0
- numpy/_core/include/numpy/npy_common.h +989 -0
- numpy/_core/include/numpy/npy_cpu.h +126 -0
- numpy/_core/include/numpy/npy_endian.h +79 -0
- numpy/_core/include/numpy/npy_math.h +602 -0
- numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
- numpy/_core/include/numpy/npy_os.h +42 -0
- numpy/_core/include/numpy/numpyconfig.h +185 -0
- numpy/_core/include/numpy/random/LICENSE.txt +21 -0
- numpy/_core/include/numpy/random/bitgen.h +20 -0
- numpy/_core/include/numpy/random/distributions.h +209 -0
- numpy/_core/include/numpy/random/libdivide.h +2079 -0
- numpy/_core/include/numpy/ufuncobject.h +343 -0
- numpy/_core/include/numpy/utils.h +37 -0
- numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
- numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
- numpy/_core/lib/npymath.lib +0 -0
- numpy/_core/lib/pkgconfig/numpy.pc +7 -0
- numpy/_core/memmap.py +363 -0
- numpy/_core/memmap.pyi +3 -0
- numpy/_core/multiarray.py +1740 -0
- numpy/_core/multiarray.pyi +1328 -0
- numpy/_core/numeric.py +2771 -0
- numpy/_core/numeric.pyi +1276 -0
- numpy/_core/numerictypes.py +633 -0
- numpy/_core/numerictypes.pyi +196 -0
- numpy/_core/overrides.py +188 -0
- numpy/_core/overrides.pyi +47 -0
- numpy/_core/printoptions.py +32 -0
- numpy/_core/printoptions.pyi +28 -0
- numpy/_core/records.py +1088 -0
- numpy/_core/records.pyi +340 -0
- numpy/_core/shape_base.py +996 -0
- numpy/_core/shape_base.pyi +182 -0
- numpy/_core/strings.py +1813 -0
- numpy/_core/strings.pyi +536 -0
- numpy/_core/tests/_locales.py +72 -0
- numpy/_core/tests/_natype.py +144 -0
- numpy/_core/tests/data/astype_copy.pkl +0 -0
- numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
- numpy/_core/tests/data/recarray_from_file.fits +0 -0
- numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
- numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
- numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
- numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
- numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
- numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
- numpy/_core/tests/examples/cython/checks.pyx +374 -0
- numpy/_core/tests/examples/cython/meson.build +43 -0
- numpy/_core/tests/examples/cython/setup.py +39 -0
- numpy/_core/tests/examples/limited_api/limited_api1.c +15 -0
- numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
- numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
- numpy/_core/tests/examples/limited_api/meson.build +63 -0
- numpy/_core/tests/examples/limited_api/setup.py +24 -0
- numpy/_core/tests/test__exceptions.py +90 -0
- numpy/_core/tests/test_abc.py +54 -0
- numpy/_core/tests/test_api.py +655 -0
- numpy/_core/tests/test_argparse.py +90 -0
- numpy/_core/tests/test_array_api_info.py +113 -0
- numpy/_core/tests/test_array_coercion.py +928 -0
- numpy/_core/tests/test_array_interface.py +222 -0
- numpy/_core/tests/test_arraymethod.py +84 -0
- numpy/_core/tests/test_arrayobject.py +95 -0
- numpy/_core/tests/test_arrayprint.py +1324 -0
- numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
- numpy/_core/tests/test_casting_unittests.py +955 -0
- numpy/_core/tests/test_conversion_utils.py +209 -0
- numpy/_core/tests/test_cpu_dispatcher.py +48 -0
- numpy/_core/tests/test_cpu_features.py +450 -0
- numpy/_core/tests/test_custom_dtypes.py +393 -0
- numpy/_core/tests/test_cython.py +352 -0
- numpy/_core/tests/test_datetime.py +2792 -0
- numpy/_core/tests/test_defchararray.py +858 -0
- numpy/_core/tests/test_deprecations.py +460 -0
- numpy/_core/tests/test_dlpack.py +190 -0
- numpy/_core/tests/test_dtype.py +2110 -0
- numpy/_core/tests/test_einsum.py +1351 -0
- numpy/_core/tests/test_errstate.py +131 -0
- numpy/_core/tests/test_extint128.py +217 -0
- numpy/_core/tests/test_finfo.py +86 -0
- numpy/_core/tests/test_function_base.py +504 -0
- numpy/_core/tests/test_getlimits.py +171 -0
- numpy/_core/tests/test_half.py +593 -0
- numpy/_core/tests/test_hashtable.py +36 -0
- numpy/_core/tests/test_indexerrors.py +122 -0
- numpy/_core/tests/test_indexing.py +1692 -0
- numpy/_core/tests/test_item_selection.py +167 -0
- numpy/_core/tests/test_limited_api.py +102 -0
- numpy/_core/tests/test_longdouble.py +370 -0
- numpy/_core/tests/test_mem_overlap.py +933 -0
- numpy/_core/tests/test_mem_policy.py +453 -0
- numpy/_core/tests/test_memmap.py +248 -0
- numpy/_core/tests/test_multiarray.py +11008 -0
- numpy/_core/tests/test_multiprocessing.py +55 -0
- numpy/_core/tests/test_multithreading.py +406 -0
- numpy/_core/tests/test_nditer.py +3533 -0
- numpy/_core/tests/test_nep50_promotions.py +287 -0
- numpy/_core/tests/test_numeric.py +4301 -0
- numpy/_core/tests/test_numerictypes.py +650 -0
- numpy/_core/tests/test_overrides.py +800 -0
- numpy/_core/tests/test_print.py +202 -0
- numpy/_core/tests/test_protocols.py +46 -0
- numpy/_core/tests/test_records.py +544 -0
- numpy/_core/tests/test_regression.py +2677 -0
- numpy/_core/tests/test_scalar_ctors.py +203 -0
- numpy/_core/tests/test_scalar_methods.py +328 -0
- numpy/_core/tests/test_scalarbuffer.py +153 -0
- numpy/_core/tests/test_scalarinherit.py +105 -0
- numpy/_core/tests/test_scalarmath.py +1168 -0
- numpy/_core/tests/test_scalarprint.py +403 -0
- numpy/_core/tests/test_shape_base.py +904 -0
- numpy/_core/tests/test_simd.py +1345 -0
- numpy/_core/tests/test_simd_module.py +105 -0
- numpy/_core/tests/test_stringdtype.py +1855 -0
- numpy/_core/tests/test_strings.py +1523 -0
- numpy/_core/tests/test_ufunc.py +3405 -0
- numpy/_core/tests/test_umath.py +4962 -0
- numpy/_core/tests/test_umath_accuracy.py +132 -0
- numpy/_core/tests/test_umath_complex.py +631 -0
- numpy/_core/tests/test_unicode.py +369 -0
- numpy/_core/umath.py +60 -0
- numpy/_core/umath.pyi +232 -0
- numpy/_distributor_init.py +15 -0
- numpy/_distributor_init.pyi +1 -0
- numpy/_expired_attrs_2_0.py +78 -0
- numpy/_expired_attrs_2_0.pyi +61 -0
- numpy/_globals.py +121 -0
- numpy/_globals.pyi +17 -0
- numpy/_pyinstaller/__init__.py +0 -0
- numpy/_pyinstaller/__init__.pyi +0 -0
- numpy/_pyinstaller/hook-numpy.py +36 -0
- numpy/_pyinstaller/hook-numpy.pyi +6 -0
- numpy/_pyinstaller/tests/__init__.py +16 -0
- numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
- numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
- numpy/_pytesttester.py +201 -0
- numpy/_pytesttester.pyi +18 -0
- numpy/_typing/__init__.py +173 -0
- numpy/_typing/_add_docstring.py +153 -0
- numpy/_typing/_array_like.py +106 -0
- numpy/_typing/_char_codes.py +213 -0
- numpy/_typing/_dtype_like.py +114 -0
- numpy/_typing/_extended_precision.py +15 -0
- numpy/_typing/_nbit.py +19 -0
- numpy/_typing/_nbit_base.py +94 -0
- numpy/_typing/_nbit_base.pyi +39 -0
- numpy/_typing/_nested_sequence.py +79 -0
- numpy/_typing/_scalars.py +20 -0
- numpy/_typing/_shape.py +8 -0
- numpy/_typing/_ufunc.py +7 -0
- numpy/_typing/_ufunc.pyi +975 -0
- numpy/_utils/__init__.py +95 -0
- numpy/_utils/__init__.pyi +28 -0
- numpy/_utils/_convertions.py +18 -0
- numpy/_utils/_convertions.pyi +4 -0
- numpy/_utils/_inspect.py +192 -0
- numpy/_utils/_inspect.pyi +70 -0
- numpy/_utils/_pep440.py +486 -0
- numpy/_utils/_pep440.pyi +118 -0
- numpy/char/__init__.py +2 -0
- numpy/char/__init__.pyi +111 -0
- numpy/conftest.py +248 -0
- numpy/core/__init__.py +33 -0
- numpy/core/__init__.pyi +0 -0
- numpy/core/_dtype.py +10 -0
- numpy/core/_dtype.pyi +0 -0
- numpy/core/_dtype_ctypes.py +10 -0
- numpy/core/_dtype_ctypes.pyi +0 -0
- numpy/core/_internal.py +27 -0
- numpy/core/_multiarray_umath.py +57 -0
- numpy/core/_utils.py +21 -0
- numpy/core/arrayprint.py +10 -0
- numpy/core/defchararray.py +10 -0
- numpy/core/einsumfunc.py +10 -0
- numpy/core/fromnumeric.py +10 -0
- numpy/core/function_base.py +10 -0
- numpy/core/getlimits.py +10 -0
- numpy/core/multiarray.py +25 -0
- numpy/core/numeric.py +12 -0
- numpy/core/numerictypes.py +10 -0
- numpy/core/overrides.py +10 -0
- numpy/core/overrides.pyi +7 -0
- numpy/core/records.py +10 -0
- numpy/core/shape_base.py +10 -0
- numpy/core/umath.py +10 -0
- numpy/ctypeslib/__init__.py +13 -0
- numpy/ctypeslib/__init__.pyi +15 -0
- numpy/ctypeslib/_ctypeslib.py +603 -0
- numpy/ctypeslib/_ctypeslib.pyi +236 -0
- numpy/doc/ufuncs.py +138 -0
- numpy/dtypes.py +41 -0
- numpy/dtypes.pyi +630 -0
- numpy/exceptions.py +246 -0
- numpy/exceptions.pyi +27 -0
- numpy/f2py/__init__.py +86 -0
- numpy/f2py/__init__.pyi +5 -0
- numpy/f2py/__main__.py +5 -0
- numpy/f2py/__version__.py +1 -0
- numpy/f2py/__version__.pyi +1 -0
- numpy/f2py/_backends/__init__.py +9 -0
- numpy/f2py/_backends/__init__.pyi +5 -0
- numpy/f2py/_backends/_backend.py +44 -0
- numpy/f2py/_backends/_backend.pyi +46 -0
- numpy/f2py/_backends/_distutils.py +76 -0
- numpy/f2py/_backends/_distutils.pyi +13 -0
- numpy/f2py/_backends/_meson.py +244 -0
- numpy/f2py/_backends/_meson.pyi +62 -0
- numpy/f2py/_backends/meson.build.template +58 -0
- numpy/f2py/_isocbind.py +62 -0
- numpy/f2py/_isocbind.pyi +13 -0
- numpy/f2py/_src_pyf.py +247 -0
- numpy/f2py/_src_pyf.pyi +28 -0
- numpy/f2py/auxfuncs.py +1004 -0
- numpy/f2py/auxfuncs.pyi +262 -0
- numpy/f2py/capi_maps.py +811 -0
- numpy/f2py/capi_maps.pyi +33 -0
- numpy/f2py/cb_rules.py +665 -0
- numpy/f2py/cb_rules.pyi +17 -0
- numpy/f2py/cfuncs.py +1563 -0
- numpy/f2py/cfuncs.pyi +31 -0
- numpy/f2py/common_rules.py +143 -0
- numpy/f2py/common_rules.pyi +9 -0
- numpy/f2py/crackfortran.py +3725 -0
- numpy/f2py/crackfortran.pyi +266 -0
- numpy/f2py/diagnose.py +149 -0
- numpy/f2py/diagnose.pyi +1 -0
- numpy/f2py/f2py2e.py +788 -0
- numpy/f2py/f2py2e.pyi +74 -0
- numpy/f2py/f90mod_rules.py +269 -0
- numpy/f2py/f90mod_rules.pyi +16 -0
- numpy/f2py/func2subr.py +329 -0
- numpy/f2py/func2subr.pyi +7 -0
- numpy/f2py/rules.py +1629 -0
- numpy/f2py/rules.pyi +41 -0
- numpy/f2py/setup.cfg +3 -0
- numpy/f2py/src/fortranobject.c +1436 -0
- numpy/f2py/src/fortranobject.h +173 -0
- numpy/f2py/symbolic.py +1518 -0
- numpy/f2py/symbolic.pyi +219 -0
- numpy/f2py/tests/__init__.py +16 -0
- numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
- numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
- numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
- numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
- numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
- numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
- numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
- numpy/f2py/tests/src/block_docstring/foo.f +6 -0
- numpy/f2py/tests/src/callback/foo.f +62 -0
- numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
- numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
- numpy/f2py/tests/src/callback/gh25211.f +10 -0
- numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
- numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
- numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
- numpy/f2py/tests/src/cli/hi77.f +3 -0
- numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
- numpy/f2py/tests/src/common/block.f +11 -0
- numpy/f2py/tests/src/common/gh19161.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
- numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
- numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
- numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
- numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
- numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
- numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
- numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
- numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
- numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
- numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
- numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
- numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
- numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
- numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
- numpy/f2py/tests/src/kind/foo.f90 +20 -0
- numpy/f2py/tests/src/mixed/foo.f +5 -0
- numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
- numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
- numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
- numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
- numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
- numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
- numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
- numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
- numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
- numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
- numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
- numpy/f2py/tests/src/quoted_character/foo.f +14 -0
- numpy/f2py/tests/src/regression/AB.inc +1 -0
- numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
- numpy/f2py/tests/src/regression/datonly.f90 +17 -0
- numpy/f2py/tests/src/regression/f77comments.f +26 -0
- numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
- numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
- numpy/f2py/tests/src/regression/incfile.f90 +5 -0
- numpy/f2py/tests/src/regression/inout.f90 +9 -0
- numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
- numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
- numpy/f2py/tests/src/return_character/foo77.f +45 -0
- numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_complex/foo77.f +45 -0
- numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_integer/foo77.f +56 -0
- numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_logical/foo77.f +56 -0
- numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_real/foo77.f +45 -0
- numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
- numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
- numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
- numpy/f2py/tests/src/routines/subrout.f +4 -0
- numpy/f2py/tests/src/routines/subrout.pyf +10 -0
- numpy/f2py/tests/src/size/foo.f90 +44 -0
- numpy/f2py/tests/src/string/char.f90 +29 -0
- numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
- numpy/f2py/tests/src/string/gh24008.f +8 -0
- numpy/f2py/tests/src/string/gh24662.f90 +7 -0
- numpy/f2py/tests/src/string/gh25286.f90 +14 -0
- numpy/f2py/tests/src/string/gh25286.pyf +12 -0
- numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
- numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
- numpy/f2py/tests/src/string/string.f +12 -0
- numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
- numpy/f2py/tests/test_abstract_interface.py +26 -0
- numpy/f2py/tests/test_array_from_pyobj.py +678 -0
- numpy/f2py/tests/test_assumed_shape.py +50 -0
- numpy/f2py/tests/test_block_docstring.py +20 -0
- numpy/f2py/tests/test_callback.py +263 -0
- numpy/f2py/tests/test_character.py +641 -0
- numpy/f2py/tests/test_common.py +23 -0
- numpy/f2py/tests/test_crackfortran.py +421 -0
- numpy/f2py/tests/test_data.py +71 -0
- numpy/f2py/tests/test_docs.py +66 -0
- numpy/f2py/tests/test_f2cmap.py +17 -0
- numpy/f2py/tests/test_f2py2e.py +983 -0
- numpy/f2py/tests/test_isoc.py +56 -0
- numpy/f2py/tests/test_kind.py +52 -0
- numpy/f2py/tests/test_mixed.py +35 -0
- numpy/f2py/tests/test_modules.py +83 -0
- numpy/f2py/tests/test_parameter.py +129 -0
- numpy/f2py/tests/test_pyf_src.py +43 -0
- numpy/f2py/tests/test_quoted_character.py +18 -0
- numpy/f2py/tests/test_regression.py +187 -0
- numpy/f2py/tests/test_return_character.py +48 -0
- numpy/f2py/tests/test_return_complex.py +67 -0
- numpy/f2py/tests/test_return_integer.py +55 -0
- numpy/f2py/tests/test_return_logical.py +65 -0
- numpy/f2py/tests/test_return_real.py +109 -0
- numpy/f2py/tests/test_routines.py +29 -0
- numpy/f2py/tests/test_semicolon_split.py +75 -0
- numpy/f2py/tests/test_size.py +45 -0
- numpy/f2py/tests/test_string.py +100 -0
- numpy/f2py/tests/test_symbolic.py +500 -0
- numpy/f2py/tests/test_value_attrspec.py +15 -0
- numpy/f2py/tests/util.py +442 -0
- numpy/f2py/use_rules.py +99 -0
- numpy/f2py/use_rules.pyi +9 -0
- numpy/fft/__init__.py +213 -0
- numpy/fft/__init__.pyi +38 -0
- numpy/fft/_helper.py +235 -0
- numpy/fft/_helper.pyi +44 -0
- numpy/fft/_pocketfft.py +1693 -0
- numpy/fft/_pocketfft.pyi +137 -0
- numpy/fft/_pocketfft_umath.cp313t-win32.lib +0 -0
- numpy/fft/_pocketfft_umath.cp313t-win32.pyd +0 -0
- numpy/fft/tests/__init__.py +0 -0
- numpy/fft/tests/test_helper.py +167 -0
- numpy/fft/tests/test_pocketfft.py +589 -0
- numpy/lib/__init__.py +97 -0
- numpy/lib/__init__.pyi +52 -0
- numpy/lib/_array_utils_impl.py +62 -0
- numpy/lib/_array_utils_impl.pyi +10 -0
- numpy/lib/_arraypad_impl.py +926 -0
- numpy/lib/_arraypad_impl.pyi +88 -0
- numpy/lib/_arraysetops_impl.py +1158 -0
- numpy/lib/_arraysetops_impl.pyi +462 -0
- numpy/lib/_arrayterator_impl.py +224 -0
- numpy/lib/_arrayterator_impl.pyi +45 -0
- numpy/lib/_datasource.py +700 -0
- numpy/lib/_datasource.pyi +30 -0
- numpy/lib/_format_impl.py +1036 -0
- numpy/lib/_format_impl.pyi +56 -0
- numpy/lib/_function_base_impl.py +5760 -0
- numpy/lib/_function_base_impl.pyi +2324 -0
- numpy/lib/_histograms_impl.py +1085 -0
- numpy/lib/_histograms_impl.pyi +40 -0
- numpy/lib/_index_tricks_impl.py +1048 -0
- numpy/lib/_index_tricks_impl.pyi +267 -0
- numpy/lib/_iotools.py +900 -0
- numpy/lib/_iotools.pyi +116 -0
- numpy/lib/_nanfunctions_impl.py +2006 -0
- numpy/lib/_nanfunctions_impl.pyi +48 -0
- numpy/lib/_npyio_impl.py +2583 -0
- numpy/lib/_npyio_impl.pyi +299 -0
- numpy/lib/_polynomial_impl.py +1465 -0
- numpy/lib/_polynomial_impl.pyi +338 -0
- numpy/lib/_scimath_impl.py +642 -0
- numpy/lib/_scimath_impl.pyi +93 -0
- numpy/lib/_shape_base_impl.py +1289 -0
- numpy/lib/_shape_base_impl.pyi +236 -0
- numpy/lib/_stride_tricks_impl.py +582 -0
- numpy/lib/_stride_tricks_impl.pyi +73 -0
- numpy/lib/_twodim_base_impl.py +1201 -0
- numpy/lib/_twodim_base_impl.pyi +408 -0
- numpy/lib/_type_check_impl.py +710 -0
- numpy/lib/_type_check_impl.pyi +348 -0
- numpy/lib/_ufunclike_impl.py +199 -0
- numpy/lib/_ufunclike_impl.pyi +60 -0
- numpy/lib/_user_array_impl.py +310 -0
- numpy/lib/_user_array_impl.pyi +226 -0
- numpy/lib/_utils_impl.py +784 -0
- numpy/lib/_utils_impl.pyi +22 -0
- numpy/lib/_version.py +153 -0
- numpy/lib/_version.pyi +17 -0
- numpy/lib/array_utils.py +7 -0
- numpy/lib/array_utils.pyi +6 -0
- numpy/lib/format.py +24 -0
- numpy/lib/format.pyi +24 -0
- numpy/lib/introspect.py +94 -0
- numpy/lib/introspect.pyi +3 -0
- numpy/lib/mixins.py +180 -0
- numpy/lib/mixins.pyi +78 -0
- numpy/lib/npyio.py +1 -0
- numpy/lib/npyio.pyi +5 -0
- numpy/lib/recfunctions.py +1681 -0
- numpy/lib/recfunctions.pyi +444 -0
- numpy/lib/scimath.py +13 -0
- numpy/lib/scimath.pyi +12 -0
- numpy/lib/stride_tricks.py +1 -0
- numpy/lib/stride_tricks.pyi +4 -0
- numpy/lib/tests/__init__.py +0 -0
- numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npz +0 -0
- numpy/lib/tests/data/py3-objarr.npy +0 -0
- numpy/lib/tests/data/py3-objarr.npz +0 -0
- numpy/lib/tests/data/python3.npy +0 -0
- numpy/lib/tests/data/win64python2.npy +0 -0
- numpy/lib/tests/test__datasource.py +328 -0
- numpy/lib/tests/test__iotools.py +358 -0
- numpy/lib/tests/test__version.py +64 -0
- numpy/lib/tests/test_array_utils.py +32 -0
- numpy/lib/tests/test_arraypad.py +1427 -0
- numpy/lib/tests/test_arraysetops.py +1302 -0
- numpy/lib/tests/test_arrayterator.py +45 -0
- numpy/lib/tests/test_format.py +1054 -0
- numpy/lib/tests/test_function_base.py +4756 -0
- numpy/lib/tests/test_histograms.py +855 -0
- numpy/lib/tests/test_index_tricks.py +693 -0
- numpy/lib/tests/test_io.py +2857 -0
- numpy/lib/tests/test_loadtxt.py +1099 -0
- numpy/lib/tests/test_mixins.py +215 -0
- numpy/lib/tests/test_nanfunctions.py +1438 -0
- numpy/lib/tests/test_packbits.py +376 -0
- numpy/lib/tests/test_polynomial.py +325 -0
- numpy/lib/tests/test_recfunctions.py +1042 -0
- numpy/lib/tests/test_regression.py +231 -0
- numpy/lib/tests/test_shape_base.py +813 -0
- numpy/lib/tests/test_stride_tricks.py +655 -0
- numpy/lib/tests/test_twodim_base.py +559 -0
- numpy/lib/tests/test_type_check.py +473 -0
- numpy/lib/tests/test_ufunclike.py +97 -0
- numpy/lib/tests/test_utils.py +80 -0
- numpy/lib/user_array.py +1 -0
- numpy/lib/user_array.pyi +1 -0
- numpy/linalg/__init__.py +95 -0
- numpy/linalg/__init__.pyi +71 -0
- numpy/linalg/_linalg.py +3657 -0
- numpy/linalg/_linalg.pyi +548 -0
- numpy/linalg/_umath_linalg.cp313t-win32.lib +0 -0
- numpy/linalg/_umath_linalg.cp313t-win32.pyd +0 -0
- numpy/linalg/_umath_linalg.pyi +60 -0
- numpy/linalg/lapack_lite.cp313t-win32.lib +0 -0
- numpy/linalg/lapack_lite.cp313t-win32.pyd +0 -0
- numpy/linalg/lapack_lite.pyi +143 -0
- numpy/linalg/tests/__init__.py +0 -0
- numpy/linalg/tests/test_deprecations.py +21 -0
- numpy/linalg/tests/test_linalg.py +2442 -0
- numpy/linalg/tests/test_regression.py +182 -0
- numpy/ma/API_CHANGES.txt +135 -0
- numpy/ma/LICENSE +24 -0
- numpy/ma/README.rst +236 -0
- numpy/ma/__init__.py +53 -0
- numpy/ma/__init__.pyi +458 -0
- numpy/ma/core.py +8929 -0
- numpy/ma/core.pyi +3733 -0
- numpy/ma/extras.py +2266 -0
- numpy/ma/extras.pyi +297 -0
- numpy/ma/mrecords.py +762 -0
- numpy/ma/mrecords.pyi +96 -0
- numpy/ma/tests/__init__.py +0 -0
- numpy/ma/tests/test_arrayobject.py +40 -0
- numpy/ma/tests/test_core.py +6008 -0
- numpy/ma/tests/test_deprecations.py +65 -0
- numpy/ma/tests/test_extras.py +1945 -0
- numpy/ma/tests/test_mrecords.py +495 -0
- numpy/ma/tests/test_old_ma.py +939 -0
- numpy/ma/tests/test_regression.py +83 -0
- numpy/ma/tests/test_subclassing.py +469 -0
- numpy/ma/testutils.py +294 -0
- numpy/ma/testutils.pyi +69 -0
- numpy/matlib.py +380 -0
- numpy/matlib.pyi +580 -0
- numpy/matrixlib/__init__.py +12 -0
- numpy/matrixlib/__init__.pyi +3 -0
- numpy/matrixlib/defmatrix.py +1119 -0
- numpy/matrixlib/defmatrix.pyi +218 -0
- numpy/matrixlib/tests/__init__.py +0 -0
- numpy/matrixlib/tests/test_defmatrix.py +455 -0
- numpy/matrixlib/tests/test_interaction.py +360 -0
- numpy/matrixlib/tests/test_masked_matrix.py +240 -0
- numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
- numpy/matrixlib/tests/test_multiarray.py +17 -0
- numpy/matrixlib/tests/test_numeric.py +18 -0
- numpy/matrixlib/tests/test_regression.py +31 -0
- numpy/polynomial/__init__.py +187 -0
- numpy/polynomial/__init__.pyi +31 -0
- numpy/polynomial/_polybase.py +1191 -0
- numpy/polynomial/_polybase.pyi +262 -0
- numpy/polynomial/_polytypes.pyi +501 -0
- numpy/polynomial/chebyshev.py +2001 -0
- numpy/polynomial/chebyshev.pyi +180 -0
- numpy/polynomial/hermite.py +1738 -0
- numpy/polynomial/hermite.pyi +106 -0
- numpy/polynomial/hermite_e.py +1640 -0
- numpy/polynomial/hermite_e.pyi +106 -0
- numpy/polynomial/laguerre.py +1673 -0
- numpy/polynomial/laguerre.pyi +100 -0
- numpy/polynomial/legendre.py +1603 -0
- numpy/polynomial/legendre.pyi +100 -0
- numpy/polynomial/polynomial.py +1625 -0
- numpy/polynomial/polynomial.pyi +109 -0
- numpy/polynomial/polyutils.py +759 -0
- numpy/polynomial/polyutils.pyi +307 -0
- numpy/polynomial/tests/__init__.py +0 -0
- numpy/polynomial/tests/test_chebyshev.py +618 -0
- numpy/polynomial/tests/test_classes.py +613 -0
- numpy/polynomial/tests/test_hermite.py +553 -0
- numpy/polynomial/tests/test_hermite_e.py +554 -0
- numpy/polynomial/tests/test_laguerre.py +535 -0
- numpy/polynomial/tests/test_legendre.py +566 -0
- numpy/polynomial/tests/test_polynomial.py +691 -0
- numpy/polynomial/tests/test_polyutils.py +123 -0
- numpy/polynomial/tests/test_printing.py +557 -0
- numpy/polynomial/tests/test_symbol.py +217 -0
- numpy/py.typed +0 -0
- numpy/random/LICENSE.md +71 -0
- numpy/random/__init__.pxd +14 -0
- numpy/random/__init__.py +213 -0
- numpy/random/__init__.pyi +124 -0
- numpy/random/_bounded_integers.cp313t-win32.lib +0 -0
- numpy/random/_bounded_integers.cp313t-win32.pyd +0 -0
- numpy/random/_bounded_integers.pxd +38 -0
- numpy/random/_bounded_integers.pyi +1 -0
- numpy/random/_common.cp313t-win32.lib +0 -0
- numpy/random/_common.cp313t-win32.pyd +0 -0
- numpy/random/_common.pxd +110 -0
- numpy/random/_common.pyi +16 -0
- numpy/random/_examples/cffi/extending.py +44 -0
- numpy/random/_examples/cffi/parse.py +53 -0
- numpy/random/_examples/cython/extending.pyx +77 -0
- numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- numpy/random/_examples/cython/meson.build +53 -0
- numpy/random/_examples/numba/extending.py +86 -0
- numpy/random/_examples/numba/extending_distributions.py +67 -0
- numpy/random/_generator.cp313t-win32.lib +0 -0
- numpy/random/_generator.cp313t-win32.pyd +0 -0
- numpy/random/_generator.pyi +862 -0
- numpy/random/_mt19937.cp313t-win32.lib +0 -0
- numpy/random/_mt19937.cp313t-win32.pyd +0 -0
- numpy/random/_mt19937.pyi +27 -0
- numpy/random/_pcg64.cp313t-win32.lib +0 -0
- numpy/random/_pcg64.cp313t-win32.pyd +0 -0
- numpy/random/_pcg64.pyi +41 -0
- numpy/random/_philox.cp313t-win32.lib +0 -0
- numpy/random/_philox.cp313t-win32.pyd +0 -0
- numpy/random/_philox.pyi +36 -0
- numpy/random/_pickle.py +88 -0
- numpy/random/_pickle.pyi +43 -0
- numpy/random/_sfc64.cp313t-win32.lib +0 -0
- numpy/random/_sfc64.cp313t-win32.pyd +0 -0
- numpy/random/_sfc64.pyi +25 -0
- numpy/random/bit_generator.cp313t-win32.lib +0 -0
- numpy/random/bit_generator.cp313t-win32.pyd +0 -0
- numpy/random/bit_generator.pxd +40 -0
- numpy/random/bit_generator.pyi +123 -0
- numpy/random/c_distributions.pxd +119 -0
- numpy/random/lib/npyrandom.lib +0 -0
- numpy/random/mtrand.cp313t-win32.lib +0 -0
- numpy/random/mtrand.cp313t-win32.pyd +0 -0
- numpy/random/mtrand.pyi +759 -0
- numpy/random/tests/__init__.py +0 -0
- numpy/random/tests/data/__init__.py +0 -0
- numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
- numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
- numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
- numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
- numpy/random/tests/data/philox-testset-1.csv +1001 -0
- numpy/random/tests/data/philox-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
- numpy/random/tests/test_direct.py +595 -0
- numpy/random/tests/test_extending.py +131 -0
- numpy/random/tests/test_generator_mt19937.py +2825 -0
- numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
- numpy/random/tests/test_random.py +1724 -0
- numpy/random/tests/test_randomstate.py +2099 -0
- numpy/random/tests/test_randomstate_regression.py +213 -0
- numpy/random/tests/test_regression.py +175 -0
- numpy/random/tests/test_seed_sequence.py +79 -0
- numpy/random/tests/test_smoke.py +882 -0
- numpy/rec/__init__.py +2 -0
- numpy/rec/__init__.pyi +23 -0
- numpy/strings/__init__.py +2 -0
- numpy/strings/__init__.pyi +97 -0
- numpy/testing/__init__.py +22 -0
- numpy/testing/__init__.pyi +107 -0
- numpy/testing/_private/__init__.py +0 -0
- numpy/testing/_private/__init__.pyi +0 -0
- numpy/testing/_private/extbuild.py +250 -0
- numpy/testing/_private/extbuild.pyi +25 -0
- numpy/testing/_private/utils.py +2830 -0
- numpy/testing/_private/utils.pyi +505 -0
- numpy/testing/overrides.py +84 -0
- numpy/testing/overrides.pyi +10 -0
- numpy/testing/print_coercion_tables.py +207 -0
- numpy/testing/print_coercion_tables.pyi +26 -0
- numpy/testing/tests/__init__.py +0 -0
- numpy/testing/tests/test_utils.py +2123 -0
- numpy/tests/__init__.py +0 -0
- numpy/tests/test__all__.py +10 -0
- numpy/tests/test_configtool.py +51 -0
- numpy/tests/test_ctypeslib.py +383 -0
- numpy/tests/test_lazyloading.py +42 -0
- numpy/tests/test_matlib.py +59 -0
- numpy/tests/test_numpy_config.py +47 -0
- numpy/tests/test_numpy_version.py +54 -0
- numpy/tests/test_public_api.py +807 -0
- numpy/tests/test_reloading.py +76 -0
- numpy/tests/test_scripts.py +48 -0
- numpy/tests/test_warnings.py +79 -0
- numpy/typing/__init__.py +233 -0
- numpy/typing/__init__.pyi +3 -0
- numpy/typing/mypy_plugin.py +200 -0
- numpy/typing/tests/__init__.py +0 -0
- numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
- numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
- numpy/typing/tests/data/fail/array_like.pyi +15 -0
- numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
- numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
- numpy/typing/tests/data/fail/char.pyi +63 -0
- numpy/typing/tests/data/fail/chararray.pyi +61 -0
- numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- numpy/typing/tests/data/fail/constants.pyi +3 -0
- numpy/typing/tests/data/fail/datasource.pyi +16 -0
- numpy/typing/tests/data/fail/dtype.pyi +17 -0
- numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- numpy/typing/tests/data/fail/flatiter.pyi +38 -0
- numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
- numpy/typing/tests/data/fail/histograms.pyi +12 -0
- numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
- numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
- numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
- numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
- numpy/typing/tests/data/fail/lib_version.pyi +6 -0
- numpy/typing/tests/data/fail/linalg.pyi +52 -0
- numpy/typing/tests/data/fail/ma.pyi +155 -0
- numpy/typing/tests/data/fail/memmap.pyi +5 -0
- numpy/typing/tests/data/fail/modules.pyi +17 -0
- numpy/typing/tests/data/fail/multiarray.pyi +52 -0
- numpy/typing/tests/data/fail/ndarray.pyi +11 -0
- numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
- numpy/typing/tests/data/fail/nditer.pyi +8 -0
- numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
- numpy/typing/tests/data/fail/npyio.pyi +24 -0
- numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
- numpy/typing/tests/data/fail/random.pyi +62 -0
- numpy/typing/tests/data/fail/rec.pyi +17 -0
- numpy/typing/tests/data/fail/scalars.pyi +86 -0
- numpy/typing/tests/data/fail/shape.pyi +7 -0
- numpy/typing/tests/data/fail/shape_base.pyi +8 -0
- numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
- numpy/typing/tests/data/fail/strings.pyi +52 -0
- numpy/typing/tests/data/fail/testing.pyi +28 -0
- numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
- numpy/typing/tests/data/fail/type_check.pyi +12 -0
- numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
- numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
- numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
- numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
- numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
- numpy/typing/tests/data/mypy.ini +8 -0
- numpy/typing/tests/data/pass/arithmetic.py +614 -0
- numpy/typing/tests/data/pass/array_constructors.py +138 -0
- numpy/typing/tests/data/pass/array_like.py +43 -0
- numpy/typing/tests/data/pass/arrayprint.py +37 -0
- numpy/typing/tests/data/pass/arrayterator.py +28 -0
- numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
- numpy/typing/tests/data/pass/comparisons.py +316 -0
- numpy/typing/tests/data/pass/dtype.py +57 -0
- numpy/typing/tests/data/pass/einsumfunc.py +36 -0
- numpy/typing/tests/data/pass/flatiter.py +26 -0
- numpy/typing/tests/data/pass/fromnumeric.py +272 -0
- numpy/typing/tests/data/pass/index_tricks.py +62 -0
- numpy/typing/tests/data/pass/lib_user_array.py +22 -0
- numpy/typing/tests/data/pass/lib_utils.py +19 -0
- numpy/typing/tests/data/pass/lib_version.py +18 -0
- numpy/typing/tests/data/pass/literal.py +52 -0
- numpy/typing/tests/data/pass/ma.py +199 -0
- numpy/typing/tests/data/pass/mod.py +149 -0
- numpy/typing/tests/data/pass/modules.py +45 -0
- numpy/typing/tests/data/pass/multiarray.py +77 -0
- numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
- numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
- numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
- numpy/typing/tests/data/pass/nditer.py +4 -0
- numpy/typing/tests/data/pass/numeric.py +90 -0
- numpy/typing/tests/data/pass/numerictypes.py +17 -0
- numpy/typing/tests/data/pass/random.py +1498 -0
- numpy/typing/tests/data/pass/recfunctions.py +164 -0
- numpy/typing/tests/data/pass/scalars.py +249 -0
- numpy/typing/tests/data/pass/shape.py +19 -0
- numpy/typing/tests/data/pass/simple.py +170 -0
- numpy/typing/tests/data/pass/ufunc_config.py +64 -0
- numpy/typing/tests/data/pass/ufunclike.py +52 -0
- numpy/typing/tests/data/pass/ufuncs.py +16 -0
- numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
- numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
- numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
- numpy/typing/tests/data/reveal/array_constructors.pyi +279 -0
- numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
- numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
- numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
- numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
- numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
- numpy/typing/tests/data/reveal/char.pyi +225 -0
- numpy/typing/tests/data/reveal/chararray.pyi +138 -0
- numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
- numpy/typing/tests/data/reveal/constants.pyi +14 -0
- numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
- numpy/typing/tests/data/reveal/datasource.pyi +23 -0
- numpy/typing/tests/data/reveal/dtype.pyi +132 -0
- numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
- numpy/typing/tests/data/reveal/emath.pyi +54 -0
- numpy/typing/tests/data/reveal/fft.pyi +37 -0
- numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
- numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
- numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
- numpy/typing/tests/data/reveal/histograms.pyi +25 -0
- numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
- numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
- numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
- numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
- numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
- numpy/typing/tests/data/reveal/linalg.pyi +154 -0
- numpy/typing/tests/data/reveal/ma.pyi +1098 -0
- numpy/typing/tests/data/reveal/matrix.pyi +73 -0
- numpy/typing/tests/data/reveal/memmap.pyi +19 -0
- numpy/typing/tests/data/reveal/mod.pyi +178 -0
- numpy/typing/tests/data/reveal/modules.pyi +51 -0
- numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
- numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
- numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
- numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
- numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
- numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
- numpy/typing/tests/data/reveal/nditer.pyi +49 -0
- numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
- numpy/typing/tests/data/reveal/npyio.pyi +83 -0
- numpy/typing/tests/data/reveal/numeric.pyi +170 -0
- numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
- numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
- numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
- numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
- numpy/typing/tests/data/reveal/random.pyi +1546 -0
- numpy/typing/tests/data/reveal/rec.pyi +171 -0
- numpy/typing/tests/data/reveal/scalars.pyi +191 -0
- numpy/typing/tests/data/reveal/shape.pyi +13 -0
- numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
- numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
- numpy/typing/tests/data/reveal/strings.pyi +196 -0
- numpy/typing/tests/data/reveal/testing.pyi +198 -0
- numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
- numpy/typing/tests/data/reveal/type_check.pyi +67 -0
- numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
- numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
- numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
- numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
- numpy/typing/tests/test_isfile.py +38 -0
- numpy/typing/tests/test_runtime.py +110 -0
- numpy/typing/tests/test_typing.py +205 -0
- numpy/version.py +11 -0
- numpy/version.pyi +9 -0
- numpy-2.4.2.dist-info/METADATA +139 -0
- numpy-2.4.2.dist-info/RECORD +929 -0
- numpy-2.4.2.dist-info/WHEEL +4 -0
- numpy-2.4.2.dist-info/entry_points.txt +13 -0
- numpy-2.4.2.dist-info/licenses/LICENSE.txt +914 -0
- numpy-2.4.2.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
- numpy-2.4.2.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
- numpy-2.4.2.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
- numpy-2.4.2.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
- numpy-2.4.2.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
- numpy-2.4.2.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
- numpy-2.4.2.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
- numpy-2.4.2.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
- numpy-2.4.2.dist-info/licenses/numpy/ma/LICENSE +24 -0
- numpy-2.4.2.dist-info/licenses/numpy/random/LICENSE.md +71 -0
- numpy-2.4.2.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
- numpy-2.4.2.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
- numpy-2.4.2.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
- numpy-2.4.2.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
- numpy-2.4.2.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
- numpy-2.4.2.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
|
@@ -0,0 +1,1650 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Implementation of optimized einsum.
|
|
3
|
+
|
|
4
|
+
"""
|
|
5
|
+
import functools
|
|
6
|
+
import itertools
|
|
7
|
+
import operator
|
|
8
|
+
|
|
9
|
+
from numpy._core.multiarray import c_einsum, matmul
|
|
10
|
+
from numpy._core.numeric import asanyarray, reshape
|
|
11
|
+
from numpy._core.overrides import array_function_dispatch
|
|
12
|
+
from numpy._core.umath import multiply
|
|
13
|
+
|
|
14
|
+
__all__ = ['einsum', 'einsum_path']
|
|
15
|
+
|
|
16
|
+
# importing string for string.ascii_letters would be too slow
|
|
17
|
+
# the first import before caching has been measured to take 800 µs (#23777)
|
|
18
|
+
# imports begin with uppercase to mimic ASCII values to avoid sorting issues
|
|
19
|
+
einsum_symbols = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
|
20
|
+
einsum_symbols_set = set(einsum_symbols)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
|
|
24
|
+
"""
|
|
25
|
+
Computes the number of FLOPS in the contraction.
|
|
26
|
+
|
|
27
|
+
Parameters
|
|
28
|
+
----------
|
|
29
|
+
idx_contraction : iterable
|
|
30
|
+
The indices involved in the contraction
|
|
31
|
+
inner : bool
|
|
32
|
+
Does this contraction require an inner product?
|
|
33
|
+
num_terms : int
|
|
34
|
+
The number of terms in a contraction
|
|
35
|
+
size_dictionary : dict
|
|
36
|
+
The size of each of the indices in idx_contraction
|
|
37
|
+
|
|
38
|
+
Returns
|
|
39
|
+
-------
|
|
40
|
+
flop_count : int
|
|
41
|
+
The total number of FLOPS required for the contraction.
|
|
42
|
+
|
|
43
|
+
Examples
|
|
44
|
+
--------
|
|
45
|
+
|
|
46
|
+
>>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
|
|
47
|
+
30
|
|
48
|
+
|
|
49
|
+
>>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
|
|
50
|
+
60
|
|
51
|
+
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
overall_size = _compute_size_by_dict(idx_contraction, size_dictionary)
|
|
55
|
+
op_factor = max(1, num_terms - 1)
|
|
56
|
+
if inner:
|
|
57
|
+
op_factor += 1
|
|
58
|
+
|
|
59
|
+
return overall_size * op_factor
|
|
60
|
+
|
|
61
|
+
def _compute_size_by_dict(indices, idx_dict):
|
|
62
|
+
"""
|
|
63
|
+
Computes the product of the elements in indices based on the dictionary
|
|
64
|
+
idx_dict.
|
|
65
|
+
|
|
66
|
+
Parameters
|
|
67
|
+
----------
|
|
68
|
+
indices : iterable
|
|
69
|
+
Indices to base the product on.
|
|
70
|
+
idx_dict : dictionary
|
|
71
|
+
Dictionary of index sizes
|
|
72
|
+
|
|
73
|
+
Returns
|
|
74
|
+
-------
|
|
75
|
+
ret : int
|
|
76
|
+
The resulting product.
|
|
77
|
+
|
|
78
|
+
Examples
|
|
79
|
+
--------
|
|
80
|
+
>>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
|
|
81
|
+
90
|
|
82
|
+
|
|
83
|
+
"""
|
|
84
|
+
ret = 1
|
|
85
|
+
for i in indices:
|
|
86
|
+
ret *= idx_dict[i]
|
|
87
|
+
return ret
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def _find_contraction(positions, input_sets, output_set):
|
|
91
|
+
"""
|
|
92
|
+
Finds the contraction for a given set of input and output sets.
|
|
93
|
+
|
|
94
|
+
Parameters
|
|
95
|
+
----------
|
|
96
|
+
positions : iterable
|
|
97
|
+
Integer positions of terms used in the contraction.
|
|
98
|
+
input_sets : list
|
|
99
|
+
List of sets that represent the lhs side of the einsum subscript
|
|
100
|
+
output_set : set
|
|
101
|
+
Set that represents the rhs side of the overall einsum subscript
|
|
102
|
+
|
|
103
|
+
Returns
|
|
104
|
+
-------
|
|
105
|
+
new_result : set
|
|
106
|
+
The indices of the resulting contraction
|
|
107
|
+
remaining : list
|
|
108
|
+
List of sets that have not been contracted, the new set is appended to
|
|
109
|
+
the end of this list
|
|
110
|
+
idx_removed : set
|
|
111
|
+
Indices removed from the entire contraction
|
|
112
|
+
idx_contraction : set
|
|
113
|
+
The indices used in the current contraction
|
|
114
|
+
|
|
115
|
+
Examples
|
|
116
|
+
--------
|
|
117
|
+
|
|
118
|
+
# A simple dot product test case
|
|
119
|
+
>>> pos = (0, 1)
|
|
120
|
+
>>> isets = [set('ab'), set('bc')]
|
|
121
|
+
>>> oset = set('ac')
|
|
122
|
+
>>> _find_contraction(pos, isets, oset)
|
|
123
|
+
({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
|
|
124
|
+
|
|
125
|
+
# A more complex case with additional terms in the contraction
|
|
126
|
+
>>> pos = (0, 2)
|
|
127
|
+
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
|
128
|
+
>>> oset = set('ac')
|
|
129
|
+
>>> _find_contraction(pos, isets, oset)
|
|
130
|
+
({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
|
|
131
|
+
"""
|
|
132
|
+
|
|
133
|
+
idx_contract = set()
|
|
134
|
+
idx_remain = output_set.copy()
|
|
135
|
+
remaining = []
|
|
136
|
+
for ind, value in enumerate(input_sets):
|
|
137
|
+
if ind in positions:
|
|
138
|
+
idx_contract |= value
|
|
139
|
+
else:
|
|
140
|
+
remaining.append(value)
|
|
141
|
+
idx_remain |= value
|
|
142
|
+
|
|
143
|
+
new_result = idx_remain & idx_contract
|
|
144
|
+
idx_removed = (idx_contract - new_result)
|
|
145
|
+
remaining.append(new_result)
|
|
146
|
+
|
|
147
|
+
return (new_result, remaining, idx_removed, idx_contract)
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
|
|
151
|
+
"""
|
|
152
|
+
Computes all possible pair contractions, sieves the results based
|
|
153
|
+
on ``memory_limit`` and returns the lowest cost path. This algorithm
|
|
154
|
+
scales factorial with respect to the elements in the list ``input_sets``.
|
|
155
|
+
|
|
156
|
+
Parameters
|
|
157
|
+
----------
|
|
158
|
+
input_sets : list
|
|
159
|
+
List of sets that represent the lhs side of the einsum subscript
|
|
160
|
+
output_set : set
|
|
161
|
+
Set that represents the rhs side of the overall einsum subscript
|
|
162
|
+
idx_dict : dictionary
|
|
163
|
+
Dictionary of index sizes
|
|
164
|
+
memory_limit : int
|
|
165
|
+
The maximum number of elements in a temporary array
|
|
166
|
+
|
|
167
|
+
Returns
|
|
168
|
+
-------
|
|
169
|
+
path : list
|
|
170
|
+
The optimal contraction order within the memory limit constraint.
|
|
171
|
+
|
|
172
|
+
Examples
|
|
173
|
+
--------
|
|
174
|
+
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
|
175
|
+
>>> oset = set()
|
|
176
|
+
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
|
177
|
+
>>> _optimal_path(isets, oset, idx_sizes, 5000)
|
|
178
|
+
[(0, 2), (0, 1)]
|
|
179
|
+
"""
|
|
180
|
+
|
|
181
|
+
full_results = [(0, [], input_sets)]
|
|
182
|
+
for iteration in range(len(input_sets) - 1):
|
|
183
|
+
iter_results = []
|
|
184
|
+
|
|
185
|
+
# Compute all unique pairs
|
|
186
|
+
for curr in full_results:
|
|
187
|
+
cost, positions, remaining = curr
|
|
188
|
+
for con in itertools.combinations(
|
|
189
|
+
range(len(input_sets) - iteration), 2
|
|
190
|
+
):
|
|
191
|
+
|
|
192
|
+
# Find the contraction
|
|
193
|
+
cont = _find_contraction(con, remaining, output_set)
|
|
194
|
+
new_result, new_input_sets, idx_removed, idx_contract = cont
|
|
195
|
+
|
|
196
|
+
# Sieve the results based on memory_limit
|
|
197
|
+
new_size = _compute_size_by_dict(new_result, idx_dict)
|
|
198
|
+
if new_size > memory_limit:
|
|
199
|
+
continue
|
|
200
|
+
|
|
201
|
+
# Build (total_cost, positions, indices_remaining)
|
|
202
|
+
total_cost = cost + _flop_count(
|
|
203
|
+
idx_contract, idx_removed, len(con), idx_dict
|
|
204
|
+
)
|
|
205
|
+
new_pos = positions + [con]
|
|
206
|
+
iter_results.append((total_cost, new_pos, new_input_sets))
|
|
207
|
+
|
|
208
|
+
# Update combinatorial list, if we did not find anything return best
|
|
209
|
+
# path + remaining contractions
|
|
210
|
+
if iter_results:
|
|
211
|
+
full_results = iter_results
|
|
212
|
+
else:
|
|
213
|
+
path = min(full_results, key=lambda x: x[0])[1]
|
|
214
|
+
path += [tuple(range(len(input_sets) - iteration))]
|
|
215
|
+
return path
|
|
216
|
+
|
|
217
|
+
# If we have not found anything return single einsum contraction
|
|
218
|
+
if len(full_results) == 0:
|
|
219
|
+
return [tuple(range(len(input_sets)))]
|
|
220
|
+
|
|
221
|
+
path = min(full_results, key=lambda x: x[0])[1]
|
|
222
|
+
return path
|
|
223
|
+
|
|
224
|
+
def _parse_possible_contraction(
|
|
225
|
+
positions, input_sets, output_set, idx_dict,
|
|
226
|
+
memory_limit, path_cost, naive_cost
|
|
227
|
+
):
|
|
228
|
+
"""Compute the cost (removed size + flops) and resultant indices for
|
|
229
|
+
performing the contraction specified by ``positions``.
|
|
230
|
+
|
|
231
|
+
Parameters
|
|
232
|
+
----------
|
|
233
|
+
positions : tuple of int
|
|
234
|
+
The locations of the proposed tensors to contract.
|
|
235
|
+
input_sets : list of sets
|
|
236
|
+
The indices found on each tensors.
|
|
237
|
+
output_set : set
|
|
238
|
+
The output indices of the expression.
|
|
239
|
+
idx_dict : dict
|
|
240
|
+
Mapping of each index to its size.
|
|
241
|
+
memory_limit : int
|
|
242
|
+
The total allowed size for an intermediary tensor.
|
|
243
|
+
path_cost : int
|
|
244
|
+
The contraction cost so far.
|
|
245
|
+
naive_cost : int
|
|
246
|
+
The cost of the unoptimized expression.
|
|
247
|
+
|
|
248
|
+
Returns
|
|
249
|
+
-------
|
|
250
|
+
cost : (int, int)
|
|
251
|
+
A tuple containing the size of any indices removed, and the flop cost.
|
|
252
|
+
positions : tuple of int
|
|
253
|
+
The locations of the proposed tensors to contract.
|
|
254
|
+
new_input_sets : list of sets
|
|
255
|
+
The resulting new list of indices if this proposed contraction
|
|
256
|
+
is performed.
|
|
257
|
+
|
|
258
|
+
"""
|
|
259
|
+
|
|
260
|
+
# Find the contraction
|
|
261
|
+
contract = _find_contraction(positions, input_sets, output_set)
|
|
262
|
+
idx_result, new_input_sets, idx_removed, idx_contract = contract
|
|
263
|
+
|
|
264
|
+
# Sieve the results based on memory_limit
|
|
265
|
+
new_size = _compute_size_by_dict(idx_result, idx_dict)
|
|
266
|
+
if new_size > memory_limit:
|
|
267
|
+
return None
|
|
268
|
+
|
|
269
|
+
# Build sort tuple
|
|
270
|
+
old_sizes = (
|
|
271
|
+
_compute_size_by_dict(input_sets[p], idx_dict) for p in positions
|
|
272
|
+
)
|
|
273
|
+
removed_size = sum(old_sizes) - new_size
|
|
274
|
+
|
|
275
|
+
# NB: removed_size used to be just the size of any removed indices i.e.:
|
|
276
|
+
# helpers.compute_size_by_dict(idx_removed, idx_dict)
|
|
277
|
+
cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict)
|
|
278
|
+
sort = (-removed_size, cost)
|
|
279
|
+
|
|
280
|
+
# Sieve based on total cost as well
|
|
281
|
+
if (path_cost + cost) > naive_cost:
|
|
282
|
+
return None
|
|
283
|
+
|
|
284
|
+
# Add contraction to possible choices
|
|
285
|
+
return [sort, positions, new_input_sets]
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def _update_other_results(results, best):
|
|
289
|
+
"""Update the positions and provisional input_sets of ``results``
|
|
290
|
+
based on performing the contraction result ``best``. Remove any
|
|
291
|
+
involving the tensors contracted.
|
|
292
|
+
|
|
293
|
+
Parameters
|
|
294
|
+
----------
|
|
295
|
+
results : list
|
|
296
|
+
List of contraction results produced by
|
|
297
|
+
``_parse_possible_contraction``.
|
|
298
|
+
best : list
|
|
299
|
+
The best contraction of ``results`` i.e. the one that
|
|
300
|
+
will be performed.
|
|
301
|
+
|
|
302
|
+
Returns
|
|
303
|
+
-------
|
|
304
|
+
mod_results : list
|
|
305
|
+
The list of modified results, updated with outcome of
|
|
306
|
+
``best`` contraction.
|
|
307
|
+
"""
|
|
308
|
+
|
|
309
|
+
best_con = best[1]
|
|
310
|
+
bx, by = best_con
|
|
311
|
+
mod_results = []
|
|
312
|
+
|
|
313
|
+
for cost, (x, y), con_sets in results:
|
|
314
|
+
|
|
315
|
+
# Ignore results involving tensors just contracted
|
|
316
|
+
if x in best_con or y in best_con:
|
|
317
|
+
continue
|
|
318
|
+
|
|
319
|
+
# Update the input_sets
|
|
320
|
+
del con_sets[by - int(by > x) - int(by > y)]
|
|
321
|
+
del con_sets[bx - int(bx > x) - int(bx > y)]
|
|
322
|
+
con_sets.insert(-1, best[2][-1])
|
|
323
|
+
|
|
324
|
+
# Update the position indices
|
|
325
|
+
mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
|
|
326
|
+
mod_results.append((cost, mod_con, con_sets))
|
|
327
|
+
|
|
328
|
+
return mod_results
|
|
329
|
+
|
|
330
|
+
def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
|
|
331
|
+
"""
|
|
332
|
+
Finds the path by contracting the best pair until the input list is
|
|
333
|
+
exhausted. The best pair is found by minimizing the tuple
|
|
334
|
+
``(-prod(indices_removed), cost)``. What this amounts to is prioritizing
|
|
335
|
+
matrix multiplication or inner product operations, then Hadamard like
|
|
336
|
+
operations, and finally outer operations. Outer products are limited by
|
|
337
|
+
``memory_limit``. This algorithm scales cubically with respect to the
|
|
338
|
+
number of elements in the list ``input_sets``.
|
|
339
|
+
|
|
340
|
+
Parameters
|
|
341
|
+
----------
|
|
342
|
+
input_sets : list
|
|
343
|
+
List of sets that represent the lhs side of the einsum subscript
|
|
344
|
+
output_set : set
|
|
345
|
+
Set that represents the rhs side of the overall einsum subscript
|
|
346
|
+
idx_dict : dictionary
|
|
347
|
+
Dictionary of index sizes
|
|
348
|
+
memory_limit : int
|
|
349
|
+
The maximum number of elements in a temporary array
|
|
350
|
+
|
|
351
|
+
Returns
|
|
352
|
+
-------
|
|
353
|
+
path : list
|
|
354
|
+
The greedy contraction order within the memory limit constraint.
|
|
355
|
+
|
|
356
|
+
Examples
|
|
357
|
+
--------
|
|
358
|
+
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
|
359
|
+
>>> oset = set()
|
|
360
|
+
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
|
361
|
+
>>> _greedy_path(isets, oset, idx_sizes, 5000)
|
|
362
|
+
[(0, 2), (0, 1)]
|
|
363
|
+
"""
|
|
364
|
+
|
|
365
|
+
# Handle trivial cases that leaked through
|
|
366
|
+
if len(input_sets) == 1:
|
|
367
|
+
return [(0,)]
|
|
368
|
+
elif len(input_sets) == 2:
|
|
369
|
+
return [(0, 1)]
|
|
370
|
+
|
|
371
|
+
# Build up a naive cost
|
|
372
|
+
contract = _find_contraction(
|
|
373
|
+
range(len(input_sets)), input_sets, output_set
|
|
374
|
+
)
|
|
375
|
+
idx_result, new_input_sets, idx_removed, idx_contract = contract
|
|
376
|
+
naive_cost = _flop_count(
|
|
377
|
+
idx_contract, idx_removed, len(input_sets), idx_dict
|
|
378
|
+
)
|
|
379
|
+
|
|
380
|
+
# Initially iterate over all pairs
|
|
381
|
+
comb_iter = itertools.combinations(range(len(input_sets)), 2)
|
|
382
|
+
known_contractions = []
|
|
383
|
+
|
|
384
|
+
path_cost = 0
|
|
385
|
+
path = []
|
|
386
|
+
|
|
387
|
+
for iteration in range(len(input_sets) - 1):
|
|
388
|
+
|
|
389
|
+
# Iterate over all pairs on the first step, only previously
|
|
390
|
+
# found pairs on subsequent steps
|
|
391
|
+
for positions in comb_iter:
|
|
392
|
+
|
|
393
|
+
# Always initially ignore outer products
|
|
394
|
+
if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]):
|
|
395
|
+
continue
|
|
396
|
+
|
|
397
|
+
result = _parse_possible_contraction(
|
|
398
|
+
positions, input_sets, output_set, idx_dict,
|
|
399
|
+
memory_limit, path_cost, naive_cost
|
|
400
|
+
)
|
|
401
|
+
if result is not None:
|
|
402
|
+
known_contractions.append(result)
|
|
403
|
+
|
|
404
|
+
# If we do not have a inner contraction, rescan pairs
|
|
405
|
+
# including outer products
|
|
406
|
+
if len(known_contractions) == 0:
|
|
407
|
+
|
|
408
|
+
# Then check the outer products
|
|
409
|
+
for positions in itertools.combinations(
|
|
410
|
+
range(len(input_sets)), 2
|
|
411
|
+
):
|
|
412
|
+
result = _parse_possible_contraction(
|
|
413
|
+
positions, input_sets, output_set, idx_dict,
|
|
414
|
+
memory_limit, path_cost, naive_cost
|
|
415
|
+
)
|
|
416
|
+
if result is not None:
|
|
417
|
+
known_contractions.append(result)
|
|
418
|
+
|
|
419
|
+
# If we still did not find any remaining contractions,
|
|
420
|
+
# default back to einsum like behavior
|
|
421
|
+
if len(known_contractions) == 0:
|
|
422
|
+
path.append(tuple(range(len(input_sets))))
|
|
423
|
+
break
|
|
424
|
+
|
|
425
|
+
# Sort based on first index
|
|
426
|
+
best = min(known_contractions, key=lambda x: x[0])
|
|
427
|
+
|
|
428
|
+
# Now propagate as many unused contractions as possible
|
|
429
|
+
# to the next iteration
|
|
430
|
+
known_contractions = _update_other_results(known_contractions, best)
|
|
431
|
+
|
|
432
|
+
# Next iteration only compute contractions with the new tensor
|
|
433
|
+
# All other contractions have been accounted for
|
|
434
|
+
input_sets = best[2]
|
|
435
|
+
new_tensor_pos = len(input_sets) - 1
|
|
436
|
+
comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos))
|
|
437
|
+
|
|
438
|
+
# Update path and total cost
|
|
439
|
+
path.append(best[1])
|
|
440
|
+
path_cost += best[0][1]
|
|
441
|
+
|
|
442
|
+
return path
|
|
443
|
+
|
|
444
|
+
|
|
445
|
+
def _parse_einsum_input(operands):
|
|
446
|
+
"""
|
|
447
|
+
A reproduction of einsum c side einsum parsing in python.
|
|
448
|
+
|
|
449
|
+
Returns
|
|
450
|
+
-------
|
|
451
|
+
input_strings : str
|
|
452
|
+
Parsed input strings
|
|
453
|
+
output_string : str
|
|
454
|
+
Parsed output string
|
|
455
|
+
operands : list of array_like
|
|
456
|
+
The operands to use in the numpy contraction
|
|
457
|
+
|
|
458
|
+
Examples
|
|
459
|
+
--------
|
|
460
|
+
The operand list is simplified to reduce printing:
|
|
461
|
+
|
|
462
|
+
>>> np.random.seed(123)
|
|
463
|
+
>>> a = np.random.rand(4, 4)
|
|
464
|
+
>>> b = np.random.rand(4, 4, 4)
|
|
465
|
+
>>> _parse_einsum_input(('...a,...a->...', a, b))
|
|
466
|
+
('za,xza', 'xz', [a, b]) # may vary
|
|
467
|
+
|
|
468
|
+
>>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
|
|
469
|
+
('za,xza', 'xz', [a, b]) # may vary
|
|
470
|
+
"""
|
|
471
|
+
|
|
472
|
+
if len(operands) == 0:
|
|
473
|
+
raise ValueError("No input operands")
|
|
474
|
+
|
|
475
|
+
if isinstance(operands[0], str):
|
|
476
|
+
subscripts = operands[0].replace(" ", "")
|
|
477
|
+
operands = [asanyarray(v) for v in operands[1:]]
|
|
478
|
+
|
|
479
|
+
# Ensure all characters are valid
|
|
480
|
+
for s in subscripts:
|
|
481
|
+
if s in '.,->':
|
|
482
|
+
continue
|
|
483
|
+
if s not in einsum_symbols:
|
|
484
|
+
raise ValueError(f"Character {s} is not a valid symbol.")
|
|
485
|
+
|
|
486
|
+
else:
|
|
487
|
+
tmp_operands = list(operands)
|
|
488
|
+
operand_list = []
|
|
489
|
+
subscript_list = []
|
|
490
|
+
for p in range(len(operands) // 2):
|
|
491
|
+
operand_list.append(tmp_operands.pop(0))
|
|
492
|
+
subscript_list.append(tmp_operands.pop(0))
|
|
493
|
+
|
|
494
|
+
output_list = tmp_operands[-1] if len(tmp_operands) else None
|
|
495
|
+
operands = [asanyarray(v) for v in operand_list]
|
|
496
|
+
subscripts = ""
|
|
497
|
+
last = len(subscript_list) - 1
|
|
498
|
+
for num, sub in enumerate(subscript_list):
|
|
499
|
+
for s in sub:
|
|
500
|
+
if s is Ellipsis:
|
|
501
|
+
subscripts += "..."
|
|
502
|
+
else:
|
|
503
|
+
try:
|
|
504
|
+
s = operator.index(s)
|
|
505
|
+
except TypeError as e:
|
|
506
|
+
raise TypeError(
|
|
507
|
+
"For this input type lists must contain "
|
|
508
|
+
"either int or Ellipsis"
|
|
509
|
+
) from e
|
|
510
|
+
subscripts += einsum_symbols[s]
|
|
511
|
+
if num != last:
|
|
512
|
+
subscripts += ","
|
|
513
|
+
|
|
514
|
+
if output_list is not None:
|
|
515
|
+
subscripts += "->"
|
|
516
|
+
for s in output_list:
|
|
517
|
+
if s is Ellipsis:
|
|
518
|
+
subscripts += "..."
|
|
519
|
+
else:
|
|
520
|
+
try:
|
|
521
|
+
s = operator.index(s)
|
|
522
|
+
except TypeError as e:
|
|
523
|
+
raise TypeError(
|
|
524
|
+
"For this input type lists must contain "
|
|
525
|
+
"either int or Ellipsis"
|
|
526
|
+
) from e
|
|
527
|
+
subscripts += einsum_symbols[s]
|
|
528
|
+
# Check for proper "->"
|
|
529
|
+
if ("-" in subscripts) or (">" in subscripts):
|
|
530
|
+
invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
|
|
531
|
+
if invalid or (subscripts.count("->") != 1):
|
|
532
|
+
raise ValueError("Subscripts can only contain one '->'.")
|
|
533
|
+
|
|
534
|
+
# Parse ellipses
|
|
535
|
+
if "." in subscripts:
|
|
536
|
+
used = subscripts.replace(".", "").replace(",", "").replace("->", "")
|
|
537
|
+
unused = list(einsum_symbols_set - set(used))
|
|
538
|
+
ellipse_inds = "".join(unused)
|
|
539
|
+
longest = 0
|
|
540
|
+
|
|
541
|
+
if "->" in subscripts:
|
|
542
|
+
input_tmp, output_sub = subscripts.split("->")
|
|
543
|
+
split_subscripts = input_tmp.split(",")
|
|
544
|
+
out_sub = True
|
|
545
|
+
else:
|
|
546
|
+
split_subscripts = subscripts.split(',')
|
|
547
|
+
out_sub = False
|
|
548
|
+
|
|
549
|
+
for num, sub in enumerate(split_subscripts):
|
|
550
|
+
if "." in sub:
|
|
551
|
+
if (sub.count(".") != 3) or (sub.count("...") != 1):
|
|
552
|
+
raise ValueError("Invalid Ellipses.")
|
|
553
|
+
|
|
554
|
+
# Take into account numerical values
|
|
555
|
+
if operands[num].shape == ():
|
|
556
|
+
ellipse_count = 0
|
|
557
|
+
else:
|
|
558
|
+
ellipse_count = max(operands[num].ndim, 1)
|
|
559
|
+
ellipse_count -= (len(sub) - 3)
|
|
560
|
+
|
|
561
|
+
if ellipse_count > longest:
|
|
562
|
+
longest = ellipse_count
|
|
563
|
+
|
|
564
|
+
if ellipse_count < 0:
|
|
565
|
+
raise ValueError("Ellipses lengths do not match.")
|
|
566
|
+
elif ellipse_count == 0:
|
|
567
|
+
split_subscripts[num] = sub.replace('...', '')
|
|
568
|
+
else:
|
|
569
|
+
rep_inds = ellipse_inds[-ellipse_count:]
|
|
570
|
+
split_subscripts[num] = sub.replace('...', rep_inds)
|
|
571
|
+
|
|
572
|
+
subscripts = ",".join(split_subscripts)
|
|
573
|
+
if longest == 0:
|
|
574
|
+
out_ellipse = ""
|
|
575
|
+
else:
|
|
576
|
+
out_ellipse = ellipse_inds[-longest:]
|
|
577
|
+
|
|
578
|
+
if out_sub:
|
|
579
|
+
subscripts += "->" + output_sub.replace("...", out_ellipse)
|
|
580
|
+
else:
|
|
581
|
+
# Special care for outputless ellipses
|
|
582
|
+
output_subscript = ""
|
|
583
|
+
tmp_subscripts = subscripts.replace(",", "")
|
|
584
|
+
for s in sorted(set(tmp_subscripts)):
|
|
585
|
+
if s not in (einsum_symbols):
|
|
586
|
+
raise ValueError(f"Character {s} is not a valid symbol.")
|
|
587
|
+
if tmp_subscripts.count(s) == 1:
|
|
588
|
+
output_subscript += s
|
|
589
|
+
normal_inds = ''.join(sorted(set(output_subscript) -
|
|
590
|
+
set(out_ellipse)))
|
|
591
|
+
|
|
592
|
+
subscripts += "->" + out_ellipse + normal_inds
|
|
593
|
+
|
|
594
|
+
# Build output string if does not exist
|
|
595
|
+
if "->" in subscripts:
|
|
596
|
+
input_subscripts, output_subscript = subscripts.split("->")
|
|
597
|
+
else:
|
|
598
|
+
input_subscripts = subscripts
|
|
599
|
+
# Build output subscripts
|
|
600
|
+
tmp_subscripts = subscripts.replace(",", "")
|
|
601
|
+
output_subscript = ""
|
|
602
|
+
for s in sorted(set(tmp_subscripts)):
|
|
603
|
+
if s not in einsum_symbols:
|
|
604
|
+
raise ValueError(f"Character {s} is not a valid symbol.")
|
|
605
|
+
if tmp_subscripts.count(s) == 1:
|
|
606
|
+
output_subscript += s
|
|
607
|
+
|
|
608
|
+
# Make sure output subscripts are in the input
|
|
609
|
+
for char in output_subscript:
|
|
610
|
+
if output_subscript.count(char) != 1:
|
|
611
|
+
raise ValueError("Output character %s appeared more than once in "
|
|
612
|
+
"the output." % char)
|
|
613
|
+
if char not in input_subscripts:
|
|
614
|
+
raise ValueError(f"Output character {char} did not appear in the input")
|
|
615
|
+
|
|
616
|
+
# Make sure number operands is equivalent to the number of terms
|
|
617
|
+
if len(input_subscripts.split(',')) != len(operands):
|
|
618
|
+
raise ValueError("Number of einsum subscripts must be equal to the "
|
|
619
|
+
"number of operands.")
|
|
620
|
+
|
|
621
|
+
return (input_subscripts, output_subscript, operands)
|
|
622
|
+
|
|
623
|
+
|
|
624
|
+
def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None):
|
|
625
|
+
# NOTE: technically, we should only dispatch on array-like arguments, not
|
|
626
|
+
# subscripts (given as strings). But separating operands into
|
|
627
|
+
# arrays/subscripts is a little tricky/slow (given einsum's two supported
|
|
628
|
+
# signatures), so as a practical shortcut we dispatch on everything.
|
|
629
|
+
# Strings will be ignored for dispatching since they don't define
|
|
630
|
+
# __array_function__.
|
|
631
|
+
return operands
|
|
632
|
+
|
|
633
|
+
|
|
634
|
+
@array_function_dispatch(_einsum_path_dispatcher, module='numpy')
|
|
635
|
+
def einsum_path(*operands, optimize='greedy', einsum_call=False):
|
|
636
|
+
"""
|
|
637
|
+
einsum_path(subscripts, *operands, optimize='greedy')
|
|
638
|
+
|
|
639
|
+
Evaluates the lowest cost contraction order for an einsum expression by
|
|
640
|
+
considering the creation of intermediate arrays.
|
|
641
|
+
|
|
642
|
+
Parameters
|
|
643
|
+
----------
|
|
644
|
+
subscripts : str
|
|
645
|
+
Specifies the subscripts for summation.
|
|
646
|
+
*operands : list of array_like
|
|
647
|
+
These are the arrays for the operation.
|
|
648
|
+
optimize : {bool, list, tuple, 'greedy', 'optimal'}
|
|
649
|
+
Choose the type of path. If a tuple is provided, the second argument is
|
|
650
|
+
assumed to be the maximum intermediate size created. If only a single
|
|
651
|
+
argument is provided the largest input or output array size is used
|
|
652
|
+
as a maximum intermediate size.
|
|
653
|
+
|
|
654
|
+
* if a list is given that starts with ``einsum_path``, uses this as the
|
|
655
|
+
contraction path
|
|
656
|
+
* if False no optimization is taken
|
|
657
|
+
* if True defaults to the 'greedy' algorithm
|
|
658
|
+
* 'optimal' An algorithm that combinatorially explores all possible
|
|
659
|
+
ways of contracting the listed tensors and chooses the least costly
|
|
660
|
+
path. Scales exponentially with the number of terms in the
|
|
661
|
+
contraction.
|
|
662
|
+
* 'greedy' An algorithm that chooses the best pair contraction
|
|
663
|
+
at each step. Effectively, this algorithm searches the largest inner,
|
|
664
|
+
Hadamard, and then outer products at each step. Scales cubically with
|
|
665
|
+
the number of terms in the contraction. Equivalent to the 'optimal'
|
|
666
|
+
path for most contractions.
|
|
667
|
+
|
|
668
|
+
Default is 'greedy'.
|
|
669
|
+
|
|
670
|
+
Returns
|
|
671
|
+
-------
|
|
672
|
+
path : list of tuples
|
|
673
|
+
A list representation of the einsum path.
|
|
674
|
+
string_repr : str
|
|
675
|
+
A printable representation of the einsum path.
|
|
676
|
+
|
|
677
|
+
Notes
|
|
678
|
+
-----
|
|
679
|
+
The resulting path indicates which terms of the input contraction should be
|
|
680
|
+
contracted first, the result of this contraction is then appended to the
|
|
681
|
+
end of the contraction list. This list can then be iterated over until all
|
|
682
|
+
intermediate contractions are complete.
|
|
683
|
+
|
|
684
|
+
See Also
|
|
685
|
+
--------
|
|
686
|
+
einsum, linalg.multi_dot
|
|
687
|
+
|
|
688
|
+
Examples
|
|
689
|
+
--------
|
|
690
|
+
|
|
691
|
+
We can begin with a chain dot example. In this case, it is optimal to
|
|
692
|
+
contract the ``b`` and ``c`` tensors first as represented by the first
|
|
693
|
+
element of the path ``(1, 2)``. The resulting tensor is added to the end
|
|
694
|
+
of the contraction and the remaining contraction ``(0, 1)`` is then
|
|
695
|
+
completed.
|
|
696
|
+
|
|
697
|
+
>>> np.random.seed(123)
|
|
698
|
+
>>> a = np.random.rand(2, 2)
|
|
699
|
+
>>> b = np.random.rand(2, 5)
|
|
700
|
+
>>> c = np.random.rand(5, 2)
|
|
701
|
+
>>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
|
|
702
|
+
>>> print(path_info[0])
|
|
703
|
+
['einsum_path', (1, 2), (0, 1)]
|
|
704
|
+
>>> print(path_info[1])
|
|
705
|
+
Complete contraction: ij,jk,kl->il # may vary
|
|
706
|
+
Naive scaling: 4
|
|
707
|
+
Optimized scaling: 3
|
|
708
|
+
Naive FLOP count: 1.600e+02
|
|
709
|
+
Optimized FLOP count: 5.600e+01
|
|
710
|
+
Theoretical speedup: 2.857
|
|
711
|
+
Largest intermediate: 4.000e+00 elements
|
|
712
|
+
-------------------------------------------------------------------------
|
|
713
|
+
scaling current remaining
|
|
714
|
+
-------------------------------------------------------------------------
|
|
715
|
+
3 kl,jk->jl ij,jl->il
|
|
716
|
+
3 jl,ij->il il->il
|
|
717
|
+
|
|
718
|
+
|
|
719
|
+
A more complex index transformation example.
|
|
720
|
+
|
|
721
|
+
>>> I = np.random.rand(10, 10, 10, 10)
|
|
722
|
+
>>> C = np.random.rand(10, 10)
|
|
723
|
+
>>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
|
|
724
|
+
... optimize='greedy')
|
|
725
|
+
|
|
726
|
+
>>> print(path_info[0])
|
|
727
|
+
['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
|
|
728
|
+
>>> print(path_info[1])
|
|
729
|
+
Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
|
|
730
|
+
Naive scaling: 8
|
|
731
|
+
Optimized scaling: 5
|
|
732
|
+
Naive FLOP count: 8.000e+08
|
|
733
|
+
Optimized FLOP count: 8.000e+05
|
|
734
|
+
Theoretical speedup: 1000.000
|
|
735
|
+
Largest intermediate: 1.000e+04 elements
|
|
736
|
+
--------------------------------------------------------------------------
|
|
737
|
+
scaling current remaining
|
|
738
|
+
--------------------------------------------------------------------------
|
|
739
|
+
5 abcd,ea->bcde fb,gc,hd,bcde->efgh
|
|
740
|
+
5 bcde,fb->cdef gc,hd,cdef->efgh
|
|
741
|
+
5 cdef,gc->defg hd,defg->efgh
|
|
742
|
+
5 defg,hd->efgh efgh->efgh
|
|
743
|
+
"""
|
|
744
|
+
|
|
745
|
+
# Figure out what the path really is
|
|
746
|
+
path_type = optimize
|
|
747
|
+
if path_type is True:
|
|
748
|
+
path_type = 'greedy'
|
|
749
|
+
if path_type is None:
|
|
750
|
+
path_type = False
|
|
751
|
+
|
|
752
|
+
explicit_einsum_path = False
|
|
753
|
+
memory_limit = None
|
|
754
|
+
|
|
755
|
+
# No optimization or a named path algorithm
|
|
756
|
+
if (path_type is False) or isinstance(path_type, str):
|
|
757
|
+
pass
|
|
758
|
+
|
|
759
|
+
# Given an explicit path
|
|
760
|
+
elif len(path_type) and (path_type[0] == 'einsum_path'):
|
|
761
|
+
explicit_einsum_path = True
|
|
762
|
+
|
|
763
|
+
# Path tuple with memory limit
|
|
764
|
+
elif ((len(path_type) == 2) and isinstance(path_type[0], str) and
|
|
765
|
+
isinstance(path_type[1], (int, float))):
|
|
766
|
+
memory_limit = int(path_type[1])
|
|
767
|
+
path_type = path_type[0]
|
|
768
|
+
|
|
769
|
+
else:
|
|
770
|
+
raise TypeError(f"Did not understand the path: {str(path_type)}")
|
|
771
|
+
|
|
772
|
+
# Hidden option, only einsum should call this
|
|
773
|
+
einsum_call_arg = einsum_call
|
|
774
|
+
|
|
775
|
+
# Python side parsing
|
|
776
|
+
input_subscripts, output_subscript, operands = (
|
|
777
|
+
_parse_einsum_input(operands)
|
|
778
|
+
)
|
|
779
|
+
|
|
780
|
+
# Build a few useful list and sets
|
|
781
|
+
input_list = input_subscripts.split(',')
|
|
782
|
+
num_inputs = len(input_list)
|
|
783
|
+
input_sets = [set(x) for x in input_list]
|
|
784
|
+
output_set = set(output_subscript)
|
|
785
|
+
indices = set(input_subscripts.replace(',', ''))
|
|
786
|
+
num_indices = len(indices)
|
|
787
|
+
|
|
788
|
+
# Get length of each unique dimension and ensure all dimensions are correct
|
|
789
|
+
dimension_dict = {}
|
|
790
|
+
for tnum, term in enumerate(input_list):
|
|
791
|
+
sh = operands[tnum].shape
|
|
792
|
+
if len(sh) != len(term):
|
|
793
|
+
raise ValueError("Einstein sum subscript %s does not contain the "
|
|
794
|
+
"correct number of indices for operand %d."
|
|
795
|
+
% (input_subscripts[tnum], tnum))
|
|
796
|
+
for cnum, char in enumerate(term):
|
|
797
|
+
dim = sh[cnum]
|
|
798
|
+
|
|
799
|
+
if char in dimension_dict.keys():
|
|
800
|
+
# For broadcasting cases we always want the largest dim size
|
|
801
|
+
if dimension_dict[char] == 1:
|
|
802
|
+
dimension_dict[char] = dim
|
|
803
|
+
elif dim not in (1, dimension_dict[char]):
|
|
804
|
+
raise ValueError("Size of label '%s' for operand %d (%d) "
|
|
805
|
+
"does not match previous terms (%d)."
|
|
806
|
+
% (char, tnum, dimension_dict[char], dim))
|
|
807
|
+
else:
|
|
808
|
+
dimension_dict[char] = dim
|
|
809
|
+
|
|
810
|
+
# Compute size of each input array plus the output array
|
|
811
|
+
size_list = [_compute_size_by_dict(term, dimension_dict)
|
|
812
|
+
for term in input_list + [output_subscript]]
|
|
813
|
+
max_size = max(size_list)
|
|
814
|
+
|
|
815
|
+
if memory_limit is None:
|
|
816
|
+
memory_arg = max_size
|
|
817
|
+
else:
|
|
818
|
+
memory_arg = memory_limit
|
|
819
|
+
|
|
820
|
+
# Compute the path
|
|
821
|
+
if explicit_einsum_path:
|
|
822
|
+
path = path_type[1:]
|
|
823
|
+
elif (
|
|
824
|
+
(path_type is False)
|
|
825
|
+
or (num_inputs in [1, 2])
|
|
826
|
+
or (indices == output_set)
|
|
827
|
+
):
|
|
828
|
+
# Nothing to be optimized, leave it to einsum
|
|
829
|
+
path = [tuple(range(num_inputs))]
|
|
830
|
+
elif path_type == "greedy":
|
|
831
|
+
path = _greedy_path(
|
|
832
|
+
input_sets, output_set, dimension_dict, memory_arg
|
|
833
|
+
)
|
|
834
|
+
elif path_type == "optimal":
|
|
835
|
+
path = _optimal_path(
|
|
836
|
+
input_sets, output_set, dimension_dict, memory_arg
|
|
837
|
+
)
|
|
838
|
+
else:
|
|
839
|
+
raise KeyError("Path name %s not found", path_type)
|
|
840
|
+
|
|
841
|
+
cost_list, scale_list, size_list, contraction_list = [], [], [], []
|
|
842
|
+
|
|
843
|
+
# Build contraction tuple (positions, gemm, einsum_str, remaining)
|
|
844
|
+
for cnum, contract_inds in enumerate(path):
|
|
845
|
+
# Make sure we remove inds from right to left
|
|
846
|
+
contract_inds = tuple(sorted(contract_inds, reverse=True))
|
|
847
|
+
|
|
848
|
+
contract = _find_contraction(contract_inds, input_sets, output_set)
|
|
849
|
+
out_inds, input_sets, idx_removed, idx_contract = contract
|
|
850
|
+
|
|
851
|
+
if not einsum_call_arg:
|
|
852
|
+
# these are only needed for printing info
|
|
853
|
+
cost = _flop_count(
|
|
854
|
+
idx_contract, idx_removed, len(contract_inds), dimension_dict
|
|
855
|
+
)
|
|
856
|
+
cost_list.append(cost)
|
|
857
|
+
scale_list.append(len(idx_contract))
|
|
858
|
+
size_list.append(_compute_size_by_dict(out_inds, dimension_dict))
|
|
859
|
+
|
|
860
|
+
tmp_inputs = []
|
|
861
|
+
for x in contract_inds:
|
|
862
|
+
tmp_inputs.append(input_list.pop(x))
|
|
863
|
+
|
|
864
|
+
# Last contraction
|
|
865
|
+
if (cnum - len(path)) == -1:
|
|
866
|
+
idx_result = output_subscript
|
|
867
|
+
else:
|
|
868
|
+
sort_result = [(dimension_dict[ind], ind) for ind in out_inds]
|
|
869
|
+
idx_result = "".join([x[1] for x in sorted(sort_result)])
|
|
870
|
+
|
|
871
|
+
input_list.append(idx_result)
|
|
872
|
+
einsum_str = ",".join(tmp_inputs) + "->" + idx_result
|
|
873
|
+
|
|
874
|
+
contraction = (contract_inds, einsum_str, input_list[:])
|
|
875
|
+
contraction_list.append(contraction)
|
|
876
|
+
|
|
877
|
+
if len(input_list) != 1:
|
|
878
|
+
# Explicit "einsum_path" is usually trusted, but we detect this kind of
|
|
879
|
+
# mistake in order to prevent from returning an intermediate value.
|
|
880
|
+
raise RuntimeError(
|
|
881
|
+
f"Invalid einsum_path is specified: {len(input_list) - 1} more "
|
|
882
|
+
"operands has to be contracted.")
|
|
883
|
+
|
|
884
|
+
if einsum_call_arg:
|
|
885
|
+
return (operands, contraction_list)
|
|
886
|
+
|
|
887
|
+
# Return the path along with a nice string representation
|
|
888
|
+
overall_contraction = input_subscripts + "->" + output_subscript
|
|
889
|
+
header = ("scaling", "current", "remaining")
|
|
890
|
+
|
|
891
|
+
# Compute naive cost
|
|
892
|
+
# This isn't quite right, need to look into exactly how einsum does this
|
|
893
|
+
inner_product = (
|
|
894
|
+
sum(len(set(x)) for x in input_subscripts.split(',')) - num_indices
|
|
895
|
+
) > 0
|
|
896
|
+
naive_cost = _flop_count(
|
|
897
|
+
indices, inner_product, num_inputs, dimension_dict
|
|
898
|
+
)
|
|
899
|
+
|
|
900
|
+
opt_cost = sum(cost_list) + 1
|
|
901
|
+
speedup = naive_cost / opt_cost
|
|
902
|
+
max_i = max(size_list)
|
|
903
|
+
|
|
904
|
+
path_print = f" Complete contraction: {overall_contraction}\n"
|
|
905
|
+
path_print += f" Naive scaling: {num_indices}\n"
|
|
906
|
+
path_print += " Optimized scaling: %d\n" % max(scale_list)
|
|
907
|
+
path_print += f" Naive FLOP count: {naive_cost:.3e}\n"
|
|
908
|
+
path_print += f" Optimized FLOP count: {opt_cost:.3e}\n"
|
|
909
|
+
path_print += f" Theoretical speedup: {speedup:3.3f}\n"
|
|
910
|
+
path_print += f" Largest intermediate: {max_i:.3e} elements\n"
|
|
911
|
+
path_print += "-" * 74 + "\n"
|
|
912
|
+
path_print += "%6s %24s %40s\n" % header
|
|
913
|
+
path_print += "-" * 74
|
|
914
|
+
|
|
915
|
+
for n, contraction in enumerate(contraction_list):
|
|
916
|
+
_, einsum_str, remaining = contraction
|
|
917
|
+
remaining_str = ",".join(remaining) + "->" + output_subscript
|
|
918
|
+
path_run = (scale_list[n], einsum_str, remaining_str)
|
|
919
|
+
path_print += "\n%4d %24s %40s" % path_run
|
|
920
|
+
|
|
921
|
+
path = ['einsum_path'] + path
|
|
922
|
+
return (path, path_print)
|
|
923
|
+
|
|
924
|
+
|
|
925
|
+
def _parse_eq_to_pure_multiplication(a_term, shape_a, b_term, shape_b, out):
|
|
926
|
+
"""If there are no contracted indices, then we can directly transpose and
|
|
927
|
+
insert singleton dimensions into ``a`` and ``b`` such that (broadcast)
|
|
928
|
+
elementwise multiplication performs the einsum.
|
|
929
|
+
|
|
930
|
+
No need to cache this as it is within the cached
|
|
931
|
+
``_parse_eq_to_batch_matmul``.
|
|
932
|
+
|
|
933
|
+
"""
|
|
934
|
+
desired_a = ""
|
|
935
|
+
desired_b = ""
|
|
936
|
+
new_shape_a = []
|
|
937
|
+
new_shape_b = []
|
|
938
|
+
for ix in out:
|
|
939
|
+
if ix in a_term:
|
|
940
|
+
desired_a += ix
|
|
941
|
+
new_shape_a.append(shape_a[a_term.index(ix)])
|
|
942
|
+
else:
|
|
943
|
+
new_shape_a.append(1)
|
|
944
|
+
if ix in b_term:
|
|
945
|
+
desired_b += ix
|
|
946
|
+
new_shape_b.append(shape_b[b_term.index(ix)])
|
|
947
|
+
else:
|
|
948
|
+
new_shape_b.append(1)
|
|
949
|
+
|
|
950
|
+
if desired_a != a_term:
|
|
951
|
+
eq_a = f"{a_term}->{desired_a}"
|
|
952
|
+
else:
|
|
953
|
+
eq_a = None
|
|
954
|
+
if desired_b != b_term:
|
|
955
|
+
eq_b = f"{b_term}->{desired_b}"
|
|
956
|
+
else:
|
|
957
|
+
eq_b = None
|
|
958
|
+
|
|
959
|
+
return (
|
|
960
|
+
eq_a,
|
|
961
|
+
eq_b,
|
|
962
|
+
new_shape_a,
|
|
963
|
+
new_shape_b,
|
|
964
|
+
None, # new_shape_ab, not needed since not fusing
|
|
965
|
+
None, # perm_ab, not needed as we transpose a and b first
|
|
966
|
+
True, # pure_multiplication=True
|
|
967
|
+
)
|
|
968
|
+
|
|
969
|
+
|
|
970
|
+
@functools.lru_cache(2**12)
|
|
971
|
+
def _parse_eq_to_batch_matmul(eq, shape_a, shape_b):
|
|
972
|
+
"""Cached parsing of a two term einsum equation into the necessary
|
|
973
|
+
sequence of arguments for contracttion via batched matrix multiplication.
|
|
974
|
+
The steps we need to specify are:
|
|
975
|
+
|
|
976
|
+
1. Remove repeated and trivial indices from the left and right terms,
|
|
977
|
+
and transpose them, done as a single einsum.
|
|
978
|
+
2. Fuse the remaining indices so we have two 3D tensors.
|
|
979
|
+
3. Perform the batched matrix multiplication.
|
|
980
|
+
4. Unfuse the output to get the desired final index order.
|
|
981
|
+
|
|
982
|
+
"""
|
|
983
|
+
lhs, out = eq.split("->")
|
|
984
|
+
a_term, b_term = lhs.split(",")
|
|
985
|
+
|
|
986
|
+
if len(a_term) != len(shape_a):
|
|
987
|
+
raise ValueError(f"Term '{a_term}' does not match shape {shape_a}.")
|
|
988
|
+
if len(b_term) != len(shape_b):
|
|
989
|
+
raise ValueError(f"Term '{b_term}' does not match shape {shape_b}.")
|
|
990
|
+
|
|
991
|
+
sizes = {}
|
|
992
|
+
singletons = set()
|
|
993
|
+
|
|
994
|
+
# parse left term to unique indices with size > 1
|
|
995
|
+
left = {}
|
|
996
|
+
for ix, d in zip(a_term, shape_a):
|
|
997
|
+
if d == 1:
|
|
998
|
+
# everything (including broadcasting) works nicely if simply ignore
|
|
999
|
+
# such dimensions, but we do need to track if they appear in output
|
|
1000
|
+
# and thus should be reintroduced later
|
|
1001
|
+
singletons.add(ix)
|
|
1002
|
+
continue
|
|
1003
|
+
if sizes.setdefault(ix, d) != d:
|
|
1004
|
+
# set and check size
|
|
1005
|
+
raise ValueError(
|
|
1006
|
+
f"Index {ix} has mismatched sizes {sizes[ix]} and {d}."
|
|
1007
|
+
)
|
|
1008
|
+
left[ix] = True
|
|
1009
|
+
|
|
1010
|
+
# parse right term to unique indices with size > 1
|
|
1011
|
+
right = {}
|
|
1012
|
+
for ix, d in zip(b_term, shape_b):
|
|
1013
|
+
# broadcast indices (size 1 on one input and size != 1
|
|
1014
|
+
# on the other) should not be treated as singletons
|
|
1015
|
+
if d == 1:
|
|
1016
|
+
if ix not in left:
|
|
1017
|
+
singletons.add(ix)
|
|
1018
|
+
continue
|
|
1019
|
+
singletons.discard(ix)
|
|
1020
|
+
|
|
1021
|
+
if sizes.setdefault(ix, d) != d:
|
|
1022
|
+
# set and check size
|
|
1023
|
+
raise ValueError(
|
|
1024
|
+
f"Index {ix} has mismatched sizes {sizes[ix]} and {d}."
|
|
1025
|
+
)
|
|
1026
|
+
right[ix] = True
|
|
1027
|
+
|
|
1028
|
+
# now we classify the unique size > 1 indices only
|
|
1029
|
+
bat_inds = [] # appears on A, B, O
|
|
1030
|
+
con_inds = [] # appears on A, B, .
|
|
1031
|
+
a_keep = [] # appears on A, ., O
|
|
1032
|
+
b_keep = [] # appears on ., B, O
|
|
1033
|
+
# other indices (appearing on A or B only) will
|
|
1034
|
+
# be summed or traced out prior to the matmul
|
|
1035
|
+
for ix in left:
|
|
1036
|
+
if right.pop(ix, False):
|
|
1037
|
+
if ix in out:
|
|
1038
|
+
bat_inds.append(ix)
|
|
1039
|
+
else:
|
|
1040
|
+
con_inds.append(ix)
|
|
1041
|
+
elif ix in out:
|
|
1042
|
+
a_keep.append(ix)
|
|
1043
|
+
# now only indices unique to right remain
|
|
1044
|
+
for ix in right:
|
|
1045
|
+
if ix in out:
|
|
1046
|
+
b_keep.append(ix)
|
|
1047
|
+
|
|
1048
|
+
if not con_inds:
|
|
1049
|
+
# contraction is pure multiplication, prepare inputs differently
|
|
1050
|
+
return _parse_eq_to_pure_multiplication(
|
|
1051
|
+
a_term, shape_a, b_term, shape_b, out
|
|
1052
|
+
)
|
|
1053
|
+
|
|
1054
|
+
# only need the size one indices that appear in the output
|
|
1055
|
+
singletons = [ix for ix in out if ix in singletons]
|
|
1056
|
+
|
|
1057
|
+
# take diagonal, remove any trivial axes and transpose left
|
|
1058
|
+
desired_a = "".join((*bat_inds, *a_keep, *con_inds))
|
|
1059
|
+
if a_term != desired_a:
|
|
1060
|
+
eq_a = f"{a_term}->{desired_a}"
|
|
1061
|
+
else:
|
|
1062
|
+
eq_a = None
|
|
1063
|
+
|
|
1064
|
+
# take diagonal, remove any trivial axes and transpose right
|
|
1065
|
+
desired_b = "".join((*bat_inds, *con_inds, *b_keep))
|
|
1066
|
+
if b_term != desired_b:
|
|
1067
|
+
eq_b = f"{b_term}->{desired_b}"
|
|
1068
|
+
else:
|
|
1069
|
+
eq_b = None
|
|
1070
|
+
|
|
1071
|
+
# then we want to reshape
|
|
1072
|
+
if bat_inds:
|
|
1073
|
+
lgroups = (bat_inds, a_keep, con_inds)
|
|
1074
|
+
rgroups = (bat_inds, con_inds, b_keep)
|
|
1075
|
+
ogroups = (bat_inds, a_keep, b_keep)
|
|
1076
|
+
else:
|
|
1077
|
+
# avoid size 1 batch dimension if no batch indices
|
|
1078
|
+
lgroups = (a_keep, con_inds)
|
|
1079
|
+
rgroups = (con_inds, b_keep)
|
|
1080
|
+
ogroups = (a_keep, b_keep)
|
|
1081
|
+
|
|
1082
|
+
if any(len(group) != 1 for group in lgroups):
|
|
1083
|
+
# need to fuse 'kept' and contracted indices
|
|
1084
|
+
# (though could allow batch indices to be broadcast)
|
|
1085
|
+
new_shape_a = tuple(
|
|
1086
|
+
functools.reduce(operator.mul, (sizes[ix] for ix in ix_group), 1)
|
|
1087
|
+
for ix_group in lgroups
|
|
1088
|
+
)
|
|
1089
|
+
else:
|
|
1090
|
+
new_shape_a = None
|
|
1091
|
+
|
|
1092
|
+
if any(len(group) != 1 for group in rgroups):
|
|
1093
|
+
# need to fuse 'kept' and contracted indices
|
|
1094
|
+
# (though could allow batch indices to be broadcast)
|
|
1095
|
+
new_shape_b = tuple(
|
|
1096
|
+
functools.reduce(operator.mul, (sizes[ix] for ix in ix_group), 1)
|
|
1097
|
+
for ix_group in rgroups
|
|
1098
|
+
)
|
|
1099
|
+
else:
|
|
1100
|
+
new_shape_b = None
|
|
1101
|
+
|
|
1102
|
+
if any(len(group) != 1 for group in ogroups) or singletons:
|
|
1103
|
+
new_shape_ab = (1,) * len(singletons) + tuple(
|
|
1104
|
+
sizes[ix] for ix_group in ogroups for ix in ix_group
|
|
1105
|
+
)
|
|
1106
|
+
else:
|
|
1107
|
+
new_shape_ab = None
|
|
1108
|
+
|
|
1109
|
+
# then we might need to permute the matmul produced output:
|
|
1110
|
+
out_produced = "".join((*singletons, *bat_inds, *a_keep, *b_keep))
|
|
1111
|
+
if out_produced != out:
|
|
1112
|
+
perm_ab = tuple(out_produced.index(ix) for ix in out)
|
|
1113
|
+
else:
|
|
1114
|
+
perm_ab = None
|
|
1115
|
+
|
|
1116
|
+
return (
|
|
1117
|
+
eq_a,
|
|
1118
|
+
eq_b,
|
|
1119
|
+
new_shape_a,
|
|
1120
|
+
new_shape_b,
|
|
1121
|
+
new_shape_ab,
|
|
1122
|
+
perm_ab,
|
|
1123
|
+
False, # pure_multiplication=False
|
|
1124
|
+
)
|
|
1125
|
+
|
|
1126
|
+
|
|
1127
|
+
@functools.lru_cache(maxsize=64)
|
|
1128
|
+
def _parse_output_order(order, a_is_fcontig, b_is_fcontig):
|
|
1129
|
+
order = order.upper()
|
|
1130
|
+
if order == "K":
|
|
1131
|
+
return None
|
|
1132
|
+
elif order in "CF":
|
|
1133
|
+
return order
|
|
1134
|
+
elif order == "A":
|
|
1135
|
+
if a_is_fcontig and b_is_fcontig:
|
|
1136
|
+
return "F"
|
|
1137
|
+
else:
|
|
1138
|
+
return "C"
|
|
1139
|
+
else:
|
|
1140
|
+
raise ValueError(
|
|
1141
|
+
"ValueError: order must be one of "
|
|
1142
|
+
f"'C', 'F', 'A', or 'K' (got '{order}')"
|
|
1143
|
+
)
|
|
1144
|
+
|
|
1145
|
+
|
|
1146
|
+
def bmm_einsum(eq, a, b, out=None, **kwargs):
|
|
1147
|
+
"""Perform arbitrary pairwise einsums using only ``matmul``, or
|
|
1148
|
+
``multiply`` if no contracted indices are involved (plus maybe single term
|
|
1149
|
+
``einsum`` to prepare the terms individually). The logic for each is cached
|
|
1150
|
+
based on the equation and array shape, and each step is only performed if
|
|
1151
|
+
necessary.
|
|
1152
|
+
|
|
1153
|
+
Parameters
|
|
1154
|
+
----------
|
|
1155
|
+
eq : str
|
|
1156
|
+
The einsum equation.
|
|
1157
|
+
a : array_like
|
|
1158
|
+
The first array to contract.
|
|
1159
|
+
b : array_like
|
|
1160
|
+
The second array to contract.
|
|
1161
|
+
|
|
1162
|
+
Returns
|
|
1163
|
+
-------
|
|
1164
|
+
array_like
|
|
1165
|
+
|
|
1166
|
+
Notes
|
|
1167
|
+
-----
|
|
1168
|
+
A fuller description of this algorithm, and original source for this
|
|
1169
|
+
implementation, can be found at https://github.com/jcmgray/einsum_bmm.
|
|
1170
|
+
"""
|
|
1171
|
+
(
|
|
1172
|
+
eq_a,
|
|
1173
|
+
eq_b,
|
|
1174
|
+
new_shape_a,
|
|
1175
|
+
new_shape_b,
|
|
1176
|
+
new_shape_ab,
|
|
1177
|
+
perm_ab,
|
|
1178
|
+
pure_multiplication,
|
|
1179
|
+
) = _parse_eq_to_batch_matmul(eq, a.shape, b.shape)
|
|
1180
|
+
|
|
1181
|
+
# n.b. one could special case various cases to call c_einsum directly here
|
|
1182
|
+
|
|
1183
|
+
# need to handle `order` a little manually, since we do transpose
|
|
1184
|
+
# operations before and potentially after the ufunc calls
|
|
1185
|
+
output_order = _parse_output_order(
|
|
1186
|
+
kwargs.pop("order", "K"), a.flags.f_contiguous, b.flags.f_contiguous
|
|
1187
|
+
)
|
|
1188
|
+
|
|
1189
|
+
# prepare left
|
|
1190
|
+
if eq_a is not None:
|
|
1191
|
+
# diagonals, sums, and tranpose
|
|
1192
|
+
a = c_einsum(eq_a, a)
|
|
1193
|
+
if new_shape_a is not None:
|
|
1194
|
+
a = reshape(a, new_shape_a)
|
|
1195
|
+
|
|
1196
|
+
# prepare right
|
|
1197
|
+
if eq_b is not None:
|
|
1198
|
+
# diagonals, sums, and tranpose
|
|
1199
|
+
b = c_einsum(eq_b, b)
|
|
1200
|
+
if new_shape_b is not None:
|
|
1201
|
+
b = reshape(b, new_shape_b)
|
|
1202
|
+
|
|
1203
|
+
if pure_multiplication:
|
|
1204
|
+
# no contracted indices
|
|
1205
|
+
if output_order is not None:
|
|
1206
|
+
kwargs["order"] = output_order
|
|
1207
|
+
|
|
1208
|
+
# do the 'contraction' via multiplication!
|
|
1209
|
+
return multiply(a, b, out=out, **kwargs)
|
|
1210
|
+
|
|
1211
|
+
# can only supply out here if no other reshaping / transposing
|
|
1212
|
+
matmul_out_compatible = (new_shape_ab is None) and (perm_ab is None)
|
|
1213
|
+
if matmul_out_compatible:
|
|
1214
|
+
kwargs["out"] = out
|
|
1215
|
+
|
|
1216
|
+
# do the contraction!
|
|
1217
|
+
ab = matmul(a, b, **kwargs)
|
|
1218
|
+
|
|
1219
|
+
# prepare the output
|
|
1220
|
+
if new_shape_ab is not None:
|
|
1221
|
+
ab = reshape(ab, new_shape_ab)
|
|
1222
|
+
if perm_ab is not None:
|
|
1223
|
+
ab = ab.transpose(perm_ab)
|
|
1224
|
+
|
|
1225
|
+
if (out is not None) and (not matmul_out_compatible):
|
|
1226
|
+
# handle case where out is specified, but we also needed
|
|
1227
|
+
# to reshape / transpose ``ab`` after the matmul
|
|
1228
|
+
out[:] = ab
|
|
1229
|
+
ab = out
|
|
1230
|
+
elif output_order is not None:
|
|
1231
|
+
ab = asanyarray(ab, order=output_order)
|
|
1232
|
+
|
|
1233
|
+
return ab
|
|
1234
|
+
|
|
1235
|
+
|
|
1236
|
+
def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs):
|
|
1237
|
+
# Arguably we dispatch on more arguments than we really should; see note in
|
|
1238
|
+
# _einsum_path_dispatcher for why.
|
|
1239
|
+
yield from operands
|
|
1240
|
+
yield out
|
|
1241
|
+
|
|
1242
|
+
|
|
1243
|
+
# Rewrite einsum to handle different cases
|
|
1244
|
+
@array_function_dispatch(_einsum_dispatcher, module='numpy')
|
|
1245
|
+
def einsum(*operands, out=None, optimize=False, **kwargs):
|
|
1246
|
+
"""
|
|
1247
|
+
einsum(subscripts, *operands, out=None, dtype=None, order='K',
|
|
1248
|
+
casting='safe', optimize=False)
|
|
1249
|
+
|
|
1250
|
+
Evaluates the Einstein summation convention on the operands.
|
|
1251
|
+
|
|
1252
|
+
Using the Einstein summation convention, many common multi-dimensional,
|
|
1253
|
+
linear algebraic array operations can be represented in a simple fashion.
|
|
1254
|
+
In *implicit* mode `einsum` computes these values.
|
|
1255
|
+
|
|
1256
|
+
In *explicit* mode, `einsum` provides further flexibility to compute
|
|
1257
|
+
other array operations that might not be considered classical Einstein
|
|
1258
|
+
summation operations, by disabling, or forcing summation over specified
|
|
1259
|
+
subscript labels.
|
|
1260
|
+
|
|
1261
|
+
See the notes and examples for clarification.
|
|
1262
|
+
|
|
1263
|
+
Parameters
|
|
1264
|
+
----------
|
|
1265
|
+
subscripts : str
|
|
1266
|
+
Specifies the subscripts for summation as comma separated list of
|
|
1267
|
+
subscript labels. An implicit (classical Einstein summation)
|
|
1268
|
+
calculation is performed unless the explicit indicator '->' is
|
|
1269
|
+
included as well as subscript labels of the precise output form.
|
|
1270
|
+
operands : list of array_like
|
|
1271
|
+
These are the arrays for the operation.
|
|
1272
|
+
out : ndarray, optional
|
|
1273
|
+
If provided, the calculation is done into this array.
|
|
1274
|
+
dtype : {data-type, None}, optional
|
|
1275
|
+
If provided, forces the calculation to use the data type specified.
|
|
1276
|
+
Note that you may have to also give a more liberal `casting`
|
|
1277
|
+
parameter to allow the conversions. Default is None.
|
|
1278
|
+
order : {'C', 'F', 'A', 'K'}, optional
|
|
1279
|
+
Controls the memory layout of the output. 'C' means it should
|
|
1280
|
+
be C contiguous. 'F' means it should be Fortran contiguous,
|
|
1281
|
+
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
|
|
1282
|
+
'K' means it should be as close to the layout as the inputs as
|
|
1283
|
+
is possible, including arbitrarily permuted axes.
|
|
1284
|
+
Default is 'K'.
|
|
1285
|
+
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
|
1286
|
+
Controls what kind of data casting may occur. Setting this to
|
|
1287
|
+
'unsafe' is not recommended, as it can adversely affect accumulations.
|
|
1288
|
+
|
|
1289
|
+
* 'no' means the data types should not be cast at all.
|
|
1290
|
+
* 'equiv' means only byte-order changes are allowed.
|
|
1291
|
+
* 'safe' means only casts which can preserve values are allowed.
|
|
1292
|
+
* 'same_kind' means only safe casts or casts within a kind,
|
|
1293
|
+
like float64 to float32, are allowed.
|
|
1294
|
+
* 'unsafe' means any data conversions may be done.
|
|
1295
|
+
|
|
1296
|
+
Default is 'safe'.
|
|
1297
|
+
optimize : {False, True, 'greedy', 'optimal'}, optional
|
|
1298
|
+
Controls if intermediate optimization should occur. No optimization
|
|
1299
|
+
will occur if False and True will default to the 'greedy' algorithm.
|
|
1300
|
+
Also accepts an explicit contraction list from the ``np.einsum_path``
|
|
1301
|
+
function. See ``np.einsum_path`` for more details. Defaults to False.
|
|
1302
|
+
|
|
1303
|
+
Returns
|
|
1304
|
+
-------
|
|
1305
|
+
output : ndarray
|
|
1306
|
+
The calculation based on the Einstein summation convention.
|
|
1307
|
+
|
|
1308
|
+
See Also
|
|
1309
|
+
--------
|
|
1310
|
+
einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
|
|
1311
|
+
einsum:
|
|
1312
|
+
Similar verbose interface is provided by the
|
|
1313
|
+
`einops <https://github.com/arogozhnikov/einops>`_ package to cover
|
|
1314
|
+
additional operations: transpose, reshape/flatten, repeat/tile,
|
|
1315
|
+
squeeze/unsqueeze and reductions.
|
|
1316
|
+
The `opt_einsum <https://optimized-einsum.readthedocs.io/en/stable/>`_
|
|
1317
|
+
optimizes contraction order for einsum-like expressions
|
|
1318
|
+
in backend-agnostic manner.
|
|
1319
|
+
|
|
1320
|
+
Notes
|
|
1321
|
+
-----
|
|
1322
|
+
The Einstein summation convention can be used to compute
|
|
1323
|
+
many multi-dimensional, linear algebraic array operations. `einsum`
|
|
1324
|
+
provides a succinct way of representing these.
|
|
1325
|
+
|
|
1326
|
+
A non-exhaustive list of these operations,
|
|
1327
|
+
which can be computed by `einsum`, is shown below along with examples:
|
|
1328
|
+
|
|
1329
|
+
* Trace of an array, :py:func:`numpy.trace`.
|
|
1330
|
+
* Return a diagonal, :py:func:`numpy.diag`.
|
|
1331
|
+
* Array axis summations, :py:func:`numpy.sum`.
|
|
1332
|
+
* Transpositions and permutations, :py:func:`numpy.transpose`.
|
|
1333
|
+
* Matrix multiplication and dot product, :py:func:`numpy.matmul`
|
|
1334
|
+
:py:func:`numpy.dot`.
|
|
1335
|
+
* Vector inner and outer products, :py:func:`numpy.inner`
|
|
1336
|
+
:py:func:`numpy.outer`.
|
|
1337
|
+
* Broadcasting, element-wise and scalar multiplication,
|
|
1338
|
+
:py:func:`numpy.multiply`.
|
|
1339
|
+
* Tensor contractions, :py:func:`numpy.tensordot`.
|
|
1340
|
+
* Chained array operations, in efficient calculation order,
|
|
1341
|
+
:py:func:`numpy.einsum_path`.
|
|
1342
|
+
|
|
1343
|
+
The subscripts string is a comma-separated list of subscript labels,
|
|
1344
|
+
where each label refers to a dimension of the corresponding operand.
|
|
1345
|
+
Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
|
|
1346
|
+
is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
|
|
1347
|
+
appears only once, it is not summed, so ``np.einsum('i', a)``
|
|
1348
|
+
produces a view of ``a`` with no changes. A further example
|
|
1349
|
+
``np.einsum('ij,jk', a, b)`` describes traditional matrix multiplication
|
|
1350
|
+
and is equivalent to :py:func:`np.matmul(a,b) <numpy.matmul>`.
|
|
1351
|
+
Repeated subscript labels in one operand take the diagonal.
|
|
1352
|
+
For example, ``np.einsum('ii', a)`` is equivalent to
|
|
1353
|
+
:py:func:`np.trace(a) <numpy.trace>`.
|
|
1354
|
+
|
|
1355
|
+
In *implicit mode*, the chosen subscripts are important
|
|
1356
|
+
since the axes of the output are reordered alphabetically. This
|
|
1357
|
+
means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
|
|
1358
|
+
``np.einsum('ji', a)`` takes its transpose. Additionally,
|
|
1359
|
+
``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
|
|
1360
|
+
``np.einsum('ij,jh', a, b)`` returns the transpose of the
|
|
1361
|
+
multiplication since subscript 'h' precedes subscript 'i'.
|
|
1362
|
+
|
|
1363
|
+
In *explicit mode* the output can be directly controlled by
|
|
1364
|
+
specifying output subscript labels. This requires the
|
|
1365
|
+
identifier '->' as well as the list of output subscript labels.
|
|
1366
|
+
This feature increases the flexibility of the function since
|
|
1367
|
+
summing can be disabled or forced when required. The call
|
|
1368
|
+
``np.einsum('i->', a)`` is like :py:func:`np.sum(a) <numpy.sum>`
|
|
1369
|
+
if ``a`` is a 1-D array, and ``np.einsum('ii->i', a)``
|
|
1370
|
+
is like :py:func:`np.diag(a) <numpy.diag>` if ``a`` is a square 2-D array.
|
|
1371
|
+
The difference is that `einsum` does not allow broadcasting by default.
|
|
1372
|
+
Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
|
|
1373
|
+
order of the output subscript labels and therefore returns matrix
|
|
1374
|
+
multiplication, unlike the example above in implicit mode.
|
|
1375
|
+
|
|
1376
|
+
To enable and control broadcasting, use an ellipsis. Default
|
|
1377
|
+
NumPy-style broadcasting is done by adding an ellipsis
|
|
1378
|
+
to the left of each term, like ``np.einsum('...ii->...i', a)``.
|
|
1379
|
+
``np.einsum('...i->...', a)`` is like
|
|
1380
|
+
:py:func:`np.sum(a, axis=-1) <numpy.sum>` for array ``a`` of any shape.
|
|
1381
|
+
To take the trace along the first and last axes,
|
|
1382
|
+
you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
|
|
1383
|
+
product with the left-most indices instead of rightmost, one can do
|
|
1384
|
+
``np.einsum('ij...,jk...->ik...', a, b)``.
|
|
1385
|
+
|
|
1386
|
+
When there is only one operand, no axes are summed, and no output
|
|
1387
|
+
parameter is provided, a view into the operand is returned instead
|
|
1388
|
+
of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
|
|
1389
|
+
produces a view (changed in version 1.10.0).
|
|
1390
|
+
|
|
1391
|
+
`einsum` also provides an alternative way to provide the subscripts and
|
|
1392
|
+
operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
|
|
1393
|
+
If the output shape is not provided in this format `einsum` will be
|
|
1394
|
+
calculated in implicit mode, otherwise it will be performed explicitly.
|
|
1395
|
+
The examples below have corresponding `einsum` calls with the two
|
|
1396
|
+
parameter methods.
|
|
1397
|
+
|
|
1398
|
+
Views returned from einsum are now writeable whenever the input array
|
|
1399
|
+
is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
|
|
1400
|
+
have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
|
|
1401
|
+
and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
|
|
1402
|
+
of a 2D array.
|
|
1403
|
+
|
|
1404
|
+
Added the ``optimize`` argument which will optimize the contraction order
|
|
1405
|
+
of an einsum expression. For a contraction with three or more operands
|
|
1406
|
+
this can greatly increase the computational efficiency at the cost of
|
|
1407
|
+
a larger memory footprint during computation.
|
|
1408
|
+
|
|
1409
|
+
Typically a 'greedy' algorithm is applied which empirical tests have shown
|
|
1410
|
+
returns the optimal path in the majority of cases. In some cases 'optimal'
|
|
1411
|
+
will return the superlative path through a more expensive, exhaustive
|
|
1412
|
+
search. For iterative calculations it may be advisable to calculate
|
|
1413
|
+
the optimal path once and reuse that path by supplying it as an argument.
|
|
1414
|
+
An example is given below.
|
|
1415
|
+
|
|
1416
|
+
See :py:func:`numpy.einsum_path` for more details.
|
|
1417
|
+
|
|
1418
|
+
Examples
|
|
1419
|
+
--------
|
|
1420
|
+
>>> a = np.arange(25).reshape(5,5)
|
|
1421
|
+
>>> b = np.arange(5)
|
|
1422
|
+
>>> c = np.arange(6).reshape(2,3)
|
|
1423
|
+
|
|
1424
|
+
Trace of a matrix:
|
|
1425
|
+
|
|
1426
|
+
>>> np.einsum('ii', a)
|
|
1427
|
+
60
|
|
1428
|
+
>>> np.einsum(a, [0,0])
|
|
1429
|
+
60
|
|
1430
|
+
>>> np.trace(a)
|
|
1431
|
+
60
|
|
1432
|
+
|
|
1433
|
+
Extract the diagonal (requires explicit form):
|
|
1434
|
+
|
|
1435
|
+
>>> np.einsum('ii->i', a)
|
|
1436
|
+
array([ 0, 6, 12, 18, 24])
|
|
1437
|
+
>>> np.einsum(a, [0,0], [0])
|
|
1438
|
+
array([ 0, 6, 12, 18, 24])
|
|
1439
|
+
>>> np.diag(a)
|
|
1440
|
+
array([ 0, 6, 12, 18, 24])
|
|
1441
|
+
|
|
1442
|
+
Sum over an axis (requires explicit form):
|
|
1443
|
+
|
|
1444
|
+
>>> np.einsum('ij->i', a)
|
|
1445
|
+
array([ 10, 35, 60, 85, 110])
|
|
1446
|
+
>>> np.einsum(a, [0,1], [0])
|
|
1447
|
+
array([ 10, 35, 60, 85, 110])
|
|
1448
|
+
>>> np.sum(a, axis=1)
|
|
1449
|
+
array([ 10, 35, 60, 85, 110])
|
|
1450
|
+
|
|
1451
|
+
For higher dimensional arrays summing a single axis can be done
|
|
1452
|
+
with ellipsis:
|
|
1453
|
+
|
|
1454
|
+
>>> np.einsum('...j->...', a)
|
|
1455
|
+
array([ 10, 35, 60, 85, 110])
|
|
1456
|
+
>>> np.einsum(a, [Ellipsis,1], [Ellipsis])
|
|
1457
|
+
array([ 10, 35, 60, 85, 110])
|
|
1458
|
+
|
|
1459
|
+
Compute a matrix transpose, or reorder any number of axes:
|
|
1460
|
+
|
|
1461
|
+
>>> np.einsum('ji', c)
|
|
1462
|
+
array([[0, 3],
|
|
1463
|
+
[1, 4],
|
|
1464
|
+
[2, 5]])
|
|
1465
|
+
>>> np.einsum('ij->ji', c)
|
|
1466
|
+
array([[0, 3],
|
|
1467
|
+
[1, 4],
|
|
1468
|
+
[2, 5]])
|
|
1469
|
+
>>> np.einsum(c, [1,0])
|
|
1470
|
+
array([[0, 3],
|
|
1471
|
+
[1, 4],
|
|
1472
|
+
[2, 5]])
|
|
1473
|
+
>>> np.transpose(c)
|
|
1474
|
+
array([[0, 3],
|
|
1475
|
+
[1, 4],
|
|
1476
|
+
[2, 5]])
|
|
1477
|
+
|
|
1478
|
+
Vector inner products:
|
|
1479
|
+
|
|
1480
|
+
>>> np.einsum('i,i', b, b)
|
|
1481
|
+
30
|
|
1482
|
+
>>> np.einsum(b, [0], b, [0])
|
|
1483
|
+
30
|
|
1484
|
+
>>> np.inner(b,b)
|
|
1485
|
+
30
|
|
1486
|
+
|
|
1487
|
+
Matrix vector multiplication:
|
|
1488
|
+
|
|
1489
|
+
>>> np.einsum('ij,j', a, b)
|
|
1490
|
+
array([ 30, 80, 130, 180, 230])
|
|
1491
|
+
>>> np.einsum(a, [0,1], b, [1])
|
|
1492
|
+
array([ 30, 80, 130, 180, 230])
|
|
1493
|
+
>>> np.dot(a, b)
|
|
1494
|
+
array([ 30, 80, 130, 180, 230])
|
|
1495
|
+
>>> np.einsum('...j,j', a, b)
|
|
1496
|
+
array([ 30, 80, 130, 180, 230])
|
|
1497
|
+
|
|
1498
|
+
Broadcasting and scalar multiplication:
|
|
1499
|
+
|
|
1500
|
+
>>> np.einsum('..., ...', 3, c)
|
|
1501
|
+
array([[ 0, 3, 6],
|
|
1502
|
+
[ 9, 12, 15]])
|
|
1503
|
+
>>> np.einsum(',ij', 3, c)
|
|
1504
|
+
array([[ 0, 3, 6],
|
|
1505
|
+
[ 9, 12, 15]])
|
|
1506
|
+
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
|
|
1507
|
+
array([[ 0, 3, 6],
|
|
1508
|
+
[ 9, 12, 15]])
|
|
1509
|
+
>>> np.multiply(3, c)
|
|
1510
|
+
array([[ 0, 3, 6],
|
|
1511
|
+
[ 9, 12, 15]])
|
|
1512
|
+
|
|
1513
|
+
Vector outer product:
|
|
1514
|
+
|
|
1515
|
+
>>> np.einsum('i,j', np.arange(2)+1, b)
|
|
1516
|
+
array([[0, 1, 2, 3, 4],
|
|
1517
|
+
[0, 2, 4, 6, 8]])
|
|
1518
|
+
>>> np.einsum(np.arange(2)+1, [0], b, [1])
|
|
1519
|
+
array([[0, 1, 2, 3, 4],
|
|
1520
|
+
[0, 2, 4, 6, 8]])
|
|
1521
|
+
>>> np.outer(np.arange(2)+1, b)
|
|
1522
|
+
array([[0, 1, 2, 3, 4],
|
|
1523
|
+
[0, 2, 4, 6, 8]])
|
|
1524
|
+
|
|
1525
|
+
Tensor contraction:
|
|
1526
|
+
|
|
1527
|
+
>>> a = np.arange(60.).reshape(3,4,5)
|
|
1528
|
+
>>> b = np.arange(24.).reshape(4,3,2)
|
|
1529
|
+
>>> np.einsum('ijk,jil->kl', a, b)
|
|
1530
|
+
array([[4400., 4730.],
|
|
1531
|
+
[4532., 4874.],
|
|
1532
|
+
[4664., 5018.],
|
|
1533
|
+
[4796., 5162.],
|
|
1534
|
+
[4928., 5306.]])
|
|
1535
|
+
>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
|
|
1536
|
+
array([[4400., 4730.],
|
|
1537
|
+
[4532., 4874.],
|
|
1538
|
+
[4664., 5018.],
|
|
1539
|
+
[4796., 5162.],
|
|
1540
|
+
[4928., 5306.]])
|
|
1541
|
+
>>> np.tensordot(a,b, axes=([1,0],[0,1]))
|
|
1542
|
+
array([[4400., 4730.],
|
|
1543
|
+
[4532., 4874.],
|
|
1544
|
+
[4664., 5018.],
|
|
1545
|
+
[4796., 5162.],
|
|
1546
|
+
[4928., 5306.]])
|
|
1547
|
+
|
|
1548
|
+
Writeable returned arrays (since version 1.10.0):
|
|
1549
|
+
|
|
1550
|
+
>>> a = np.zeros((3, 3))
|
|
1551
|
+
>>> np.einsum('ii->i', a)[:] = 1
|
|
1552
|
+
>>> a
|
|
1553
|
+
array([[1., 0., 0.],
|
|
1554
|
+
[0., 1., 0.],
|
|
1555
|
+
[0., 0., 1.]])
|
|
1556
|
+
|
|
1557
|
+
Example of ellipsis use:
|
|
1558
|
+
|
|
1559
|
+
>>> a = np.arange(6).reshape((3,2))
|
|
1560
|
+
>>> b = np.arange(12).reshape((4,3))
|
|
1561
|
+
>>> np.einsum('ki,jk->ij', a, b)
|
|
1562
|
+
array([[10, 28, 46, 64],
|
|
1563
|
+
[13, 40, 67, 94]])
|
|
1564
|
+
>>> np.einsum('ki,...k->i...', a, b)
|
|
1565
|
+
array([[10, 28, 46, 64],
|
|
1566
|
+
[13, 40, 67, 94]])
|
|
1567
|
+
>>> np.einsum('k...,jk', a, b)
|
|
1568
|
+
array([[10, 28, 46, 64],
|
|
1569
|
+
[13, 40, 67, 94]])
|
|
1570
|
+
|
|
1571
|
+
Chained array operations. For more complicated contractions, speed ups
|
|
1572
|
+
might be achieved by repeatedly computing a 'greedy' path or pre-computing
|
|
1573
|
+
the 'optimal' path and repeatedly applying it, using an `einsum_path`
|
|
1574
|
+
insertion (since version 1.12.0). Performance improvements can be
|
|
1575
|
+
particularly significant with larger arrays:
|
|
1576
|
+
|
|
1577
|
+
>>> a = np.ones(64).reshape(2,4,8)
|
|
1578
|
+
|
|
1579
|
+
Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
|
|
1580
|
+
|
|
1581
|
+
>>> for iteration in range(500):
|
|
1582
|
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
|
|
1583
|
+
|
|
1584
|
+
Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
|
|
1585
|
+
|
|
1586
|
+
>>> for iteration in range(500):
|
|
1587
|
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a,
|
|
1588
|
+
... optimize='optimal')
|
|
1589
|
+
|
|
1590
|
+
Greedy `einsum` (faster optimal path approximation): ~160ms
|
|
1591
|
+
|
|
1592
|
+
>>> for iteration in range(500):
|
|
1593
|
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
|
|
1594
|
+
|
|
1595
|
+
Optimal `einsum` (best usage pattern in some use cases): ~110ms
|
|
1596
|
+
|
|
1597
|
+
>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a,
|
|
1598
|
+
... optimize='optimal')[0]
|
|
1599
|
+
>>> for iteration in range(500):
|
|
1600
|
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
|
|
1601
|
+
|
|
1602
|
+
"""
|
|
1603
|
+
# Special handling if out is specified
|
|
1604
|
+
specified_out = out is not None
|
|
1605
|
+
|
|
1606
|
+
# If no optimization, run pure einsum
|
|
1607
|
+
if optimize is False:
|
|
1608
|
+
if specified_out:
|
|
1609
|
+
kwargs['out'] = out
|
|
1610
|
+
return c_einsum(*operands, **kwargs)
|
|
1611
|
+
|
|
1612
|
+
# Check the kwargs to avoid a more cryptic error later, without having to
|
|
1613
|
+
# repeat default values here
|
|
1614
|
+
valid_einsum_kwargs = ['dtype', 'order', 'casting']
|
|
1615
|
+
unknown_kwargs = [k for (k, v) in kwargs.items() if
|
|
1616
|
+
k not in valid_einsum_kwargs]
|
|
1617
|
+
if len(unknown_kwargs):
|
|
1618
|
+
raise TypeError(f"Did not understand the following kwargs: {unknown_kwargs}")
|
|
1619
|
+
|
|
1620
|
+
# Build the contraction list and operand
|
|
1621
|
+
operands, contraction_list = einsum_path(*operands, optimize=optimize,
|
|
1622
|
+
einsum_call=True)
|
|
1623
|
+
|
|
1624
|
+
# Start contraction loop
|
|
1625
|
+
for num, contraction in enumerate(contraction_list):
|
|
1626
|
+
inds, einsum_str, _ = contraction
|
|
1627
|
+
tmp_operands = [operands.pop(x) for x in inds]
|
|
1628
|
+
|
|
1629
|
+
# Do we need to deal with the output?
|
|
1630
|
+
handle_out = specified_out and ((num + 1) == len(contraction_list))
|
|
1631
|
+
|
|
1632
|
+
# If out was specified
|
|
1633
|
+
if handle_out:
|
|
1634
|
+
kwargs["out"] = out
|
|
1635
|
+
|
|
1636
|
+
if len(tmp_operands) == 2:
|
|
1637
|
+
# Call (batched) matrix multiplication if possible
|
|
1638
|
+
new_view = bmm_einsum(einsum_str, *tmp_operands, **kwargs)
|
|
1639
|
+
else:
|
|
1640
|
+
# Call einsum
|
|
1641
|
+
new_view = c_einsum(einsum_str, *tmp_operands, **kwargs)
|
|
1642
|
+
|
|
1643
|
+
# Append new items and dereference what we can
|
|
1644
|
+
operands.append(new_view)
|
|
1645
|
+
del tmp_operands, new_view
|
|
1646
|
+
|
|
1647
|
+
if specified_out:
|
|
1648
|
+
return out
|
|
1649
|
+
else:
|
|
1650
|
+
return operands[0]
|